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ABSTRACT. We study Laurent expansions of cluster variables in a cluster algebra
of rank 2 associated to a generalized Kronecker quiver. In the case of the ordinary
Kronecker quiver, we obtain explicit expressions for Laurent expansions of the
elements of the canonical basis for the corresponding cluster algebra.

1. INTRODUCTION

Cluster algebras introduced in [11] have found applications in a diverse variety
of settings which include (in no particular order) total positivity, Lie theory, quiver
representations, Teichmiiller theory, Poisson geometry, discrete dynamical systems,
tropical geometry, and algebraic combinatorics. See, e.g., [6, 9, 10, 14] and references
therein.

Among these connections, the one with quiver representations has been developed
especially actively. This development started with an observation made in [20] that
the underlying combinatorial structure for a cluster algebra has a natural interpre-
tation in terms of quiver representations. The subsequent work aimed to extend
this interpretation from combinatorics to algebraic properties of cluster algebras. In
the process, new concepts of cluster categories and cluster-tilted algebras have been
introduced and studied in [4, 3] and many subsequent publications. These new con-
cepts extend the classical theory of quiver representations and provide an interesting
generalization of classical tilting theory.

In this paper, we focus on one important algebraic feature of cluster algebras:
the Laurent phenomenon established in [11]. We will deal only with coefficient-free
cluster algebras. In the nutshell, such an algebra is a commutative ring A (in fact,
an integral domain) with a family of distinguished generators (cluster variables)
grouped into (overlapping) clusters of the same finite cardinality n. Each cluster
is algebraically independent and generates the field of fractions of A. Thus, every
cluster variable can be uniquely expressed as a rational function of the elements of
every given cluster. The Laurent phenomenon asserts that these rational functions
are in fact Laurent polynomials with integer coefficients.

We would like to know more about the coefficients of these Laurent polynomials.
As conjectured by S. Fomin and A. Zelevinsky (see e.g. [14]), these coefficients are
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positive integers. The conjecture was recently confirmed in [7] for some special class
of the Laurent polynomials in question. Unfortunately, this proof provides no explicit
expression for the coefficients. We feel however that the main ingredient of the proof
has a potential to provide more explicit information and deserves further study.
This ingredient is a geometric interpretation (due to P. Caldero and F. Chapoton
[5]) of a coefficient in question as the Euler-Poincaré characteristic of an appropriate
Grassmannian of quiver representations. One of the main goals of this paper is to
attract attention to the problem (that we find very interesting) of studying these
Grassmannians and in particular, finding an explicit way to compute their Euler-
Poincaré characteristics.

Our main new result is a complete solution of the latter problem for the cluster
algebra associated with a root system of affine type Agl). For this algebra, the
positivity of the Laurent polynomials in question was established by elementary
means in [22], while a combinatorial expression for their coefficients was given in
[21]. In this paper, we show that the Euler characteristic interpretation implies an
unbeatably simple explicit expression for every coefficient in question as a product of
two binomial coefficients. After such an expression is found, proving it is not hard;
the point is however that this expression (left unnoticed in [22, 21]) follows naturally
from the geometric study of the appropriate Grassmannians of quiver representations.
In this case, the underlying quiver is the Kronecker quiver with two vertices and two
arrows from one vertex to another.

We are happy to present these results in a paper dedicated to A. A. Kirillov.
One of the authors (A.Z.) had been very fortunate to have A. A. Kirillov as one
of his teachers at Moscow State University. One of the most impressive features of
Kirillov’s teaching style is his ability to explain mathematical ideas in the simplest
possible terms, clearing them of unnecessary technical background so that they can
be appreciated by inexperienced young researchers. We are trying to follow his
example in our exposition. In particular, we never go beyond the ordinary quiver
representations; and we make the paper self-contained by giving a new elementary
proof of the Caldero-Chapoton result for the generalized Kronecker quiver.

In Kirillov’s spirit, we now state our new formula for the cluster variables in type

Agl) in a self-contained and elementary way. Let x1,x9,23,... be a sequence of
rational functions in two independent variables x1, x5 defined recursively by
2
x; +1
(1.1) Tpy1 = — (n>2).
n—1

In Theorem 4.1 we show that, for every n > 0, the term x,,,3 is given by

n - 1-
(1.2)  wpg=a7" lay" (:173( IREY (n . T) <n +T q) quxg’) ;

q+r<n

in particular, all terms of the sequence are Laurent polynomials with positive coeffi-
cients in x; and x,.

Note that if the exponent 2 in (1.1) gets replaced by a positive integer b > 2,
then each x, is still an integer Laurent polynomial in x; and x, by the Laurent
phenomenon proved in [11]. However in this case no explicit combinatorial expression
or closed formula is known for the coefficients; even positivity of these coefficients is
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still open. Each of the coefficients in question is the Euler-Poincaré characteristic of
an appropriate Grassmannian of quiver representations for the generalized Kronecker
quiver with two vertices and b arrows from one vertex to another. We find it a very
interesting challenge to use this interpretation for finding an explicit expression for
the coefficients.

