Sous-espaces caractéristiques - Décomposition spectrale d'un endomorphisme - Exponentielle d'endomorphismes

Exercice 1.* 1. Tout vecteur x de E s'écrit sous la forme $x = (x - \pi(x)) + \pi(x)$ et $x - \pi(x) \in \text{Ker}(\pi)$, $\pi(x) \in \text{Im}(\pi)$ en vertu de la condition $\pi^2 = \pi$. Cette décomposition est unique car $\text{Ker}(\pi) \cap \text{Im}(\pi) = \{0\}$: un élément x de $\text{Ker}(\pi) \cap \text{Im}(\pi)$ s'écrit sous la forme $x = \pi(y)$ avec $\pi^2(y) = 0$, donc est nul puisque $\pi = \pi^2$.

Remarque : il est bon d'observer que tout projecteur π est diagonalisable puisque le polynôme T^2-T est scindé à racines simples sur K; on a donc $E=Ker(\pi)\oplus Ker(\pi-id_E)$ et l'égalité $Ker(\pi-id_E)=Im(\pi)$ se déduit immédiatement de l'équation $\pi^2=\pi$. Ainsi, la décomposition de E obtenue n'est pas autre chose que la décomposition en somme directes des sous-espaces propres de π ...

Bien évidemment, la décomposition $E = Ker(u) \oplus Im(u)$ ne garantit pas que l'endomorphisme u soit un projecteur : pour obtenir un contre-exemple, il suffit de partir d'une décomposition $E = E' \oplus E''$, de choisir un *automorphisme* quelconque u'' de E'' et de considérer l'endomorphisme u de E défini par u(x' + x'') = u''(x''); on a E' = Ker(u) et E'' = Im(u), mais u est un projecteur si et seulement si $u'' = id_{E''}$.

2. Comme on l'a remarqué, $\operatorname{Im}(\pi) = \operatorname{Ker}(\pi - \operatorname{id}_E)$ est le sous-espace propre de π associé à la valeur propre 1 ; en juxtaposant une base de $\operatorname{Ker}(\pi)$ et une base de $\operatorname{Im}(\pi)$, on obtient donc une base de E dans laquelle la matrice de π est de la forme

$$\left(\begin{array}{cc} (0) & (0) \\ (0) & \mathbf{I}_r \end{array}\right)$$

avec $r = \dim \operatorname{Im}(\pi) = \operatorname{rg}(\pi)$ et l'égalité $\operatorname{rg}(\pi) = \operatorname{tr}(\pi)$ devient évidente.

3. Étant donnés deux projecteurs π_1 , π_2 ,

$$(\pi_1 + \pi_2)^2 = \pi_1^2 + \pi_1 \circ \pi_2 + \pi_2 \circ \pi_1 + \pi_2^2$$

= $\pi_1 + \pi_2 + \pi_1 \circ \pi_2 + \pi_2 \circ \pi_1$.

Si $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1 = 0$, $\pi_1 + \pi_2$ est manifestement un projecteur.

Réciproquement, si $\pi_1 + \pi_2$ est un projecteur, $\pi_1 \circ \pi_2 = -\pi_2 \circ \pi_1$. Contrairement aux apparences, cette dernière condition implique que π_1 et π_2 commutent : il en découle en effet que π_2 *stabilise* les sous-espaces $\operatorname{Ker}(\pi_1)$ et $\operatorname{Im}(\pi_1)$ (le vérifier!) et donc commute avec π_1 puisque tel est évidemment le cas sur $\operatorname{Ker}(\pi_1)$, où $\pi_1 = 0$, et sur $\operatorname{Im}(\pi_1) = \operatorname{Ker}(\pi_1 - \operatorname{id}_E)$, où $\pi_1 = \operatorname{id}$. Ainsi, si $\pi_1 + \pi_2$ est un projecteur, $\pi_1 \circ \pi_2 = -\pi_2 \circ \pi_1$ et $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1$, donc $2\pi_1 \circ \pi_2 = 0$. Lorsque $2 \neq 0$ dans le corps K (c'est-à-dire lorsque la caractéristique de K n'est pas égale à 2), nous en déduisons $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1 = 0$.

Remarque : lorsque le corps K est de caractéristique 2, $(u+v)^2 = u^2 + v^2$ pour tous endomorphismes u,v qui commutent et la somme de deux projecteurs est donc un projecteur si et seulement si ceux-ci commutent.

4. Dans cette dernière question, $\pi_1 + \pi_2$ est un projecteur et K est de caractéristique différente de 2 donc $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1 = 0$.

L' inclusion $\operatorname{Ker}(\pi_1) \cap \operatorname{Ker}(\pi_2) \subset \operatorname{Ker}(\pi_1 + \pi_2)$ est évidente ; réciproquement, étant donné $x \in \operatorname{Ker}(\pi_1 + \pi_2)$, $\pi_1(x) = -\pi_2(x) = -\pi_2^2(x) = \pi_2(\pi_1(x)) = 0$ et donc $\operatorname{Ker}(\pi_1 + \pi_2) = \operatorname{Ker}(\pi_1) \cap \operatorname{Ker}(\pi_2)$.

Comme $\pi_1 \circ \pi_2 = 0$, $\operatorname{Im}(\pi_2) \subset \operatorname{Ker}(\pi_1)$ et donc $\operatorname{Im}(\pi_1) \cap \operatorname{Im}(\pi_2) = 0$. L'inclusion $\operatorname{Im}(\pi_1 + \pi_2) \subset \operatorname{Im}(\pi_1) \oplus \operatorname{Im}(\pi_2)$ est évidente ; réciproquement, étant donné $x \in \operatorname{Im}(\pi_1) \oplus \operatorname{Im}(\pi_2)$, $x = \pi_1(y) + \pi_2(z)$ et $\pi_1(x) = \pi_1^2(y) = \pi_1(y)$, $\pi_2(x) = \pi_2(z) = \pi_2(z)$, donc $x = \pi_1(x) + \pi_2(x) \in \operatorname{Im}(\pi_1 + \pi_2)$.

