INTEGRABILITE ET ALGEBRES QUANTIQUES

DAMIEN CALAQUE

1. SYSTEMES LOCAUX ET EQUATIONS DE KNIZHNIK-ZAMOLODCHIKOV

1.1. Faisceaux.

1.1.1. Définition et exemples.
Soit X un espace topologique, qu’on supposera localement connexe et localement connexe
par arcs.

Définition 1.1. Un faisceau F sur X est la donnée

e d’un ensemble de sections F(U) pour tout ouvert U de X,
o d’applications de restrictions ryy : F(U) — F(V) pour tout inclusion V C U,

satisfaisant les conditions suivantes :

(associativité) ryw orpy =ruw si W CV C U,
(recollement) soit U un owvert de X, (U;);er un recouvrement de U par des ouverts, et s; € F(U;),
i € I, des sections tels que pour tout (i,j) € 12,

TU; Ui (Sl) =TU;,U;; (S]) .
Alors il existe une unique section s € F(U) telle que ry,u,(s) = s; quel que soiti € I.

On parle de faisceau en groupes (resp. en espace vectoriels, en algebres, etc...) si les
ensembles des section sont des groupes (resp. des espace vectoriels, des algebres, etc...) et si
les applications de restriction sont des homomorphismes de groupes (resp. des applications
lindaires, des morphismes d’algebres, etc...).

En I'absence d’ambiguité, on note sy := ry,y (s) la restriction d’une section s € F(U) a
un plus petit ouvert VC U.

Exemples 1.2. (i) X D U — C°(U) = {fonctions continues sur U} définit un faisceau (en
algebres).

(ii) X DU — C=(U), avec X une variété différentiable (par exemple un ouvert de R"),
définit un faisceau (en algebres).

(iii) X D U — Hol(U), avec X une variété analytique complexe (par exemple un ouvert
de C™), définit un faisceau (en algebres).

(iv) R D U + {fonctions continues et intégrables sur U} n’est PAS un faisceau sur R.

(v) soit p: Y — X un homéomorphisme local, c.-a.-d. une application continue telle que
pour tout y € Y il existe un voisinage ouvert W de y tel que p; est un homéomorphisme
sur son image. On note F(U) I'ensemble des applications continues s : U — p~1(U) telle
que p o s = idy, qu’on appelle les sections de p. Montrer que la restriction de s a un plus
petit ouvert V' C U est & valeurs dans p~!(V). En déduire que F est un faisceau sur X.

(vi) soit E un ensemble fixé. X D U +— E, avec ry,y = idg, est un faisceau. On note ce
faisceau E/, qu’on qualifie de faisceau constant.

(vii) soit F un faisceau sur X et U un ouvert de X. Alors Fiy : U DV == Fy(V) = F(V)
définit un faisceau sur U, qu’on appelle la restriction de F a U.
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Un morphisme de faisceaux f : F — G est la donnée d’applications f(U) : F(U) — G(U),
pour tout les ouverts U C X, qui commute aux restrictions :

Fo)—2 s gw)
Fv)—Y g

On dit que f est un isomorphisme si f(U) est un isomorphisme quel que soit U.

1.1.2. Recoller des faisceaux.

Soit (U;)ier un recouvrement de X par des ouverts. Etant donné un faisceau F; sur
chaque U; tel que pour tout couple (4, §) tel que? Ui; # 0 on ait un isomorphisme de faisceaux
wij + Fiju,; — Fiju,,;» nous donnons maintenant une condition suffisante pour “recoller” les
faisceaux F; en un faisceau F sur X :

(1.1) i = id et (@ik © Pij) Ui = Pik|Usju

Pour tout ouvert U de X, on définit F(U) comme lensemble des (s;);cr tels que s; €
]:i<Ui NU) et Qpij(sﬂUij) = Sj|u,;-

Exercice 1.3. Montrer que F défini comme précédemment est un faisceau sur X.

Deux tels faisceaux F et G recollé a I'aide de données locales (F;, ¢;;) et (G;,1;;) pour un
méme recouvrement (U;);cy sont isomorphes si il existe des isomorphismes f; : Fjy, — Gu,
satisfaisant la suivante :

(1.2) Yij o fiu,, = Pij

1.1.3. Tiges et tirés-en-arriére.

Soit z € X et F un faisceau sur X. La tige F, de F en x est le quotient de la réunion
disjointe des F(U) pour U > z par la relations d’équivalence suivante : deux sections s; €
F(U;), i = 1,2, sont équivalentes si il existe un ouvert V'O Uy NUs > x sur lesquels leurs
restrictions coincident : s1jy = sa)y .

Les éléments de la tige F, sont appelés les germes de sections de F en z.

