Université Claude Bernard Lyon 1

MASTER Mathématiques et Applications

M1-ALGEBRE

EXAMEN-CORRECTION

8 Janvier 2018

Problème 1

- 1. Soit G un groupe d'ordre 2018. Comme p:=1009 est premier (admis), G possède un p-Sylow d'ordre p (théorème de Sylow), donc cyclique et d'indice 2 dans G. Il est donc distingué. De même, il possède un sous-groupe d'ordre 2. On peut appliquer le théorème des produits semi-directs : G est le produit semi-direct $\mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.
 - Il reste à classifier les produits semi-directs $\mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$. Un tel groupe est entièrement déterminé par un morphisme de $\mathbb{Z}/2\mathbb{Z}$ vers $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \simeq \mathbb{Z}/p\mathbb{Z}^* \simeq \mathbb{Z}/(p-1)\mathbb{Z}$, c'est-à-dire, un élément a de $\mathbb{Z}/(p-1)\mathbb{Z}$ tel que 2a=0.
 - Or, on sait (réciproque de Lagrange dans le cas cyclique) que dans un groupe cyclique $\mathbb{Z}/n\mathbb{Z}$, si d divise n, il y a exactement d éléments vérifiant da = 0.
 - Il y a donc, à isomorphisme près, 2 groupes d'ordre 2018, un abélien, forcément $\mathbb{Z}/2018\mathbb{Z}$, et l'autre, non abélien, forcément le groupe diédral D_{1009} .
- 2. Dans le premier cas, le groupe est abélien et même cyclique. Si ω est une racine primitive 2018-ième de l'unité, alors les représentations irréductibles sont données par $\chi_{\omega^k}(\overline{1}) := \omega^k$, pour $0 \le k \le 2017$. Il y en a 2018 de degré 1.
 - Dans le cas du groupe diédral, d'après le cours $(D_n, n \text{ impair})$, il y en a deux de degré 1, et $\frac{n-1}{2} = 504$ de degré 2. Pour les représentations de degré 2, la classification ne pose pas de problème (une triviale et l'autre non). Les représentations de degré 2 sont classifiées par leur caractère. On choisit dans D_n une rotation r d'ordre 1009 et une symétrie s d'ordre 2. Alors, $\chi(r) = 2\cos(\frac{2k\pi}{1009})$, $1 \le k \le 504$.

Problème 2

- 1. La dérivée du polynôme $X^q X$ est $qX^{q-1} 1 = -1$, puisque l'on est en caractéristique p. En particulier, cette dérivée ne s'annule jamais, et donc le polynôme ne possède que des racines simples.
- 2. Soit A l'ensemble des racines (non nulles) de $X^q X$. C'est l'ensemble des racines (q 1)ième de 1, appartenant à K. Comme K est abélien, ceci constitue un groupe abélien.
 De plus, A est fini (d'ordre inférieur à q 1), puisque c'est un ensemble de racines d'un polynôme sur un corps.
 - On peut donc lui appliquer le théorème de structure des groupes abéliens finis : il est produit direct de groupe cyclique $\mathbb{Z}/a_i\mathbb{Z}$, pour i de 1 à k, avec a_{i+1} divise a_i . Pour montrer qu'il est cyclique, il suffit de montrer que k=1.
 - On cherche le nombre d'éléments x de A tels que $x^{a_1} = 1$. Comme a_1 est multiple de tous les a_i , on sait que tous les éléments de A sont racines. Il y en a donc en tout $a_1a_2\cdots a_k$.

D'autre part, comme on calcule le nombre de racines d'un polynôme de degré a_1 sur un corps, on sait qu'il y en a un nombre inférieur à a_1 . Conclusion, $a_1a_2\cdots a_k\leq a_1$, ce qui donne k=1.

- 3. On applique 2) en remplaçant q par q^n . Les racines (non nulles) de $X^{q^n} X$ appartenant à K, forment un groupe cyclique, engendré par un élément α . Le corps de décomposition K_n contient donc K et α ; il contient $K[\alpha]$.
 - Réciproquement, $K[\alpha]$ contient K et toutes les racines de $X^{q^n} X$, puisque α les engendrent (à part zéro qui ne pose pas de problème); il contient donc K_n . D'où l'égalité.
- 4. (a) On prend le même α que pour la question précédente. Soit $\mu_{\alpha,K}$ le polynôme minimal de α sur K. Comme $X^{q^n} X \in K[X]$ annule α , $\mu_{\alpha,K}$ divise $X^{q^n} X$. Or, $X^{q^n} X$ se décompose en produit de $(X \beta)$ où β parcourt \mathbb{F}_{q^n} . Donc, $\mu_{\alpha,K}$, qui est un produit des $X \beta$, est bien à coefficients dans \mathbb{F}_{q^n} . D'où l'assertion.
 - (b) Par définition m est le degré de $K[\alpha]$ sur K; c'est donc le degré de $\mu_{\alpha,K}$. Soit m' le degré de \mathbb{F}_{q^n} sur $\mathbb{F}_{q^n} \cap K$. Comme $\mathbb{F}_{q^n} = \mathbb{F}_q[\alpha]$ et que K contient \mathbb{F}_q , on a $\mathbb{F}_{q^n} = (\mathbb{F}_{q^n} \cap K)[\alpha]$. Donc, m' est le degré du polynôme minimal de α sur $\mathbb{F}_{q^n} \cap K$. Or, d'après la question précédente, les deux polynômes minimaux sont égaux. Donc, m' = m et on a l'assertion.
 - (c) (bonus)
 - i. Comme m est égal au degré de \mathbb{F}_{q^n} sur $\mathbb{F}_{q^n} \cap K$, il divise le degré de de \mathbb{F}_{q^n} sur \mathbb{F}_q , par le théorème de la base télescopique. Il divise donc n.
 - ii. Soit k l'entier tel que n=km. On a donc $\mathbb{F}_{q^n}\cap K=\mathbb{F}_{q^k}$. Par le théorème de classification des corps finis, l'ensemble des diviseurs (positifs) de m est en bijection avec l'ensemble des corps intermédiaires entre \mathbb{F}_{q^n} et \mathbb{F}_{q^k} par $d\mapsto \mathbb{F}_{q^{kd}}$. De plus, on construit une bijection entre l'ensemble de ces corps intermédiaires et l'ensemble des corps intermédiaires entre K_n et K par $F'\mapsto F'K$, dont la réciproque est $K'\mapsto \mathbb{F}_{q^n}\cap K'$.

