
INTÉGRABILITÉ ET ALGÈBRES QUANTIQUES

DAMIEN CALAQUE

1. Systèmes locaux et équations de Knizhnik-Zamolodchikov

1.1. Faisceaux.

1.1.1. Définition et exemples.
Soit X un espace topologique, qu’on supposera localement connexe et localement connexe

par arcs.

Définition 1.1. Un faisceau F sur X est la donnée

• d’un ensemble de sections F(U) pour tout ouvert U de X,
• d’applications de restrictions rU,V : F(U) → F(V ) pour tout inclusion V ⊂ U ,

satisfaisant les conditions suivantes :

(associativité) rV,W ◦ rU,V = rU,W si W ⊂ V ⊂ U ,
(recollement) soit U un ouvert de X, (Ui)i∈I un recouvrement de U par des ouverts, et si ∈ F(Ui),

i ∈ I, des sections tels que pour tout (i, j) ∈ I2,

rUi,Uij
(si) = rUj ,Uij

(sj) .

Alors il existe une unique section s ∈ F(U) telle que rU,Ui
(s) = si quel que soit i ∈ I.

On parle de faisceau en groupes (resp. en espace vectoriels, en algèbres, etc...) si les
ensembles des section sont des groupes (resp. des espace vectoriels, des algèbres, etc...) et si
les applications de restriction sont des homomorphismes de groupes (resp. des applications
linéaires, des morphismes d’algèbres, etc...).

En l’absence d’ambigüıté, on note s|V := rU,V (s) la restriction d’une section s ∈ F(U) à
un plus petit ouvert V ⊂ U .

Exemples 1.2. (i) X ⊃ U 7→ C0(U) = {fonctions continues sur U} définit un faisceau (en
algèbres).

(ii) X ⊃ U 7→ C∞(U), avec X une variété différentiable (par exemple un ouvert de R
n),

définit un faisceau (en algèbres).
(iii) X ⊃ U 7→ Hol(U), avec X une variété analytique complexe (par exemple un ouvert

de C
n), définit un faisceau (en algèbres).

(iv) R ⊃ U 7→ {fonctions continues et intégrables sur U} n’est PAS un faisceau sur R.
(v) soit p : Y → X un homéomorphisme local, c.-a.-d. une application continue telle que

pour tout y ∈ Y il existe un voisinage ouvert W de y tel que p|W est un homéomorphisme

sur son image. On note F(U) l’ensemble des applications continues s : U → p−1(U) telle
que p ◦ s = idU , qu’on appelle les sections de p. Montrer que la restriction de s à un plus
petit ouvert V ⊂ U est à valeurs dans p−1(V ). En déduire que F est un faisceau sur X.

(vi) soit E un ensemble fixé. X ⊃ U 7→ E, avec rU,V = idE , est un faisceau. On note ce
faisceau E, qu’on qualifie de faisceau constant.

(vii) soit F un faisceau sur X et U un ouvert de X. Alors F|U : U ⊃ V 7→ F|U (V ) = F(V )
définit un faisceau sur U , qu’on appelle la restriction de F à U .

1



2 DAMIEN CALAQUE

Un morphisme de faisceaux f : F → G est la donnée d’applications f(U) : F(U) → G(U),
pour tout les ouverts U ⊂ X, qui commute aux restrictions :

F(U)

rU,V

��

f(U)
// G(U)

rU,V

��

F(V )
f(V )

// G(V )

On dit que f est un isomorphisme si f(U) est un isomorphisme quel que soit U .

1.1.2. Recoller des faisceaux.
Soit (Ui)i∈I un recouvrement de X par des ouverts. Étant donné un faisceau Fi sur

chaque Ui tel que pour tout couple (i, j) tel que1 Uij 6= ∅ on ait un isomorphisme de faisceaux
ϕij : Fi|Uij

−̃→Fi|Uij
, nous donnons maintenant une condition suffisante pour “recoller” les

faisceaux Fi en un faisceau F sur X :

(1.1) ϕii = id et (ϕjk ◦ ϕij)|Uijk
= ϕik|Uijk

Pour tout ouvert U de X, on définit F(U) comme l’ensemble des (si)i∈I tels que si ∈
Fi(Ui ∩ U) et ϕij(si|Uij

) = sj |Uij
.

Exercice 1.3. Montrer que F défini comme précédemment est un faisceau sur X.

Deux tels faisceaux F et G recollé à l’aide de données locales (Fi, ϕij) et (Gi, ψij) pour un
même recouvrement (Ui)i∈I sont isomorphes si il existe des isomorphismes fi : F|Ui

−̃→G|Ui

satisfaisant la suivante :

(1.2) ψij ◦ fi|Uij
= ϕij

1.1.3. Tiges et tirés-en-arrière.
Soit x ∈ X et F un faisceau sur X. La tige Fx de F en x est le quotient de la réunion

disjointe des F(U) pour U ∋ x par la relations d’équivalence suivante : deux sections si ∈
F(Ui), i = 1, 2, sont équivalentes si il existe un ouvert V ⊃ U1 ∩ U2 ∋ x sur lesquels leurs
restrictions coincident : s1|V = s2|V .

Les éléments de la tige Fx sont appelés les germes de sections de F en x.

Étant donné une application continue f : Y → X entre deux espaces topologiques et un
faisceau F sur X, on peut construire un faisceau f∗F sur Y , appelé tiré-en-arrière de F le
long de f , qui est tel que (f∗F)y = Ff(y). On n’explicite pas cette construction pour les
faisceaux (qui est un peu compliquée) dans la mesure où nous verrons une construction ad
hoc plus simple dans le cas des systèmes locaux.

