Polytech Lyon, MAM3A, 2020-2021

Méthodes Mathématiques pour l'Ingénieur (MMI)

Partiel 3 - janvier 2021

Durée 1h30 - Cours, TD et calculettes autorisés

Partout H désigne la fonction de **Heaviside**, $H: \mathbb{R} \to \mathbb{R}$ définie par $H = 1_{[0,+\infty[}$.

Exercice 1.

On se propose de trouver la fonction $y \in C^2([0, +\infty[)$ avec $y, y', y'' \in \mathcal{L}_a$, solution de l'équation différentielle

(1)
$$y'' + 6y' + 9y = e^{-2t}, \quad \forall \ t \in [0, +\infty[$$

avec conditions initiales

(2)
$$\begin{cases} y(0) &= 0 \\ y'(0) &= 3. \end{cases}$$

Nous considérons que toutes les fonctions qui interviennent dans le problème se prolongent par 0 sur $]-\infty,0[$.

a) On pose $Y(s) = \mathcal{L}(y)(s)$ définie sur $\{s \in \mathbb{C}, Re(s) > \xi_a(y)\}$. Montrer qu'on a

$$Y(s) = \frac{3s+7}{(s+2)(s+3)^2}, \quad \forall \ s \in \mathbb{C}, \quad \text{avec} \ Re(s) > \xi_a(y).$$

b) Déterminer $a, b, c \in \mathbb{C}$ tels que

$$\frac{3s+7}{(s+2)(s+3)^2} = \frac{a}{s+2} + \frac{b}{s+3} + \frac{c}{(s+3)^2}, \quad \forall \ s \in \mathbb{C} \setminus \{-2, -3\}.$$

c) Trouver la solution y de (1) - (2).

Exercice 2.

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ avec $f \in \mathcal{L}_a$. Notons par $\Pi(f) \subset \mathbb{C}$ le domaine de définition de $\mathcal{L}(f)$.

On introduit la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(t) = \begin{cases} \int_0^t f(\tau) d\tau & \text{si} \quad t \ge 0 \\ 0 & \text{si} \quad t \ge 0. \end{cases}$$

- a) Montrer que la fonction g est bien définie et qu'elle peut s'écrire comme la convolution entre f et la fonction de Heaviside H.
 - b) Montrer que $g \in \mathcal{L}_a$.

Nous notons dans la suite par $\Pi(g)$ le domaine de définition de $\mathcal{L}(g)$.

c) Montrer qu'on a

$$\mathcal{L}(g)(s) = \frac{1}{s}\mathcal{L}(f)(s), \quad \forall \ s \in \Pi(f) \cap \Pi(g).$$

Application:

Utilisez les points précédents pour trouver $h \in \mathcal{L}_a$ tel que

$$\mathcal{L}(h)(s) = \frac{1}{s(s^2+4)}, \quad \forall \ s \in \mathbb{C} \quad \text{avec} \quad Re(s) > 0.$$

Exercice 3.

Pour chacune des applications suivantes de $\mathcal{D}(\mathbb{R})$ à valeurs dans \mathbb{R} , précisez (en justifiant) si elles sont bien définies et si elles sont des distributions:

- a) $\varphi \to \int_{\mathbb{R}} (\cos(\pi x) + x^2) \varphi(x) dx$
- **b)** $\varphi \to 2\varphi(0) 4\varphi(2) + 3\varphi(-10)$
- c) $\varphi \to \int_{\mathbb{R}} \frac{e^x 1}{x^3} \varphi(x) dx$

Exercice 4.

On se donne $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et périodique (donc $f(t) = f(t+T), \ \forall \ t \in \mathbb{R}$). Pour tout $n \in \mathbb{N}^*$ on introduit la fonction $f_n : \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(t) = f(nt), \quad \forall \ t \in \mathbb{R}.$$

On introduit aussi la fonction $F: \mathbb{R} \to \mathbb{R}$ définie par

$$F(x) = \int_0^x f(t) dt, \quad \forall \ x \in \mathbb{R}.$$

(F est une primitive de f).

On se propose de trouver une limite au sens des distributions $\mathcal{D}'(\mathbb{R})$, quand $n \to +\infty$, de la suite des fonctions f_n .

Partie I.

On suppose ici que f satisfait

$$\int_0^T f(t) dt = 0.$$

Ia) Montrer que la fonction F est bornée sur \mathbb{R} .

Indication: utiliser le fait que pour tout $x \in \mathbb{R}$ il existe $k \in \mathbb{Z}$ tel que $x \in [kT, (k+1)T[$ (k est la partie entière de $\frac{x}{T}$) et le fait que $\int_0^x f(t) dt = \int_0^{kT} f(t) dt + \int_{kT}^x f(t) dt$. **Ib)** En utilisant le fait que $f_n(x) = \frac{1}{n} \frac{d}{dx} F(nx) \quad \forall x \in \mathbb{R}$ montrer que

$$f_n \to 0$$
 en $\mathcal{D}'(\mathbb{R})$ pour $n \to +\infty$.

Partie II (cas général).

On pose ici $M(f) = \frac{1}{T} \int_0^T f(t) dt$ (moyenne de f sur l'intervalle [0, T]). Montrer que

$$f_n \to M(f)$$
 en $\mathcal{D}'(\mathbb{R})$ pour $n \to +\infty$.

Indication: Utiliser la Partie I pour la fonction q = f - M(f).