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Universality in stastistical physics

The universality hypothesis (well confirmed by
experiments) in statistical physics says that a number of
macroscopic critical properties are largely independent of
the microscopic structure, at least inside a universality
class of systems.

Precise test for universality in shuttle experiments for
helium (2000); agreement with several digits.

Universality allow testable predictions even if we do not
known the details of the microscopic model.

Connections between universality and renormalization.
Deep connections bewteen QFT and statistical physics
(statistical field theory).
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The Ising model

The paradigmatic model for statistical mechanics is the 2D
Ising model

H = J
∑
j=0,1

∑
x∈Λ

σxσx+ej
≡
∑
x∈Λ

hx

σx = ±, Λ is a square lattice, x ∈ Λ, e0 = (0, 1), e1 = (1, 0).



The Ising model

The partition function is Z =
∑

σ e−βH(σ) and phase
transitions appear as non-analyticity points of
fβ = −β−1 lim|Λ|→∞

1
|Λ| log Z .

(Onsager (1944)) The critical temperature is
tanh βcJ =

√
2− 1 and the specific heat (second

derivative) and the correlations

Cv (β) ∼ −C1 log |β − βc |+ C2 < hxhy >βc∼
C

|x− y|2

while for β 6= βc < hxhy >β decays faster than any power
of ξ−1|x− y|, with ξ−1 ∼ C |T − Tc |. The critical indices
are pure number i.e. independent from J .
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The Ising model

The exact solvability is consequence of its special form; if
we add apparently armless perturbations like non nearest
neighbor or quartic interactions, integrability is lost (how
we compute the exponents?).

The hypothesis of universality in the case of the Ising
model says that if η are the indices and λV a perturbation
(for instance a next to nearest neighbor interaction)

η(λ) = η(0)

A mathematical proof of universality is achieved in D ≥ 4
(Aizenamnn (1982), Frohelich (1982)) where is a
consequence of a strengthened version of the central limit
theorem. In lower dimension is more difficult.
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Systems with continuous exponents

There are however systems in which the indices are not
pure numbers but depend on the microscopic structure.
This happens in planar magnetic materials, carbon
nanotubes or spin chains like KCuF3 (Ishiii et al. Nature
2003)

What is universality in these cases?
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Coupled Ising models

The simplest example with model-dependent exponents is
obtained coupling two 2D Ising models

H(σ, σ′) = HJ(σ) + HJ′(σ
′)− λV (σ, σ′)

with H = −J
∑

j=0,1

∑
x∈Λ σxσx+ej

σx = ±, Λ is a 2D
square lattice, x ∈ Λ, e0 = (0, 1), e1 = (1, 0).

V is a short ranged, quartic in the spin and invariant in
the spin exchange, like

V =
∑
j=0,1

∑
x,y∈Λ

v(x− y)σxσx+ej
σ′yσ

′
y+ej

with v(x) a short range potential.

It is well known that several models in statistical
mechanics can be rewritten as coupled Ising models.
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The Ashkin-Teller model

In the Ashkin-Teller model the spin has four values A,B ,C ,D,
and two neighbour spins is associated an energy E0 for
AA,BB ,CC ,DD, E1 for AB ,CD, E2 for AC ,BD, E3 for
AD,BC .



The Eight vertex model

The 8V model is a generalization of the Ice model for the
hydrogen bounding in which at each point is associated one
among eight vertices.



Ising Mapping

Both models can be rewritten, with a suitable choice of
the parameters, as coupled Ising models; in the case of the
AT for instance V =

∑
j=0,1

∑
x∈Λ σxσx+ej

σ′xσ
′
x+ej

.

Despite their similarity, an exact solution (Baxter
(1971))exists only in the case of the 8V model and some
of the exponents can be computed. They depend from λ,
that is it is not in the Ising universality
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Quantum Spin chains

The Heisenberg spin chain (physically realized in several
compounds like KCuF3) is a quantum generalization of the
Ising model; H =

−
L−1∑
x=1

[J1S1
x S1

x+1 +J2S2
x S2

x+1−hS3
x ]+λ

∑
1≤x ,y≤L

v(x−y)S3
x S3

y

where Sα
x = σαx /2 for i = 1, 2, . . . , L and α = 1, 2, 3, σαx

being the Pauli matrices and |v(x − y)| ≤ Ce−κ|x−y |

Despite looks very different, it is related to the previous
models: if v(x − y) = δ|x−y |,1/2 and h = 0 the
hamiltonian of the XYZ model commutes with the
transfer matrix of the 8V model.