1.2. Systèmes locaux et groupe fondamental.

1.2.1. Définition et exemple principal.

Définition 1.4. Un système local sur X est un faisceau L de C-espaces vectoriels localement
isomorphe à un faisceau constant du type C

n. Plus précisément, quel que soit x ∈ X il existe
un voisinage ouvert U de x tel que L|U

∼= C
n (n ∈ N n’est pas nécessairement fixé).

Par conséquent, étant donné un système local L sur X il existe un recouvrement (Ui)i

de X par des ouverts tels que L|Ui
∼= C

ni . Pour tout couple (i, j) tel que Uij 6= ∅, notons
ϕij : Cni −̃→C

nj l’isomorphisme suivant:

C
ni −̃→L|Ui

id
−→ L|Uij

id
−→ L|Uj

−̃→C
nj .

1Pour un suite d’indices i1, . . . , ik, on note Ui1···ik
:= Ui1 ∩ · · ·Uik

.



INTÉGRABILITÉ ET ALGÈBRES QUANTIQUES 3

De plus la condition d’associativité impose que

(1.3) ϕii = id et ϕjk ◦ ϕij = ϕik

pour tout triplet (i, j, k) tel que Uijk 6= ∅. Dans ce contexte une section s ∈ L(U) correspond
à la donnée d’un vecteur vi ∈ C

ni pour chaque i tel que Ui ∩U 6= ∅ satisfaisant la condition
de recollement suivante : ϕij(vi) = vj pour tout couple (i, j) tel que Uij ∩ U 6= ∅.

Réciproquement, la donnée d’un recouvrement (Ui)i∈I deX par des ouverts et d’isomorphismes
de transition ϕij : C

ni → C
nj satisfaisant (1.3) suffit à définir un sysème local sur X.

Remarque 1.5. Si X est connexe alors ni = nj quels que soient i et j.

Exercice 1.6. Supposons que X est un ouvert de C
n et considérons un système complet

d’équations aux dérivées partielles linéaires du premier ordre à coefficients holomorphes:

∂f

∂zi

= Ki(f)
(
∀i ∈ {1, . . . , n}, Ki ∈ Hol(X,End(V )

)
,

où V est un C-espace vectoriel. Pour tout ouvert U ∈ X on note S(U) l’ensemble des
solutions de ce système d’EDP. S définit un faisceau en C-espaces vectoriels sur X (avec les
applications de restrictions évidentes).

Montrer que S est un système local si et seulement si le système d’EDP est intégrable (on
dit aussi compatible) :

∂Ki

∂zj

−
∂Kj

∂zi

= [Ki,Kj ] (quels que soient i et j) .

1.2.2. Tiré-en-arrière et représentation de monodromie.
Soit f : Y → X une application continue et L un système local sur X. Donnons-nous un

recouvrement (Ui)i∈I de X par des ouvertes tels que L|Ui
∼= C

ni , et notons ϕij : C
ni −̃→C

nj

les isomorphismes de transition.

Le tiré-en-arrière f∗L de L par f peut être décrit de la manière suivante (on peut prendre
cette description comme une définition de f∗L) : on considère le recouvrement de Y donné
par les ouverts Vi := f−1(Ui), et on exige que (f∗L)|Vi

= C
ni avec les même isomorphismes

de transition ϕij : C
ni −̃→C

nj que pour L.

On considère maintenant le cas particulier où Y = [0, 1]. Pour tout chemin γ : [0, 1] → X,
on a alors un système local V := γ∗L sur [0, 1].

Lemme 1.7. Tout système local V sur [0, 1] est isomorphe au faisceau constant V0.

Démonstration. On recouvre [0, 1] par des intervalles ouverts Uk ⊂ [0, 1], k = 1, . . . , l, tels
que 0 ∈ U1, 1 ∈ Ul, Uk∩Uk+1 6= ∅, et V|Uk

∼= Cnk . Montrons maintenant que V est isomorphe
au faisceau constant Cn1 .

Quel que soit k ∈ {1, . . . , l}, on définit par l’isomorphisme

fk : Cn1 −̃→Cnk −̃→V|Uk
,

où le premier isomorphisme est donné par ϕ(k−1)k ◦ · · · ◦ ϕ23 ◦ ϕ12 : C
n1 −̃→C

nk . Il est
assez facile de vérifier que la condition (1.2) est satisfaite, et que l’on peut ainsi recoller ces
données locales pour obtenir un isomorphisme de faisceaux f : V0

∼= C
n1 −̃→V. �

On obtient ainsi, en considérant les tiges en 1 des faisceaux, un isomorphisme

g := f1 : V0 = (V0)1 −̃→V1 .

Exercice 1.8. Montrer que cet isomorphisme ne dépend que de la classe d’homotopie à
extrémités fixes du chemin.
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En particulier, si γ est un lacet basé en x ∈ X (i.e. γ(0) = γ(1) = x) alors on récupère un
automorphisme de V0 = Lx, qui reste ne dépend que de la classe d’homotopie à point base
fixe du lacet. On obtient ainsi une application

ρL : π1(X,x) −̃→GL(Lx) .

Exercice 1.9. Montrer que cette application est un morphisme de groupes (le produit [γ1][γ2]
des classes de deux lacets dans le groupe fondamental est donné par la classe [γ1γ2] de leur
concaténation, où on parcours γ1 en premier).

ρ définit donc une représentation du groupe fondamental π1(X,x), qu’on appelle représentation
de monodromie.