Problème 3 (Représentation par permutation de \mathfrak{S}_5 sur ses 5-Sylow)

1. (a) On a

$$\langle \chi_{\mathrm{triv}}, \chi_{\mathrm{perm}} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{\mathrm{perm}}(g) = \frac{1}{|G|} \sum_{g \in G} |X|^g$$
.

C'est donc égal au nombre d'orbites par la formule de Burnside.

(b) On a

$$\rho_{\text{perm}}(g) \left(\sum_{x \in X} e_x\right) = \sum_{x \in X} e_{g \cdot x} = \sum_{x \in X} e_x,$$

par un changement de variable. D'où le résultat.

- (c) Ce supplémentaire existe par le théorème de Maschke. Deux représentations supplémentaires ont même caractère et sont donc isomorphes.
- 2. Le nombre n_5 de 5-Sylow de \mathfrak{S}_5 est congru à 1 modulo 5, et il divise 24. Comme $n_5 \neq 1$ (car \mathfrak{S}_5 n'a pas de sous-groupe distingué d'ordre 5), on a $n_5 = 6$. ¹

Or, chaque 5-Sylow est engendré par un 5-cycle, donc, ces sous-groupes sont aussi les six 5-Sylow de \mathfrak{A}_5 . Il en résulte, comme tous les 5-Sylow de \mathfrak{A}_5 sont conjugués, que la restriction reste transitive.

^{1.} On peut trouver une méthode plus constructive!

- 3. Le noyau de ϕ est distingué; s'il est non trivial, cela ne peut être que \mathfrak{S}_5 , \mathfrak{A}_5 . Comme l'action sur les six sous-groupes de Sylow est transitive le stabilisateur d'un élément est forcément d'ordre égal à 120/6 = 20, et donc le noyau, qui lui est inclus, est forcément trivial.
 - Un 5-cycle est donc envoyé sur un élément d'ordre 5 de \mathfrak{S}_6 : l'image d'un 5-cycle est donc encore un 5-cycle. Une double transposition est un élément d'ordre 2 dans \mathfrak{A}_5 , qui est le sous-groupe dérivé, $D(\mathfrak{S}_5)$, de \mathfrak{S}_5 . Il en résulte qu'une double transposition est envoyée sur un élément d'ordre 2 de $D(\mathfrak{S}_6) = \mathfrak{A}_6$; cela ne peut être qu'une double transposition.
- 4. (a) Le normalisateur d'un 5-Sylow dans \mathfrak{S}_5 est d'ordre $\frac{120}{6} = 20$. Si, par l'absurde, un 3-cycle appartient à un tel normalisateur, on a par Lagrange que 3 divise 20, absurde.
 - (b) L'image d'un 3-cycle σ par ϕ est un élément d'ordre 3 de \mathfrak{S}_6 ; c'est donc, soit un 3-cycle, soit un produit de deux 3-cycles à supports disjoints. Dans le premier cas, σ stabilise au moins un 5-Sylow (il en stabilise exactement 3), donc, σ est dans le normalisateur d'un 5-Sylow, ce qui est absurde. Ainsi, $\phi(\sigma)$ est un double 3-cycle.
- 5. On calcule la norme du caractère :

$$\langle \chi_{\rm perm} - \chi_{\rm triv}, \chi_{\rm perm} - \chi_{\rm triv} \rangle_{\mathfrak{A}_5} = \frac{1}{60} (5^2 + 15 \times 1^2 + 20 \times (-1)^2 + 24 \times 0^2) = 1.$$

L'action de \mathfrak{S}_5 sur ses 5-Sylow fournit donc une représentation irréductible de degré 5. Par un résultat classique, l'irréductiblité implique le fait que l'action est doublement transitive 2 .

^{2.} On peut le faire par une méthode qui n'utilise pas la théorie des représentations : soit σ un 5-cycle de \mathfrak{S}_5 . Il a pour image un 5-cycle $\phi(\sigma)$ de \mathfrak{S}_6 qui laisse donc fixe un unique 5-Sylow P. On fixe un 5-Sylow Q distinct de P et on veut montrer que pour tout couple (P',Q') de 5-Sylow distincts, il existe g qui envoie (P',Q') sur (P,Q). Il suffit de prendre $\phi(\sigma)^k h$, où h envoie P' sur P et où k est tel que $\phi(\sigma)^k (Q') = Q$.