UNE EQUATION DE MORDELL

On propose de montrer que si les entiers x, y vérifient

$$y^2 + 4 = x^3$$
,

alors $(x, y) = (5, \pm 11)$ ou $(2, \pm 2)$.

On travaille sur l'anneau euclidien (donc factoriel) $\mathbb{Z}[i]$.

$$x^3 = (y+2i)(y-2i)$$
. (*)

Nous allons montrer que ceci implique que les deux facteurs du membre de droite sont des cubes de $\mathbb{Z}[i]$. Montrons tout d'abord que ceci nous mènera avec puissance et élégance à la solution de l'énoncé. Supposons donc

$$y + 2i = (m + ni)^3, m, n \in \mathbb{Z}.$$

On obtient alors $y = m(m^2 - 3n^2)$, $2 = n(3m^2 - n^2)$. La seconde équation donne $n = \pm 1$ ou $n = \pm 2$. On obtient cas par cas les solutions suivantes $(n, m) = (1, \pm 1)$, ou $(-2, \pm 1)$. Le premier cas donne $(x, y) = (2, \pm 2)$ et le second $(5, \pm 11)$.

Reste à montrer que y + 2i et y - 2i sont des cubes. En fait, par (*), il suffit de le montrer pour un des deux. L'équation $y^2 + 4 = x^3$ quotientée dans $\mathbb{Z}/2\mathbb{Z}$ montre que x et y sont de même parité.

1er Cas. x et y sont impairs. Montrons que y + 2i et y - 2i sont premiers entre eux dans $\mathbb{Z}[i]$.

Soit d un diviseur commun à (y+2i) et (y-2i). Alors d divise 4i. Donc, dans \mathbb{Z} , N(d) divise 16 et $N(y+2i) = y^2 + 4$ qui est impair et ainsi N(d) = 1, ce qui fait de d une unité.

Il vient que y + 2i et y - 2i sont bien premiers entre eux et donc l'équation (*) montre que ce sont des cubes à unité près dans $\mathbb{Z}[i]$. Mais les unités de $\mathbb{Z}[i]$ sont elles-mêmes des cubes (ce sont les racines quatrièmes de l'unité et 3 est inversible dans $\mathbb{Z}/4\mathbb{Z}$), et donc notre assertion est vérifiée dans ce cas.

2ème cas. On suppose maintenant que x et y sont tous deux pairs. On pose x=2t et y=2z, de sorte que

$$z^2 + 1 = 2t^3$$
.

ce qui donne que z est impair en regardant cette équation modulo 2 et t est impair, en la regardant modulo 4. Le nombre z étant impair, on a facilement que z + i est divisible par (1 + i) dans $\mathbb{Z}[i]$ et de même, z - i est divisible par (1 + i). D'où

$$-it^3 = \left(\frac{z+i}{1+i}\right)\left(\frac{z-i}{1+i}\right).$$

Ces deux facteurs sont de plus premiers entre eux dans $\mathbb{Z}[i]$, puisque si d est un diviseur commun, alors, d divise leur différence $\frac{2i}{1+i}$. Ce qui donne N(d) divise $N(\frac{2i}{1+i})=2$. Or, comme d divise t^3 , N(d) divise aussi $N(t^3)=t^6$ qui est impair. Donc d est une unité et on conclut comme dans le premier cas que $\frac{z+i}{1+i}$ est un cube, puis que $y+2i=2(z+i)=i^3(1+i)^3\frac{z+i}{1+i}$ en est un aussi.