Chapitre I

Matrices nilpotentes, matrices trigonalisables, Leçon 157

I.1 Théorème de Lie-Kolchin

[1, Exercice IV-B6]

On note D(K) le groupe dérivé d'un groupe K, c'est-à-dire le sous-groupe engendré par les commutateurs $[g,h]=ghg^{-1}h^{-1}$, avec $g,h\in K$, de K. On note $D^2(K)$ le groupe dérivé de D(K) et $D^k(K)$, par récurrence.

On rappelle qu'un groupe G est $r\acute{e}soluble$ si $D^{\ell}=1$ pour un entier ℓ que l'on choisira minimal dans la suite.

$$G = G_0 \supset G_1 \supset \cdots \supset G_{\ell} = \{1\}$$

telle que pour tout entier k compris entre 0 et $\ell-1$, le sous-groupe G_{k+1} soit distingué dans G_k et le quotient G_k/G_{k+1} soit abélien.

Théorème I.1.1 (Théorème de Lie-Kolchin).

Soit G est un sous-groupe résoluble connexe de $\mathrm{GL}_n(\mathbb{C})$, alors G est conjugué à un sous-groupe du groupe des matrices triangulaires de $\mathrm{GL}_n(\mathbb{C})$.

On note donc G_k , k de 0 à ℓ , les sous-groupes comme ci-dessus. On supposera G non abélien; si G est abélien, on sait déjà qu'une famille de matrices qui commutent deux à deux sont simultanément trigonalisables sur \mathbb{C} .

- 1. Montrer que $D^k(G)$ est un sous-groupe distingué, connexe, de G, et que le groupe quotient $D^{k-1}(G)/D^k(G)$ est abélien, pour tout k.
- 2. On pose $A=D^{\ell-1}(G)$. Montrer que A est abélien, non trivial, et en déduire que l'ensemble

$$V := \{ v \in \mathbb{C}^n, \, Av \in \mathbb{C}v \}$$

est non trivial.

- 3. Soit v non nul dans V. Pour a dans A, on pose $\chi_v(a)$ le complexe tel que $a(v) = \chi_v(a)v$. Montrer que pour tout g de G, g(v) est encore dans V, et que $\chi_{g(v)}(a) = \chi_v(g^{-1}ag)$, pour tout a de A.
- 4. En déduire, en utilisant la connexité de G, que si v est un vecteur propre de a, pour la valeur propre λ , alors g(v) est un vecteur propre de a pour la même valeur propre λ .
- 5. Soit v non nul dans V, et W le sous-espace engendré par les g(v), $g \in G$. Montrer que W est un sous-espace G-stable, de dimension $0 < \dim W < n$.
- 6. En déduire, en utilisant une récurrence sur n, qu'il existe une base de trigonalisation commune à tous les g de G.

Soluce

1. En fait, tout groupe dérivé d'un groupe donné K est distingué : il est stable par tout automorphisme de K, par construction, donc, en particulier, stable par automorphisme intérieur.

Comme G est connexe, $G \times G$ est également connexe, et la partie génératrice $X := \{[g,h], g,h \in G\}$ de D(G), qui est l'image de $G \times G$ par le commutateur, est également connexe. Par l'exercice [H2G2-t1, II-F5], D(G) est connexe. Par récurrence, on en déduit que $D^k(G)$ est connexe.

Comme le groupe dérivé de $D^{k-1}(G)$ est $D^k(G)$, on obtient par passage au quotient que le groupe dérivé de $D^{k-1}(G)/D^k(G)$ est $D^k(G)/D^k(G) = \{1\}$. Mais cela signifie que tous les commutateurs dans $D^{k-1}(G)/D^k(G)$ sont triviaux, c'est-à-dire, que $D^{k-1}(G)/D^k(G)$ est abélien.