Exemple 1.10. Revenons à l’exemple de l’exercice 1.6. Soit γ = (γ1, . . . , γn) : [0, 1] → X
un chemin différentiable. Dans ce cas γ∗L est le système local dont les sections sont les
solutions de l’équation différentielle ordinaire linéaire du premier ordre suivante :

(1.4) f ′ = K(f)
(
K =

n∑

i=1

γ′iKi ∈ C∞([0, 1], V )
)
.

Ainsi l’isomorphisme V0 −̃→V1 est l’application qui, à un vecteur “condition initiale” donné
v0 associe la valeur v1 au temps 1 de l’unique solution f de (1.4) telle que f(0) = v0.

1.3. Équations de Knizhnik-Zamolodchikov et groupes de tresses.

On pose Y = {(z1, . . . , zn) ∈ C
n|zi 6= zj si i 6= j} et X = Y/Sn, où l’action du groupe

symétrique Sn sur Y est la suivante :

σ · (z1, . . . , zn) := (zσ(1), . . . , zσ(n)) .

1.3.1. Les équations de Knizhnik-Zamolodchikov.
Soit g une C-algèbre de Lie, h ∈ C et t ∈ S2(g)g. Plus précisément, t =

∑
i xi ⊗ yi ∈ g⊗ g

satisfait les deux conditions suivantes :

(symétrie) t2,1 :=
∑

ν yν ⊗ xν =
∑

ν xν ⊗ yν = t ;
(invariance) pour tout a ∈ g, [a⊗ 1 + 1 ⊗ a, t] =

∑
ν([a, xν ] ⊗ yν + xν ⊗ [a, yν ]) = 0.

Remarque 1.11. Pour la seconde condition, le crochet de Lie considéré dans le membre le
plusà gauche gauche est le commutateur dans l’algèbre U(g) ⊗ U(g).

Soit V1, . . . , Vn des représentations de g. On considère le système complet d’équations aux
dérivées partielles suivant, dites équations de Knizhnik-Zamolodchikov :

(1.5)
∂f

∂zi

= h
∑

j|j 6=i

ti,j

zi − zj

︸ ︷︷ ︸
=:Ki

f
(
∀i ∈ {1, . . . , n}

)
.

Ici les équations sont à valeurs dans le C-espace vectoriel W := V1 ⊗ · · · ⊗ Vn et on utilise
les notations suivantes :

• ti,j =
∑

ν x
(i)
ν ◦ y

(j)
ν ;

• plus généralement si f = f1 ⊗ · · · ⊗ fm ∈ U(g)⊗m, avec m ≤ n, alors pour toute
combinaison (i1, . . . , im) de m éléments dans {1, . . . , n} on définit

f i1,...,im = f
(i1)
1 ◦ · · · ◦ f (im)

m ∈ End(W ) ;

• pour tout a ∈ U(g) et tout i ∈ {1, . . . , n}

a(i) := idV1
⊗ · · · ⊗ idVi−1

⊗ a⊗ idVi+1
⊗ · · · ⊗ idVn

∈ End(W ) ,

et il est aisé de constater que a(i) et b(j) commutent si i 6= j.
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Proposition 1.12. Le système (1.5) est intégrable :

h
∂Ki

∂zj

− h
∂Kj

∂zi

= h2[Ki,Kj ] .

Démonstration. Nous allons montrer que ∂Ki

∂zj
− ∂Kj

∂zi
= 0 = [Ki,Kj ].

On commence par le plus facile :

∂Ki

∂zj

−
∂Kj

∂zi

=
ti,j − tj,i

(zi − zj)2
= 0 .

La dernière égalité est une conséquence de la symétrie de t.
Continuons :

[Ki,Kj ] =
[ ∑

k|k 6=i

ti,k

zi − zk

,
∑

l|l 6=j

tj,l

zj − zl

]

=
[ ∑

(k,l)|{k,l}6={i,j}

ti,k

zi − zk

,
∑

l|l 6=j

tj,l

zj − zl

]
+

[ ∑

k|k 6=i

ti,k

zi − zk

,
tj,i

zj − zi

]

+
[ ti,j

zi − zj

,
∑

k|k 6=j

tj,k

zj − zk

]

=
∑

(i,j,k)|#{i,j,k}=3

([ ti,k

zi − zk

,
tj,k

zj − zk

]
+

[ ti,k

zi − zk

,
ti,j

zj − zi

]
+

[ ti,j

zi − zj

,
tj,k

zj − zk

])

Dans la dernière égalité nous avons utilisé le fait que ti,k et tj,l commutent si i, j, k, l sont
tous distincts deux à deux. Nous allons maintenant utiliser le lemme suivant pour montrer
que chaque terme de la somme principale est nulle.

Lemme 1.13. Si i, j, k sont tous distincts deux à deux alors [ti,j , ti,k + tj,k] = 0.

Démonstration du lemme. Il suffit de faire la démonstration pour (i, j, k) = (1, 2, 3), et ce
dans U(g)⊗3. On calcule :

[t1,2, t1,3 + t2,3] = [t⊗ 1,
∑

ν

(xν ⊗ 1 ⊗ yν + 1 ⊗ xν ⊗ yν)]

=
∑

ν

[t, xν ⊗ 1 + 1 ⊗ xν ] ⊗ yν = 0 .

