From Lie theory to algebraic geometry and back

DAMIEN CALAQUE

(joint work with Andrei Caldararu and Junwu Tu)

Given a finite dimensional Lie algebra \mathfrak{g} over a field k of zero characteristic, Duflo's Theorem [5] asserts that the restriction of the symmetrization map (also known as PBW isomorphism)

$$\sigma: \mathcal{S}(\mathfrak{g}) \xrightarrow{\sim} \mathcal{U}(\mathfrak{g})$$

to \mathfrak{g} -invariants, precomposed with the contraction against the series

$$\partial := \det\left(\sqrt{\frac{e^{ad} - 1}{ad}}\right) = \exp\left(\sum_{k \ge 1} c_k \operatorname{tr}(ad^k)\right) \in \widehat{\mathrm{S}}(\mathfrak{g}^*)^{\mathfrak{g}}$$

is an algebra isomorphism¹.

Analogously, given a smooth algebraic variety over k, we can consider the Hochschild-Kostant-Rosenberg (HKR) isomorphism

$$\bigoplus_{k} \Lambda^{k}(\mathcal{T}_{X})[-k] \xrightarrow{\sim} p_{1*} \left(\mathbb{R}\mathcal{H}om_{X \times X}(\mathcal{O}_{X}, \mathcal{O}_{X}) \right)$$

in $\mathcal{D}(\mathcal{O}_X - \text{mod})$. Like in the above situation the (sheaf of) algebra on the right is not (graded) commutative in $\mathcal{D}(\mathcal{O}_X - \text{mod})^2$, but its image under $R\Gamma(-)$ is. Here again, we need to precompose with the contraction against an element

$$\partial := \det\left(\sqrt{\frac{at}{e^{at}-1}}\right) \in \bigoplus_k H^k(X, \Omega_X^k)$$

to get the following result, first guessed by Kontsevich [9]: **Theorem** ([3]). $HKR \circ \partial \cdot$ is an algebra isomorphism.

The element $at \in H^1(X, \Omega^1_X \otimes \mathcal{E}nd(\mathcal{T}_X))$ is the Atiyah class of the tangent bundle. Recall that the Atiyah class of a vector bundle $E \to X$ is the obstruction against the existence of a connection on E. More abstractly it is the class of the extension

$$0 \to \Omega^1_X \otimes E \to J^1_X(E) \to E \to 0,$$

and can be viewed as a map $\mathcal{T}_X[-1] \otimes E \to E$ in $\mathcal{D}(\mathcal{O}_X - \text{mod})$. One can prove (see e.g. [8]) that when E is $\mathcal{T}_X[-1]$ this turns $\mathfrak{g} = \mathcal{T}_X[-1]$ into a Lie algebra object in $\mathcal{D}(\mathcal{O}_X - \text{mod})$, and that $\mathcal{D}(\mathcal{O}_X - \text{mod})$ is tautologically equivalent to the representation category of this Lie algebra object. Later on it was proved (see e.g. [10]) that $U(\mathfrak{g}) \cong p_{1*}(\mathbb{RH}om_{X \times X}(\mathcal{O}_X, \mathcal{O}_X))$. This construction actually becomes more or less tautological, and also works for singular varieties, if one considers the (co)tangent complex [7] instead.

¹Here $ad \in \mathfrak{g}^* \otimes \operatorname{End}(\mathfrak{g})$ is the adjoint action.

²While it is in $\mathcal{D}(k_X - \text{mod})$.

