Polytech Lyon, Mécanique 3 2013-2014

Outils Mathématiques pour l'Ingénieur 1 (OMI 1)

Examen janvier 2014

Durée 2h - Calculettes interdites, une page de notes manuscrites autorisée

Exercice 1.

a) Donner toutes les solutions y(t) (avec leur intervalle de définition) de l'équation différentielle à variables séparées suivante:

$$(1) y' = y(y^2 - 1), \quad t \in \mathbb{R}.$$

b) Trouver la solution de l'équation (1) satisfaisant la condition initiale

$$y(1) = \frac{1}{5}.$$

c) Trouver la solution de l'équation (1) satisfaisant la condition initiale

$$y(1) = -1$$
.

Exercice 2.

On considère le système différentiel linéaire homogène: trouver $x(t) = (x_1(t), x_2(t), x_3(t))^T$ tel que

$$(2) x' = Ax$$

où $A \in \mathcal{M}_3(\mathbb{R})$ est la matrice donnée par

$$A = \left(\begin{array}{ccc} 4 & -4 & 2\\ 0 & 2 & 0\\ -3 & 6 & -1 \end{array}\right)$$

Considérons aussi le système différentiel non homogène: trouver $y(t) = (y_1(t), y_2(t), y_3(t))^T$ tel que

$$(3) y' = Ay + b$$

avec $b: \mathbb{R} \to \mathbb{R}^3$ la fonction donnée par

$$b(t) = (0, 0, 1 + t)^T \quad \forall t \in \mathbb{R}.$$

- a) Trouver les valeurs propres de A ainsi que leurs multiplicités algébriques. La matrice A est-elle diagonalisable?
- b) Donner toutes les solutions du système (2).
- c) Donner une solution particulière $\tilde{y}(t) = (\tilde{y}_1(t), \tilde{y}_2(t), \tilde{y}_3(t))^T$ de (3).

Indication: chercher une telle solution avec $\tilde{y}_2 = 0$ et \tilde{y}_1 et \tilde{y}_3 des polynomes de degré 1.

d) Trouver la solution de (3) telle que

$$y(0) = (1, 0, 2)^T$$
.

Exercice 3.

On considère la paramétrisation $\gamma:[0,2\pi]\mapsto I\!\!R^2$ donnée par

$$\gamma(t) = (\cos t, 2\sin t) \quad \forall t \in [0, 2\pi]$$

(le support de γ est une ellipse dans le plan). Soit $F:\mathbb{R}^2\mapsto\mathbb{R}^2$ le champ de vecteurs défini par

$$F(x_1, x_2) = (x_1 + x_2, x_1^2) \quad \forall (x_1, x_2) \in \mathbb{R}^2.$$

Calculer $\int_{\gamma} F(x) \cdot dx$ (la circulation de F sur γ).