La toute dernière égalité est une conséquence de l’invariance de t. �

Fin de la démonstration de la proposition. En appliquant deux fois le lemme précédent on
trouve que

[ ti,k

zi − zk

,
tj,k

zj − zk

]
+

[ ti,k

zi − zk

,
ti,j

zj − zi

]
+

[ ti,j

zi − zj

,
tj,k

zj − zk

]

=
[ ti,k

zi − zk

,
tj,k

zj − zk

]
+

[ ti,k

zi − zk

,
tj,k

zi − zj

]
−

[ ti,k

zi − zj

,
tj,k

zj − zk

]

= [ti,k, tj,k]

(
1

(zi − zk)(zj − zk)
+

1

(zi − zk)(zi − zj)
−

1

(zi − zj)(zj − zk)

)

Or la fraction rationelle à l’intérieur de la parenthèse est identiquement nulle. La démonstration
de la proposition est donc terminée. �
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1.3.2. Un système local sur le quotient X = Y/Sn.
D’après la propositon que nous venons de démontrer, nous avons un système local LKZ

sur Y dont les sections sont les solutions des équations de Knizhnik-Zamolodchikov. Ainsi,
on obtient une représentation de monodromie

π1(Y, •) −→ GL(W ) .

Afin d’obtenir un représentation de π1(X, •) on choisit des modules V1 = · · · = Vn =: V
identiques. De cette manière les sections de LKZ (i.e. les solutions des équations de K-Z)
sont équipés d’une action du groupe symétrique Sn, qui agit par permutation des facteurs.

On note alors LKZ le faisceau défini sur X dont de la manière suivante : LKZ(U) est l’espace
des solutions holomorphes f : p−1(U) →W (i.e. f ∈ LKZ(p−1(U))) telles que

(1.6) f(zσ(1), . . . , zσ(n)) = σ · f(z1, . . . , zn) .

Si Ũ est un ouvert Sn-invariant deX (i.e. si Ũ est de la forme p−1(U)) alors les solutions holo-

morphes des équations de K-Z définies sur Ũ satisfaisant (1.6) sont dites (Sn-)équivariantes.

Proposition 1.14. LKZ est un système local sur X, dont la tige au-dessus de tout point
est W .

Démonstration. Remarquons que Sn agit librement sur Y . Ainsi pour tout x ∈ X pour un
ouvert U ∋ x assez petit on a f−1(U) ∼= U × Sn. C’est-à-dire que si on choisit y ∈ Y tel
que p(y) = x alors il existe un ouvert V ∋ y tel que f−1(U) =

∐
σ∈Sn

σ(V ). Ainsi on a

LKZ
|U

∼= LKZ
|V . De plus, quitte à restreindre U on peut supposer que LKZ

|V
∼= C

n.

On voit par ailleurs que la tige de LKZ au-dessus de x est identique à la tige de LKZ

au-dessus de y, qui est W . �

Nous obtenons donc une représentation de monodromie

ρh
KZ : π1(X, •) −→ GL(V ⊗n) .

En supposant que h est un paramètre formel (plutôt qu’un nombre complexe) on obtient

ρh
KZ : π1(X, •) −→ GL(V ⊗n)[[h]] .

1.3.3. Le groupe des tresses Bn.
Considérons un point base y = (z1, . . . , zn) ∈ Y pour lequel les zi sont des réels tels

que 0 < z1 < · · · < zn < 1. On note x = p(y) ∈ X et on définit Bn := π1(X,x), le
groupe des tresses à n brins.

Nous allons maintenant donner une présentation de Bn par générateurs et relations. Dans
la prochaine section on explique comment obtenir des représentations de ce groupe à partir
de données purement algébriques.

Remarquons déjà qu’on peut représenter tout élément de Bn par un diagramme de tresse
comme suit :
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Ici le croisement élémentaire

noté σi a pour inverse le croisement élémentaire opposé (i.e. où i-ième brin passe derrière
le (i + 1)-ième) et représente la classe d’homotopie [σi] du chemin γ(t) =

(
z1(t), . . . , zn(t)

)

défini par zk(t) = zk pour k 6= i, j et2

zi(t) =
zi(1 + eitπ) + zi+1(1 − eitπ)

2
et zi+1(t) =

zi(1 − eitπ) + zi+1(1 + eitπ)

2
.

La concaténation des lacets (i.e. le produit dans Bn) se traduit ici par la concaténation des
diagrammes, et on peut vérifier graphiquement les faits suivants :

(1) les tresses élémentaires σi (i = 1, . . . , n − 1) et leurs inverses engendrent tous les
diagrammes de tresses via la concaténation ;

(2) si |i− j| ≥ 2 alors les diagrammes σiσj et σjσi représentent la même classe de lacets;
(3) les diagrammes σiσi+1σi et σi+1σiσi+1 représentent la même classe de lacets.

On a donc un homomorphisme surjectif du groupe engendré par les σi (i = 1, . . . , n−1) avec
les relations

σiσj = σjσi (|i− j| ≥ 2) et σiσi+1σi = σi+1σiσi+1 (∀i) ,

vers Bn, donné par σi 7→ [σi].

Théorème 1.15. Ce morphisme est un isomorphisme.

On ne donnera pas la démonstration de ce théorème.

2. Bigèbres et équation de Yang-Baxter

2.1. Bigèbres.

2.1.1. Définition et exemples.

Définition 2.1. Une bigèbre est la donnée d’une algèbre associative unitaire (B,m, 1), d’un
coproduit ∆ : B → B ⊗B, et d’une coünité ǫ : B → k, satisfaisant les propriétés suivantes :

(1) ∆ est coassociatif :

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆;

(2) ∆ est coünitaire, de coünité ǫ :

(ǫ⊗ id) ◦ ∆ = id = (id ⊗ ǫ) ◦ ∆;

(3) ∆ est un morphisme d’algèbres unitaires : pour tout a, b ∈ B

∆(ab) = ∆(a)∆(b) et ∆(1) = 1 ⊗ 1 .