From this we observe that HKR is PBW, and that the above Theorem is a straightforward translation of Duflo's result. Namely,

$$\mathrm{R}\Gamma(-) = \mathrm{R}\mathrm{Hom}_X(\mathcal{O}_X, -) = \mathrm{Hom}_{\mathrm{Rep}(\mathfrak{g})}(\mathbf{1}, -) = (-)^{\mathfrak{g}}.$$

Going back to Lie algebras, there are (conjectural) generalizations of Duflo's result. They concern homogeneous spaces, or (at the infinitesimal level) inclusions $\mathfrak{h} \subset \mathfrak{g}$ of finite dimensional Lie algebras. More precisely, under the assumption that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ with $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ Duflo conjectured [6] that the Poisson center of $S(\mathfrak{m})^{\mathfrak{h}}$ is isomorphic (as an algebra) to the center of $(U(\mathfrak{g})/\mathfrak{h}U(\mathfrak{g}))^{\mathfrak{h}}$. This conjecture seems far too much difficult for us³. We will therefore concentrate on an easier question: Question. Under what assumption do we have an isomorphism of \mathfrak{h} -modules

$$S(\mathfrak{g}/\mathfrak{h}) \xrightarrow{\sim} U(\mathfrak{g})/\mathfrak{h}U(\mathfrak{g})$$
?

For this purpose let us rewrite

 $(\mathrm{U}(\mathfrak{g})/\mathfrak{h}\mathrm{U}(\mathfrak{g}))^\mathfrak{h} = \mathrm{Hom}_{\mathrm{Rep}(\mathfrak{h})}\big(\mathbf{1}, \mathrm{Res}\circ\mathrm{Ind}(\mathbf{1})\big) = \mathrm{Hom}_{\mathrm{Rep}(\mathfrak{g})}\big(\mathrm{Ind}(\mathbf{1}), \mathrm{Ind}(\mathbf{1})\big)\,.$

Given a closed embedding $i: X \hookrightarrow Y$ of algebraic varieties, we are going to consider the following Lie algebras in $\mathcal{D}(\mathcal{O}_X - \text{mod})$: $\mathfrak{h} = \mathcal{T}_X[-1] \subset \mathcal{T}_X|_Y[-1] = \mathfrak{g}$. Then $(\mathrm{U}(\mathfrak{g})/\mathfrak{h}\mathrm{U}(\mathfrak{g}))^{\mathfrak{h}}$ becomes

$$\operatorname{Ext}_Y(X, X) := \operatorname{RHom}_Y(i_*\mathcal{O}_X, i_*\mathcal{O}_X) = \operatorname{RHom}_X(i^*i_*\mathcal{O}_X, \mathcal{O}_X).$$

Therefore the above question translate into asking under what assumption do we have an isomorphism

$$\bigoplus_{k} \Lambda^{k}(\mathcal{N}_{X,Y})[-k] \xrightarrow{\sim} \mathsf{R}\mathcal{H}om_{X}(i^{*}i_{*}\mathcal{O}_{X},\mathcal{O}_{X}).$$

in $\mathcal{D}(\mathcal{O}_X - \text{mod})$. To answer this question let us consider the normal bundle exact sequence

$$0 \to \mathcal{T}_X \to \mathcal{T}_Y \big|_X \to \mathcal{N}_{X,Y} \to 0,$$

which gives a map $\mathcal{N}_{X,Y} \to \mathcal{T}_X[1]$, by tensoring with $\mathcal{N}_{X,Y}$ and composing with the Atiyah "class" of $\mathcal{N}_{X,Y}$ we get an extension $\alpha_{X,Y} \in \text{Ext}_X^2(\mathcal{N}_{X,Y}^{\otimes 2}, \mathcal{N}_{X,Y})$:

$$\mathcal{N}_{X,Y} \otimes \mathcal{N}_{X,Y} \to \mathcal{T}_X[-1] \otimes \mathcal{N}_{X,Y}[2] \to \mathcal{N}_{X,Y}[2].$$

Theorem (Arinkin-Caldararu [1]). The following conditions are equivalent:

- (1) $\alpha_{X,Y} = 0.$
- (2) $\mathcal{N}_{X,Y}$ admits an extension to the first infinitesimal neighbourhood $X^{(1)}$ of X in Y.
- (3) the answer to the question is YES.

³Even in the symmetric space case, when \mathfrak{h} is the fixed point subalgebra of an involution on \mathfrak{g} , the conjecture is not solved despite some very good improvements by Cattaneo-Torossian [4].