Complément : il convient d'observer que les projecteurs $\pi \in \mathcal{L}(E)$ sont les pendants algébriques des décompositions de l'espace vectoriel E en somme directe de deux sous-espaces vectoriels. De manière précise, l'application $\pi \mapsto (\operatorname{Im}(\pi), \operatorname{Ker}(\pi))$ réalise une bijection entre l'ensemble des endomorphismes π de E tels que $\pi^2 = \pi$ et l'ensemble des couples (E', E'') formés de deux sous-espaces vectoriels supplémentaires de E. Étant donné un couples (E', E'') de sous-espaces supplémentaires, le projecteur π correspondant est défini par $\pi_{|E'|} = \operatorname{id}_{|E'|}$ et $\pi_{|E''|} = 0$; la permutation des sous-espaces E' et E'' correspond au remplacement du projecteur π par le projecteur $\operatorname{id}_E - \pi$.

1

Exercice 2.* Remarque préliminaire : l'énoncé suppose implictement que les applications $\pi: E \to E_i$ sont surjectives.

Soient E_1, \ldots, E_n des sous-espaces vectoriels de E tels que $E = E_1 \oplus \ldots \oplus E_n$. Étant donné $i \in \{1, \ldots, n\}$, il existe une unique application linéaire $\pi_i : E \to E$ telle que $\pi_i(x) = x$ si $x \in E_i$ et $\pi_i(x) = 0$ si $x \in E_j$ avec $j \neq i$ (si cela ne vous semble pas tout-à-fait évident, il n'y a qu'à considérer une base de E obtenue en juxtposant des bases de chacun des sous-espaces E_1, \ldots, E_n); on a évidemment $Im(\pi_i) = E_i$, $Ker(\pi_i) = \bigoplus_{j \neq i} E_j$, $\pi_i^2 = \pi_i$, $\pi_i \circ \pi_j = 0$ si $i \neq j$ et $id_E = \pi_1 + \ldots + \pi_n$.

Soient réciproquement $\pi_1, \ldots, \pi_n \in \mathcal{L}(E)$ des projecteurs tels que $\operatorname{Im}(\pi_i) = E_i$ pour tout $i, \pi_i \circ \pi_j = 0$ pour tous i, j avec $i \neq j$ et $\operatorname{id}_E = \pi_1 + \ldots + \pi_n$. La décomposition de E en somme directe des sous-espaces E_i peut s'établir en raisonnant par récurrence sur $n \geq 2$ à partir du cas n = 2 étudié à la question 4 de l'exercice précédent, le point étant que $\pi'_p = \pi_1 + \ldots + \pi_p$ et π_{p+1} sont des projecteurs tels que $\pi'_p \circ \pi_{p+1} = \pi_{p+1} \circ \pi'_p = 0$. Il est tout aussi simple de démontrer directement notre assertion : la condition $\operatorname{id}_E = \pi_1 + \ldots + \pi_n$ garantit que tout vecteur x de E s'écrit comme la somme des vecteurs $x_i = \pi_i(x) \in E_i = \operatorname{Im}(\pi_i)$ et cette décomposition est unique car, si $x = x'_1 + \ldots + x'_n$ avec $x'_i \in \operatorname{Im}(\pi_i)$, $\pi_i(x) = \pi_i(x'_i)$ pour tout i puisque $\pi_i \circ \pi_j = 0$ si $j \neq i$ et $x'_i = \pi_i(x'_i) = \pi_i(x)$ car $\operatorname{Im}(\pi_i) = \operatorname{Ker}(\operatorname{id}_E - \pi_i)$.

Exercice 3.* 1. L'hypothèse $Q(\lambda) \neq 0$ signifie précisément que les polynômes $(T - \lambda)^k$ et Q sont premiers entre eux et on peut donc écrire une identité de Bézout $UQ + V(T - \lambda)^k = 1$ avec $U, V \in K[T]$. L'inclusion $Ker(Q(u)) \subset Im(u - \lambda id_E)^k$ découle immédiatement de l'identité

$$id_E = U(u)Q(u) + V(u)(u - \lambda id_E)^k = U(u)Q(u) + (u - \lambda id_E)^k V(u).$$

L'inclusion réciproque est évidente puisque $Q(u)(u - \lambda id_E)^k = m_u(u) = 0$.

2. Les identités $id_E = U(u)Q(u) + V(u)(u - \lambda id_E)^k = Q(u)U(u) + (u - \lambda id_E)^k V(u)$ et $(u - \lambda id_E)^k Q(u) = 0$ impliquent immédiatement la décomposition de E en somme directe des sous-espaces Ker(Q(u)) et $Ker(u - \lambda id_E)$ (lemme de décomposition des noyaux); vu la question précédente, on obtient la décomposition

$$E = \operatorname{Ker}(u - \lambda \operatorname{id}_{E})^{k} \oplus \operatorname{Ker}(Q(u)) = \operatorname{Ker}(u - \lambda \operatorname{id}_{E})^{k} \oplus \operatorname{Im}(u - \lambda \operatorname{id}_{E})^{k}.$$

3. Les sous-espaces $\operatorname{Ker}(u-\lambda \operatorname{id}_E)$ et $\operatorname{Im}(u-\lambda \operatorname{id}_E)$ sont stables par u car les endomorphismes u et $u-\lambda \operatorname{id}_E$ commutent. Écrivant un vecteur quelconque x de E sous la forme x=x'+x'' avec $x'\in\operatorname{Im}(u-\lambda\operatorname{id}_E)$ et $x''\in\operatorname{Ker}(u-\lambda\operatorname{id}_E)$,

$$P(u)(x) = P(u)(x') + P(u)(x'')$$

= $m'(u)(u - \lambda id_E)(x') + (u - \lambda id_E)m'(u)(x'') = 0$

car le polynôme m' (resp. $T - \lambda$) annule la restriction de u au sous-espace $Im(u - \lambda id_E)^k$ (resp. $Ker(u - \lambda id_E)$); on a donc P(u) = 0.