The paper is organized as follows. In Section 2 we provide some general back-
ground on the Laurent phenomenon in cluster algebras and its geometric interpreta-
tion. In Section 3 we provide a self-contained treatment of the Laurent expansions
of cluster variables in a cluster algebra of rank 2 associated with a generalized Kro-
necker quiver (),. Our main technical tool that allows us to give a new proof for
the geometric interpretation of Laurent expansions (Theorem 3.2) are the functors
T+ and T~ on the category of Q,-representations (see Definition 3.3) obtained by a
slight modification of reflection functors in [2]. In Section 4 we work with the inde-
composable preprojective and preinjective representations of the classical Kronecker
quiver and prove equality (1.2) (Theorem 4.1). Finally, in Section 5 we use the
regular indecomposable representations of the Kronecker quiver to obtain explicit
Laurent expansions of the elements of the canonical basis (constructed in [22]) in the
corresponding cluster algebra.

2. SOME BACKGROUND

In this section we recall some background and results from [11, 7]. The definitions
below are not the most general ones: we will deal only with coefficient-free cluster
algebras having skew-symmetric exchange matrices (instead of more general skew-
symmetrizable ones).

Let F = Q(x1,...,x,) be the field of rational functions in n independent vari-
ables. Let B be a skew-symmetric integer n x n matrix. We will associate to B a
commutative subring A(B) C F called the (coefficient-free) cluster algebra. Let T,
be the n-reqular tree whose edges are labeled by the numbers 1,...,n, so that the

n edges emanating from each vertex receive different labels. We write t ¥ to

indicate that vertices t,t" € T, are joined by an edge labeled by k. We also fix some
vertex tg € T, and refer to tq as the initial vertex. We associate to B and to every
t € T, a skew-symmetric integer n x n matrix By, and an n-tuple (214, ..., %y,) of
elements of F. They are uniquely determined by the initial conditions

By = B, xjt, = xj,

and the mutation relations given as follows. Whenever ¢ ko , the matrices B, =

(bij) and By = (b};) are related by

(2.1) b =

ij

—bi; ifir=~korj=k;
bi; +sgn(bix) [bikbr;]+ otherwise,
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where we use the notation

bl = max(b, 0);
—1 ifb<0;

sgn(b) =<0 ifb=0;
1 if b > 0;

and we have z,, = x4 for j # k, while x, and xy, satisfy the exchange relation
bi —b;
22) g = T[ ol + Tk

We refer to B; as the exchange matriz at t, and to (14,...,2,4) as the cluster
at t. The elements x;; are called cluster variables (note that there may be some
equalities among them). The cluster algebra A(B) is defined as the subring of F
generated by all cluster variables.

Being an element of F, every cluster variable is a rational function in x4,..., x,.
The following result sharpens this considerably.

Theorem 2.1 (Laurent phenomenon [11, Theorem 3.1]). The cluster algebra A(B) is
contained in the Laurent polynomial ring Z[zE', ... xF']; equivalently, every cluster
variable is an integer Laurent polynomial in x4, ..., x,.

We now turn to a geometric interpretation of the Laurent polynomials in Theo-
rem 2.1. First of all, we represent a skew-symmetric integer n x n matrix B = (b;;)
by means of the quiver Q = Q(B) with vertices [1,n] = {1,...,n}, and b;; arrows
from i to j whenever b;; > 0 (thus, @ is allowed to have multiple edges). Following
[1], we say that B is acyclic if Q(B) has no oriented cycles. (Equivalently, B is
acyclic if and only if, by a simultaneous permutation of rows and columns, we can
make b;; > 0 for all ¢ > j.) In the rest of the section we assume that the initial
exchange matrix B is acyclic.

Let us recall some basics on quiver representations (we do not attempt to give a
self-contained introduction to the subject, just fix some terminology and notation).
Recall that a representation M (over some field K) of a quiver Q = Q(B) is given
by assigning a finite-dimensional K-vector space M; to every vertex ¢ of (), and a
b-tuple (goﬁ), e ,gpyz)) of linear maps M; — M, to every arrow ¢ — j of multiplic-
ity b = b;; in ). For our current purposes it is sufficient to work over K = C. The
morphisms between quiver representations are defined in a natural way, giving rise
to the category of quiver representations. This category is abelian, hence there is a
well defined notion of indecomposable representations.

The dimension of a representation M is an integer vector d = (dy,...,d,) given
by d; = dim M;. A quiver representation M of dimension d is called rigid if a generic
representation of dimension d is isomorphic to M; equivalently, M has no nontrivial
self-extensions.

A subrepresentation N of a representation M is specified by a collection of sub-
spaces N; C M; such that cp;»’f)(Ni) C Nj for all 4, j and k. For a representation M of
dimension d, and any nonnegative integer vector e = (ey,...,¢e,) such that e; < d;
for all 4, let Gro(M) denote the variety of all subrepresentations of dimension e in M.
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By the definition, Gre(M) is a closed subvariety in the product of Grassmannians
[1, Gr. (M),

Let xe(M) denote the Euler-Poincaré characteristic of Gre(M) (see e.g., [16, Sec-
tion 4.5]). We associate to any representation M of ) with dimension vector d a
Laurent polynomial Xy;(z1,...,z,) given by

(23) XM(ZE1, - ,:L‘n) = xl_dl e :E,;d" Z Xe(M) H(:L‘?jiej{[‘;i)[bijbf;
e 17]
this is easily seen to be equivalent to the definition in [5].

Now we are ready to state the following result obtained in [7, Theorem 3]; it
generalizes [5, Theorem 3.4].

Theorem 2.2. Let A(B) be the (coefficient-free) cluster algebra with an acyclic skew-
symmetric initial exchange matriz B. The correspondence M +— Xy (21, ..., x,) is
a bijection between the set of isomorphism classes of indecomposable rigid represen-
tations of the quiver Q(B), and the set of all cluster variables in A(B) not belonging
to the initial cluster {1, ..., x,}.