- 2. Par minimalité de ℓ , A est non trivial. Comme le groupe dérivé de A est trivial, on a que $D^{\ell-1}(G)$ est abélien. On sait alors que sur \mathbb{C} , les matrices de $D^{\ell-1}(G)$ sont simultanément trigonalisables. Soit (e_1, \dots, e_n) une base qui les trigonalise toutes. On a alors : $e_1 \in V$.
- 3. On a

$$a(g(v)) = g((g^{-1}ag)(v)) = g(\chi_v(gag^{-1})v) = \chi_v(gag^{-1})g(v).$$

D'où l'assertion.

4. Tout d'abord, comme v est non nul, g(v) est également non nul. On a vu que g(v) était vecteur propre pour tout élément a de A. L'application de G dans \mathbb{C}^* qui envoie g sur $\chi_v(g^{-1}ag)$ est continue : effectivement, elle est composée de $g \mapsto gag^{-1}$ qui est continue, avec l'application χ_v , qui est continue sur le stabilisateur de la droite $\mathbb{C}v$.

Donc, l'image de G est un connexe. Comme $\chi_{g(v)}(a) = \chi_v(g^{-1}ag)$, cette image est dans l'ensemble discret des valeurs propres de a. Conclusion, $\chi_{g(v)}(a)$ n'a qu'une valeur quand g varie, celle atteinte pour g = e, c'est-à-dire λ .

- 5. Comme le sous-espace W est défini par un système de générateurs Gstable, il est également G-stable. Comme il contient v qui est non nul, W est non nul.
 - Reste à montrer que $W \neq \mathbb{C}^n$. Soit a quelconque dans A. Alors, pour tout g dans G g(v) est un vecteur propre pour a, pour la même valeur propre. En conséquence, W est un sous-espace propre pour a. Si, par l'absurde, $W = \mathbb{C}^n$, alors a est une homothétie pour tout a, et A est un sous-groupe constitué d'homothéties. Comme G est non abélien, $\ell > 1$ et donc A est le groupe dérivé d'un groupe, en l'occurence, le groupe dérivé de $D^{\ell-2}(G)$. Ainsi, le déterminant d'un élément de A est 1, et comme toutes les matrices de A sont scalaires, ces scalaires sont forcément des racines de l'unité. Or, comme on a l'a vu, A est connexe. Donc, A est le groupe trivial. Ce qui est absurde par minimalité de ℓ .
- 6. On montre par récurrence sur n que G possède une base de trigonalisation simultanée. Pour n=1, c'est clair. Pour n quelconque, on a obtenu un sous-espace W de dimension $k, 1 \le k \le n-1$. Soit W' un supplémentaire de W dans \mathbb{C}^n . En choisissant une base adaptée à la décomposition $\mathbb{C}^n = W \oplus W'$, on voit que g est semblable à une matrice de la forme $\begin{pmatrix} \rho(g) & \zeta(g) \\ 0 & \rho'(g) \end{pmatrix}$. De plus, vue comme fonction, ρ , resp. ρ' , est un morphisme continu de G dans $\mathrm{GL}(W)$, resp. $\mathrm{GL}(W')$. L'image de G par ρ , resp. ρ' , est un sous-groupe connexe résoluble de $\mathrm{GL}(W)$, resp. $\mathrm{GL}(W')$. Par récurrence, on trouve une base de W et une base de W' qui trigonalisent simultanément respectivement les $\rho(g)$ et $\rho'(g)$. En concaténant les deux bases, on obtient une base qui trigonalise tous les g de G.

Remarque. Si les groupes résolubles généralisent les groupes abéliens, alors le théorème de Lie-Kolchin généralise le fait qu'une famille de matrices qui commutent est simultanément trigonalisable. A la différence près que ce théorème demande expressément d'avoir un groupe. Par extension, le théorème de Lie-Kolchin concerne les représentations de groupes résolubles. Notons que tout ici repose sur le fait qu'un sous-groupe résoluble connexe G de $\mathrm{GL}_n(\mathbb{C})$ possède une droite stable, donc un point fixe si l'on passe en projectif. En ce sens, le théorème de Lie-Kolchin rejoint le théorème du point fixe de Borel qui dit que si G est un groupe résoluble connexe agissant régulièrement sur une variété projective, alors il possède un point fixe.