Le polynôme minimal m_u de u divise le polynôme $(T - \lambda)m'$; si l'on suppose en outre que λ est une valeur propre de u, m_u s'écrit sous la forme $m_u = (T - \lambda)\tilde{m}$ et le polynôme \tilde{m} divise m'. Le scalaire λ est une racine simple de m_u si et seulement si $\tilde{m}(\lambda) \neq 0$; comme cette condition sera vérifiée si $m'(\lambda) \neq 0$, il suffit de s'assurer que λ n'est pas racine de m'.

Si l'on avait $m'(\lambda) = 0$, λ serait une valeur propre de la restriction de u au sous-espace $\operatorname{Im}(u - \lambda \operatorname{id}_E)$ et ce dernier contiendrait donc un vecteur non nul x tel que $u(x) = \lambda x$. La condition $\operatorname{Ker}(u - \lambda \operatorname{id}_E) \cap \operatorname{Im}(u - \lambda \operatorname{id}_E) = \{0\}$ montre que ceci est impossible; on a donc $m'(\lambda) \neq 0$ et λ est une racine simple de m_u .

- 4. Commençons par observer que les conditions
- (i) $E = Ker(u \lambda id_E) \oplus Im(u \lambda id_E)$
- (i') $\operatorname{Ker}(u \lambda \operatorname{id}_{E}) \cap \operatorname{Im}(u \lambda \operatorname{id}_{E}) = \{0\}$

sont équivalentes puisqu'on a déjà l'égalité $\dim(E) = \dim \operatorname{Ker}(u - \lambda \operatorname{id}_E) + \dim \operatorname{Im}(u - \lambda \operatorname{id}_E)$. Les conditions

- (ii) $\operatorname{Ker}(u \lambda \operatorname{id}_{E}) = \operatorname{Ker}(u \lambda \operatorname{id}_{E})^{2}$
- (ii') $\operatorname{Ker}(u \lambda \operatorname{id}_{E})^{2} \subset \operatorname{Ker}(u \lambda \operatorname{id}_{E})$

sont également équivalentes en vertu de l'inclusion $\operatorname{Ker}(u - \lambda \operatorname{id}_E) \subset \operatorname{Ker}(u - \lambda \operatorname{id}_E)^2$. Il en découle que les conditions (i) et (ii) sont équivalentes si et seulement si les conditions (i') et (ii') le sont.

(i') \Rightarrow (ii') : quel que soit $x \in \text{Ker}(u - \lambda i d_E)^2$, $(u - \lambda i d_E)(x)$ appartient simultanément aux sous-espaces $\text{Im}(u - \lambda i d_E)$ et $\text{Ker}(u - \lambda i d_E)$, donc est nul.

(ii') \Rightarrow (i'): quel que soit $x \in \text{Ker}(u - \lambda \text{id}_E) \cap \text{Im}(u - \lambda \text{id}_E)$, $x = (u - \lambda \text{id}_E)(y)$ avec $y \in E$ et $(u - \lambda \text{id}_E)^2(y) = (u - \lambda \text{id}_E)(x) = 0$; on a alors par hypothèse $(u - \lambda \text{id}_E)(y) = 0$, d'où x = 0.

5. Supposons que l'endomorphisme u soit diagonalisable. Chaque valeur propre λ de u est une racine simple du polynôme minimal de u, donc

$$E = \operatorname{Ker}(u - \lambda \operatorname{id}_{E}) \oplus \operatorname{Im}(u - \lambda \operatorname{id}_{E})$$

en vertu de la question 2 (avec k = 1) et $Ker(u - \lambda id_E) = Ker(u - \lambda id_E)^2$ en vertu de la question 4.

Exercice 4.* — En vertu du théorème du rang, les conditions $rg(u - \lambda id_E) = rg(u - \lambda id_E)^2$ et $dimKer(u - \lambda id_E) = dimKer(u - \lambda id_E)^2$ sont équivalentes et, vu l'inclusion $Ker(u - \lambda id_E) = Ker(u - \lambda id_E)^2$, elles sont également équivalentes à l'égalité $Ker(u - \lambda id_E) = Ker(u - \lambda id_E)^2$.

Cette égalité est évidemment vérifiée si λ n'est pas une valeur propre de u: en effet, l'endomorphisme $u - \lambda \operatorname{id}_E$ est alors injectif et $\operatorname{Ker}(u - \lambda \operatorname{id}_E) = \operatorname{Ker}(u - \lambda \operatorname{id}_E)^2 = \{0\}.$

L'exercice conciste donc à vérifier que l'endomorphisme u est diagonalisable si et seulement si

$$Ker(u - \lambda id_E) = Ker(u - \lambda id_E)^2$$

pour toute valeur propre $\lambda \in \mathrm{Sp}(u)$.

Si u est diagonalisable, cette égalité a été prouvée à la fin de l'exercice précédent.