Quantum Spin chains

The Heisenberg spin chain (physically realized in several
compounds like KCuF3) is a quantum generalization of the
Ising model; H =

−
L−1∑
x=1

[J1S1
x S1

x+1 +J2S2
x S2

x+1−hS3
x ]+λ

∑
1≤x ,y≤L

v(x−y)S3
x S3

y

where Sα
x = σαx /2 for i = 1, 2, . . . , L and α = 1, 2, 3, σαx

being the Pauli matrices and |v(x − y)| ≤ Ce−κ|x−y |

Despite looks very different, it is related to the previous
models: if v(x − y) = δ|x−y |,1/2 and h = 0 the
hamiltonian of the XYZ model commutes with the
transfer matrix of the 8V model.



1D interacting fermions

The spin chain can be equivalently written as a model of non
relativistic interacting fermions through the Jordan-Wigner
transformation H =

−1

2

L−1∑
x=1

[a+
x a−x+1 + a+

x+1a−x ]− u
L−1∑
x=1

[a+
x a+

x+1 + a−x+1a−x ]

+h
L∑

x=1

(ρx −
1

2
) + λ

∑
1≤x ,y≤L

v(x − y)(ρx −
1

2
)(ρy −

1

2
)

where a±x are the fermion creation or annihilation operators and
ρx = a+

x a−x , J1 = J2 = 1, u = (J1 − J2)/2. This hamiltonian
describes non relativistic fermions on a lattice (1D metals).



Conjectures

It has been conjectured that such models verify a set of
universal relations allowing for instance to express all the
exponents in terms of a single one.

For instance, in the coupled Ising model, if X± are the
exponents of the energy or crossover correlations, ν is the
exponents of the correlation length, α the exponent of the
specific heat

X−X+ = 1 ν =
1

2− X+
2ν = 2− α

Kadanoff (1977), Kadanoff and Wegner (1971).
In the spin chains or 1D fermions, the same relations hold
with a different identification (Luther and Poeschel 1974).
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Conjectures

Even the knowledge of a single exponent can be lacking;
in the case of spin chains or 1D fermions, Haldane (1980)
conjectured other relations allowing the determination of
the exponents in terms of two quantities . (Luttinger
liquid conjecture)

In particular if vs is the Fermi velocity and κ is the
susceptibility, vN = (πκ)−1

vs

vN
= X+

Even if the critical exponents depend on the
extraordinarily complex microscopic details, the universal
relations allow concrete and testable predictions in terms
of a few measurable parameters.
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Check in the solvabe cases

Its validity can be checked in the XYZ case; the index ν
is, if cos µ̄ = λ

ν =
π

2µ̄
= 1 +

2λ

π
+ O(λ2)

from Baxter solution

X− = 2(1− µ̄
π

) from the Luther Peschel relation ν = 1
2−X−

(conjectured)

From Bethe ansatz (Yang Yang (1966))

vs =
π

µ̄
sin µ̄ κ = [2π(π/µ̄− 1) sin µ̄]−1

so vN

vs
= X−

How can we prove such relations when a solution is
lacking?
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Fermionization for the Ising model

If ηα, η
+
α , α = 1, ..,N are anticommuting Grassman variables

ηαηβ = −ηβηα and the Grassman integration∫
dη = 0

∫
dηη = 1

and extended by linearity; moreover∫
DηDη+e

∑
α,β ηαAα,βη

+
β = detA

.



Fermionization for the Ising model

The Ising model partition function (with p.b.c.) ( Hurst
,Lieb Schultz Mattis, Kasteleyn, McCoy) can be written as
sum of Grassman integrals (the square root)∫ ∏

ω=±,k

dψ+
k,ωdψ−k,ωe−

Z
L2

∑
k ψ

+
k,ωAkψ

−
k,ω = N

∫
PZ ,µ(dψ)

where ψ±k,ω, ω = ±1, k = (k0, k) are a finite set of
Grassman variables and

Ak =

(
(−i sin k0 + sin k + µ11) −µ + µ12

−µ + µ21 −i sin k0 − sin k1 + µ22

)
with µ = O(|β − βc |), tanh βcJ =

√
2− 1, Z = O(1),

µij = O(k2).