As shown in [7, Corollary 1], for every representation M of an acyclic quiver @,
the dimension vector d = (dy, . ..,d,) of M is the denominator vector of the Laurent
polynomial X/ (z1,...,x,); that is, for every j € [1,n], the minimum of exponents
of z; in all the monomials of X,; is equal to —d;. The dimension vectors of in-
decomposable rigid representations are called real Schur roots. This terminology
comes from the well-known results due to V. Kac [18]. Namely, let A = (a;;) be
the Cartan counterpart of B, that is, the symmetric integer n X n matrix with all

diagonal entries equal to 2, and off-diagonal entries given by a;; = —|b;j|. Then the
dimension vectors of indecomposable representations of Q(B) are precisely the pos-
itive roots of the root system associated to A, expanded in the basis {1, ..., a,} of

simple roots. Furthermore, a positive root o = ) d;«y; is real if and only if there is a
unique isomorphism class of indecomposable representations with dimension vector
(dy,...,d,). We see in particular, that every real Schur root is a positive real root.
Note that the set of real Schur roots depends on the orientation of Q(B), in contrast
with positive roots and with real positive roots. There seems to be no easy way to
distinguish real Schur roots among all positive real roots, see [§].

Returning to Theorem 2.2, we have the following corollary.

Corollary 2.3. In the situation of Theorem 2.2, a cluster variable in A(B) is
uniquely determined by the denominator vector in its Laurent expansion with respect
to the initial cluster. Furthermore, the denominator vectors of the cluster variables
not belonging to the initial cluster are precisely the real Schur roots of Q(B).

3. RANK 2 CLUSTER ALGEBRAS AND GENERALIZED KRONECKER QUIVER

In this section we discuss Theorem 2.2 and Corollary 2.3 (and give their indepen-
dent proofs) for the cluster algebra A(B) associated with the matrix

0 b
2=(% o)
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where b is a positive integer. Unraveling the definitions in Section 2, we see that
A(B) is the subring of the ambient field Q(x1, x2) generated by the cluster variables
T (m € Z) defined recursively by the relations

(3.1) T 1T =20, +1 (M EZ).

The clusters are the pairs {z,,, Ty1} for all m € Z, and we choose {z1,x2} as the
initial cluster. Theorem 2.1 asserts that each z,, is an integer Laurent polynomial
in r; and zy. For m € Z — {1,2}, let a(m) € Z? denote the denominator vector of
the cluster variable z,,.

If b =1, an easy calculation (done in many places before) gives

iL‘Q—Fl $1+.’L’2+1 [L‘l—l—l
T3 = y g = ———————, I5 = ———
Ty T1T2 X2

y Tomas =Ty (M EZ) .

(As an easy exercise, one can check that these expressions agree with Theorem 2.2.)
For the rest of this section we fix b and assume that b > 2.

Let S_y(x), So(x), Si(x),... be normalized Chebyshev polynomials of the second
kind defined recursively by

(3.2) S_1(z) =0, So(z)=1, Spii(z)=2aS,(z)— Sp_1(x) (n>0).

As an easy consequence of (3.1), the denominator vectors «(m) of the cluster vari-
ables are given as follows.

Proposition 3.1. For each n > 0, we have
(3.3) a(n+3) = (Sn(b), Sn-1(b)),  a(=n) = (Sp-1(b), Su(b)) -
We identify the lattice Z? with the root lattice for the Cartan matrix

2 —b
=(5 %)

by identifying the standard basis vectors (1,0) and (0,1) with the simple roots
and as (for the properties of rank 2 root systems see, e.g., [22, Section 3.1]). Under
this identification, the denominator vectors in (3.3) are precisely the real positive
roots. This follows easily from the relations (for all n > 0)

(34) sja(—n)=a(n+4) =oca(—n—1), ssa(n+3) =a(—n—1) = ca(n +4),

where s; and s, are simple reflections acting on Z? by matrices

C(—1 b (10
51 = 0 1/° S9 = b —1)/°

and o : Z* — Z* acts by interchanging the two components of a vector (cf. [22,
(3.1))).

Turning to Theorem 2.2, we note that the quiver @, = Q(B) associated to B has
two vertices 1 and 2, and b arrows from 1 to 2. When b = 2 (resp. b > 2), this quiver
is called the Kronecker quiver (resp. generalized Kronecker quiver).

A Qp-representation M over a field K consists of a pair of finite dimensional
K-vector spaces (M, Ms) and a b-tuple of linear maps (¢1,...,pp) from M; to
M,. We will use the following two interpretations of the tuple (pi,...,¢p): the
column, interpretation identifying it with a linear map ¢ : M; — M2, and the row
interpretation identifying it with a linear map ¢" : MY — M,.
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The dimension vector of M is an integer vector dim M = (dim My, dim M,) € Z2.
A subrepresentation N of M is a pair of subspaces (N7, Ny) such that N; C M; for
i=1,2, and pr(Ny) C N; for k € [1,b]. In accordance with (2.3), we associate with
every Qp-representation M of dimension d = (dy, ds) a Laurent polynomial

(3.5) Xz, 29) = 27 M3y ® Z Yo( M) b2 gher,

e=(e1,e2)

Since the vectors a(m) for m € Z — {1,2} are real positive roots, by Kac’s theo-
rem [18], each of them is the dimension vector of a unique (up to an isomorphism)
indecomposable Q,-representation M (m). In particular, M(3) = S; is a simple rep-
resentation of dimension «y, and M(0) = S5 is a simple representation of dimension
as. It is well known (see e.g., [8]) that each a(m) is a real Schur root, i.e., all M(m)
are rigid, but we will not use this fact. The representations M (—n) (resp. M (n+3))
for n > 0 are also known as preprojective (resp. preinjective) indecomposable Q-
representations. The rest of indecomposable (Jp-representations are of dimension
(n,n) for some n > 1. They are called regular and will be considered in the next
section.