Réciproquement, si $\operatorname{Ker}(u-\lambda \operatorname{id}_E) = \operatorname{Ker}(u-\lambda \operatorname{id}_E)^2$ pour toute valeur propre $\lambda \in \operatorname{Sp}(u)$, un raisonnement par récurrence immédiat permet d'établir l'égalité $\operatorname{Ker}(u-\lambda \operatorname{id}_E) = \operatorname{Ker}(u-\lambda \operatorname{id}_E)^p$ pour tout $\lambda \in \operatorname{Sp}(u)$ et tout entier naturel $p \geq 1$; de manière équivalente, chaque sous-espace caractéristique de u coı̈ncide avec le sous-espace propre correspondant. Le polynôme caractéristique de u étant scindé, E est la somme directe des sous-espaces caractéristiques de u; c'est donc également la somme directe des sous-espaces propres de u et l'endomorphisme u est diagonalisable.

Exercice 5. — 1. On voit facilement que 1 et 2 sont des valeurs propres de u. Les sous-espace propres correspondants sont

$$\operatorname{Ker}(u - \operatorname{id}_{\mathbb{R}^5}) = \mathbb{R}X_1 \oplus \mathbb{R}X_2$$
 et $\operatorname{Ker}(u - 2\operatorname{id}_{\mathbb{R}^5}) = \mathbb{R}X_4$

avec

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}, X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \text{ et } X_4 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Comme $\operatorname{tr}(u) = 7$ et $\operatorname{det}(u) = 4$, les deux dernières valeurs propres de u sont les solutions des équations x + y = 3 et xy = 2, c'est-à-dire 1 et 2, et le polynôme caractéristique de u est donc $-(T-1)^3(T-2)^2$. Nous en déduisons que les deux sous-espaces caractéristiques de u sont $\operatorname{Ker}(u - \operatorname{id}_{\mathbb{R}^5})^3$ et $\operatorname{Ker}(u - \operatorname{id}_{\mathbb{R}^5})^2$.

Bien que ce ne soit pas demandé, on voit facilement que le polynôme minimal de u est $(T-1)^2(T-2)^2$. En effet, les multiplicités algébriques de 1 et 2 étant strictement supérieures à leurs multiplicités géométriques, les sous-espaces propres $\mathrm{Ker}(u-\mathrm{id}_{\mathbb{R}^5})$ et $\mathrm{Ker}(u-2\mathrm{id}_{\mathbb{R}^5})$ sont distincts des sous-espaces caractéristiques correspondants; les inclusions $\mathrm{Ker}(u-\mathrm{id}_{\mathbb{R}^5}) \subset \mathrm{Ker}(u-\mathrm{id}_{\mathbb{R}^5})^2$ et $\mathrm{Ker}(u-2\mathrm{id}_{\mathbb{R}^5}) \subset \mathrm{Ker}(u-2\mathrm{id}_{\mathbb{R}^5})^2$ sont donc strictes et la décomposition

$$\mathbb{R}^5 = \operatorname{Ker}(u - \operatorname{id}_{\mathbb{R}^5})^2 \oplus \operatorname{Ker}(u - 2\operatorname{id}_{\mathbb{R}^5})^2$$

s'en déduit en considérant les dimensions. Le polynôme minimal de u est donc bien $(T-1)^2(T-2)^2$ et $Ker(u-id_{\mathbb{R}^5})^3 = Ker(u-id_{\mathbb{R}^5})^2$.

2. Toute base de \mathbb{R}^5 obtenue en juxtaposant une base de chacun des sous-espaces caractéristiques de u a la propriété désirée.

On obtient une base de $\operatorname{Ker}(u-\operatorname{id}_{\mathbb{R}^5})$ en adjoignant à la base (X_1,X_2) de $\operatorname{Ker}(u-\operatorname{id}_{\mathbb{R}^5})$ un vecteur X_3 tel que $(u-\operatorname{id}_{\mathbb{R}^5})^2X_3=0$ et $(u-\operatorname{id}_{\mathbb{R}^5})X_3\neq 0$, ou encore tel que $(u-\operatorname{id}_{\mathbb{R}^5})X_3$ soit un vecteur non nul de $\operatorname{Ker}(u-\operatorname{id}_{\mathbb{R}^5})$.

Il suffit pour cela de déterminer une solution $(X_3, \lambda_1, \lambda_2)$ de l'équation linéaire $(u - id_E)X_3 = X_3 + \lambda_1 X_1 + \lambda_2 X_2$ telle que $(\lambda_1, \lambda_2) \neq (0, 0)$ et, tous calculs faits, le triplet $(X_3, 0, 1)$, où

$$X_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

convient. Un raisonnement analogue montre que l'on obtient une base de $Ker(u-2id_{\mathbb{R}^5})^2$ en adjoignant à X_4 le vecteur

$$X_5 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{pmatrix},$$

solution de l'équation $(u-2id_{\mathbb{R}^5})X_5=2X_5+X_4$.

Dans la base $(X_1, X_2, X_3, X_4, X_5)$, la matrice de u est sous forme réduite de Jordan :

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)$$

Exercice 6. — 1. Commençons par supposer $K = \mathbb{C}$. Par application du théorème de Dunford-Jordan, il existe une base de E dans laquelle de la matrice de u est de la forme D+N, où D est une matrice diagonale, N est une matrice triangulaire supérieure dont la diagonale est nulle et DN = ND. La matrice de l'endomorphisme e^u dans cette base est $e^D e^N$ et, comme la matrice $e^N = (I_n + N + \frac{1}{2}N^2 + ... + \frac{1}{n!}N^n)$ est triangulaire supérieure avec des 1 sur la diagonale,

$$\det(e^u) = \mathrm{e}^{\mathrm{D} + \mathrm{N}} = \det(e^{\mathrm{D}}) \det(e^{\mathrm{N}}) = \det(e^{\mathrm{D}}) = e^{\mathrm{tr}(\mathrm{D})} = e^{\mathrm{tr}(u)}.$$

Lorsque $K = \mathbb{R}$, on commence par considérer la matrice M de u dans une base de E et on applique ce quî précède à M en considérant cette matrice comme une matrice à coefficients dans \mathbb{C} : $\det(e^M) = e^{\operatorname{tr}(M)}$; la conclusion découle alors des identités $\operatorname{tr}(u) = \operatorname{tr}(M)$ et $\det(e^u) = \det(e^M)$.

