Polytech Lyon, MAM3A, 2023-2024

Méthodes Mathématiques pour l'Ingénieur (MMI) Partiel 1

Durée 1h et 30min - Calculettes interdites, une page de notes manuscrites autorisée

Exercice 1.

a) Soit $f_1:[0,+\infty[\to\mathbb{R}]$ définie par

$$f_1(x) = (x^4 + 3x - 1)e^{-3x}, \quad \forall \ x \ge 0.$$

Montrer que f_1 est intégrable Lebesque.

b) Soit $f_2: [0,2] \to \mathbb{R}$ définie par

$$f_2(x) = \frac{\sin^2(2x)}{x^{7/3}(5x+2)}, \quad \forall \ x \in]0,2]$$

Montrer que f_2 est intégrable Lebesque.

c) Soit $f_3:]1, +\infty[\to \mathbb{R}$ définie par

$$f_3(x) = \frac{x^3 - 3x + 5}{(x^3 + 2)\sqrt{x}}, \quad \forall \ x \in]1, +\infty[.$$

Montrer que f_3 n'est pas intégrable Lebesgue.

d) Soit $f_4:]0,3] \rightarrow \mathbb{R}$ définie par

$$f_4(x) = \frac{e^x + e^{-x}}{x^2}, \quad \forall \ x \in]0, 3].$$

Montrer que f_4 n'est pas intégrable Lebesgue.

Exercice 2.

On considère deux nombres a, b > 1 et nous notons par D l'ouvert dans \mathbb{R}^2 délimité par les courbes d'équation y = ax, $y = \frac{x}{a}$, $y = \frac{b}{x}$ et $y = \frac{1}{bx}$ dans \mathbb{R}^2 . Autrement dit, on a

$$D = \{(x,y) \in \mathbb{R}^2, \quad x > 0, \ y > 0, \quad \frac{x}{a} < y < ax, \ \frac{1}{bx} < y < \frac{b}{x}\}.$$

On se propose de calculer $\lambda_2(D)$ en utilisant la formule $\lambda_2(D) = \int_D 1 dx dy$ et en faisant le changement des variables $x = \frac{u}{v}$, y = uv.

On considère alors l'ouvert $E =]\frac{1}{\sqrt{b}}, \sqrt{b}[\times]\frac{1}{\sqrt{a}}, \sqrt{a}[$ dans \mathbb{R}^2 et la fonction $\varphi: E \to \mathbb{R}^2$ donnée par

$$\varphi(u,v) = \begin{pmatrix} \frac{u}{v} \\ uv \end{pmatrix}, \quad \forall \ (u,v) \in E.$$

- a) Faire un dessin (approximativ) de l'ensemble D avec les courbes qui le délimitent.
- **b)** Montrer que $\varphi(E) = D$ et que φ est une bijection de E dans D. Indication: montrer que pour tout $(x,y) \in D$ il existe un unique $(u,v) \in E$ tel que $(x,y) = \varphi(u,v)$.

- c) Montrer qu'on peut appliquer la formule de changement des variables et qu'on peut écrire $\lambda_2(D)$ comme une intégrale sur E.
 - d) Calculer $\lambda_2(D)$ en utilisant le Théorème de Fubini 2D sur E.

Exercice 3.

Soit $f:]1, +\infty[\to \mathbb{R}$ une fonction telle que $f(x) \ge 0, \ \forall \ x>1$. On suppose qu'il existe une constante $M\ge 0$ telle que

$$\int_{1}^{+\infty} e^{nx} f(x) \, dx \le M, \quad \forall \ n \in \mathbb{N}.$$

- a) Montrer que f(x) = 0 presque pour tout $x \in]1, +\infty[$ Indication: utiliser le Théorème de Beppo-Levi.
- **b)** Supposons en plus que f est une fonction continue. Montrer que $f(x) = 0, \ \forall \ x > 1.$