Theorem 3.2. For every m € Z — {1,2}, the cluster variable x,, is equal to
XM(m)($1,$2)-

Our main tool in proving Theorem 3.2 will be the following functors on the category
of Qp-representations.

Definition 3.3. Let M = (M, Ms; @1, ..., ¢p) be a Qp-representation.
e The duality functor D sends M to M* = (M3, M{; 0%, ..., ¢5).
e The functor 7" sends M to M = (M}, My ;07, ..., ;) given by
M = My, My = coker(y®: My — MJ),
and ()" : (M]")® = M2 — M, being the natural projection.
e The functor 7~ sends M to M~ = (M, M5 ;¢1,...,¢, ) given by
My = My, My =ker(¢": M} — M),
and (¢7)°: M; — M? = (M; )" being the natural embedding.
All these functors are additive and send direct sums to direct sums. The functors

Tt and T~ are slight modifications of reflection functors from [2]. The following
properties are immediate from the definition.

Proposition 3.4. (1) D*=1d, T-=DT*D, T'=DT D.
(2) The composition TTT~ sends a Qy-representation M = (My, Ma; o1, ..., op)
to (My, M}/ ker(¢"); 01, . .., 4y), with " being the natural projection MP —
My /[ ker(¢").
(3) The composition T-T" sends a Qp-representation M = (M, Ma; @1, ..., ¢
to (im(¢©), Moy by, ..., Uy), with ¥° being the natural embedding im(¢°) —
M3

Proposition 3.5. The following conditions on a Qy-representation M are equivalent:
(1) M =T~N for some representation N.
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(2) M =T T+M.

(3) The map ¢°: My — MY is injective.

(4) dim TTM = os;(dim M).

(5) TTM' # 0 for any non-zero subrepresentation M' of M.
(6) Sy is not a direct summand of M.

Proof. The implication (2) = (1) is trivial. The implication (1) = (3) is imme-
diate from the definition of 7~. The equivalence (2) <= (3) follows from Proposi-
tion 3.4 (3). The equivalences (3) <= (4) <= (5) are immediate from the definition
of T*. The implication (5) = (6) is clear since TS; = 0. Finally, (6) = (3)
is proved by contradiction as follows. Suppose (3) does not hold, and choose a
one-dimensional subspace M| C ker(¢¢). Let M{ C M; be a subspace such that
M, = M{® M. Then M is a direct sum of subrepresentations (M7, 0) and (M{', Ms),
and (M7, 0) is isomorphic to Sy, in contradiction to (6). O

Corollary 3.6. FEvery indecomposable Qy-representation M not isomorphic to Sy
satisfies equivalent conditions in Proposition 3.5; furthermore, TTM is also inde-
composable.

Proof. The first statement follows from condition (6) in Proposition 3.5. Now let
N = T*TM, and suppose that N is the direct sum of two non-zero representations
N" and N”. Applying the duality functor, we get DN = DN’ & DN". By Propo-
sition 3.4 (1), the representation DN = DTTM = T~ DM satisfies condition (1) in
Proposition 3.5. Therefore, by condition (5), both T*"DN’" and TT*DN" are non-
zero. Applying condition (2) and Proposition 3.4 (1), we obtain M = T-N =
T-N'®T N"=DTt*DN' @ DT+tDN", in contradiction with the assumption that
M is indecomposable. 0J

We now obtain an explicit description of the indecomposable representations M (m)
for m € Z — {1, 2}.

Proposition 3.7. For every n > 0, we have
(3.6) M(—n) = (T")"Sy, M(n+3)=(T")"S;.

Proof. Remembering the assumption b > 2, we start by observing that all the roots
a(m) are distinct, hence the corresponding indecomposable representations M (m)
are mutually non-isomorphic. In particular, all M (—n) for n > 0 are not isomorphic
to Sp. To prove that M(—n) = (TT)"Ss, we proceed by induction on n. The state-
ment is trivial for n = 0. Now assume that it holds for some n > 0. By Corollary 3.6,
the representation T M (—n) is indecomposable. Applying Proposition 3.5 (4) and
(3.4), we conclude that

dim T*M(—n) = os1(dim M(—n)) = os;(a(—n)) = a(—n — 1).

Therefore, T*M(—n) = M(—n — 1), proving the first equality in (3.6). To prove the
second equality in (3.6) note that
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Turning to the proof of Theorem 3.2, we start by rewriting (3.5) as

(3.7) Xug(@r,29) = ay My ® Pay(af, 23),
where Py, is a polynomial given by
(3.8) Pu(z1, 2) = Z Xe(M)zd27e2 81

e=(61762)

To work with Py(z1, 22), we need to recall some properties of the Euler-Poincaré
characteristic. We follow the treatment in [16, Section 4.5, where the Euler-Poincaré
characteristic x(X) is defined for any complex algebraic variety X (not necessarily
smooth, projective or irreducible). The following facts are shown in loc.cit.