I.2 Cardinal du cône nilpotent sur un corps fini

Théorème I.2.1. [2, Théorème IV-4.1] Pour tout corps fini \mathbb{F}_q de cardinal q et tout entier d, on a :

$$|\mathcal{N}_d(\mathbb{F}_q)| = q^{d(d-1)}.$$

On fixe un espace vectoriel E de dimension d et l'on identifie $\mathcal{N}_d = \mathcal{N}_d(\mathbb{F}_q)$ aux endomorphismes nilpotents de E. Commençons par montrer la proposition suivante.

Proposition. Soient $N \in \mathcal{N}_d$ et e un vecteur non nul dans E. On note r le nombre maximal tel que $\mathbf{e} = (e, Ne, N^2e, \dots, N^{r-1}e)$ est une famille libre. On a alors : $N^re = 0$.

Démonstration. Soit F le sous-espace de E engendré par e et N, c'est-à-dire : $F = \langle N^s e, s \in \mathbb{N} \rangle$. Alors, on peut affirmer que \mathbf{e} est une base de F. En effet, elle est libre par construction. Montrons qu'elle est génératrice : pour cela, il suffit de voir que pour tout $s \geq r$, on a $N^s e \in F$. Pour s = r, c'est encore vrai puisque par construction, on peut écrire $N^r e = \sum_{i=0}^r a_i N^i e$ pour des scalaires a_0, \ldots, a_{r-1} convenables. C'est enfin vrai par récurrence pour tout $s \geq r$, car $N^s e = \sum_{i=0}^d a_i N^{s-r+i} e$.

Par construction, N stabilise F, on note $N'=N_F$ l'endomorphisme induit par la restriction de N à F. Sa matrice dans la base ${\bf e}$ est donc

$$\begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & \ddots & \vdots & \vdots \\ 0 & \ddots & 0 & \vdots \\ 0 & 0 & 1 & a_{r-1} \end{pmatrix}.$$

On reconnaît alors la matrice compagnon du polynôme $P = X^r - \sum_{i=0}^d a_i X^i$, dont le polynôme caractéristique est justement le polynôme P (qui est également minimal). Comme N' est nilpotente, tous les a_i valent 0, ce qui termine la preuve de la proposition.

Prouvons maintenant le théorème. Soit $L_{r,d}$ l'ensemble des parties libres dans E à r éléments. On dit que N respecte une famille $\mathbf{e}=(e_1,\ldots,e_r)$ de $L_{r,d}$ si, pour tout s entier entre 1 et r, on a : $Ne_s=e_{s+1}$ — on convient que e_{r+1} est nul.

Posons maintenant $n_d = |\mathcal{N}_d|$ et déterminons une formule de récurrence pour n_d . Pour cela, calculons de deux manières le cardinal de l'ensemble

$$\tilde{\mathcal{N}}_d = \{(N, \mathbf{e}), N \in \mathcal{N}_d, \exists r \in \{1, \dots, d\}, \mathbf{e} \in L_{r,d} \text{ et } N \text{ respecte } \mathbf{e}\}.$$

On note π_1 (resp. π_2), la projection sur la première (resp. seconde) composante.

Premier calcul. Un élément de $\pi_1^{-1}(N)$ est entièrement déterminé par un vecteur non nul e_1 de E, puisqu'il s'écrira alors $(N, (e_1, Ne_1, \dots, N^{r-1}e_1))$ pour r convenable. On en déduit donc : $|\pi_1^{-1}(N)| = q^d - 1$, puis 1:

$$|\tilde{\mathcal{N}}_d| = \sum_{N \in \mathcal{N}_d} |\pi_1^{-1}(N)| = n_d(q^d - 1).$$

^{1.} Mais pourquoi tant de N?