Etant donné une application continue f : Y — X entre deux espaces topologiques et un
faisceau F sur X, on peut construire un faisceau f*F sur Y, appelé tiré-en-arriere de F le
long de f, qui est tel que (f*F), = Ff). On n’explicite pas cette construction pour les
faisceaux (qui est un peu compliquée) dans la mesure oll nous verrons une construction ad
hoc plus simple dans le cas des systemes locaux.

1.2. Systémes locaux et groupe fondamental.

1.2.1. Définition et exemple principal.

Définition 1.4. Un systeme local sur X est un faisceau L de C-espaces vectoriels localement
isomorphe a un faisceau constant du type C". Plus précisément, quel que soit x € X il existe
un voisinage owvert U de x tel que L;y = C" (n € N n'est pas nécessairement fizé).

Par conséquent, étant donné un systéme local £ sur X il existe un recouvrement (U;);
de X par des ouverts tels que Ly, = C™. Pour tout couple (i,j) tel que U;; # 0, notons
@i : O™ — C™ l'isomorphisme suivant:

. id id . .
C” =Ly, — Ly, — Ly, —CY.

IPour un suite d’indices i1,...,1g, on note Uy, ...;, = U;; N -+ Uy, .
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De plus la condition d’associativité impose que

(1.3) i = id et Pik O Pij = Pik

pour tout triplet (i, j, k) tel que U;ji # 0. Dans ce contexte une section s € £(U) correspond

a la donnée d’un vecteur v; € C™ pour chaque i tel que U; N U # () satisfaisant la condition

de recollement suivante : ¢;;(v;) = v; pour tout couple (4, j) tel que U;; NU # 0.
Réciproquement, la donnée d’un recouvrement (U;);c; de X par des ouverts et d’isomorphismes

de transition ¢;; : C™" — C™ satisfaisant (1.3) suffit & définir un syseme local sur X.

Remarque 1.5. §i X est conneze alors n; = n; quels que soient i et j.

Exercice 1.6. Supposons que X est un ouvert de C” et considérons un systeme complet
d’équations aux dérivées partielles linéaires du premier ordre & coefficients holomorphes:

of
8Zi

ou V est un C-espace vectoriel. Pour tout ouvert U € X on note S(U) l'ensemble des
solutions de ce systeme d’EDP. S définit un faisceau en C-espaces vectoriels sur X (avec les
applications de restrictions évidentes).

Mountrer que S est un systeéme local si et seulement si le systéeme d’EDP est intégrable (on
dit aussi compatible) :

0K; 0K,
6,2]‘ 8zl

=K(f) (Yie{l,...,n}, K; € Hol(X,End(V)),

= [K;, K] (quels que soient i et 7).

1.2.2. Tiré-en-arriére et représentation de monodromie.

Soit f : Y — X une application continue et £ un systéme local sur X. Donnons-nous un
recouvrement (U;);er de X par des ouvertes tels que £y, = C™, et notons ¢;; : C™ ——C™
les isomorphismes de transition.

Le tiré-en-arriere f*£ de £ par f peut étre décrit de la maniére suivante (on peut prendre
cette description comme une définition de f*L£) : on considere le recouvrement de Y donné
par les ouverts V; := f~1(U;), et on exige que (f*L)y, = C™ avec les méme isomorphismes
de transition ¢;; : C" — C™ que pour L.

On considére maintenant le cas particulier ot Y = [0, 1]. Pour tout chemin v : [0,1] — X,
on a alors un systéme local V := ~4*L sur [0, 1].

Lemme 1.7. Tout systéme local V sur [0, 1] est isomorphe au faisceau constant Vy.

Démonstration. On recouvre [0, 1] par des intervalles ouverts Uy C [0,1], k = 1,...,1, tels
que 0 € Uy, 1 € U, UNUgy1 # 0, et Viu, = C™. Montrons maintenant que V est isomorphe
au faisceau constant C™1.

Quel que soit k € {1,...,1}, on définit par I'isomorphisme

fr : CM—=—C" =V, ,

ou le premier isomorphisme est donné par @_1)x © -0 Y23 0 P12 : Cmt = C™. 1l est
assez facile de vérifier que la condition (1.2) est satisfaite, et que ’on peut ainsi recoller ces
données locales pour obtenir un isomorphisme de faisceaux f : Vo = C™" — V. O

On obtient ainsi, en considérant les tiges en 1 des faisceaux, un isomorphisme
g = f1 : VO = (&)1;>V1

Exercice 1.8. Montrer que cet isomorphisme ne dépend que de la classe d’homotopie a
extrémités fizes du chemin.
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En particulier, si v est un lacet basé en z € X (i.e. v(0) = v(1) = x) alors on récupere un
automorphisme de Vy = L., qui reste ne dépend que de la classe d’homotopie a point base
fixe du lacet. On obtient ainsi une application

pr : m(X,z) —GL(L,).