(3.9) If A is a finite dimensional affine space, then x(A) = 1.

(3.10) If a variety X is a disjoint union of finitely many
locally closed subvarieties X;, then y(X) = Z X(X;)

(3.11) If X — Z is a fiber bundle (locally trivial in the Zariski topology)
with fiber Y, then yx(X) = x(Y)x(2).

As a consequence of (3.9) and (3.10), the Schubert cell decomposition of the Grass-
mannian implies that

(312 WG =

Now let M = (My, My; 1, ..., pp) be an arbitrary @Qp-representation of dimension
(dy,ds). For every two nonnegative integers p and r, we set

dimV
. )

b

(3.13) Zpo (M) = {U € Gr, (M) : dim(>_ x(U)) = da — p},
(3.14) Z} (M) = {U € Grg,—,(My) : dim([") ¢x(U)) = p}.

Proposition 3.8. We have
(3.15) Pr(z1, 22) ZX (M) (21 + 1 ZX )21 (29 + 1)P.

Proof. For every dimension vector e = (eq, e5), we split the Grassmannian Gre(M)
into the disjoint union of subvarieties
(3.16) Grpe(M) = {(N1,N;) € Gre(M) : Ny € Z, e, (M)}

The projection (N, Na) — N; makes each Gr,, (M) into a fiber bundle over Z,, ., (M).
Since, for a given Ny € Z,., (M), the only condition on Ny is that 30_ ¢x(N1) C No,
the fiber of this bundle is the Grassmannian of (e; — dy + p)-dimensional subspaces
in a p-dimensional vector space. Applying (3.10), (3.11) and (3.12), we obtain

p
e ICERCTIED I (R NEET
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Substituting this expression into (3.8), we obtain

Putrs) = 3 [, l y )Xo 0Dt =2 Xz (M) +17

Db,€1,€2

proving the first equality in (3.15). The second equality can be proved in a similar
way. Alternatively, it is easy to see that the correspondence U +— U+ C Mj is an
isomorphism between Z,,.(M) and Z, (DM); this implies the second equality in
(3.15) in view of the (easily proved) observation

(317) PDM(Zl7ZQ) = PM(ZQ,Zl).

The key ingredient of the proof of Theorem 3.2 is the following proposition.

Proposition 3.9. Suppose M is a Qy-representation of dimension (di, ds) satisfying
equivalent conditions in Proposition 3.5. Then we have

Z9

(318) PT+M(217 ZQ) = (21 + 1) d1222P (
Proof. Consider the representation TTM = M™ as defined in Definition 3.3. By

Proposition 3.5 (4), we have dim TtM = (dy,bdy — dy). Since M;" = M, the
statement of the following lemma makes sense.

Lemma 3.10. Under the condition in Proposition 3.9, the variety Z, (M) is equal
to Zpiir—dydo—r (TTM).

Proof. Tt suffices to show the following: if U C M, belongs to Z], (M) then
b
dimZ@ )) =b(dy —r) — p.
k=1

By Definition 3.3, we have

> @b (U) = (") (U") = U/ (U Nim(¢")),
hence

dim( Z o (U)) = b(dy — ) — dim(U” Nim(¢°)).
Remembering the deﬁmtlon of ¢°, we see that
U’n im(p ﬂ cp
Since ¢° is injective by Proposition 3.5 (3), we conclude that
dim(U* i) = dim(() 97 (0) =
k=1

finishing the proof of Lemma 3.10. 0
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To prove (3.18), it suffices to combine Lemma 3.10 and formula (3.15):
Pron(z1,22) = Y x(Zy, (M) (21 + 1P =h 227
p,r

&iﬁ%r

(o b 1) Y 2, (M) (2 + 1 (

1 b
= (21 + 1) N 282 Py, (—(21 +1) ,zl) ,
%)

as claimed. m

Proof of Theorem 3.2. To show that x_,, = Xjy_n) (21, 22) for n > 0, we proceed
by induction on n. The check for n = 0 is straightforward. Thus we assume that
T_p = Xpr(—n)(1, ) for some n > 0, and will show that x_,_1 = Xyr—p_1)(21,22).
To see this, we first note that x_,_; = X M(,n)(xo, x1) by the obvious symmetry of
the exchange relations (3.1). Now we apply Proposition 3.9 to M = M(—n) and
TTM = M(—n—1) (see Corollary 3.6 and Proposition 3.7). Using (3.7), (3.18) and
(3.1), we obtain

_ ,.—d2,  —bda+d b ,.b
XM(fnfl)(xla x?) = 2:L‘2 ? 1PM(fnfl)CL‘la 113'2)

b 1 b
R e (C

X2

2 +1
)

= Xn(—n) ( ,301) = Xps(—n)(T0, 1) = 21,
as desired.

To show that 3 = Xar(nts) (@1, 22) for n > 0, we note that by (3.17) the equality
M(n + 3) = DM(—n) implies that Xp/(ny3)(21,22) = Xpr(—n)(22,21). On the other
hand, an obvious symmetry of the relations (3.1) implies that the automorphism
of Q(z1,x9) that interchanges 1 and x, sends x_,, to x,3; therefore, the Laurent
expansion of x,,,3 in x; and x5 is also obtained from that of z_,, by interchanging x;
and 9. This completes the proof of Theorem 3.2. O

4. CLUSTER VARIABLES ASSOCIATED WITH THE KRONECKER QUIVER

In this section we sharpen the results in Section 3 in the special case b = 2. Thus
we work with the cluster algebra A(B) associated with the matrix

(4.1) B— (_02 g) .