2. Supposons que l'endomorphisme u soit nilpotent et soit k un entier naturel tel que $u^{k+1} = 0$. On a

$$e^{u} - id_{E} = u + \frac{1}{2}u^{2} + \dots + \frac{1}{k!}u^{k}$$

et l'inclusion $Ker(u) \subset Ker(e^u - id_E)$ est évidente. Pour établir l'inclusion réciproque, observons que, pour tout vecteur x dans $Ker(e^u - id_E)$,

$$u(x) = -\frac{1}{2}u^2(x) - \dots - \frac{1}{k!}u^k(x)$$

donc

$$u(x) = \left(-\frac{1}{2}u + \ldots + \frac{1}{k!}u^{k-1}\right)(u(x)).$$

En substituant la première expression de u(x) dans la seconde, on obtient une écriture de u(x) comme combinaison linéaire des vecteurs $u^3(x), \ldots, u^k(x)$ et un raisonnement par récurrence immédiat permet d'établir

$$u(x) \in \operatorname{Vect}(u^p(x), \ p \ge p_0)$$

pour tout entier $p_0 \ge 1$. Appliquant ce dernier résultat avec $p_0 = k + 1$, la nullité de u^{k+1} implique celle de u(x) et donc $x \in \text{Ker}(u)$.

3. Les trois premières matrices ne posent pas de problème puisqu'elles sont de la forme D + N avec D diagonale, N nilpotente et DN = ND. On obtient respectivement

$$\left(\begin{array}{cc} e^{\lambda_1} & 0 \\ 0 & e^{\lambda_2} \end{array}\right), \left(\begin{array}{cc} e^{\lambda} & e^{\lambda} \vartheta \\ 0 & e^{\lambda} \end{array}\right) \text{ et } \left(\begin{array}{cc} e^{\lambda} & 0 \\ e^{\lambda} \vartheta & e^{\lambda} \end{array}\right).$$

Pour calculer les exponentielles des deux dernières matrices, on commence par les diagonaliser. On obtient sans difficulté

$$\left(\begin{array}{cc} \lambda & \vartheta \\ \vartheta & \lambda \end{array} \right) = P \left(\begin{array}{cc} \lambda + \vartheta & 0 \\ 0 & \lambda - \vartheta \end{array} \right) P^{-1} \ \ \text{avec} \ P = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \ \text{et} \ P^{-1} = \frac{1}{2} P$$

et

$$\left(\begin{array}{cc} \lambda & -\vartheta \\ \vartheta & \lambda \end{array} \right) = Q \left(\begin{array}{cc} \lambda + i\vartheta & 0 \\ 0 & \lambda - i\vartheta \end{array} \right) Q^{-1} \ \ \text{avec} \ Q = \left(\begin{array}{cc} 1 & 1 \\ -i & i \end{array} \right) \ \text{et} \ Q^{-1} = \frac{1}{2} \left(\begin{array}{cc} 1 & i \\ 1 & -i \end{array} \right),$$

d'où

$$e^{\begin{pmatrix} \lambda & \vartheta \\ \vartheta & \lambda \end{pmatrix}} = P\begin{pmatrix} e^{\lambda + \vartheta} & 0 \\ 0 & e^{\lambda - \vartheta} \end{pmatrix} P^{-1} = e^{\lambda} \begin{pmatrix} \cosh(\vartheta) & \sinh(\vartheta) \\ \sinh(\vartheta) & \cosh(\vartheta) \end{pmatrix}$$

et

$$e^{\left(\begin{array}{cc}\lambda & -\vartheta\\\vartheta & \lambda\end{array}\right)} = Q\left(\begin{array}{cc}e^{\lambda+i\vartheta} & 0\\0 & e^{\lambda-i\vartheta}\end{array}\right)Q^{-1} = e^{\lambda}\left(\begin{array}{cc}\cos(\vartheta) & -\sin(\vartheta)\\\sin(\vartheta) & \cos(\vartheta)\end{array}\right).$$

Exercice 7.* — 1. Les polynômes $(T-1)^2$ et T-2 sont premiers entre eux et $(T-1)^2 - T(T-2) = 1$ est une relation de Bézout. On en déduit comme d'habitude que les endomorphismes $\pi_2 = -(u - \mathrm{id}_E)^2$ et $\pi_1 = u(u - 2\mathrm{id}_E)$ sont des projecteurs tels que $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1 = 0$ et $\mathrm{id}_E = \pi_1 + \pi_2$, d'images respectives $\mathrm{Ker}(u - 2\mathrm{id}_E)$ et $\mathrm{Ker}(u - \mathrm{id}_E)^2$, d'où la décomposition

$$E = \operatorname{Ker}(u - \mathrm{id}_{E})^{2} \oplus \operatorname{Ker}(u - 2\mathrm{id}_{E}).$$