Exercice 1.9. Montrer que cette application est un morphisme de groupes (le produit [y1][2]
des classes de deux lacets dans le groupe fondamental est donné par la classe [y17y2] de leur
concaténation, ot on parcours 1 en premier).

p définit donc une représentation du groupe fondamental 71 (X, ), qu’on appelle représentation
de monodromie.

Exemple 1.10. Revenons a lexemple de lexercice 1.6. Soit v = (v1,...,7,) : [0,1] = X
un chemin différentiable. Dans ce cas v*L est le systéeme local dont les sections sont les
solutions de ’équation différentielle ordinaire linéaire du premier ordre suivante :

(1.4) f=K(@) (K=Y qkK e c=(0,1,V)).

Ainsi I'isomorphisme Vy —— V) est 'application qui, & un vecteur “condition initiale” donné
vg associe la valeur v, au temps 1 de I'unique solution f de (1.4) telle que f(0) = vo.

1.3. Equations de Knizhnik-Zamolodchikov et groupes de tresses.
On pose Y = {(z1,...,2n) € C"|z; # 2z 81 # j} et X =Y/S,, ou l'action du groupe
symétrique S, sur Y est la suivante :

(21,5 2n) = (Zo(1)s -+ Za(n)) -

1.3.1. Les équations de Knizhnik-Zamolodchikov.
Soit g une C-algebre de Lie, h € C et t € S?(g)®. Plus précisément, t =Y, 2, Qy; € g®g
satisfait les deux conditions suivantes :
(symétrie) t31 =3 y, @z, => , 2, @y, =t;
(invariance) pour tout a € g, [a®1+1®a,t] =5 ([a,2,] @y, + 2, ® [a,y,]) = 0.

Remarque 1.11. Pour la seconde condition, le crochet de Lie considéré dans le membre le
plusa gauche gauche est le commutateur dans Ualgébre U(g) @ Ul(g).

Soit Vi,...,V, des représentations de g. On considere le systeme complet d’équations aux
dérivées partielles suivant, dites équations de Knizhnik-Zamolodchikov :
of tisd

1.5 =h Vied{l,...,n}).
(1.5) el Dt B U )

JliFi

—_——

::Ki

Ici les équations sont a valeurs dans le C-espace vectoriel W := V; ® --- ® V,, et on utilise
les notations suivantes :

o thi =% 2 oyl
e plus généralement si f = f1 ® --- @ fn € U(g)®™, avec m < n, alors pour toute
combinaison (i1, ...,%,) de m éléments dans {1,...,n} on définit

fi1,<..,im _ fl(il) 0.0 fr('im) c End(W) :
e pour tout a € U(g) et tout i € {1,...,n}
a :=idy, ® - ®@idy;, , ®a®idy,,, ® - ®@idy, € End(W),

et il est aisé de constater que a(® et b\9) commutent si 7 # j.
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Proposition 1.12. Le systéme (1.5) est intégrable :

K; K;
G et = K
J %
Démonstration. Nous allons montrer que %{2’ — a;;f =0=[K;, Kj].

On commence par le plus facile :

OK; O0K; Wi —tit
- = =0.
sz 821 (ZZ' — Zj>2

La derniere égalité est une conséquence de la symétrie de t.

Continuons :
ik il
) - | |
o = [X Ty
k|k#i 1i#£]
fik il

ti,k: tj7i
- |: Z 722]‘— }—F[Zzi—zk’zj—zi}

Zi — 2 z
O N ) R T Y Tkl
fid ik
+[zl—z-’ Z 2 — 2 ]
T kg R
tisk ti-k tiok tid tisd tik
ST S | e e Rl Pt P Rl Pt Prrd
Zi TRk 2§ — Rk Zi TRk 25 — & Zi TR 25 — Rk

(4,3,k)1##{i,5,k}=3

Dans la derniere égalité nous avons utilisé le fait que t“* et ¢/! commutent si 4, j, k, [ sont
tous distincts deux a deux. Nous allons maintenant utiliser le lemme suivant pour montrer
que chaque terme de la somme principale est nulle.

Lemme 1.13. Si i, j, k sont tous distincts deuz a deuz alors [t™7 9% + %] = 0.