Ici on note xy le produit de deux éléments dans une algèbre donnée A, et B ⊗B est
l’algèbre unitaire ayant produit (a⊗ b)(a′ ⊗ b′) := aa′ ⊗ bb′ et unité 1 ⊗ 1 ;

(4) ǫ est un morphisme d’algèbres unitaires :

ǫ(ab) = ǫ(a)ǫ(b) et ǫ(1) = 1 .

À partir de maintenant on utilisera souvent les notations suivantes :

• ∆(n) := (∆⊗ id⊗(n−1)) ◦ (∆⊗ id⊗(n−2)) ◦ · · · ◦∆ : B → B⊗(n+1) pour le coproduit
itéré n-fois (grâce à la coassociativité l’ordre dans lequel on l’itère importe peu) ;

2Topologiquement parlant, zi passe “en-dessous” de zi+1 dans le plan complexe.
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• ∆(b) = b′ ⊗ b′′, où une somme est implicitement entendue (i.e. que b′ et b′′ ne sont
pas à proprement parler des éléments de B) ;

• plus généralement on note ∆(n)(b) = b′ ⊗ b′′ ⊗ b′′′ ⊗ · · · ⊗ b(n+1) ;

Exemples 2.2. (i) Soit (G, ∗, e) un groupe fini. On considère F(G) l’algèbre (commutative)
des applications définies sur G et à valeurs dans k. On définit le corpoduit et la coünité
comme suit : ǫ(f) = f(e) et

∆ : F(G) −→ F(G) ⊗F(G) = F(G×G)

f 7−→
(
∆(f) : (x, y) 7→ f(x ∗ y)

)
.

C’est un exercice de vérifier que (F(G),∆, ǫ) est une bigèbre. On laisse également le lecteur se
convaincre que ∆(n)(f) est la fonction définie sur G×(n+1) par (x0, . . . , xn) 7→ f(x0 ∗· · ·∗xn).

(ii) Soit (G, ∗, e) un groupe fini. On considére l’algèbre kG du groupe G, i.e. l’algèbre
engendrée par leséléments g ∈ G du groupe avec les relations gh = g ∗ h (g, h ∈ G). c’est
une algèbre associative unitaire, l’unité étant donnée par e. Dans la mesure où le coproduit
et la coünité d’une bigèbre sont des morphismes d’algèbres, il suffit de les définir sur les
générateurs. On pose donc ∆(g) = g ⊗ g et ǫ(g) = 1 pour tout g ∈ G. C’est encore une fois
un exercice de vérifier que (kG,∆, ǫ) est une bigèbre3. On peut aussi facilement voir que
∆(n)(g) = g⊗(n+1) pour tout générateur g ∈ G.

(iii) Soit g une algèbre de Lie. Son algèbre enveloppante U(g) est une algèbre associative
unitaire. Rappelons que U(g) est l’algèbre associative unitaire engendrée par les éléments
x ∈ g avec pour relations xy − yx = [x, y] (x, y ∈ g). Pour définir ∆ et ǫ il suffit de poser
∆(1) = 1 ⊗ 1 et ǫ(1) = 1, et de les donner sur les générateurs x ∈ g. On choisit de poser
ǫ(x) = 0 et ∆(x) = x ⊗ 1 + 1 ⊗ x. Il faut maintenant vérifier qu’ils sont bien définis, et ici
seul le cas de ∆ nécessite un calcul :

∆(xy − yx) = (x⊗ 1 + 1 ⊗ x)(y ⊗ 1 + 1 ⊗ y) − (y ⊗ 1 + 1 ⊗ y)(x⊗ 1 + 1 ⊗ x)

= xy ⊗ 1 + x⊗ y + y ⊗ x+ 1 ⊗ xy − (yx⊗ 1 + y ⊗ x+ x⊗ y + 1 ⊗ yx)

= (xy − yx) ⊗ 1 + 1 ⊗ (xy − yx) = [x, y] ⊗ 1 + 1 ⊗ [x, y] = ∆([x, y]) .

La vérification des propriétés restantes (coassociativité et coünitarité de ∆) sont laissées en
exercice au lecteur.

2.1.2. Représentations d’une bigèbre.
Soit (B,∆, ǫ) une bigèbre. Étant données deux représentations V,W de B, le coproduit

∆ nous permet de faire agir B sur leur produit tensoriel V ⊗W : pour b ∈ B, v ∈ V et
w ∈W ,

(2.1) b · (v ⊗ w) := ∆(b) · (v ⊗ w) = (b′ · v) ⊗ (b′′ · w) .

Lemme 2.3. L’équation (2.1) définit sur V ⊗W une structure de B-module.

Démonstration. Le résultat découle du fait que ∆ est un morphisme d’algèbres :

a ·
(
b · (v ⊗ w)

)
= ∆(a) ·

(
∆(b) · (v ⊗ w)

)
=

(
∆(a)∆(b)

)
· (v ⊗ w)

= ∆(ab) · (v ⊗ w) = (ab) · (v ⊗ w) .

Le lemme est démontré. �

Exercice 2.4. Montrer que, étant données trois représentations V1, V2, V3 de B, l’identité
(V1⊗V2)⊗V3 → V1⊗(V2⊗V3) est un isomorphisme de B-modules (utiliser la coassociativité
de ∆).