2. Les projecteurs spectraux π_1 et π_2 étant des polynômes en u, ils commutent avec u.

On a $u\pi_2 = 2\pi_2$ puisque $\text{Im}(\pi_2) = \text{Ker}(u - 2\text{id}_E)$ et $u\pi_1 = \pi_1 + (u - \text{id}_E)\pi_1$ avec $[(u - \text{id}_E)\pi_1]^2 = (u - \text{id}_E)^2\pi_1 = 0$ puisque $\text{Im}(\pi_1) = \text{Ker}(u - \text{id}_E)^2$. On en déduit

$$e^u\pi_2=\mathrm{e}^2\pi_2$$

et

$$\begin{array}{rcl} e^{u}\pi_{1} & = & e^{\pi_{1}u} \\ & = & e^{\pi_{1}}e^{(u-\mathrm{id}_{E})\pi_{1}} \\ & = & (e\pi_{1})(\mathrm{id}_{E} + (u-\mathrm{id}_{E})\pi_{1}) \\ & = & eu\pi_{1}. \end{array}$$

- 3. C'est déjà fait...
- 4. Nous obtenons finalement

$$e^{u} = e^{u}(\pi_{1} + \pi_{2})$$

$$= e^{u}\pi_{1} + e^{u}\pi_{2}$$

$$= eu\pi_{1} + e^{2}\pi_{2}$$

$$= eu^{2}(u - 2E) - e^{2}(u - id_{E})$$

$$= eu^{3} - (e^{2} + 2e)u^{2} + 2e^{2}u - e^{2}id_{E}.$$

Exercice 8.* — Les matrices sont données sans garantie et il est fortement conseillé de vérifier tous les calculs!

(i) On vérifie que $Sp(u) = \{2,3,4\}$, de sorte que le polynôme minimal de u est (T-2)(T-3)(T-4). En décomposant la fraction rationnelle $(T-2)^{-1}(T-3)^{-1}(T-4)^{-1}$ en éléments simples, on obtient l'identité

$$\frac{1}{2}(T-3)(T-4)-(T-2)(T-4)+\frac{1}{2}(T-2)(T-3)=1,$$

qui est une relation de Bézout pour les polynômes premiers entre eux (T-3)(T-4), (T-2)(T-4) et (T-2)(T-3). Les endomorphismes

$$\pi_2 = \frac{1}{2}(u - 3id_{\mathbb{R}^3})(u - 4id_{\mathbb{R}^3}), \ \pi_3 = -(u - 2id_{\mathbb{R}^3})(u - 4id_{\mathbb{R}^3}) \text{ et } \pi_4 = \frac{1}{2}(u - 2id_{\mathbb{R}^3})(u - 3id_{\mathbb{R}^3})$$

sont les projecteurs spectraux sur les sous-espaces propres $\mathrm{Ker}(u-2\mathrm{id}_{\mathbb{R}^3})$, $\mathrm{Ker}(u-3\mathrm{id}_{\mathbb{R}^3})$ et $\mathrm{Ker}(u-4\mathrm{id}_{\mathbb{R}^3})$ respectivement. Leurs matrices respectives dans la base canonique sont

$$\frac{1}{2} \begin{pmatrix} 3 & -2 & 1 \\ 0 & 0 & 0 \\ -3 & 2 & -1 \end{pmatrix}, \begin{pmatrix} -4 & 1 & -4 \\ -4 & 1 & -4 \\ 4 & -1 & 4 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 7 & 0 & 7 \\ 8 & 0 & 8 \\ -5 & 0 & -5 \end{pmatrix}.$$

Partant de l'identité id_{\mathbb{R}^3} = $\pi_2 + \pi_3 + \pi_4$, on obtient

$$u^n = 2^n \pi_2 + 3^n \pi_3 + 4^n \pi_4$$

pour tout entier naturel n et la matrice de u^n dans la base canonique est

$$A^{n} = \begin{pmatrix} 3.2^{n-1} - 4.3^{n} + 14.4^{n-1} & -2^{n} + 3^{n} & 2^{n-1} - 4.3^{n} + 14.4^{n-1} \\ -4.3^{n} + 4^{n+1} & 3^{n} & -4.3^{n} + 4^{n+1} \\ -3.2^{n-1} + 4.3^{n} - 10.4^{n-1} & 2^{n} - 3^{n} & -2^{n-1} + 4.3^{n} - 10.4^{n-1} \end{pmatrix}.$$

On a enfin

$$e^{tu} = e^{2t}\pi_2 + e^{3t}\pi_3 + e^{4t}\pi_4$$

pour tout nombre réel t et la matrice de cet endomorphisme dans la base canonique est

$$e^{tA} = \begin{pmatrix} \frac{3}{2}e^{2t} - 4e^{3t} + \frac{7}{2}e^{4t} & -e^{2t} + e^{3t} & \frac{1}{2}e^{2t} - 4e^{3t} + \frac{7}{2}e^{4t} \\ -4e^{3t} + 4e^{4t} & e^{3t} & -4e^{3t} + 4e^{4t} \\ -\frac{3}{2}e^{2t} + 4e^{3t} - \frac{5}{2}e^{4t} & e^{2t} - e^{3t} & -\frac{1}{2}e^{2t} + 4e^{3t} - \frac{5}{2}e^{4t} \end{pmatrix}.$$

(ii) On vérifie que $Sp(u) = \{1,4\}$, la valeur propre étant de multiplicité géométrique égale à 2 ; l'endomorphisme u est donc diagonalisable et son polynôme minimal est (T-1)(T-4).