In this case, we obtain the following explicit expression for cluster variables.
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Theorem 4.1. In the cluster algebra associated to the matriz B in (4.1), the cluster
variables are given by

1 — _
(4.2) Ty = a7z (x?(nﬂ) + Z (n * T) (n q) x?’:ﬂ?) 7
qg+r<n q r
I n n—r\/n+1-— -
(4.3) A R (553( Wy Z ( q ) ( r q) 3;?‘1333 )

qg+r<n
for alln > 0.

Proof. First of all, an obvious symmetry of the relations (3.1) implies that the map
Ty — T3_,, extends to an automorphism of our cluster algebra. Applying this
automorphism to both sides of (4.2) yields (4.3), so it suffices to prove (4.2).

We use Theorem 3.2 to express x_,, in terms of the representations of the Kronecker
quiver ()s consisting of two vertices 1 and 2 and two arrows from 1 to 2. As a
consequence of (3.2), we have S,,(2) = n+1 for all n > —1. Thus, by Proposition 3.1,
z_, has the denominator vector (n,n+ 1), and so the corresponding indecomposable
()2 representation M (—n) is of dimension (n,n + 1) as well. An explicit form of this
representation can be given as follows.

Proposition 4.2. Let M(—n) = (M, Ms; @1, ¢2) be the indecomposable Qo repre-
sentation of dimension (n,n+1). Then there exist a basis {uy,...,u,} in My and a
basis {v1, ..., vns1} in My such that p1(uy) = v and po(ur) = vgr1 for k € [1,n).

This result is due to L. Kronecker [19]; for a modern treatment see [15, Section 5.4].
A self-contained proof can be given by induction on n with the help of Proposition 3.7.
The key ingredient for the proof of (4.2) is the following result.

Proposition 4.3. Let M(—n) be a Qo-representation in Proposition 4.2. For every
nonnegative integers p,r, we have (see (3.13))

r—1 n+1-—r
4.4 Zopr(M(— =
(4.0 Wz = (700 ) ()
(with the convention that the right hand side is equal to dpnt1 forr = 0).

Proof. The statement is trivial for r = 0, so we assume that » > 0. We use the
Schubert cell decomposition of the Grassmannian Gr,(M;). We label the Schubert
cells by r-element subsets J C [1,n]. The elements of the cell O(.J) are parameterized
by the arrays of complex numbers

C=(cy) (€ J i€[ln]—J i<j),
with the corresponding U(C) € O(J) being an r-dimensional subspace of M; with

the basis
{Uj'+'jz:(%jlﬁ Zj c J}.

Breaking the subvariety Z,, (M (—n)) C Gr,(M;) into the disjoint union of its inter-
sections with the Schubert cells, and using (3.10), we see that

X(Zpr(M(=1))) = > X(Zp(M(=n)) N O(J)).
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Let ¢(J) denote the number of connected components of a subset J € [1,n] (by

a connected component of J we mean a maximal interval [a,b] = {a,a + 1,...,b}
contained in J). The desired formula is a consequence of the following two results:
(4.5) X(Zpr(M(=n)) N O(J)) = Ge(s) nt1-p-r;

(4.6) the number of r-element subsets J C [1,n] with ¢(J) =t

) Lt r—1\(/n+1-r
1S equal 1O .
q t—1 !

Since (4.6) is a purely combinatorial statement, let us dispose of it first. Let us
write an r-element subset J as the union of its connected components:

J=la1, 0] U---Uay, by,
so we have
1< <bhh+1l<a<b+l<---<a<b+1<n+1,

and
(h+1—a)+--+ (b +1—a)=r

Let by + 1 —ap =1y for kK =1,...,t. The number of t-tuples (rq,...,r;) of positive
integers with sum r is known to be (:j) (these tuples are in a bijection with (¢ —1)-
element subsets of [1,r — 1] via (r1,...,7) +— {r1,71+7re,...,r1+ -+ +1.1}). And
for every given such tuple, the number of corresponding subsets J is equal to (”+t1_7“):
they are in a bijection with t-element subsets of [1,n + 1 — r| via

[a1,b1] U Ulag, b — {ar,a0 — 11, .. cyap — 11 — - — 11}

This proves (4.6).

Turning to the proof of (4.5), we restate it as follows. Fix an r-element subset
J C [1,n] and break the Schubert cell O(J) into the disjoint union of the fibers of
the function d : O(J) — Z>q given by

d(U(C)) = dim(p1 (U(C)) + ¢2(U(C))).

We need to show that x(d~(r + ¢(J)) = 1, while all the other fibers have Euler
characteristic 0. By Proposition 4.2, the subspace ¢1(U(C)) + ¢2(U(C)) C My is
+

spanned by the vectors {e;(C),e; (C) : j € J}, where we use the notation

€j (C) = ’Uj + Z Cijvi ej(C> = ’Uj+1 + Z CijU7;+1.