3Par définition ∆ et ǫ sont des morphismes d’algèbres. De plus on a immédiatement que ∆ et ǫ sont
unitaires. par conséquent il reste simplement à vérifier d’une part que ∆ et ǫ sont bien définis (i.e. préservent
les relations définissant kG) et d’autre part que ∆ est coassociatif et unitaire d’unité ǫ. Dans les deux cas ce

n’est pas très compliqué.
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On remarque également que k est naturellement une représentation de B, où la structure
de module provient de la coünité ǫ : B → k (qui est, rappelons-le, un morphisme d’algèbres).
Ce module est appelé le module unité (parfois aussi le module “trivial”).

Les représentations d’une bigèbre forment l’exemple emblématique de catégorie monöıdale
(une notion que nous abordons plus loin).

Exemples 2.5. Reprenons deux des exemples donnés en 2.2.
Tout d’abord l’exemple (iii) : une représentation de U(g) est un g-module, et la structure

de g-module usuelle sur le produit tensoriel de deux g-modules cöıncide avec celle induite
par le coproduit. De plus le g-module trivial usuel est précisément le module unité.

Ensuite l’exemple (ii) : une représentation de kG est un G-module, et l’action diagonale de
G sur le produit tensoriel de deux G-modules est exactement celle induite par le coproduit.
Ici le G-module trivial usuel est aussi le module unité.

2.2. Bigèbres quasi-triangulaires.

Étant donnés deux B-modules V et W , si la transposition τ : V ⊗W →W ⊗V ; v⊗w 7→
w ⊗ v est un isomorphisme de k-modules, ce n’est pas pour autant un morphisme de B-
modules (à moins que ∆ soit cocommutative, i.e. ∆(b) = b′ ⊗ b′′ = b′′ ⊗ b′ =: ∆op(b)).

Cette observation motive l’introduction d’une classe particulière de bigèbres.

Définition 2.6. Une bigèbre quasi-triangulaire est la donnée d’une bigèbre (B,∆, ǫ) et d’un

élément inversible R ∈ (B ⊗B)× tel que

(1) pour tout b ∈ B, ∆op(b)R = R∆(b) ;
(2) (∆ ⊗ id)(R) = R1,3R2,3 ;
(3) (id ⊗ ∆)(R) = R1,3R1,2.

Les deux dernières identités ont lieu dans B⊗3, et on utilise toujours la notation suivante
dans B⊗n : si R =

∑
i ai ⊗ bi alors Ri,j := a(i)b(j) (i 6= j) ; et pour tout b ∈ B et 1 ≤ k ≤ n,

b(k) := 1⊗(k−1) ⊗ b⊗ 1⊗(n−k−1).
Ainsi on constate que si (B,R) est une bigèbre quasi-triangulaire alors l’identité (1) de la

définition implique que σ := τ ◦ R· : V ⊗W → W ⊗ V est un isomorphisme de B-modules.
En effet,

b · (σ(v ⊗ w)) = τ ◦
(
∆op(b)R

)
· (v ⊗ w) = τ ◦

(
R∆(b)

)
· (v ⊗ w) = σ

(
b · (v ⊗ w)

)
.

Nous abordons plus loin la signification des identités (2) et (3) de la définition. Néanmoins
les deux résultats qui suivent donnent un premier apperu de la richesse de cette structure
algébrique.

Proposition 2.7. Si (B,R) est une bigèbre quasi-triangulaire, alors R satisfait l’équation
de Yang-Baxter quantique :

(2.2) R1,2R1,3R2,3 = R2,3R1,3R1,2 .

Démonstration. On calcule :

R1,2R1,3R2,3 = R1,2(∆ ⊗ id)(R) = (∆op ⊗ id)(R)R1,2 = R2,3R1,3R1,2 .

Dans la dernière égalité on a utilisé l’image par la transposition τ ⊗ id de l’identité (2) de la
définition 2.6. �

Corollaire 2.8. Si (B,R) est une bigèbre quasi-triangulaire et si V est une représentation
de B, alors pour tout n ≥ 2 l’application linéaire

Bn −→ GL(V ⊗n)

σi 7−→ σi,i+1

est un morphisme de groupes, i.e. définit une représentation de Bn.
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Démonstration. En réalité ce résultat est valable pour toute paire (V,R), où V est un k-
module et R ∈ GL(V ⊗V ) vérifie l’équation de Yang-Baxter quantique (2.2) dans GL(V ⊗3).

La relation σiσj = σjσi, |i − j| ≥ 2, est préservée de manière évidente. Il reste donc à
vérifier que la relation σiσi+1σi = σi+1σiσi+1 l’est également. Il suffit de le faire pour n = 3
(et donc avec i = 1) :

σ1,2σ2,3σ1,2 = τ1,2R1,2τ2,3R2,3τ1,2R1,2 = τ1,2τ2,3τ1,2R2,3R1,3R1,2

= τ1,2τ2,3τ1,2R1,2R1,3R2,3 (ici on a utilisé Yang-Baxter)

= τ1,2τ1,3R1,3R1,2τ2,3R2,3 = τ2,3R2,3τ1,2R1,2τ2,3R2,3

= σ2,3σ1,2σ2,3 .

Le corollaire est démontré. �

2.3. Algèbres de Hopf, dualité, et double. Dans ce paragraphe on présente une procédure
permettant d’obtenir une bigèbre quasi-triangulaire (et donc des représentations du groupe
des tresses) à partir d’une bigèbre donnée satisfaisant quelques propriétés supplémentaires.