En procédant comme en (i), on obtient les expressions

$$\pi_1 = -\frac{1}{3}(u - 4id_{\mathbb{R}^3})$$
 et $\pi_4 = \frac{1}{3}(u - id_{\mathbb{R}^3})$

pour les projecteurs spectraux sur les sous-espaces propres $\mathrm{Ker}(u-\mathrm{id}_{\mathbb{R}^3})$ et $\mathrm{Ker}(u-4\mathrm{id}_{\mathbb{R}^3})$ respectivement. Leurs matrices dans la base canonique s'en déduit immédiatement. Enfin,

$$u^{n} = \pi_{1} + 4^{n}\pi_{4}$$
 et $B^{n} = \begin{pmatrix} -2 + 4^{n} & 1 + 4^{n} & 1 + 4^{n} \\ 1 + 4^{n} & -2 + 4^{n} & 1 + 4^{n} \\ 1 + 4^{n} & 1 + 4^{n} & -2 + 4^{n} \end{pmatrix}$

pour tout entier naturel n et

$$e^{tu} = e^t \pi_1 + e^{4t} \pi_4, \quad e^{tB} = \frac{1}{3} \begin{pmatrix} -2e^t + e^{4t} & e^t + e^{4t} & e^t + e^{4t} \\ e^t + e^{4t} & -2e^t + e^{4t} & e^t + e^{4t} \\ e^t + e^{4t} & e^t + e^{4t} & -2e^t + e^{4t} \end{pmatrix}$$

pour tout nombre réel t.

(iii) On vérifie que $Sp(u) = \{1,2\}$, la valeur propre 2 étant de multiplicité algébrique 2 mais de multiplicité géométrique 1 seulement. Cet endomorphisme n'est pas diagonalisable et son polynôme minimal est $(T-1)(T-2)^2$. On obtient une relation de Bézout entre T-1 et $(T-2)^2$ en faisant la division euclidienne du second par le premier :

$$1 = (T-2)^2 - (T-1)(T-3).$$

Les projecteurs spectraux sur les sous-espaces caractéristiques $\operatorname{Ker}(u-\operatorname{id}_{\mathbb{R}^3})$ et $\operatorname{Ker}(u-\operatorname{2id}_{\mathbb{R}^3})^2$ sont respectivement

$$\pi_1 = (u - 2id_{\mathbb{R}^3})^2$$
 et $\pi_2 = -(u - id_{\mathbb{R}^3})(u - 3id_{\mathbb{R}^3}),$

de matrices

$$\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
0 & 0 & 0
\end{array}\right) et \left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)$$

dans la base canonique.

Avant de calculer u^n et e^{tu} , observons que $u\pi_2 = 2\pi_2 + (u - 2\mathrm{id}_{\mathbb{R}^3})\pi_2$ avec $[(u - 2\mathrm{id}_{\mathbb{R}^3})\pi_2]^2 = 0$, de sorte que $u^n\pi_2 = (u\pi_2)^n = 2^n\pi_2 + n2^{n-1}(u - 2\mathrm{id}_{\mathbb{R}^3})\pi_2$ et $e^{tu}\pi_2 = e^{2t}\pi_2 + e^{2t}t(u - \mathrm{id}_{\mathbb{R}^3})\pi_2$. La matrice de $(u - 2\mathrm{id}_{\mathbb{R}^3})\pi_2$ dans la base canonique est

$$\left(\begin{array}{ccc}
-2 & 1 & 2 \\
0 & 0 & 0 \\
-2 & 1 & 2
\end{array}\right)$$

et on a par conséquent :

$$u^{n} = \pi_{1} + 2^{n}\pi_{2} + (u - 2id_{\mathbb{R}^{3}})\pi_{2}, \quad C^{n} = \begin{pmatrix} 1 - n2^{n} & 2^{n-1}n & (n+1)2^{n} - 1 \\ 2(1 - 2^{n}) & 2^{n} & 2(2^{n} - 1) \\ -n2^{n} & n2^{n-1} & (n+1)2^{n} \end{pmatrix}$$

pour tout entier naturel n et

$$e^{tu} = e^{t}\pi_{1} + e^{2t}\pi_{2} + te^{2t}(u - 2id_{\mathbb{R}^{3}})\pi_{2}, \quad e^{tC} = \begin{pmatrix} e^{t} - 2te^{2t} & te^{2t} & -e^{t} + (1 + 2t)e^{2t} \\ 2e^{t} - 2e^{2t} & e^{2t} & 2(e^{2t} - e^{t} \\ -2te^{2t} & te^{2t} & (1 + 2t)e^{2t} \end{pmatrix}$$

pour tout nombre réel t.

Exercice 9. — Le rang de l'endomorphisme u est manifestement égal à 1, ce qui signifie que 0 est une valeur propre de multiplicité géométrique dim Ker(u) = n; c'est en fait l'unique valeur propre de u car tr(u) = 0 et u n'est pas diagonalisable.

L'image de u est de manière évidente la droite engendrée par le vecteur dont toutes les coordonnées sont égales à 1, lequel appartient à Ker(u); nous avons donc $u^2 = 0$ et $e^{tu} = 1 + tu$ pour tout nombre réel t.

Exercice 10. — On désigne par E_1, \ldots, E_n les vecteurs de la base canonique de \mathbb{R}^n .

1 & 2. Le sous-espace $\text{Ker}(A-(a-b)I_n)$ de \mathbb{R}^n est de dimension n-1 et engendré par les vecteurs $E_1-E_2, E_2-E_3, \ldots, E_{n-1}-E_n$. La valeur propre (a-b) est de multiplicité géométrique n-1 et, comme tr(A)=na, la dernière valeur propre x de A est la solution de l'équation (n-1)(a-b)+x=na, soit x=a+(n-1)b. Le sous-espace propre $\text{Ker}(A-(a+(n-1)b)I_n)$ est la droite engendrée par le vecteur $E_1+\ldots+E_n$.