PZ ,µ(dψ) is the Gaussian Grassman integration of a Dirac
field in d = 1 + 1 on a lattice (no fermion doubling).
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Fermionization for the coupled Ising model

The partition function of the coupled Ising model with
Hamiltonian H(σ, σ′) = HJ(σ) + HJ(σ′)− λV (σ, σ′) can
be exactly written as sum of non quadratic Grassman
integrals ∫

PZ ,µ(dψ)eV (ψ)

where λ0 = O(λ)

V = λ0

∑
x

ψ+
x,+ψ

−
x,+ψ

+
x,−ψ

−
x,− + ...

∫
PZ ,µ(dψ)eV is the partition function of a interacting

Dirac field with a lattice regularizationr in d = 1 + 1 and
mass µ (criticality correspond to massless fermions); if
J 6= J ′ two masses are present.



Fermionization for the coupled Ising model

We are interested in the specific heat Cv and the energy
ε = + and cross-over (ε = −) correlations, defined as

G ε
β(x− y) = lim

Λ→∞

〈
Oε

xOε
y

〉
Λ
− 〈Oε

x〉Λ
〈

Oε
y

〉
Λ

, ε = ±

where 〈..〉Λ is the average over all the spins configurations with
weight e−βH and

Oε
x =

∑
j=0,1

σxσx+ej
+ ε

∑
j=0,1

σ′xσ
′
x+ej

They can be also written as Grassman integrals with source
ψ+

+ψ
−
− and ψ+

+ψ
+
− respectively.



Theorem

(Mastropietro JSP (2003),CMP(2004)) In the coupled Ising
model with J = J ′ and λ small enough

The specific heat

Cv ∼ −
1

α
[1− |β − βc |−α] + O(1)

with α = O(λ), tanh βcJ =
√

2− 1 + O(λ).

If β 6= βc the energy and crossover correlation G ε
β(x− y),

ε = ± decays faster than any power of ξ−1|x− y|, with
ξ−1 ∼ C |β − βc |ν with ν = 1 + O(λ).

G ε
βc

(x− y) ∼ Cε
|x− y|2Xε

, as |x− y| → ∞ ,

with X± = 1 + O(λ).



Remarks

The series for X+,X−, ν,XT are convergent for small λ; by
explicit computation of the lowest order the above result
gives the first proof of the fact that the critical exponents
are non trivial function of the interaction (in particular for
the AT case)

In the case of a single perturbed Ising model, it was
proved by Pinson and Spencer (2000) that the indices
ν = 1,X± = 1, that is are the same as the Ising ones.
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Anisotropic AT model

Theorem

(Giuliani,Mastropietro CMP,PRL(2005)) In the case of the
anisotropic AT model (J 6= J ′) there are two critical
temperatures, T +

c and T−c such that

|T +
c − T−c | ∼ |J − J ′|XT

with XT = 1 + O(λ) and

Cv ∼ −∆α log
|T − T−c | · |T − T +

c |
∆2

where 2∆2 = (T − T−c )2 + (T − T +
c ).



Multiscale integration

The analysis is based on Wilsonian Renormalization Group
and multiscale analysis. The Grassmann variables are

written as ψk =
∑1

h=−∞ ψ
(h)
k with ψ

(h)
k living at

momentum scales O(k) = O(2h). After the integration of
the fields ψ(0), .., ψ(h) we get∫

PZ ,µ(dψ)eV = eL2Nh

∫
PZh,µh

(dψ(≤h))eV (h)(
√

Zhψ
(≤h))

where Zh is the wave function renormalization, µh the
effective mass; V h is sum of monomials of any degree and
λh the effective coupling.



Multiscale integration

The physical observables are expressed as renormalized
series in λk ; contrary to the original series in λ, there are
no divergences (Gallavotti trees: no overlapping
divergences). Analyticity in λk follows from the
compensations between Feynman graphs coming from the
minus signs due to anticommutativity (Caianiello 1973);
technically via Gram bounds in the
Battle-Brydges-Federbush formula for truncated
expectations (Gawedzki and Kupiainen (1985)).

The effective coupling λh converges, as h→ −∞, to a
function λ−∞, analytic function of λ (line of fixed points),
as a consequence of asymptotic Ward Identities (Benfatto,
Mastropietro (2004)).