Démonstration du lemme. 11 suffit de faire la démonstration pour (i,5,k) = (1,2,3), et ce
dans U(g)®3. On calcule :

(112 403 429 = [t®1,Z(mV®1®yy+l®xU®yy)]

o, ®l+1®,]0y, =0.

v

La toute derniere égalité est une conséquence de I'invariance de t. O

Fin de la démonstration de la proposition. En appliquant deux fois le lemme précédent on
trouve que

tisk ti-k tisk tid thd ti-k
Pl Rl PP Rl PrerrtPrerrd
2 TRk Zj — Rk Zi TRk R T %4 Zi T2 Zj T Zk

ti,k t_’j,k ti’k tj,k ti’k tj,k
- ==l b=l 5=
2y — Rk Zj*Zk, Z; — 2k Zz'*Zj Ziij Zj*Zk

_ ik ik 1 1 _ 1
= e ((zl —zi)(zj — 2x) M (zi —2)(zi — 25) (2 — 25)(25 — Zk))

Or la fraction rationelle a I'intérieur de la parenthese est identiquement nulle. La démonstration
de la proposition est donc terminée. O
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1.3.2. Un systéme local sur le quotient X =Y/S,,.

D’apres la propositon que nous venons de démontrer, nous avons un systeme local
sur Y dont les sections sont les solutions des équations de Knizhnik-Zamolodchikov. Ainsi,
on obtient une représentation de monodromie

m(Y,e) — GL(W).

EKZ

Afin d’obtenir un représentation de (X, e) on choisit des modules V; = --- =V, =V
identiques. De cette maniere les sections de £XZ (i.e. les solutions des équations de K-Z)
sont équipés d’une action du groupe symétrique S,,, qui agit par permutation des facteurs.
On note alors LXZ le faisceau défini sur X dont de la maniére suivante : LEZ(U) est l'espace
des solutions holomorphes f : p~1(U) — W (i.e. f € LEZ(p=1(U))) telles que

(16) f(ZU(l)w-chr(n)):O—'f(zlw-wzn)'

Si U est un ouvert S,,-invariant de X (i.e. si U est de la forme p~'(U)) alors les solutions holo-
morphes des équations de K-Z définies sur U satisfaisant (1.6) sont dites (S,-)équivariantes.

Proposition 1.14. LEZ est un systéme local sur X, dont la tige au-dessus de tout point
est W.

Démonstration. Remarquons que S, agit librement sur Y. Ainsi pour tout z € X pour un
ouvert U > x assez petit on a f~1(U) 2 U x S,,. Cest-a-dire que si on choisit y € Y tel
que p(y) = z alors il existe un ouvert V 3 y tel que f~1(U) = [I,es, o(V). Ainsi on a

LEZ ;= [,f‘{/Z. De plus, quitte a restreindre U on peut supposer que Elf‘{/Z =~ Cn.

On voit par ailleurs que la tige de £5Z au-dessus de z est identique & la tige de £K?Z
au-dessus de y, qui est W. O

Nous obtenons donc une représentation de monodromie

Py m(X,8) — GL(V®™).
En supposant que h est un parametre formel (plutét qu'un nombre complexe) on obtient
Pz mi(X,0) — GLVE)[]].

1.3.3. Le groupe des tresses B,,.

Considérons un point base y = (21,...,2,) € Y pour lequel les z; sont des réels tels

que 0 < 23 < - < z, < 1. On note z = p(y) € X et on définit B, = m(X,x), le
groupe des tresses a n brins.

Nous allons maintenant donner une présentation de B,, par générateurs et relations. Dans
la prochaine section on explique comment obtenir des représentations de ce groupe a partir
de données purement algébriques.

Remarquons déja qu’on peut représenter tout élément de B,, par un diagramme de tresse

comme suit :
1

N

'

N

3 E}

N
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Ici le croisement élémentaire

1 i-1 %_i+2 n

noté o; a pour inverse le croisement élémentaire opposé (i.e. oll i-itme brin passe derriére
le (i 4 1)-iéme) et représente la classe d’homotopie [o;] du chemin y(t) = (21(t), ..., z.(t))
défini par zy(t) = z), pour k # i, j et?
2 (14 €™) + 2,01 (1 — eit7 2 (1 — €™) 4+ 2,01 (1 + €7
Zl(t): z( + )+2 z+1( ) et zi+1(t): z( )+2 H—l( + )
La concaténation des lacets (i.e. le produit dans B,,) se traduit ici par la concaténation des
diagrammes, et on peut vérifier graphiquement les faits suivants :

(1) les tresses élémentaires o; (i = 1,...,n — 1) et leurs inverses engendrent tous les
diagrammes de tresses via la concaténation ;

(2) si|i—j| > 2 alors les diagrammes 0,0, et 00, représentent la méme classe de lacets;

(3) les diagrammes 0;0;410; et 0;410;0;+1 représentent la méme classe de lacets.