2.3.1. Algèbres de Hopf.

Définition 2.9. Une algèbre de Hopf est une bigèbre (B,∆, ǫ) munie d’un morphisme
d’algèbres unitaires S : B → Bop (i.e. S(ab) = S(b)S(a) et S(1) = 1) tel que

ǫ ◦ S = S et ∆ ◦ S = (S ⊗ S) ◦ ∆op ,

et qui satisfait
(S ⊗ id) ◦ ∆ = 1 ◦ ǫ = (id ⊗ S) ◦ ∆ .

S est appelé l’antipode.

Ici on note Bop l’algèbre unitaire qui a pour espace vectoriel sous-jacent B, unité 1 et
produit ∗ donné par a ∗ b = ba.

Exemples 2.10. Reprenons les exemples 2.2.
Dans l’exemple 2.2.(i) on peut munir F(G) de l’antipode suivante : pour toute fonctions

f sur G et tout élément g ∈ G on pose S(f)(g) := f(g−1). C’est un exercice facile de vérifier
que

(
F(G), S

)
devient ainsi une algèbre de Hopf.

On peut également munir la bigèbre kG (exemple 2.2.(ii)) d’une antipode définie sur la
base (g)g∈G par S(g) = g−1. C’est une fois de plus un exercice de vérifier que S satisfait les
axiomes de la définition 2.9.

Enfin (exemple 2.2.(iii)) la bigèbre U(g) est aussi une algèbre de Hopf avec S définie sur
les générateurs x ∈ g par S(x) = −x. Nous devons vérifier que S est bien définie, i.e. que la
relation xy − yx = [x, y] est préservée ; il suffit pour cela de calculer :

S(xy − yx) = S(y)S(x) − S(x)S(y) = (−y)(−x) − (−x)(−y) = [y, x] = −[x, y] = S([x, y]) .

Vérifions que les conditions de la définition 2.9 sont bien remplies, il suffit pour cela de
le faire sur les générateurs x ∈ g. On a tout d’abord ǫ

(
S(x)

)
= ǫ(−x) = 0 = ǫ(x) et

(S ⊗ S)(∆(x)) = (−x) ⊗ 1 + 1 ⊗ (−x) = ∆(S(x)). Ensuite (ici on utilise la notation
∆(x) = x′ ⊗ x′′)

S(x′)x′′ = (−x) + x = 0 = x+ (−x) = x′S(x′′) et ǫ(x) = 0 .

2.3.2. La construction du double.
Soit (H,m, 1,∆, ǫ) une bigèbre de dimension finie (i.e. qui est un k-module libre de di-

mension finie). Son dual H∗ est alors naturellement muni d’une structure de bigèbre, ayant
pour multiplication ∆∗ : H∗ ⊗H∗ = (H ⊗H)∗ → H∗, pour unité ǫ∗ : k → H∗ (autrement
dit, 1H∗ = ǫ), pour coproduit m∗ : H∗ → (H⊗H)∗ = H∗⊗H∗, et pour coünité 1∗ : H∗ → k
(autrement dit, ǫH∗(ξ) = ξ(1)).4

4Il convient de remarquer que si H n’est pas un k-module libre de type fini alors on a H∗⊗H∗ ⊂ (H⊗H)∗.
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Si H est de surcroit munie d’une antipode S qui en fait une algèbre de Hopf, alors
S∗ : H∗ → H∗ est une antipode qui fait de la bigèbre H∗ décrite précédemment une algèbre
de Hopf.

On suppose maintenant donnée une algèbre de Hopf (H,S) de dimension finie ayant
une antipode bijective. Nous allons définir une structure de bigèbre quasi-triangulaire sur
D(H) := H ⊗H∗. Commençons par expliciter la structure de bigèbre sur D(H) :

• le produit de deux éléments a⊗ ξ et b⊗ η est donné par la formule suivante :

(2.3) (a⊗ ξ) · (b⊗ η) := ξ′′′
(
S−1(b′)

)
ξ′(b′′′)ab′′ ⊗ ξ′′η .

Ici on a utilisé les notations ∆
(2)
H (b) = b′ ⊗ b′′ ⊗ b′′′ et ∆

(2)
H∗(ξ) = ξ′ ⊗ ξ′′ ⊗ ξ′′′ ;

• l’unité pour ce produit est 1D(H) := 1H ⊗ 1H∗ = 1H ⊗ ǫH ;
• le coproduit d’un élément a⊗ ξ est donné par

∆D(H)(a⊗ ξ) := (a′ ⊗ ξ′) ⊗ (a′′ ⊗ ξ′′) ,

où ∆H(b) = b′ ⊗ b′′ et ∆H∗(ξ) = ξ′ ⊗ ξ′′ ;
• la coünité pour ce coproduit est ǫD(H)(a⊗ ξ) = ǫH(a)ǫH∗(ξ) = ǫH(a)ξ(1H).

Remarque 2.11. Le produit d´finit par (2.3) peut être également caractérisé comme suit :
(a⊗ 1H∗) · (b⊗ 1H∗) = ab⊗ 1H∗ , (1H ⊗ ξ) · (1H ⊗ η) = 1H ⊗ ξη, (a⊗ 1H∗) · (1H ⊗ ξ) = a⊗ ξ,
et

(1H ⊗ ξ) · (a⊗ 1H∗) = ξ′′′(S−1(a′))ξ′(a′′′)a′′ ⊗ ξ′′ .

On définit ensuite R := id ∈ H ⊗H∗ ⊂ D(H)⊗D(H). Étant donnée une base (ei)i∈I de H
et une base duale (ξi)i∈I de H∗, on a R =

∑
i∈I(ei ⊗ 1H∗) ⊗ (1H ⊗ ξi).