The exponents are convergent power series in λ−∞. Do
they verify the universal relations?
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An universality result for the coupled Ising
model

Theorem

(Benfatto,Falco,Mastropietro CMP(2009)) If the coupling of
the coupled Ising model is small enough

X+(λ) =
1

X−(λ)
ν =

1

2− X+(λ)
α =

2− 2X+(λ)

2− X+(λ)

and in the case of the anisotropic AT model the transition
index verify

XT (λ) =
2− X+(λ)

2− X−1
+ (λ)
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The last relation was never proposed; the others were
proposed by Kadanoff (1977), Kadanoff and Wegner (1971)
and imply the hyperscaling relation 2ν = 2− α.



Equivalence with a QFT model

We introduce the QFT model, if jµ = ψ̄xγµψx∫
P(dψ(≤N))e λ̃∞

∫
dxv(x−y)jµ,xjµ,y

where P(dψ(≤N)) have propagator χN(k)
6k with a smooth

cut-off function vanishing for |k| ≥ 2N and v(x− y) a
short range symmetric interaction.

A multiscale integration is now necessary also in the
ultraviolet region (superrenormalizable) to perform the
limit N →∞; in the infrared is similar to the previous
one, with effective coupling called λ̃h.
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Equivalence with a QFT model

While the short distance (large momenta) behavior of the
two models are completely different, the large distance
behavior is expressed by critical indices η; they are analytic
in λ̃−∞, η ≡ η(λ̃−∞) = a1λ̃−∞ + a2λ̃

2
−∞ + ... where the

coefficients ai are equal to the ones in the spin model.

The crucial point is that one can make a fine tuning of the
bare coupling λ̃∞ so that λ−∞ = λ̃−∞, so that with this
choice the indices are identical: of course λ̃∞(λ) is an
analytic function of λ depending on all the details of the
spin model.

We have found that, for a suitable value of the bare
coupling λ̃∞, the indices of the large distance behavior of
the spin or QFT model are the same. And so what?
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Ward Identities for the QFT model

The advantage of this is that in the QFT model the
indices can be explicitly computed as functions of λ̃∞; this
follows from the fact that the QFT model verify extra
gauge symmetries

Ward Identities are derived by using the Gauge
transformation ψx → e iαxψx

pµ < jµ,pψk,ωψ̄k+p >=< ψkψ̄k > − < ψk+pψ̄
−
k+p > +∆N(k,p)

where ∆N =< δjpψkψ̄k+p > with δp =∫
dk[(χ−1

N (k + p)− 1)(6 k+ 6 p)− (χ−1
N (k)− 1) 6 k]ψ̄kψk+p.

χN(k)

6 k
6 pχN(k + p)

6 k+ 6 p
=

χN(k)

6 k
− χN(k + p)

6 k+ 6 p
+
χN(k)

6 k
C (k,p)

χN(k + p)

6 k+ 6 p
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Anomalies

If Ward Identities are derived from the (formal) theory
without cut-off, one would get the same WI with ∆N = 0.

On the contrary by a multiscale analysis it is found, in the
limit of removed cut-off

lim
N→∞

∆N(k,p) = τ v̂(p)pµ < jµ,pψk,ωψ̄k+p,ω >

with

τ =
λ̃∞
4π

The coefficient τ is linear in λ̃∞ (Mastropietro JMP 2007):
in the case of the axial WI, this is the non-perturbative
analogue of the anomaly non renormalization in QED4.
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In a RG analysis ∆N(k,p) the terms δjψ+ψ− are marginal;
one subtracts a local term, and one can further decompose
them in a sum of terms with have scaling negative dimension
(see c,d,e) except a, which is compensated by

the local term (b), if νN = λ̃∞
4π

.



Anomalies

The WI in the limit N →∞ have the form, if
j5,µ = ψ̄γµγ5ψ

γµpµ < jµ,pψk,ωψ̄k+p >= A[< ψkψ̄k > − < ψk+pψ̄
−
k+p >]

γµpµ < j5,µ,pψk,ωψ̄k+p >= Ā[< ψkψ̄k > − < ψk+pψ̄
−
k+p >]

with A−1 = 1− τv(p) Ā−1 = 1 + τv(p).

Similar relation were postulated by Johnson (1961) in its
solution of the Thriring model v(x) = δ(x)(their value was
fixed by self-consistency); here they are derived by a
functional integral (essential to prove that the exponents
are the same as the spin models).
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Closed equations

One can combine the WI with the Schwinger-Dyson
equation and it turns out that the critical indices are
written in terms of the anomaly

X+ = 1− 1

1 + τ

λ̃∞
2π

X− = 1 +
1

1− τ
λ̃∞
2π

with τ = λ̃∞
4π

from which the relation follows.