On a donc un homomorphisme surjectif du groupe engendré par les o; (i = 1,...,n—1) avec
les relations

00 = 040 (|Z —j| Z 2) et 0;0i410; = 044100441 (VZ) ,
vers B,,, donné par o; — [o;].
Théoréme 1.15. Ce morphisme est un isomorphisme.

On ne donnera pas la démonstration de ce théoreme.

2. BIGEBRES ET EQUATION DE YANG-BAXTER
2.1. Bigebres.
2.1.1. Définition et exemples.

Définition 2.1. Une bigébre est la donnée d’une algébre associative unitaire (B, m,1), d’un
coproduit A : B — B ® B, et d’une cotinité € : B — k, satisfaisant les propriétés suivantes :

(1) A est coassociatif :

(A®id)cA=(ld® A)o A;
(2) A est cotinitaire, de cotinité € :
(e®id)oA=id=(id®e€)o A;
(3) A est un morphisme d’algébres unitaires : pour tout a,b € B
A(ab) = A(a)A(b) et A)=1®1.

Ici on note xy le produit de deux éléments dans une algébre donnée A, et B® B est
Ualgebre unitaire ayant produit (a @ b)(a’ @ V') := aa’ @ bV’ et unité 1 @ 1 ;
(4) € est un morphisme d’algébres unitaires :

e(ab) = €(a)e(b) et e(l)y=1.

A partir de maintenant on utilisera souvent les notations suivantes :
e A = (A®id®" V) o (A®id®*™ H)o...0A : B — B+ pour le coproduit
itéré n-fois (grace a la coassociativité ’ordre dans lequel on l'itére importe peu) ;

2Topologiquement parlant, z; passe “en-dessous” de z;11 dans le plan complexe.
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o A(b) = ®b”, ol une somme est implicitement entendue (i.e. que b’ et b’ ne sont
pas a proprement parler des éléments de B) ;
e plus généralement on note A™ (b)) =¥ @b’ @b @ --- @ b+ ;

Exemples 2.2. (i) Soit (G, *, e) un groupe fini. On considére F(G) l'algebre (commutative)
des applications définies sur G et a valeurs dans k. On définit le corpoduit et la coiinité
comme suit : €(f) = f(e) et
A F(G) — F(G)®F(GQ) =FGxqQ)
fo— (A (@y) = flzxy).
C’est un exercice de vérifier que (F(G), A, €) est une bigebre. On laisse également le lecteur se
convaincre que A (f) est la fonction définie sur G*("*1) par (zq,...,2,) — f(zo*---*z,).

(ii) Soit (G,*,e) un groupe fini. On considére l'algebre kG du groupe G, i.e. 'algebre
engendrée par leséléments g € G du groupe avec les relations gh = g« h (g,h € G). c'est
une algebre associative unitaire, I'unité étant donnée par e. Dans la mesure ot le coproduit
et la coiinité d’une bigebre sont des morphismes d’algebres, il suffit de les définir sur les
générateurs. On pose donc A(g) = g ® g et €(g) = 1 pour tout g € G. C’est encore une fois
un exercice de vérifier que (kG, A, €) est une bigebre®. On peut aussi facilement voir que
A (g) = g2+ pour tout générateur g € G.

(iil) Soit g une algebre de Lie. Son algébre enveloppante U(g) est une algébre associative
unitaire. Rappelons que U(g) est l'algebre associative unitaire engendrée par les éléments
x € g avec pour relations zy — yx = [z,y] (x,y € g). Pour définir A et e il suffit de poser
A(l) =1®1 et (1) =1, et de les donner sur les générateurs = € g. On choisit de poser
e(z) =0et Alx) =2® 1+ 1® 2. Il faut maintenant vérifier qu’ils sont bien définis, et ici
seul le cas de A nécessite un calcul :

Alzy—yr) = @®14+102)(ye1+10y)—(y1+10y)(r@1+1Qx)
= yRl+zyt+yzr+1zy— (yrl+yRr+2zy+1Qyz)
= (y—yr)@1+10 (zy —yr) = [z,y] @ 1+ 1 [z, 9] = Az, y]).
La vérification des propriétés restantes (coassociativité et cotinitarité de A) sont laissées en

exercice au lecteur.

2.1.2. Représentations d’une bigébre.

Soit (B, A, €) une bigebre. Etant données deux représentations V, W de B, le coproduit
A nous permet de faire agir B sur leur produit tensoriel V@ W : pour b € B, v € V et
we W,
(2.1) b-(v@w):=A0)- vew)= Y v)e O w).
Lemme 2.3. L’équation (2.1) définit sur V@ W une structure de B-module.

