Université Claude Bernard Lyon 1

MASTER M1G

Algèbre

Fiche TD 6

Exercice 1 Intersection de courbes planes. Petit théorème de Bezout

Soient P, Q dans $\mathbb{C}[X,Y]$ sans facteur commun. On veut montrer que l'ensemble des points d'intersection des deux courbes dans \mathbb{C}^2 , d'équation respective P(x,y) = 0, et Q(x,y) = 0, est fini.

- 1. On considère P et Q dans $\mathbb{K}[Y]$, avec $\mathbb{K} := \mathbb{C}(X)$. Montrer que P et Q n'ont pas de facteur commun dans $\mathbb{K}[Y]$.
 - Supposer que P et Q ont un facteur commun $R \in \mathbb{K}[Y]$, et poser $R = \frac{a}{b}R_0$, avec R_0 primitif (de contenu 1) dans $\mathbb{C}[X][Y]$. Montrer que R_0 divise P et Q dans $\mathbb{C}[X][Y]$.
- 2. Montrer qu'il existe deux polynômes U et V dans $\mathbb{C}[X,Y]$, et un polynôme non nul D de $\mathbb{C}[X]$ tels que UP + VQ = D.
 - Commencer par appliquer l'identité de Bezout sur $\mathbb{K}[Y]$.
- 3. Conclure.

Le polynôme D ne possède qu'un nombre fini de racines...

Exercice 2 Théorème de décomposition en somme de deux carrés

On veut montrer qu'un nombre premier impair p est somme de deux carrés (non nuls) si et seulement si p est congru à 1 modulo 4.

- 1. Constater ce théorème sur de petits nombres premiers.
- 2. Montrer l'implication.
 - Regarder l'égalité $p=a^2+b^2$ modulo p et montrer que -1 est alors un carré dans \mathbb{F}_p .
- 3. Montrer que p est si un premier congru à 1 modulo 4, p n'est pas irréductible dans $\mathbb{Z}[i]$.
 - Considérer l'isomorphisme d'anneaux $\mathbb{Z}[i]/(p) \simeq \mathbb{Z}[X]/(X^2+1)$.
- 4. Conclure.

Décomposer $p = \alpha \beta$ dans $\mathbb{Z}[i]$, puis, calculer la norme de α .

Exercice 3 Décomposition $p = s^2 + 3t^2$ On veut montrer qu'un nombre premier p (distinct de 3) s'écrit sous la forme $s^2 + 3t^2$ (avec s et t non nuls) si et seulement si p est congru à 1 modulo 3.

1. On suppose p premier distinct de 3. Montrer que -3 est un carré de \mathbb{F}_p si et seulement si p est congru à 1 modulo 3.

On peut commencer par remarquer que -3 est un carré modulo p si et seulement si $X^3 - 1$ possède une racine non triviale dans \mathbb{F}_p , et donc, si et seulement s'il existe un élément d'ordre 3 dans \mathbb{F}_p .

2. Conclure, en vous inspirant de l'exercice précédent.

On pourra considérer l'anneau $\mathbb{Z}[j]$, qui est factoriel, et l'isomorphisme $\mathbb{Z}[j]/(p) \simeq \mathbb{F}_p[X]/(X^2+X+1)$.

Exercice 4 Loi complémentaire de la réciprocité quadratique

Soit $q = p^k$, avec p premier impair. Le but du problème est de prouver que 2 est un carré de \mathbb{F}_q si et seulement si $q \equiv \pm 1$ modulo 8.

A. Etude du polynôme $X^4 + 1$ sur \mathbb{F}_q

Le but de cette partie est de montrer que le polynôme $X^4 + 1$ est toujours réductible sur \mathbb{F}_q . On considère une racine α de $X^4 + 1$ dans une extension de \mathbb{F}_q .

- 1. Montrer que X^4+1 ne possède pas de racine multiple (dans toute extension de \mathbb{F}_q).
- 2. Montrer que l'ensemble des racines de $X^4 + 1$ est $\{\alpha, -\alpha, \alpha^{-1}, -\alpha^{-1}\}$. Attention : la difficulté n'est pas de montrer qu'elles sont racines...
- 3. (a) Montrer que 8 divise l'ordre du groupe multiplicatif $\mathbb{F}_{q^2}^*$.