The indices have a simple expression in terms of λ̃∞; all
the model dependence is in the function
λ̃∞(λ) = aλ + bλ2 + .....

The crucial point are: the exponents are the same as in a
QFT, and we can choose its regularization so that the
anomaly non renormalization holds.
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Anomalies

The fact that τ is linear in the bare coupling λ∞ is the
non-perturbative analogue of a property called in QED
anomaly non renormalization, and proved by Adler and
Bardeen by an accurate analysis of the Feynman graph
expansion. Writing the model as in the equivalent way as a
boson-fermion model

γµpµ < j5,µ,pψk,ωψ̄k+p >=

[< ψkψ̄k > − < ψk+pψ̄
−
k+p >] + τεµ,ν < Aν,Pψk,ωψ̄k+p >



Anomalies

Note that had we considered a local current-current
interaction (Thirring model) with v(x) = δM(x) with
limM→∞ vM(x) = δ(x), , still the ultraviolet fermionic (N)
and bosonic M cut-off can be removed (CMP2008)

τ has higher orders corrections if the fermionic cut-off is
removed after the bosonic one (N →∞,M →∞)

τ it is not renormalized if they are removed in the opposite
way M →∞,N →∞.

The wave function renormalization must be chosen as
ZN ∼ 2ηN with η > 0 and V (

√
Zψ).
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Universality results for quantum spin chain

The quantum spin chain in its fermionic representation

−1

2

L−1∑
x=1

[a+
x a−x+1 + a+

x+1a−x ]− u
L−1∑
x=1

[a+
x a+

x+1 + a−x+1a−x ]

+h
L∑

x=1

(ρx −
1

2
) + λ

∑
1≤x ,y≤L

v(x − y)(ρx −
1

2
)(ρy −

1

2
)

where a±x are the fermion creation or annihilation operators and
ρx = a+

x a−x , J1 = J2 = 1, u = (J1 − J2)/2. This hamiltonian
describes non relativistic fermions on a lattice (1D metals).
We denote x = (x , x0), Ox = eHx0Oxe−Hx0 and, if

A = Ox1 ...Oxn , 〈A〉 = limL→∞
Tre−βHT(A)

Tre−βH , T being the time
order product and T denoting truncation.



Critical indices

For λ small enough (Benfatto,Mastropietro RMP (2002))

S
(3)
x = a+

x a−x − 1
2
, when J1 = J2

〈
S

(3)
x S

(3)
0

〉
T
∼

cos(2pF x)
1 + O(λ)

2π2[x2 + (vsx0)2]X+
+

1

2π2[x2 + (vsx0)2]
(1 + O(λ))

pF = cos−1(h + λ) + O(λ) (if h = 0 pF = π/2 by
symmetry )

vs = sin pF + O(λ), vF = sin pF

κ (the susceptibility) is the limit p → 0 of the 2D FT of〈
S

(3)
x S

(3)
0

〉
T

at p0 = 0



Critical indices

If J1 6= J2

〈
S

(3)
x S

(3)
0

〉
T

decays with correlation length

ξ ∼ C |J1 − J2|ν̄ with ν̄ = 1 + O(λ)

The fermionic 2-point function
〈

a−x a+
0

〉
T

for J1 = J2

decays at large distance as a power law with index 1 + η,
η = O(λ2)

The correlations of the Cooper pair operator
ρc

x = a+
x a+

x′ + a−x a−x′ , x′ = (x + 1, x0) decays at large
distance with a power law with index X−.



Universality relations

Theorem

(Benfatto,Mastropietro 2009) For λ small enough

X+X− = 1 ,

ν̄ =
1

2− X−1
+

, 2η = X+ + X−1
+ − 2 ,

Moreover

κ =
1

π

X+

vs
.