Démonstration. Le résultat découle du fait que A est un morphisme d’algebres :
a-(b-(veow) = A (AD) - (veow)) = (Aa)A®D)) - (veow)
= A(ab) - (v@w)=(ab)- (v @w).
Le lemme est démontré. (|

Exercice 2.4. Montrer que, étant données trois représentations Vi, Vs, V3 de B, lidentité
WV1@Va)eVs — V1@ (Va®Vs) est un isomorphisme de B-modules (utiliser la coassociativité
de A).

3Par définition A et € sont des morphismes d’algebres. De plus on a immédiatement que A et € sont
unitaires. par conséquent il reste simplement & vérifier d’une part que A et e sont bien définis (i.e. préservent
les relations définissant kG) et d’autre part que A est coassociatif et unitaire d’unité e. Dans les deux cas ce
n’est pas trés compliqué.



INTEGRABILITE ET ALGEBRES QUANTIQUES 9

On remarque également que k est naturellement une représentation de B, ou la structure
de module provient de la coiinité € : B — k (qui est, rappelons-le, un morphisme d’algebres).
Ce module est appelé le module unité (parfois aussi le module “trivial”).

Les représentations d’une bigebre forment I’exemple emblématique de catégorie monoidale
(une notion que nous abordons plus loin).

Exemples 2.5. Reprenons deux des exemples donnés en 2.2.

Tout d’abord I’exemple (iii) : une représentation de U(g) est un g-module, et la structure
de g-module usuelle sur le produit tensoriel de deux g-modules coincide avec celle induite
par le coproduit. De plus le g-module trivial usuel est précisément le module unité.

Ensuite I’exemple (ii) : une représentation de kG est un G-module, et 'action diagonale de
G sur le produit tensoriel de deux G-modules est exactement celle induite par le coproduit.
Ici le G-module trivial usuel est aussi le module unité.

2.2. Bigebres quasi-triangulaires.
Etant donnés deux B-modules V et W, si la transposition 7 : VW - WRVivQ@w +—
w ® v est un isomorphisme de k-modules, ce n’est pas pour autant un morphisme de B-
modules (& moins que A soit cocommutative, i.e. A(b) = @b’ =b" @V =: A°P(D)).
Cette observation motive 'introduction d’une classe particuliere de bigebres.

Définition 2.6. Une bigébre quasi-triangulaire est la donnée d’une bigébre (B, A €) et d’un
élément inversible R € (B ® B)* tel que

(1) pour tout b € B, A°P(b)R = RA(b) ;

(2) (A ®id)(R) = RY3R?3 ;

(3) id® A)(R) = R¥¥R12,

Les deux dernieres identités ont lieu dans B®3, et on utilise toujours la notation suivante
dans B®" : si R =Y, a; ®b; alors R% := a®Wb\@) (i # j) ; et pour tout b € Bet 1 <k <n,
pk) .= 10(*k=-1) o p g 1@Mn—k-1)

Ainsi on constate que si (B, R) est une bigebre quasi-triangulaire alors I'identité (1) de la
définition implique que o ;=70 R- : V@ W — W ® V est un isomorphisme de B-modules.
En effet,

b (c(v@w)) =70 (A®B)R) - (v@w) =70 (RAD)) - (vow)=0(b-(vew)).

Nous abordons plus loin la signification des identités (2) et (3) de la définition. Néanmoins
les deux résultats qui suivent donnent un premier apperu de la richesse de cette structure
algébrique.

Proposition 2.7. Si (B, R) est une bigébre quasi-triangulaire, alors R satisfait I’équation
de Yang-Baxter quantique :

(22) R1,2R1,3R273 _ R2,3R173R172 .
Démonstration. On calcule :
R1,2R1,3R2,3 — R1’2(A ® ld)(R) — (Aop ® ld)(R)Rl,Q — R2,3R1,3R1,2 .
Dans la derniere égalité on a utilisé 'image par la transposition 7 ® id de 'identité (2) de la

définition 2.6. O

Corollaire 2.8. Si (B, R) est une bigébre quasi-triangulaire et si V' est une représentation
de B, alors pour tout n > 2 l’application linéaire
B, — GL(V®")

o 0,7,,1+1

est un morphisme de groupes, i.e. définit une représentation de B, .
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Démonstration. En réalité ce résultat est valable pour toute paire (V,R), o V est un k-
module et R € GL(V ® V) vérifie I'équation de Yang-Baxter quantique (2.2) dans GL(V®3?).

