Polytech Lyon, MAM3A 2022 - 2023

Partiel - Optimisation Continue

Durée 1h et 30min - Calculettes interdites, une page de notes manuscrites autorisée

Partout dans cet énoncé $\|\cdot\|$ désigne la norme euclidienne.

Exercice 1.

Soit $\alpha \in \mathbb{R}$ et $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction définie par

$$f(x) = \begin{cases} (2x_1 - x_2) ||x||^{\alpha} & \text{si} \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in U \\ 0 & \text{si} \quad x = 0. \end{cases}$$

où nous posons $U = \mathbb{R}^2 \setminus \{0\}$.

- a) Montrer que f est de classe C^{∞} sur U et calculer $\nabla f(x)$ pour tout $x \in U$.
- b) Montrer que f est continue sur \mathbb{R}^2 si et seulement si $\alpha > -1$.
- c) On suppose ici $\alpha > 0$. Montrer que pour i = 1 ou i = 2 on a

$$\frac{\partial f}{\partial x_i}(x) \to 0 \quad \text{pour} \quad x \to 0.$$

En déduire que f est de classe C^1 sur \mathbb{R}^2 . Qui est $\nabla f(0)$?

d) Montrer que si $\alpha < 0$ alors f n'est pas de classe C^1 sur \mathbb{R}^2 .

Exercice 2.

On se donne $n \in \mathbb{N}^*$, $\alpha \in \mathbb{R}$ et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. On introduit la fonction $f: \mathbb{R}^n \to \mathbb{R}$ définie par

(1)
$$f(x) = \frac{1}{2} ||x||^2 + \frac{\alpha}{2} \langle Ax, x \rangle, \quad \forall x \in \mathbb{R}^n.$$

L'idée de cet exercice est de montrer que si $|\alpha|$ est assez petit alors f est une foction fortement convexe.

Rappelons que le rayon spectral de la matrice A est par définition:

 $\rho(A) = \max\{|\lambda|, \lambda \text{ valeur propre de } A\}.$

Rappelons aussi le résultat suivant: soient $U, V \in \mathcal{M}_n(\mathbb{R})$ et $\gamma \in \mathbb{R}$ avec $U = I_n + \gamma V$; alors μ est valeur propre de U si et seulement si $\mu = 1 + \gamma \lambda$ avec λ valeur propre de V. Nous supposons pour toute la suite de l'exercice que $\rho(A) > 0$.

- a) Montrer que $f \in C^{\infty}(\mathbb{R}^n)$ et calculer ∇f et $\nabla^2 f$. Montrer que la matrice $\nabla^2 f(x)$ est indépendante de x.
- **b)** Montrer que toutes les valeurs propres de $\nabla^2 f(x)$ et de A sont réelles. Montrer que $\mu \in \mathbb{R}$ est valeur propre de $\nabla^2 f(x)$ si et seulement si $\mu = 1 + \alpha\lambda$ avec λ valeur propre de A.

c) Montrer que si $|\alpha| \rho(A) < 1$ alors toutes les valeurs propres de $\nabla^2 f(x)$ sont strictement positives.

Indication: montrer d'abord que $|\alpha\lambda| < 1$ pour tout λ valeur propre de A.

- d) Montrer que si $|\alpha| < \frac{1}{\rho(A)}$ alors la fonction f est fortement convexe.
- e) (Application) Nous considérons dans cette partie le cas particulier: n=2 et la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ donnée par

$$f(x) = \frac{1}{2}(x_1^2 + x_2^2) + \frac{\alpha}{2}(-4x_1^2 + 4x_1x_2 - x_2^2), \quad \forall \ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$$

avec $\alpha \in \mathbb{R}$.

Mettez cette fonction f sous la forme (1) avec $A \in \mathcal{M}_2(\mathbb{R})$ à préciser et donner un $\alpha \in \mathbb{R}$ tel que la fonction f soit fortement convexe.

Exercice 3.

On se donne $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique, on pose $U = \mathbb{R}^n \setminus \{0\}$ et on considère la fonction $f: U \to \mathbb{R}$ donnée par

$$f(x) = \frac{\langle Ax, x \rangle}{\|x\|^2}, \quad \forall \ x \in U.$$

On admet l'existence d'au moins un point de minimum de f sur U. Nous notons alors $f^* = \min_{x \in U} f(x)$ et $V = \{x^* \in U, f(x^*) = f^*\}.$

- a) Montrer que f est de classe C^{∞} sur U.
- b) En calculant ∇f montrer que si $x^* \in V$ alors x^* est un vecteur propre de A de valeur propre associée f^* .
 - c) Montrer que f^* est la plus petite valeur propre de A.