X+ = 1− λ v̂(0)−v̂(2pF )
π sin pF

+ O(λ2) (cfr with X+ = 1− 2λ
π

+ O(λ2)

of the exact XYZ solution)



Ideas of the proof

The density and the current operators are
ρx = S3

x + 1
2

= a+
x a−x and Jx = 1

2i
[a+

x+1a−x − a+
x a−x+1]

∂ρx

∂x0
= eHx0[H , ρx ]e−Hx0 = −i [Jx ,x0 − Jx−1,x0]

If (vF = sin pF ) Jx = vF jx

ip0 < ρ̂pâ+
k â−k+p > +pvF < ĵpâ+

k â−k+p >∼ [
〈

â+
k â−k

〉
−
〈

â+
k+pâ−k+p

〉
]

Note also that (H0 is the quadratic part)

[H0, Ĵp] =
1

L

∑
k

sin k(cos(k + p)− cos k)â+
k+pâk



The reference model

The partition function of the reference model (Lorentz
invariant and not hamiltonian) is, if ψ±±,x are Grassman
variables, x ∈ R2∫

P(dψ(≤N))e λ̃∞
∫

dxv(x−y)jµ,xjµ,y

where ψ± = (ψ±+, ψ
±
−) is a Grassman spinor, P(dψ(≤N)) have

propagator,

g±(x) =

∫
dke ikx χN(k)

−ik0 ± ck

where χN(k) is a smooth cut-off function vanishing for
|k| ≥ 2N , v(x− y) a short range symmetric interaction and
jµ = ψ̄γµψ, γ0 = σx , γ1 = σy .



Relation with the spin chain

It is possible to choose c = vs and λ̃∞ as convergent series in
λ (depending on all the details of the spin hamiltonian) so
that

The critical exponents of the two models are the same.

For k k, k + p small if pF = (0, ωpF ), ω = ±, Jx = vF jx

< ρ̂pâ+
k+pωF

â−k+p+pωF
>∼ Z (3) < ĵ0,pψ̂

+
k,ωψ̂

−
k+p,ω >

< ĵpâ+
k+pωF

â−k+p+pωF
>∼ Z̃ (3) < ĵ1,pψ̂

+
k,ωψ̂

−
k+p,ω >

Z̃ (3)

Z (3)
= 1 + a1λ + O(λ2)

Similar relation hold for the 2-point function with constant
Z
Asymptotic to the relativistic model with different density
and current renormalizations. Crucial: The fact that
Z (3) 6= Z̃ (3) is the effect of the irrelevant operators
breaking the relativistic symmetry.
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Ward Identities for the spin chain

ipµ < jµ,pψkψ
+
k+p >= A[< ψkψ

+
k > − < ψk+pψ

+
k+p >]

ipµ < j5,µ,pψkψ
+
k+p >= Ā[< ψkψ

+
k > − < ψk+pψ

+
k+p >]

with A−1 = 1− τ A−1 = 1 + τ .

ip0 < ρ̂pâ+
k â−k+p > +pṽJ < ĵpâ+

k â−k+p >∼ B[
〈

â+
k â−k

〉
−
〈

â+
k+pâ−k+p

〉
]

ip0 < ̂pâ+
k â−k+p > +pṽN < ρ̂pâ+

k â−k+p >∼ B̄[
〈

â+
k â−k

〉
−
〈

â+
k+pâ−

〉
]

with B = Z (3)

Z
(1− τ)−1, B̄ = Z̃ (3)

Z
(1 + τ)−1, ṽN = vs

Z (3)

Z̃ (3) ,

ṽJ = vs
Z̃ (3)

Z (3) .

One extra WI. Three different velocities

By comparing with lattice WI B = Z (3)

Z
(1− τ)−1 = 1
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The density

By another WI, again derived by the reference model, if
D±(p) = −ip0 ± cp

< ρ̂pρ̂p >=
1

4πvsZ 2

(Z (3))2

1− (λ̃∞/4πvs)2

[
2− D−(p)

D+(p)
− D+(p)

D−(p)

]
,

so that

κ =
1

πvs

1

Z 2

(Z (3))2

1− (λ̃∞/4πvs)2
=

1

πvs

1− (λ̃∞/4πvs)

1 + (λ̃∞/4πvs)
=

X+

πvs



Conclusions

We have established for the first time the validity of a
number of universal relations between exponents and other
quantities in a wide class of non solvable lattice models.

Same of the the universal relations are used for the
analysis of experiments in carbon nanotubes or spin chains

Their interest goes much beyond this, as they provide one
of the very cases in which the universality principle, a
general belief in statistical physics and beyond, can be
rigorously verified.

Extensions of our methods will allow hopefully to prove
universal relations in an even wider class of models and to
prove other relations between spin or dynamic exponents.
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