La relation o;0; = 0,0, |i — j| > 2, est préservée de maniére évidente. Il reste donc a
vérifier que la relation 0;0;410; = 044100441 l'est également. Il suffit de le faire pour n = 3
(et donc avec i =1) :

o12523512 _  12p12.23p23 12p12 _ 12,23 127523 pl3pl.2
= 723 L2RL2 RIS RS (ici on a utilisé Yang-Baxter)
_ ,L2/13p13R12 23p23 _ 23023 12p1,2 23723
23512523
Le corollaire est démontré. O

2.3. Algebres de Hopf, dualité, et double. Dans ce paragraphe on présente une procédure
permettant d’obtenir une bigeébre quasi-triangulaire (et donc des représentations du groupe
des tresses) a partir d’une bigebre donnée satisfaisant quelques propriétés supplémentaires.

2.3.1. Algebres de Hopf.

Définition 2.9. Une algébre de Hopf est une bigebre (B, A, ¢) munie d’un morphisme
d’algebres unitaires S : B — B°P (i.e. S(ab) = S(b)S(a) et S(1) =1) tel que

eoS=S5 et AoS=(S5®5)o0 A%

et qui satisfait
(S®id)oA=1loe=(1d® S)o A.
S est appelé I’ antipode.

Ici on note B°P l’algebre unitaire qui a pour espace vectoriel sous-jacent B, unité 1 et
produit * donné par a x b = ba.

Exemples 2.10. Reprenons les exemples 2.2.

Dans I'exemple 2.2.(i) on peut munir F(G) de antipode suivante : pour toute fonctions
f sur G et tout élément g € G on pose S(f)(g) := f(g1). C’est un exercice facile de vérifier
que (F(G),S) devient ainsi une algebre de Hopf.

On peut également munir la bigebre kG (exemple 2.2.(ii)) d’une antipode définie sur la
base (g9)gec par S(g) = g~'. C’est une fois de plus un exercice de vérifier que S satisfait les
axiomes de la définition 2.9.

Enfin (exemple 2.2.(iii)) la bigebre U(g) est aussi une algebre de Hopf avec S définie sur
les générateurs x € g par S(z) = —z. Nous devons vérifier que S est bien définie, i.e. que la
relation zy — yx = [z, y| est préservée ; il suffit pour cela de calculer :

S(ay —yx) = S(y)S(x) = S(@)S(y) = (=y)(=2) = (=2)(=y) = [y, 2] = =[z,y] = 5([z, 9]).
Vérifions que les conditions de la définition 2.9 sont bien remplies, il suffit pour cela de
le faire sur les générateurs z € g. On a tout d’abord €(S(z)) = e(—z) = 0 = €(z) et
(S® S)(A(z)) = (—2) ®1+1® (—x) = A(S(x)). Ensuite (ici on utilise la notation
Alx) =2 ®@2")

Sz =(—z)+z=0=z+ (—z) =2'5(2") et  e(x)=0.

2.3.2. La construction du double.

Soit (H,m,1,A, €) une bigebre de dimension finie (i.e. qui est un k-module libre de di-
mension finie). Son dual H* est alors naturellement muni d’une structure de bigebre, ayant
pour multiplication A* : H* ®@ H* = (H ® H)* — H*, pour unité €¢* : k — H* (autrement
dit, 1+ =€), pour coproduit m* : H* — (H® H)* = H*® H*, et pour colinité 1* : H* — k
(autrement dit, eg- (&) = £(1)).4

411 convient de remarquer que si H n’est pas un k-module libre de type fini alorson a H*@H* C (HQH)*.



INTEGRABILITE ET ALGEBRES QUANTIQUES 11

Si H est de surcroit munie d’une antipode S qui en fait une algebre de Hopf, alors
S*: H* — H* est une antipode qui fait de la bigebre H* décrite précédemment une algebre
de Hopf.

On suppose maintenant donnée une algebre de Hopf (H,S) de dimension finie ayant
une antipode bijective. Nous allons définir une structure de bigebre quasi-triangulaire sur
D(H) := H® H*. Commengons par expliciter la structure de bigebre sur D(H) :

e le produit de deux éléments a ® £ et b ® 1 est donné par la formule suivante :
(2.3) (@@&)-(b@n) =" (S7HV))E B )ab" @ €.
Ici on a utilisé les notations Ag)(b) =0V Qb et A(;) E=¢x";
e l'unité pour ce produit est 1pg) :=1p @ 1y~ = 1y Qep ;
e le coproduit d’un élément a ® & est donné par
Apm(a®§) = (' @) (a" @),
ol Ag(b)=b b et Ag-(§)=¢ ®&";
e la coiinité pour ce coproduit est ep(py(a ® &) = eg(a)en-(§) = ex(a)f(1m).
Remarque 2.11. Le produit d “finit par (2.3) peut étre également caractérisé comme suit :

(a®1p+) - (bR@1g+)=ab® 1y, g RE) - (lg®n) =1g®L&n, (a®1ly:) - (lg®E) =aE,
et

(g ®&) - (a®1py-) =E"(S71(a))€ (a")a" @ €".
On définit ensuite R :=id € H ® H* ¢ D(H) ® D(H). Etant donnée une base (e;);c; de H
et une base duale (¢');er de H*, ona R= 3", ,(e; ® 1y-) ® (1g @ ").