 Commencer par dire que $q^2 1 = (q-1)(q+1)$.
 - (b) En déduire qu'il existe un élément α' d'ordre 8 dans $\mathbb{F}_{q^2}^*.$
 - (c) Montrer alors que α' est racine de $X^4 + 1$.
- 4. En déduire que α est dans \mathbb{F}_{q^2} .
- 5. Conclure que X^4+1 est réductible sur $\mathbb{F}_q.$

B. Implication « 2 est un carré de $\mathbb{F}_q \Longrightarrow q \equiv \pm 1$ modulo 8 »

On considère encore une fois que α est une racine de X^4+1 .

- 1. En remarquant que $\alpha^5 = -\alpha$, montrer que l'ensemble des racines de $X^4 + 1$ peut aussi s'écrire $\{\alpha, \alpha^3, \alpha^5, \alpha^{-1}\}$. En déduire que α^q ne peut être égal qu'à une de ces quatre valeurs.
- 2. Montrer que si $\alpha^q = \alpha^n$ pour un entier n, alors $q \equiv n$ modulo 8.
- 3. On pose maintenant $\beta=\alpha+\alpha^{-1}$. Montrer que $\beta^2=2$. Quelle est l'autre racine de $X^2=2$?
- 4. On suppose maintenant que 2 est un carré de \mathbb{F}_q . Montrer alors que $\beta^q = \beta$.
- 5. En déduire dans ce cas que $q \equiv \pm 1$ modulo 8.

C. Implication « $q \equiv \pm 1 \mod 0$ 8 $\Longrightarrow 2$ est un carré de \mathbb{F}_q »

1. Montrer comment le raisonnement de la partie B s'inverse pour donner la réciproque.

2. En utilisant les notations standard du symbole de Legendre, montrer l'égalité suivante, où p désigne un nombre premier impair,

$$\binom{2}{p} = (-1)^{\frac{p^2 - 1}{8}}$$

Exercice 5 Le théorème de Chevalley-Warning

Soit q une puissance d'un nombre premier p. On considère une famille de polynômes P_1, \dots, P_r dans $\mathbb{F}_q[X_1, \dots, X_n]$, sans terme constant, et tels que $\sum_{i=1}^r \deg(P_i) < n$. Alors, il existe x non nul dans $V := \{x \in \mathbb{F}_q^n, P_i(x) = 0, \forall i\}$.

- 1. Soit $S_m := \sum_{y \in \mathbb{F}_q} y^m$. On suppose $m \ge 1$ et q 1 divise m. Montrer que $S_m = -1$. On utilise Lagrange qui assure que $y^m = 1$ dès que y est non nul.
- 2. On suppose q-1 ne divise pas m. Montrer que $S_m=0$.

 Prendre un générateur z du groupe cyclique \mathbb{F}_q^* et montrer que $z^m \neq 1$, puis, que $S_m=z^mS_m$.
- 3. Soit $P := \prod_{i=1}^r (1 P_i^{q-1})$. Montrer que P est la fonction caractéristique de V, c'est-à-dire que P(x) vaut 1 ou 0 selon si x est dans V ou non.
- 4. On considère $S_P := \sum_{x \in \mathbb{F}_q^n} P(x)$. Montrer que $S_P = |V|$ modulo p.
- 5. Montrer que le degré total t de P vérifie t < (q-1)n. On pose dans la suite $P = \sum_{m \in \mathbb{N}^n} c_m X_1^{m_1} \cdots X_n^{m_n}$, avec $\sum m_i < (q-1)n$.
- 6. Montrer que $S_P = \sum_{m \in \mathbb{N}^n} c_m S_{m_1} \cdots S_{m_n}$ et conclure.