Denote J* ={j+1:j € J} C[2,n+1]. Note that J— J is a set of representatives
of the connected components of J, so |J — J*| = ¢(J). Consider the set of spanning
vectors

E(C)={ej(C)(G€T), e;(C)(j €T =T}

of cardinality r + ¢(J). The vectors from E(C) are linearly independent since they
have distinct leading terms in the expansion in the basis vy, ..., v,41 of M;. Using
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these leading terms, it is easy to see that for each remaining spanning vector e;(C)
with j € J N J7T, there is a unique vector of the form

/ _ § /
i<j, i¢JUJ+

obtained from e;(C) by adding a linear combination of the vectors e (C),e,(C) €
E(C) with j° < j. Furthermore, each coefficient cj; is of the form

(4.7) cij = Cij + P,

where P;; is a polynomial in the variables ¢ ; for i < j° < j. Clearly, replacing
each e;(C) for j € J N J* by €}(C) does not change the rank of the collection
{e;(C),ef (C) : j € J}, hence we have

(4.8) d(U(C)) =r+c(J) +1k(ej(C) : j € JN JY);

in particular, we see that r 4+ ¢(J) is the minimal value of the function d on O(/J).
In more geometric terms, the above statements can be rephrased as follows. For
each j € JN J*' let V(j) denote the coordinate subspace of M, spanned by the
vectors v; for i < j, i ¢ JU J. The correspondence U(C) — (ej(C) : j € JNJT)
defines a map 7 : O(J) — [[;cjns+ V(j)- As a consequence of (4.7), 7 is a fiber
bundle with fibers being finite dimensional affine spaces. By (3.9) and (3.11), we
have x(X) = x(7(X)) for every subvariety X C O(J). In particular, in view of
(4.8), x(d7Y(r 4+ ¢(J) + s)) is equal to the Euler characteristic of the subvariety of
[1;csns+ V(4) consisting of all collections of vectors having rank s. For s = 0, the
latter subvariety is just one point, implying x(d~*(r + ¢(J)) = 1. And for s > 0, the
subvariety of rank s collections in []; ;- ,+ V(j) has Euler characteristic 0 by (3.11)
since it has an obvious free C*-action, and x(C*) = 0. This completes the proof of
Proposition 4.3. 0

To finish the proof of (4.2), we first use Theorem 3.2 and (3.7) to obtain
Ton = Xaren) (@1, 22) = 2725 " Paypy (23, 23).
Using (4.4) and (3.15), we get
(4.9) vy =y "y (o] + )M
r—1 n+1-r\, , 9
1)Pxy").
e (I v
p>0, r>1

The desired formula (4.2) follows from (4.9) by elementary manipulations with
binomial coefficients. Expanding the powers of (2% 4 1), we obtain

n—+1
n_n+l 2q 2q _2r
T_pnTiTy = E ( )xl + E (g rT7 X5 ,
q>0 q q>0, r>1

where the coefficients a,, are given by

()



LAURENT EXPANSIONS VIA QUIVER REPRESENTATIONS 15

Using an obvious identity

()

we can rewrite the last sum as

n+1-—r r—1 n—|—1—7’—q
E b e |
q s \t—p—T p—9q

Using the well-known Vandermonde identity

;(Z) <cfk) - (ajb)
o= (7,0

implying (4.2). This completes the proof of Theorem 4.1. O

we conclude that

5. REGULAR REPRESENTATIONS OF THE KRONECKER QUIVER

In this section we complement Theorem 4.1 by computing the Laurent polynomials
X associated with the regular indecomposable representations of the Kronecker
quiver ()9, i.e., those whose dimension vectors are imaginary positive roots. In our
case, the dimension vectors in question are (n,n) for n > 1, and for each n, the
indecomposable representations up to isomorphism are parameterized by CP! (see
[18] or [15]). It is easy to see that all the regular indecomposable representations M
of the same dimension (n,n) have the same Laurent polynomial X,;. To compute
it, we choose the following representative M ™&(n) (cf. Proposition 4.2).

Definition 5.1. Let M™8(n) be a Qo-representation of dimension (n,n) defined as
follows: the space M; (resp. Ms) has a basis {uy,...,u,} (resp. {vi,...,v,}) such
that @1 (uy) = vy and o(ug) = vgyq for k € [1,n], with the convention that v, 1 = 0.
We denote

(51) Sn — XMreg(n)(Jfl,xQ).
We prove the following analogue of Theorem 4.1.
Theorem 5.2. The Laurent polynomials s, are given by

n n—r\[n—q\ 2 -
52 n — n n q T
(5.2) S Ty Ty § ( q )( - >11$2

gt+r<n
foralln > 1.

Proof. The proof follows that of Theorem 4.1. The analogue of Proposition 4.3 is as
follows.

Proposition 5.3. For every nonnegative integers p,r, we have (see (3.13))

(53) s = (, 0 ) ("),

n—p-—r D
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Proof. The proof of Proposition 5.3 follows that of Proposition 4.3 almost verbatim
with obvious modifications coming from the fact that pa(u,) = 0. First, (4.5) gets
replaced by

(5.4) X(Zpr (M™% (1)) N O(J)) = de()—e(S)n—p—rs
where we set
1 ifneJ;
5.5 J) = ’
(5:5) =) {0 ifndJ.

We then show the following analogue of (4.6):
(5.6) the number of r-element subsets J C [1,n] with ¢(J) —e(J) =t

is equal to V(T
is equ ; ; )

This can be proved by a slight modification of the proof of (4.6). Alternatively, one
can deduce (5.6) from (4.6) by the following simple argument. Let ¢(r, n,t) denote
the number of subsets J in (4.6), that is, the number of r-element subsets J C [1,n]
with ¢(J) = t. Then it is easy to see that the number of subsets J in (5.6) is equal
toc(r,n—1,t)+c(r,n,t+1)—c(r,n—1,t+1). Using (4.6), we see that the number
in question is equal to

r—1 n—r n r—1 n+1-—r _ r—1 n-—r
t—1 t t t+1 t t+1
r—1 n—r r—1 n—r r [n—r
et —|— —= ,
) (G R O [ G R O TG
as desired.
Formula (5.3) is an immediate consequence of (5.4) and (5.6). O

Arguing as in Section 4, we obtain the following analogue of (4.9):

(5.7) Sn = xnlxn 3 (n - ; - T) (n ; T) (22 4+ 1)Pz2.