Théoreme 2.12. Avec les produit, unité, coproduit et cotinité définis ci-dessus, D(H) est
une bigebre. De plus (D(H), R) est une bigebre quasi-triangulaire.

Démonstration. La vérification des axiomes d’une bigebre est laissée en exercice. Il reste a
montrer que R est inversible et satisfait les trois conditions de la définition 2.6.
Posons R:=3%,.;(e;® 1) ® (1g ® (§' 0 Sy)) ; on a alors
RR=(eie;®1p+) @ (1g ®€(¢ 0 Sn)).
ijel
Considérons l'application ¢ : H — H définie par ¢(z) := 3, ; e;e; (§(¢7 0 Sy))(x). Rap-
pelons que Y, e;£(z) = x et calculons
o) = D eie;(§ @ o5n)(An(a)) =D el (@) e;€ (Su(a"))
u,j€l i€l jJEI
= 2'Sy(@")=1gey(z) =1gly-(z).
Donc RR = (1g ® 1g+) ® (1g ® 1g+). On démontre exactement de la méme maniere que

RR= (1 ®1g+) ® (1g ® 1-). R est donc inversible, et R~! = R.
En utilisant l'identité >=, ;e; ® e; ® ¢ =3 el @el! ® ¢ on trouve que®

RYPR* = Y (ei®@1p+)® (¢; ® 1) ® (1y ® §'¢))
i,j€Il

= Y (;@1p) @ (ef @1p)® (lg @) = (ARIid)(R).
el

5Cette identité se démontre comme suit : on remarque que

D (e ®ei)(EE) (@) = D (eil'(a") ® (e;€7 (2")) =2’ @2 = A(x) = Y _(ef ® ¢ )E' ().
i

1,7 i
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On démontre exactement de la méme maniere que R RY2 = RY23,
Il reste donc & montrer que la condition (1) de la définition 2.6 est également vérifie.
[...] O

2.3.3. Dualité et double en dimension infinie.

Définition 2.13. Deux algebres de Hopf sont dites en dualité si il existe une forme bilinéaire
non-dégénérée
<— —> H x H — k

telle que quels que soient a,b € H et £,n € H, on a

o (1,§) = €(§) et (a,1) = e(a),

o (ab,&) = (a @b, A(€)) = (a,&)(b,€") et (a,&n) = (A(a),§ @n) = (a/,€)(a”, ),

o (S(a),&) = (a,S(€)).
Ici non-dégénérée signifie que les applications

H— (H);a+— (a,=) et H— H;¢— (¢

sont injectives.

Une algebre de Hopf H de dimension finie et sa duale H* sont évidemment en dualité.

Exercice 2.14. Soit g = sl,,(C) et G = SL(n,C). Posons H := U(g) et H := k[G] l'algébre
des fonctions régquliéres sur le groupe algébrique G.

(1) Comme algébre, k[G] = kle;|i,j =1,...,n]/(det ((e;;)i;)—1) et sa structure d’algébre
de Hopf provient de la structure de groupe sur G (le coproduit et la cotinité sont les mémes que
dans Uezemple 2.2.(i) et Uantipode est donnée dans lexemple 2.10). Montrer que A(e;j) =
D ok Cikehj, €(eij) = dij et que S(ei;) est donné par le mineur mj; de la matrice (ey)r, (qui
est bien un polynéme en les variables ey ).

(2) L’inclusion d’algébres de Lie g = sl,,(C) — gl,,(C) induit un morphisme d’algébres
(associatives) U(g) — gl,,(C), et pour tout élément a € U(g) on note a;; les coefficients de
son image dans gl,(C). Montrer que

(a,€55) = ai

définit une dualité de Hopf entre U(g) et k[G].
(3) Montrer que cette construction se généralise au cas d’un groupe algébrique complexe

G C GL(n,C) et de son algébre de Lie g C gl,(C).

3. GROUPES QUANTIQUES ET DEFORMATIONS

3.1. Déformations.

3.1.1. Modules topologiquement libres.

3.1.2. Déformations de structures algébriques.

3.1.3. La notion de limite semi-classique.

3.2. Rappels sur les algebres de Lie semi-simples.
3.2.1. La présentation de Serre.

3.2.2. Construction de U(g) comme un double.

3.3. Groupes quantiques.
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