Polytech Lyon, MAM3A, 2021-2022

Analyse Numérique (AN)

Partiel 3 - janvier 2022

Durée 1h et 30min - Calculettes interdites, une page de notes manuscrites autorisée

Exercice 1.

Pour toute fonction continue $f:[-1,1]\to\mathbb{R}$ on considère la formule simple de quadrature

(1)
$$\int_{-1}^{1} f(x) dx \sim \alpha f\left(-\frac{1}{3}\right) + \beta f(0) + \gamma f\left(\frac{1}{3}\right)$$

avec $\alpha, \beta, \gamma \in \mathbb{R}$.

- a) Trouver α, β et γ tels que la formule (1) soit d'ordre au moins égal à 2.
- b) Quel est l'ordre de la formule (1) avec α, β et γ trouvés au point a)?

Exercice 2.

On se donne deux fonctions $g, \varphi : \mathbb{R} \to \mathbb{R}$ avec g de classe C^3 et φ de classe C^2 . Soit $r \in \mathbb{R}$ une racine de la fonction g (donc g(r) = 0) et supposons aussi que r est un point fixe de φ (donc $\varphi(r) = r$). On suppose en plus que $g'(r) \neq 0$. Nous considérons la généralisation suivante de la méthode de Newton pour construire par récurrence une suite (x_n) qui approche r:

(2)
$$\begin{cases} x_{n+1} = x_n - \frac{g(x_n)}{g'(\varphi(x_n))}, & n \in \mathbb{N} \\ x_0 & \text{donn\'e} \in \mathbb{R}. \end{cases}$$

On définit l'ensemble

$$D = \{x \in \mathbb{R}, \quad g'(x) \neq 0\} \quad (\text{donc } r \in D)$$

et pour tout y > 0 on note $B_y = |r - y, r + y|$.

- a) Montrer qu'il existe $\alpha > 0$ tel que $B_{\alpha} \subset D$.
- b) Montrer qu'il existe $\beta > 0$ tel que si $x \in B_{\beta}$ alors $\varphi(x) \in B_{\alpha}$.
- c) On introduit la fonction $f: B_{\beta} \to \mathbb{R}$ définie par

$$x \mapsto f(x) = x - \frac{g(x)}{g'(\varphi(x))}.$$

Montrer que f est bien définie.

Montrer que r est un point fixe de f.

d) Calculer f'(r) et en déduire qu'il existe γ avec $0 < \gamma < \beta$ et tel que si $x_0 \in B_{\gamma}$ alors la suite (x_n) construite en (2) est bien définie, avec $x_n \in B_{\gamma}$ pour tout $n \in \mathbb{N}$; montrer en plus que $x_n \to r$ pour $n \to +\infty$. Que peut-on dire de l'ordre de cette convergence?

Exercice 3.

On considère l'équation différentielle scalaire : trouver y = y(t) une fonction de classe C^1

telle que

$$(3) y' = y^2 - 1, \quad t \in \mathbb{R}.$$

- a) Trouver toutes les solution de (3) avec leurs intervalles d'existence. (Indication : la fonction $x \mapsto x^2 1$ s'écrit sous la forme $\alpha(t)\beta(x)$ avec $\alpha(t) = 1$ et $\beta(x) = x^2 1$).
- b) Trouver la solution y de (3) satisfaisant en plus la condition initiale

$$(4) y(0) = 0$$

(problème de Cauchy). Cette solution est-elle globale?

Exercice 4.

On considère $F:\mathbb{R}\to\mathbb{R}$ une fonction de classe C^2 qui en plus est lipschitzienne, c'est à dire, il existe une constante $L\geq 0$ telle que

$$|F(u) - F(v)| \le L|u - v|, \quad \forall u, v \in \mathbb{R}.$$

Considérons le problème de Cauchy : trouver $y:\mathbb{R}\to\mathbb{R}$ de classe C^1 telle que

(5)
$$\begin{cases} y' = F(y), & t \in \mathbb{R} \\ y(0) = y^0 \end{cases}$$

avec $y^0 \in \mathbb{R}$ donné.

a) Montrer l'existence et l'unicité d'une solution du problème (5). Pour la suite du problème on se donne $T>0,\ N\in\mathbb{N}^*$ avec $N\geq T,$ on pose $h=\frac{T}{N}$ (donc $0< h\leq 1$) et aussi

$$t_n = nh, \quad n \in [[0, N]].$$

On introduit la fonction $g: \mathbb{R} \times [0,1] \to \mathbb{R}$ donnée par

$$g(x,h) = aF(x) + bF(x + hF(x)), \quad \forall \ (x,h) \in \mathbb{R} \times [0,1]$$

avec $a, b \in \mathbb{R}$. On propose le schéma numérique suivant à un pas pour approcher la solution y de (5) sur l'intervalle [0, T] $(y_n$ va désigner une approximation de $y(t_n)$:

(6)
$$\begin{cases} y_{n+1} = y_n + hg(y_n, h), & n \in [[0, N-1]] \\ y_0 = y^0. \end{cases}$$

- b) Montrer la stabilité du schéma (6) pour tous $a, b \in \mathbb{R}$.
- c) Donner une condition suffisante sur a, b tels que le schéma (6) pour approcher (5) soit consistant.
- **d)** Montrer que pour toute solution y de (5) il existe une constante $C \ge 0$ telle que $|g(y(t),h)-(a+b)F(y(t))-bhF'(y(t))F(y(t))| \le Ch^2, \quad \forall t \in [0,T], \ \forall h \in [0,1].$
- e) Trouver un couple $(a, b) \in \mathbb{R}^2$ tel que le schéma (6) pour approcher (5) soit consistant à l'ordre au moins 2.