CORRECTION DE L'EXAMEN PARTIEL

M1-Algèbre 2017

Problème 1.

1. On veut montrer que $\mathbb{Z}[i]$ est euclidien. Utilisons comme stathme la norme de $\mathbb{Z}[i]$ donnée par

$$N(a+ib) = a^2 + b^2$$
, $a, b \in \mathbb{Z}$.

On se fixe z, z' non nuls dans $\mathbb{Z}[i]$. On pose alors ¹

$$\frac{z'}{z} = x + yi, \ x, y \in \mathbb{R}.$$

On peut trouver a, b dans \mathbb{Z} tels que

$$|x-a| \le \frac{1}{2}, |y-b| \le \frac{1}{2}.$$

Il en résulte que

$$N\left(\frac{z'}{z} - (a+ib)\right) = N\left((x-a) + i(y-b)\right) \le \frac{1}{4} + \frac{1}{4} < 1.$$

Si l'on pose q := a + ib et r := z' - qz, on a donc bien

$$z' = qz + r, N(r) = N(z)N(\frac{z'}{z} - q) < N(z).$$

Conclusion, $\mathbb{Z}[i]$ est euclidien.

- 2. Les éléments ± 1 , $\pm i$ sont clairement inversibles dans $\mathbb{Z}[i]$. Réciproquement, si u := a + ib est inversible dans $\mathbb{Z}[i]$, alors il existe u' dans $\mathbb{Z}[i]$ tel que uu' = 1. Comme la norme d'un élément de $\mathbb{Z}[i]$ est dans \mathbb{N} , il vient que N(u)N(u') = 1 implique N(u) = 1. On a donc $a^2 + b^2 = 1$, ce qui donne bien $(a, b) = (\pm 1, 0)$ ou $(a, b) = (0, \pm 1)$ comme voulu.
- 3. Supposons x pair. On a alors $y^2 \equiv -1$ modulo 4. Or, -1 n'est pas un carré modulo 4. Donc, x est impair. Du coup, y^2 est pair, donc y est pair.
- 4. Supposons que 1+i divise $y\pm i$ dans $\mathbb{Z}[i]$. Alors, en prenant la norme, on aurait 2=N(1+i) divise $y^2+1=N(y\pm i)$. Absurde, car y est pair.
- 5. Par l'absurde, supposons 1 + i = zz', avec z et z' non inversibles. On a alors

$$2 = N(1+i) = N(z)N(z'),$$

ce qui oblige, par exemple, N(z)=1. Mais dans ce cas $z\overline{z}=1$ et donc z est inversible, absurde. De même, 1-i est irréductible.

^{1.} En fait, a et b sont dans \mathbb{Q} , mais ce n'est pas très important ici.

- 6. Montrons que y + i et y − i sont premiers entre eux. Pour cela, on peut supposer, par l'absurde, d ∈ Z[i] premier divisant y+i et y−i. En particulier, d divise (y+i)−(y−i) = 2i. Donc, N(d) divise N(2i) = 4. Cela implique N(d) = 4 ou N(d) = 2. Le premier cas donne d = 2 modulo les unités, donc d = (1+i)(1-i), absurde car d est premier; donc irréductible. Le second cas donne d = 1 + i modulo les unités. Absurde par ce qui précède. Maintenant, comme (y+i)(y−i) = x³ et que y + i et (y−i) sont premiers entre eux dans l'anneau factoriel Z[i], il en résulte que y + i est un cube, à unité près. Or, les inversibles de Z[i] sont tous des cubes (par exemple, car Z[i]* est d'ordre ' qui est premier avec 3). Donc, y + i est un cube.
- 7. Il existe donc a et b dans \mathbb{Z} tels que $(y+i)=(a+ib)^3$. La partie imaginaire donne $1=3a^2b-b^3$, donc, soit b=1 avec $3a^2-b^2=1$, soit b=-1 avec $3a^2-b^2=-1$. Le premier cas est impossible, le second donne (a,b)=(0,-1). On a alors y=0, puis, x=1.

Problème 2.

- 1. Le nombre n_p de p-Sylow divise q et il est différent de 1 car G est simple. Donc, $n_p = q$, or q < p, donc q ne peut pas être congru à 1 modulo p.
- 2. (a) Le nombre n_q de q-Sylow divise p^2 et est différent de 1. Donc, $n_q = p$ ou p^2 . Or p < q, donc p ne peut pas être congru à 1 modulo q. Conclusion, $n_q = p^2$.
 - (b) Deux q-Sylow sont d'ordre q premier. Donc, leur intersection est triviale et de plus tous les éléments non triviaux d'un q-Sylow sont d'ordre q, par Lagrange. Il y a donc $n_q(q-1)=p^2(q-1)$ éléments d'ordre q.
 - (c) Comme le groupe G est simple, il ne peut contenir qu'un seul p-Sylow. Or, un p-Sylow contient p^2 éléments, dont $p^2 1$ d'ordre divisible par p. Conclusion, G contient au poins p^2 éléments dont l'ordre est divisible par p.
 - (d) Faisons le bilan : il y a l'élément neutre, plus, au moins p^2 éléments d'ordre divisible par p, et $p^2(q-1)$ éléments d'ordre q. Comme p et q sont des premiers distincts, ces ensembles sont disjoints et cela fait en tout au moins $1+p^2+p^2(q-1)=p^2q+1>p^2q$ éléments. Absurde.

Problème 3.

- 1. Une orbite est en bijection avec un quotient de G. Donc, les orbites d'un p-groupe sont de cardinal 1 ou divisible par p. Par la formule des classes, comme le cardinal de X n'est pas divisible par p, il existe forcément une orbite de cardinal 1, donc forcément, un élément x de X fixé par tout G.
- 2. (a) Le groupe G est un sous-groupe de GL(V). A ce titre, il agit sur V et comme $\{0\}$ est une orbite singletonne, il agit sur $X := V \{0\}$. Or, X est de cardinal $p^n 1$, donc, non divisible par p. Conclusion, G possède un point fixe dans X.
 - (b) Le morphisme de groupe provient du calcul par blocs : Si l'on multiplie g et g', on multiplie $\operatorname{mat}_b(g)$ et $\operatorname{mat}_b(g')$, et donc $\operatorname{mat}_{b'}(g)$ et $\operatorname{mat}_{b'}(g')$.
 - (c) On montre l'initialisation en 1. Si V de dimension 1, $\mathrm{GL}(V)\simeq \mathbb{F}_p^*$ est de cardinal p-1, qui n'est pas divisble par p. Donc G est réduit à un élément neutre (un p-groupe trivial!).
 - L'hérédité provient directement de la question précédente en changeant b' en une base de trigonalisation, obtenue par récurrence.