Going back once again to Lie algebras, it is now very natural to take a look at the exact sequence $0 \to \mathfrak{h} \to \mathfrak{g} \to \mathfrak{g}/\mathfrak{h} \to 0$ of \mathfrak{h} -modules, and the induced map $\mathfrak{g}/\mathfrak{h} \to \mathfrak{h}[1]$ in $\mathcal{D}(\mathfrak{h}-\mathrm{mod})$. Inspired by the geometric situation, we tensor with $\mathfrak{g}/\mathfrak{h}$ and then compose with the \mathfrak{h} -action to obtain a class $\alpha_{\mathfrak{h},\mathfrak{g}} \in \mathrm{Ext}^1((\mathfrak{g}/\mathfrak{h})^{\otimes 2}, \mathfrak{g}/\mathfrak{h})$:

$$\mathfrak{g}/\mathfrak{h}\otimes\mathfrak{g}/\mathfrak{h}
ightarrow\mathfrak{h}\otimes\mathfrak{g}/\mathfrak{h}[1]
ightarrow\mathfrak{g}/\mathfrak{h}[1]$$
 .

By complete analogy with Arinkin-Caldararu result we can prove that: **Theorem** ([2]). *The following conditions are equivalent:*

- (1) $\alpha_{\mathfrak{h},\mathfrak{g}} = 0.$
- (2) $\mathfrak{g}/\mathfrak{h}$ "admits an extension to the first infinitesimal neighbourhood $\mathfrak{h}^{(1)}$ of \mathfrak{h} in \mathfrak{g} ".
- (3) the answer to the question is YES.

We now end this short note by explaining the meaning of condition (2) in the Theorem. First of all we define $\mathfrak{h}^{(1)}$ to be the Lie algebra freely generated by \mathfrak{g} and subjected to the relations

$$[h,g]=[h,g]_{\mathfrak{g}}\,,\quad h\in\mathfrak{h}\,,\quad g\in\mathfrak{g}\,.$$

There is a Lie algera inclusion $\mathfrak{h} \hookrightarrow \mathfrak{h}^{(1)}$, and we say that an \mathfrak{h} -module M "admits an extension to $\mathfrak{h}^{(1)}$ " if there exists an $\mathfrak{h}^{(1)}$ -module $M^{(1)}$ such that $\operatorname{Res}(M^{(1)}) = M$. It can be proved that $\mathcal{T}_{X^{(1)}}|_X[-1]$ is truely isomorphic to $\mathfrak{h}^{(1)}$ as a Lie algera object in $\mathcal{D}(\mathcal{O}_X\operatorname{-mod})$ (but since $X^{(1)}$ is not smooth, we have to consider the tangent complex instead of the tangent sheaf). E.g. when $X = \{0\} \subset \mathbb{A}^n = Y$ we have that the shifted tangent complex of $X^{(1)}$ is a free Lie algebra in n odd generators.

References

- [1] D. Arinkin, A. Caldararu, in preparation.
- [2] D. Calaque, A. Caldararu, J. Tu, in preparation.
- [3] D. Calaque, M. Van den Bergh, Hochschild cohomology and Atiyah classes, to appear in Advances in Mathematics.
- [4] A. Cattaneo, C. Torossian, Quantification pour les paires symétriques et diagrammes de Kontsevich, Annales Scientifiques de l'ENS 41 (2008), no. 5, 789–854.
- [5] M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Annales Scientifiques de l'ENS 10 (1977), 265–288.
- [6] M. Duflo, in Open problems in representation theory of Lie groups (T. Oshima editor), Conference on Analysis on homogeneous spaces (1986), 1–5.
- [7] L. Illusie, Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239 (1971), Berlin, New York, Springer-Verlag.
- [8] M. Kapranov, Rozanski-Witten invariants via Atiyah classes, Compositio Mathematica 155 (1999), no. 1, 71–113.
- [9] M. Kontsevich, Deformation quantization of Poisson manifolds, Letters in Mathematical Physics 66 (2003), no. 3, 157–216.
- [10] N. Markarian, The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem, Journal of the London Mathematical Society 79 (2009), no. 2, 129–143.