Deuxième calcul. On a :

$$|\tilde{\mathcal{N}}_d| = \sum_{r=1}^d \sum_{\mathbf{e} \in L_{r,d}} |\pi_2^{-1}(\mathbf{e})|.$$

Fixons r entre 1 et d et notons g_r l'ordre du groupe $GL(k^r)$. L'action naturelle de GL(E) sur $L_{r,d}$ est transitive d'après le théorème de la base incomplète. Fixons \mathbf{e} dans $L_{r,d}$ et complétons-la en une base $\tilde{\mathbf{e}}$ de E. Dans cette base, le stabilisateur de \mathbf{e} s'écrit sous la forme : $\begin{pmatrix} \mathbf{I}_r & M \\ 0 & B \end{pmatrix}$, avec M dans $\mathcal{M}_{r,d-r}(\mathbb{F}_q)$, $B \in GL_{d-r}(\mathbb{F}_q)$. Il vient donc :

$$|L_{r,d}| = \frac{g_d}{g_{d-r}q^{r(d-r)}}.$$

Maintenant, une matrice nilpotente N respecte ${\bf e}$ si et seulement si la matrice de l'application linéaire associée à N dans une base $\tilde{{\bf e}}$ est de la forme :

$$\mathrm{mat}_{\tilde{\mathbf{e}}} = \begin{pmatrix} J_r & M \\ 0 & N_{d-r} \end{pmatrix},$$

où M est une matrice quelconque de $\mathcal{M}_{r,d-r}$, N_{d-r} une matrice nilpotente de taille $(d-r) \times (d-r)$ et J_r est le bloc de Jordan de taille $r \times r$. On obtient alors :

$$|\tilde{\mathcal{N}}_d| = \sum_{r=1}^d |L_{r,d}| q^{r(d-r)} n_{d-r} = \sum_{r=1}^d \frac{g_d}{g_{d-r}} n_{d-r}.$$

En comparant les deux calculs, on obtient la formule de récurrence :

$$\frac{n_d}{g_d} = \frac{1}{q^d - 1} \sum_{r=1}^d \frac{n_{d-r}}{g_{d-r}}.$$

Pour r compris entre 1 et d, notons $m_r = n_r/g_r$. Il vient :

$$(q^{d}-1)m_{d} = \sum_{r=0}^{d-1} m_{r} = m_{d-1} + \sum_{r=0}^{d-2} m_{r} = m_{d-1} + (q^{d-1}-1)m_{d-1} = q^{d-1}m_{d-1}.$$

On en tire aisément la relation:

$$m_d = \frac{q^{d(d-1)/2}}{\prod_{r=1}^d (q^r - 1)} = \frac{q^{d(d-1)}}{g_d},$$

et finalement : $n_d = q^{d(d-1)}$.

I.3 Discussion jury

- 1. Comment montre-t-on qu'un polynôme caractéristique scindé implique que la matrice est trigonalisable?
- 2. Quel est le spectre de l'exponentielle de A en fonction de celui de A?
- 3. Montrer que le coefficient en X^{n-2} dans le polynôme caractéristique de A est égal à $\frac{\operatorname{tr}(A)^2-\operatorname{tr}(A^2)}{2}$.
- 4. Montrer que l'adhérence de l'ensemble des matrices diagonalisables est égal à l'ensemble des matrices trigonalisables.
- 5. Inverser $I_n + N$ où N est nilpotente.
- 6. A quelle condition sur la matrice A a-t-on $\begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ nilpotente?
- 7. Montrer que deux matrices nilpotentes proportionnelles sont semblables.
- 8. Trouver tous les sous-espaces stables d'un bloc de Jordan nilpotent indécomposable J_n .
- 9. On considère l'application qui, à la matrice A, associe sa partie nilpotente N dans la décomposition de Dunford. Est-elle continue?
- 10. Montrer qu'une matrice est nilpotente si et seulement si la matrice nulle est dans sa classe de conjugaison.

Bibliographie

- [1] Philippe Caldero et Jérôme Germoni. Nouvelles Histoires Hédonistes de Groupes et de Géométries. Calvage et Mounet, 2017.
- [2] Philippe Caldero et Jérôme Germoni. Histoires Hédonistes de Groupes et de Géométries-Tome 2. Calvage et Mounet, 2015.