Théorème 2.12. Avec les produit, unité, coproduit et coünité définis ci-dessus, D(H) est
une bigèbre. De plus

(
D(H), R

)
est une bigèbre quasi-triangulaire.

Démonstration. La vérification des axiomes d’une bigèbre est laissée en exercice. Il reste à
montrer que R est inversible et satisfait les trois conditions de la définition 2.6.

Posons R̄ :=
∑

i∈I(ei ⊗ 1H∗) ⊗ (1H ⊗ (ξi ◦ SH)) ; on a alors

RR̄ =
∑

i,j∈I

(eiej ⊗ 1H∗) ⊗ (1H ⊗ ξi(ξj ◦ SH)) .

Considérons l’application φ : H → H définie par φ(x) :=
∑

i,j eiej

(
ξi(ξj ◦ SH)

)
(x). Rap-

pelons que
∑

i eiξ
i(x) = x et calculons

φ(x) =
∑

i,j∈I

eiej

(
ξi ⊗ (ξj ◦ SH)

)(
∆H(x)

)
=

∑

i∈I

eiξ
i(x′)

∑

j∈I

ejξ
j
(
SH(x′′)

)

= x′SH(x′′) = 1HǫH(x) = 1H1H∗(x) .

Donc RR̄ = (1H ⊗ 1H∗) ⊗ (1H ⊗ 1H∗). On démontre exactement de la même manière que
R̄R = (1H ⊗ 1H∗) ⊗ (1H ⊗ 1H∗). R est donc inversible, et R−1 = R̄.

En utilisant l’identité
∑

i,j ei ⊗ ej ⊗ ξiξj =
∑

i e
′
i ⊗ e′′i ⊗ ξi on trouve que5

R1,3R2,3 =
∑

i,j∈I

(ei ⊗ 1H∗) ⊗ (ej ⊗ 1H∗) ⊗ (1H ⊗ ξiξj)

=
∑

i∈I

(e′i ⊗ 1H∗) ⊗ (e′′i ⊗ 1H∗) ⊗ (1H ⊗ ξi) = (∆ ⊗ id)(R) .

5Cette identité se démontre comme suit : on remarque que
X

i,j

(ei ⊗ ej)(ξ
iξj)(x) =

X

i,j

(eiξ
i(x′)) ⊗ (ejξj(x′′)) = x′

⊗ x′′ = ∆(x) =
X

i

(e′i ⊗ e′′i )ξi(x) .



12 DAMIEN CALAQUE

On démontre exactement de la même manière que R1,3R1,2 = R1,23.
Il reste donc à montrer que la condition (1) de la définition 2.6 est également vérifiée.

[...] �

2.3.3. Dualité et double en dimension infinie.

Définition 2.13. Deux algèbres de Hopf sont dites en dualité si il existe une forme bilinéaire
non-dégénérée

〈−,−〉 : H × H̃ −→ k

telle que quels que soient a, b ∈ H et ξ, η ∈ H̃, on a

• 〈1, ξ〉 = ǫ̃(ξ) et 〈a, 1̃〉 = ǫ(a),

• 〈ab, ξ〉 = 〈a⊗ b, ∆̃(ξ)〉 = 〈a, ξ′〉〈b, ξ′′〉 et 〈a, ξη〉 = 〈∆(a), ξ ⊗ η〉 = 〈a′, ξ〉〈a′′, η〉,

• 〈S(a), ξ〉 = 〈a, S̃(ξ)〉.

Ici non-dégénérée signifie que les applications

H −→ (H̃)∗ ; a 7−→ 〈a,−〉 et H̃ −→ H∗ ; ξ 7−→ 〈−, ξ〉

sont injectives.

Une algèbre de Hopf H de dimension finie et sa duale H∗ sont évidemment en dualité.

Exercice 2.14. Soit g = sln(C) et G = SL(n,C). Posons H := U(g) et H̃ := k[G] l’algèbre
des fonctions régulières sur le groupe algébrique G.

(1) Comme algèbre, k[G] = k[eij |i, j = 1, . . . , n]/〈det
(
(eij)i,j

)
−1〉 et sa structure d’algèbre

de Hopf provient de la structure de groupe sur G (le coproduit et la coünité sont les mêmes que
dans l’exemple 2.2.(i) et l’antipode est donnée dans l’exemple 2.10). Montrer que ∆(eij) =∑

k eikekj, ǫ(eij) = δij et que S(eij) est donné par le mineur mji de la matrice (ekl)k,l (qui
est bien un polynôme en les variables ekl).

(2) L’inclusion d’algèbres de Lie g = sln(C) →֒ gln(C) induit un morphisme d’algèbres
(associatives) U(g) → gln(C), et pour tout élément a ∈ U(g) on note aij les coefficients de
son image dans gln(C). Montrer que

〈a, eij〉 := aij

définit une dualité de Hopf entre U(g) et k[G].
(3) Montrer que cette construction se généralise au cas d’un groupe algébrique complexe

G ⊂ GL(n,C) et de son algèbre de Lie g ⊂ gln(C).

3. Groupes quantiques et déformations

3.1. Déformations.

3.1.1. Modules topologiquement libres.

3.1.2. Déformations de structures algébriques.

3.1.3. La notion de limite semi-classique.

3.2. Rappels sur les algèbres de Lie semi-simples.

3.2.1. La présentation de Serre.

3.2.2. Construction de U(g) comme un double.

3.3. Groupes quantiques.
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