Exercice 6 Le théorème EGZ (Erdös-Ginzburg-Ziv)

Soit p un nombre premier et a_i , $1 \le i \le 2p-1$ des entiers. Montrer que l'on peut extraire p entiers a_{i_k} , $1 \le k \le p$, parmi eux, tels que

$$a_{i_1} + a_{i_2} + \dots + a_{i_p} \equiv 0 \pmod{p}.$$

Appliquer le théorème de Chevalley-Warning aux polynômes P_1 et P_2 , avec

$$P_1 = \sum_{i=1}^{p} X_i^{p-1}, P_2 = \sum_{i=1}^{p} a_i X_i^{p-1}.$$

On peut également montrer ce théorème pour p quelconque, non nécessairement premier.

Exercice 7 (Non) Irréductibilité des polynômes cyclotomiques

Soit n un entier positif et p et un nombre premier ne divisant pas n. On considère le polynôme cyclotomique $\phi_n \in \mathbb{Z}[X]$ et sa réduction $\overline{\phi}_n$ modulo p.

1. Soit \mathbb{K} une extension de \mathbb{F}_p , montrer que l'application de $\mathbb{K}[X]$ dans lui même qui envoie $P = \sum_i a_i X^i$ sur $F(P) = \sum_i a_i^p X^i$, est un morphisme d'anneaux. On rappelle que le Frobenius $a \mapsto a^p$ est un automorphisme du corps \mathbb{K} .

- 2. Soit α une racine de $\overline{\phi}_n$ dans une extension de \mathbb{F}_p . Montrer que $\alpha^n = 1$. Décomposer $X^n 1$ sur \mathbb{Z} et quotienter par p.
- 3. Soit m l'ordre de p dans $\mathbb{Z}/n\mathbb{Z}^*$. Montrer que m est minimal non nul tel que $\alpha^{p^m}=1$.
- 4. On considère le polynôme $Q = \prod_{k=0}^{m-1} (X \alpha^{p^k})$. Montrer que $Q \in \mathbb{F}_p[X]$ et $Q(\alpha) = 0$. Pour la première assertion, on vérifiera que F(Q) = Q en appliquant 1.
- 5. Montrer que si $m < \varphi(n)$, alors $\overline{\phi}_n$ n'est pas irréductible.
- 6. En déduire la propriété suivante : si $\mathbb{Z}/n\mathbb{Z}^*$ n'est pas cyclique, alors, pour tout p ne divisant pas $n, \overline{\phi}_n$ est réductible.

Exercice 8 Exemple : réduction de ϕ_8

On va montrer de façon constructive que $\phi_8 = X^4 + 1$, qui est irréductible sur \mathbb{Z} , est réductible modulo p, pour tout p premier. On notera au passage que cela provient (pour p impair) de l'exercice précédent et de l'isomorphisme $(\mathbb{Z}/8\mathbb{Z})^* \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- 1. Montrer que ϕ_8 se réduit modulo 2.
- 2. On suppose maintenant p impair. Montrer que, soit $p \equiv 1$ [4], $p \equiv -1$ [8], soit $p \equiv 3$ [8]. Montrer que, dans le premier cas, -1 possède une racine carrée, disons $\beta \in \mathbb{F}_p$, dans le second cas, 2 possède une racine carrée, disons $\gamma \in \mathbb{F}_p$, dans le troisième cas, -2 possède une racine carrée, disons $\delta \in \mathbb{F}_p$.

 $\label{eq:Utiliser_lessymbole} \textit{Utiliser le symbole de Legendre et la formule } \binom{2}{p} = (-1)^{\frac{p^2-1}{8}}.$

3. Soit α une racine de ϕ_8 dans une extension de \mathbb{F}_p . Montrer

$$X^4 + 1 = (X - \alpha)(X + \alpha)(X - \alpha^{-1})(X + \alpha^{-1}),$$

 $(\alpha + \alpha^{-1})^2 = 2$, et $(\alpha - \alpha^{-1})^2 = -2$.

- 4. On procède maintenant au cas par cas.
 - (a) $p \equiv 1$ [4]. Montrer que $\phi_8 = (X^2 \beta)(X^2 + \beta)$.
 - (b) $p \equiv -1$ [8]. Montrer que $\phi_8 = (X^2 \gamma X + 1)(X^2 + \gamma X + 1)$.
 - (c) $p \equiv 3$ [8]. Montrer que $\phi_8 = (X^2 \delta X 1)(X^2 + \delta X 1)$.