Polytech Lyon, MAM3A, 2019 - 2020

Méthodes Mathématiques pour l'Ingénieur (MMI)

Partiel 1 - octobre - 2019

Durée 1h10 - Calculettes interdites, une page de notes manuscrites autorisée

Remarque: Toutes les intégrales qui apparaissent dans la suite doivent être considérées comme des intégrales de Lebesgue.

Exercice 1.

a) Soit $f_1:[0, +\infty[\to \mathbb{R} \text{ donn\'ee par }$

$$f_1(x) = \frac{x^2}{x+1}e^{-3x}, \quad \forall x \ge 0.$$

Montrer que f_1 est intégrable Lebesgue.

b) Soit $f_2: [0, +\infty[\to \mathbb{R} \text{ donn\'ee par }$

$$f_2(x) = \frac{x^2 + 2}{\sqrt{x}}, \quad \forall x > 0.$$

Montrer que f_2 est intégrable Lebesgue sur]0,1]. Est-elle intégrable Lebesgue sur $[1,+\infty[?]]$ Justification.

Exercice 2.

Pour tout $n \in \mathbb{N}$, $n \geq 2$ on considère la fonction $f_n : [0, +\infty[\to \mathbb{R} \text{ donnée par }$

$$f_n(x) = \frac{\sin(\pi x)}{x^n + 1}, \quad \forall \ x \ge 0.$$

a) Soit $f:[0,+\infty[\to\mathbb{R}]$ donnée par

$$f(x) = \begin{cases} \sin(\pi x) & \text{si} & x \in [0, 1] \\ 0 & \text{si} & x > 1. \end{cases}$$

Montrer qu'on a

$$\lim_{n \to +\infty} f_n(x) = f(x), \quad \text{pour presque tout } x \ge 0.$$

b) Trouver une fonction $g:[0,+\infty[\to [0,+\infty[$ intégrable Lebesgue telle que

$$|f_n(x)| \le g(x), \quad \forall \ x \ge 0, \quad \forall \ n \in \mathbb{N}, n \ge 2.$$

En déduire que f_n est intégrable Lebesgue pour tout $n \in \mathbb{N}, n \geq 2$.

c) En appliquant un théorème vu en cours montrer que $\lim_{n\to+\infty} \int_0^\infty f_n(x) dx$ existe et trouver cette limite.

Exercice 3.

Soit $n\in\mathbb{N}^*,\ f:\mathbb{R}^n\to\mathbb{R}$ avec $f\geq 0$ et f intégrable Lebesgue. Montrer que pour tout a>0 on a

$$\lambda_n \left(\left\{ x \in \mathbb{R}^n, \ f(x) \ge a \right\} \right) \le \frac{1}{a} \int_{\mathbb{R}^n} f \, d\lambda_n.$$

Indication: majorer la fonction indicatrice de l'ensemble $\{x \in \mathbb{R}^n, f(x) \geq a\}$ par une fonction appropriée.