12 pr>0

Formula (5.2) follows from (5.7) in the same way as (4.2) follows from (4.9). O

Theorem 5.2 allows us to sharpen the results in [22] on the canonical basis in
the cluster algebra A associated to the Kronecker quiver. Following [22], we call a
non-zero element x € A positive if its Laurent expansion in terms of every cluster
{Zm, Tmi1} has positive (integer) coefficients; furthermore, a positive element x is
indecomposable if it cannot be written as a sum of two positive elements. In [22,
Theorem 2.3] it is proved that all indecomposable positive elements form a Z-basis
in A, referred to as the canonical basis. As shown in [22, Theorem 2.8], the canonical
basis consists of all cluster monomials 22zl ., (m € Z, p,q > 0) together with a

m*m+1
sequence of elements z, (n > 1) defined as follows. First of all, let

2 2
1
(5.8) O Iy

T1T2
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the fact that z; € A follows from an easily checked equality z; = xox3 — r125. The
elements z, for all n > 1 are defined by

(5.9) z2n = Pu(21),

where the P, are normalized Chebyshev polynomials of the first kind, related to the
polynomials S, (z) in (3.2) by

(5.10) P,(x) = Sp(x) — Sp—a(z) (n>0)

(with the convention that S_s(x) = 0).

We can now state an explicit formula (unnoticed in [22]) for the Laurent expansion
of each z,.

Theorem 5.4. The Laurent expansion of each z, for n > 1 in terms of x1 and xs
s given by

—1= —1=
(5.11) 2z = 2y 2" (2" +23"+ Y Lc r) (n q> o)

n—q-—r r
g+r<n—1 q q

Proof. First of all, in view of (5.8), formula (5.11) holds for n = 1, and we also have
z1 = $1. A direct calculation using (5.2) shows that the right hand side of (5.11) is
equal to s, — $,_o for n > 2 (with the convention that sop = 1). Taking into account
(5.9) and (5.10), we see that it remains to show that

(5.12) Sp = Sn(z1) (n>0).
By (3.2), it suffices to show that the elements s, satisfy the recursion
Spt1 = 2185 — Sp—1 (n>1).
This is an easy consequence of (5.2), finishing the proof. O

We conclude with three remarks.

Remark 5.5. Explicit expressions (4.2), (4.3) and (5.11) make obvious the facts
about the Newton polygons of the elements of the canonical basis in [22, Proposi-
tions 3.5, 5.1 and 5.2].

Remark 5.6. In view of (5.9), (5.10) and (5.12), the elements z, and s, of the
cluster algebra A are related by

(5.13) 21 =81, Zn = Sp — Sp—2 (N >2).

It follows that replacing each z, by s, transforms the canonical basis into another
Z-basis of A. The relationship between this new basis and the canonical basis is anal-
ogous to the relationship between the (dual) semicanonical and the (dual) canonical
basis for quantum groups, cf. [17].

Remark 5.7. In view of formula (3.5), Theorems 4.1 and 5.2 provide a simple
closed expression for the Euler-Poincaré characteristic x(Gre(M)) of each “quiver
Grassmannian” in an arbitrary indecomposable representation M of the Kronecker
quiver. One can also use the proofs of these theorems to obtain a nice combina-
torial interpretation for x(Gre(M)). Namely, if we realize M as in Proposition 4.2
and Definition 5.1, then in each case, the spaces M; and M, are supplied with the
distinguished bases {u;} and {v;}, respectively. The calculations in the proofs of
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Theorems 4.1 and 5.2 imply that x(Gre(M)) is equal to the (finite) number of points
(N1, N3) € Gro(M) such that both Ny and N, are coordinate subspaces with re-
spect to these distinguished bases. This expression for x(Gre(M)) can be rephrased
as the following combinatorial expression for the polynomial Pys(z1, 22) (see (3.8)).
Consider the polynomials F'(wy,...,wy) given by

(5.14) F(wy,...,wy) =Y []wr

where D runs over all subsets of [1, N| containing no two consecutive integers (these
polynomials appear in a different context in [13, Example 2.15]). Then, for every
n > 0, we have

PM(fn)(zla 22) == F(wla cee 7w2n+1)|wk:z<k>v
(5.15) Prrni3) (21, 22) = F(wi, -+, Wani1) g =241y
Pupre(nr1) (21, 22) = F(wy, . ... 7w2n+2)|wk:z<k>a

where (k) stands for the element of {1,2} congruent to £ modulo 2. In view of (3.7),
we also have

T_p = xl_nxQ_n—lF<w17 e 7w2n+l)|wk:x%k>7
(516) Tpig = x;n—lx;nF(wl, c 7w2”+1)’wk=x%’k+1>7
Sp+1 = :El_"‘lxg_"_lF(wh RN 7w2n+2)|wk:x2 .

(k)
These formulas are easily seen to be equivalent to the combinatorial expressions for
cluster variables in [21].
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