Les vecteurs $E_1 - E_2, ..., E_n - E_{n-1}$ et $E_1 + ... + E_n$ constituent clairement une base de \mathbb{R}^n car les n-1 premiers forment une base de l'hyperplan d'équation $x_1 + ... + x_n$, lequel ne contient pas le dernier vecteur. Tous ces vecteurs étant des vecteurs propres de A, A est diagonalisable et, si P désigne la matrice dont les colonnes sont leurs coordonnées dans la base canonique (c'est la matrice ayant des 1 sur la diagonale, des -1 sur la première sous-diagonale et des 1 sur la dernière colonne, les autres coefficients étant nuls),

$$P^{-1}AP = diag(a-b,...,a-b,a+(n-1)b).$$

Lorsque $b \neq 0$, les deux valeurs propres de A sont distinctes et son polynôme minimal est donc $(T - (a - b))(T - (a - (n - 1)b)) = T^2 - (2a - nb)T + (a - b)(a - n - 1b)$.

Lorsque b = 0, $A = aI_n$ et son polynôme minimal est T - a.

3. La matrice A est inversible si et seulement si 0 n'est pas l'une de ses valeurs propres, donc si et seulement si $a \neq b$ et $a \neq (n-1)b$. Le cacul de A^{-1} se fait aisément en utilisant le polynôme minimal de A:

- lorsque
$$b = 0$$
, $A = aI_n$ et donc $A^{-1} = a^{-1}I_n$;

- lorsque $b \neq 0$, $A^2 - (2a + nb)A + (a - b)(a - (n - 1)b) = 0$ et donc

$$A^{-1} = -\frac{1}{(a-b)(a-nb)} (A - (2a+nb)I_n).$$

4 & 5. Lorsque $b \neq 0$, la méthode la plus efficace pour calculer explicitement A^n et e^{tA} est d'utiliser les projecteurs spectraux de A. Partant de la relation de Bézout (T - (a - (n-1)b)) - (T - (a-b)) = nb, nous obtenons immédiatement

$$I_n = \frac{1}{nb} \left((A - (a - (n-1)b)I_n) - (A - (a-b)I_n) \right)$$

et

$$A = \frac{1}{nb} ((a-b)(A - (a-(n-1)b)I_n) - (a-(n-1)b)(A - (a-b)I_n)),$$

d'où

$$A^{p} = \frac{1}{nb} ((a-b)^{p} (A - (a-(n-1)b)I_{n}) - (a-(n-1)b)^{p} (A - (a-b)I_{n}))
= \frac{1}{nb} ((a-b)^{p} - (a-(n-1)b)^{p}) A + \frac{1}{nb} (a-b)(a-(n-1)b) ((a-(n-1)b)^{p-1} - (a-b)^{p-1}) I_{n}$$

pour tout entier naturel $p \ge 1$ et

$$\begin{split} e^{t\mathbf{A}} &= \frac{1}{nb} \left(e^{(a-b)t} (\mathbf{A} - (a-(n-1)b)\mathbf{I}_n) - e^{(a-(n-1)b)t} (\mathbf{A} - (a-b)\mathbf{I}_n) \right) \\ &= \frac{1}{nb} \left(e^{(a-b)t} - e^{(a-(n-1)b)t} \right) \mathbf{A} + \frac{1}{nb} \left((a-b)e^{(a-(n-1)b)t} - (a-(n-1)b)e^{(a-b)t} \right) \mathbf{I}_n. \end{split}$$

Exercice 11. — 1. Le rang de l'endomorphisme u - (1-a)id_E est égal à 1 et 1-a est donc une valeur propre de u de multiplicité géométrique égale à 3. Comme tr(u) = 4, la dernière valeur propre de u est 4 - 3(1-a) = 1 + 3a.

- 2. Si a = 0, 1 a = 1 + 3a = 1 et l'endomorphisme u n'est pas diagonalisable car $u \neq id_E$.
- 3. Lorsque $a \neq 0$, les multiplicités géométriques et algébriques des valeurs propres 1 a et 1 + 3a de u sont les mêmes (respectivement 3 et 1) et l'endomorphisme u est diagonalisable.
- 4. Le polynôme caractéristique de u est $(T-(1-a))^3(T-(1+3a))$; son polynôme minimal est (T-(1-a))(T-(1+3a)).
- 5. L'espace vectoriel E est la somme directe des sous-espaces propres $E_1 = \text{Ker}(u (1 a)\text{id}_E)$ et $E_2 = \text{Ker}(u (1 + 3a)\text{id}_E)$ de u car leur intersection est nulle et $\text{dim}\text{Ker}(u (1 a)\text{id}_E) = 3$, $\text{dim}\text{Ker}(u (1 + 3a)\text{id}_E) = 1$.
- 6. Les projecteurs spectraux s'obtiennent à partir de la relation de Bézout (T-(1-a))-(T-(1+3a))=4a: $\pi_1=-\frac{1}{4a}(u-(1+3a)\mathrm{id}_E)$ est le projecteur sur E_1 parallèlement à E_2 et $\pi_2=\frac{1}{4a}(u-(1-a)\mathrm{id}_E)$ est le projecteur sur E_2 parallèlement à E_1 .
- 7. On a $u^k = (1-a)^k \pi_1 + (1+3a)^k \pi_2$ pour tout entier naturel k et $e^u = e^{1-a} \pi_1 + e^{1+3a} \pi_2$. Les matrices de π_1 et π_2 dans la base canonique de \mathbb{R}^3 étant respectivement

$$-\frac{1}{4a} \begin{pmatrix} -3a & a^2 & a^2 & a \\ 1 & -3a & a & 1 \\ 1 & a & -3a & 1 \\ a & a^2 & a^2 & -3a \end{pmatrix} \text{ et } \frac{1}{4a} \begin{pmatrix} a & a^2 & a^2 & a \\ 1 & a & a & 1 \\ 1 & a & a & 1 \\ a & a^2 & a^2 & a \end{pmatrix},$$

le calcul des matrices de u^k et e^u ne pose pas de problème...