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Abstract

In the classical calculus of variations, the question of
regularity (smoothness or otherwise of certain func-
tions) plays a dominant role. This same issue, al-
though it emerges in different guises, has turned out
to be crucial in nonlinear control theory, in contexts
as various as necessary conditions for optimal con-
trol, the existence of Lyapunov functions, and the
construction of stabilizing feedbacks. In this report
we give an overview of the subject, and of some recent
developments.
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1 Introduction

The basic object in the control theory of ordinary
differential equations is the system

ẋ(t) = f(x(t), u(t)) a.e., 0 ≤ t ≤ T, (1)
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where the (measurable) control function u(·) is cho-
sen subject to the constraint

u(t) ∈ U a.e., (2)

and where the ensuing state x(·) (a function with val-
ues in R

n) is subject to certain conditions, including
most often an initial one of the form x(0) = x0, and
perhaps other constraints, either throughout the in-
terval or at the terminal time. This indirect control
of x(·) via the choice of u(·) is to be exercised for a
purpose, of which there are two principal sorts:

• positional : x(t) is to remain in a given set in R
n,

or approach that set;

• optimal : x(·), together with u(·), is to minimize
a given functional.

The second of these criteria follows directly in the tra-
dition of the calculus of variations and optimization,
and gives rise to the subject of optimal control. Let
us proceed to make explicit such an optimal control
problem. We are given two functions: � : R

n → R

and L : R
n × U → R, a subset C of R

n and a point
x0 ∈ R

n, and we consider the problem

minimize �(x(T )) +
∫ T

0

L(x(t), u(t)) dt [OCP]

subject to x(0) = x0, x(T ) ∈ C. The system con-
straints (1) and (2) are also imposed, of course, and
the minimization is relative to the choice of controls
u(·). The problem is said to be one of fixed-time
or free-time depending on whether the horizon T is
prescribed or not.

In contrast, a prototypical control problem of purely
positional sort would be the following:
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Find a control u(·) such that x(·) goes to 0. [PCP]

It is clear that [OCP] is much more precisely stated
than [PCP]; for example, it may often have a unique
solution, which is not typical for [PCP]. This may
be one of the reasons that mathematicians have gen-
erally paid more attention to optimal control, along
with the fact that it naturally generalizes the La-
grange problem in the calculus of variations. On the
other hand, [PCP], related as it is to the issue of sta-
bilization, is of greater interest to control engineers,
who are content with ‘reasonable’ solutions. While
the two types of problems have always interacted to
some extent, the underlying philosophies have gener-
ally been quite distinct. One important facet of this
distinction has been the use of open-loop controls in
optimal control, as opposed to closed-loop controls in
systems applications.

It is one of our main purposes here to give an ac-
count of an approach to control theory which leads
to a more unified point of view. One of the essential
ingredients of this approach, perhaps surprisingly, is
nonsmooth analysis. Another is the use of possibly
discontinuous feedbacks.

The main topics we will discuss are listed above in
the table of contents. Of course, even a modestly
complete account of the above topics would require
several volumes, some of which may not be ready to
be written. So our report will in truth be an out-
line, with its inevitable arbitrariness regarding what
to leave in and what to leave out. We provide refer-
ences to the literature in which can be found all the
details as well as further bibliographic pointers.

2 The dynamic programming
method

We consider optimal control first. As is the case in op-
timization generally, certain problems arise in which
the underlying data itself is nonsmooth, for example
the system function f in (1), or the integral cost func-
tional L of [OCP]. Minimax criteria give one example
of this, and others are given in [16]. In this section,

however, we wish to convey to the reader how con-
siderations of nondifferentiability arise from the very
way in which we might hope to solve the problem,
even if the data is smooth. To unburden the discus-
sion, we shall simplify [OCP] to a famous special case,
namely the minimal time problem.

It consists of finding the least T ≥ 0 admitting a
control function u(·) on [0, T ] having the property
that the resulting state x satisfies x(T ) = 0. This
corresponds to the free-time case of [OCP] in which
C = {0}, � ≡ 0, L ≡ 1.

By a trajectory of the system we mean a state func-
tion x(·) corresponding to some choice of admissible
control function u(·). In terms of trajectories, then,
the problem is to find one which is optimal from x0;
that is, one which reaches the origin as quickly as
possible. We proceed to describe the well-known dy-
namic programming approach to solving the problem.

We begin by introducing the minimal time function
T (·), defined on R

n as follows: T (α) is the least time
T ≥ 0 such that some trajectory x(·) satisfies

x(0) = α, x(T ) = 0.

An issue of controllability arises here: Is it always
possible to steer α to 0 in finite time? When such is
not the case, then in accord with the usual convention
we set T (α) = +∞.

The principle of optimality is the dual observation
that if x(·) is any trajectory, then we have, for s < t,

T
(
x(t)

)
− T

(
x(s)

)
≥ s − t.

Equivalently, the function

t �→ T
(
x(t)

)
+ t

is increasing. Furthermore, if x is optimal, then the
same function is constant.

Let us explain this in other terms: if x(·) is an optimal
trajectory joining α to 0, then

T
(
x(t)

)
= T (α) − t for 0 ≤ t ≤ T (α),

since an optimal trajectory from the point x(t) is
furnished by the truncation of x(·) to the interval
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[
t, T (α)

]
. If x(·) is any trajectory, then the inequal-

ity
T

(
x(t)

)
≥ T (α) − t

is a reflection of the fact that in going to the point
x(t) from α (in time t), we may have acted optimally
(in which case equality holds) or not (then inequality
holds).

Since t �→ T
(
x(t)

)
+t is increasing, we expect to have

〈
∇T

(
x(t)

)
, ẋ(t)

〉
+ 1 ≥ 0,

with equality when x(·) is an optimal trajectory. The
possible values of ẋ(t) for a trajectory being precisely
the elements of the set f

(
x(t), U

)
, we arrive at

min
u∈U

〈
∇T (x), f(x(t), u)

〉
+ 1 = 0. (3)

We define the (lower) Hamiltonian function h as fol-
lows:

h(x, p) := min
u∈U

〈p, f(x, u)〉.

In terms of h, the partial differential equation ob-
tained above reads

h
(
x,∇T (x)

)
+ 1 = 0, (4)

a special case of the Hamilton–Jacobi equation.

Here is the first step in the dynamic programming
method: use the Hamilton–Jacobi equation (4), to-
gether with the boundary condition T (0) = 0, to find
T (·). How will this help us find the optimal trajec-
tory?

To answer this question, we recall that an optimal
trajectory is such that equality holds in (3). This
suggests the following procedure: for each x, let k(x)
be a point in U satisfying

min
u∈U

〈
∇T (x), f(x, u)

〉
=

〈
∇T (x), f(x, k(x))

〉
= −1. (5)

Then, if we construct x(·) via the initial-value prob-
lem

ẋ(t) = f
(
x(t), k

(
x(t)

)
), x(0) = α, (6)

we will have a trajectory that is optimal (from α)!

Here is why: Let x(·) satisfy (6); then x(·) is a tra-
jectory, and

d

dt
T

(
x(t)

)
=

〈
∇T

(
x(t)

)
, ẋ(t)

〉
=

〈
∇T

(
x(t)

)
, f

(
x(t), k

(
x(t)

))〉
= −1.

Integrating, we find

T
(
x(t)

)
= T (α) − t,

which implies that at t = T (α), we must have x = 0.
Therefore x(·) is an optimal trajectory.
Let us stress the important point that k(·) generates
the optimal trajectory from any initial value α (via
(6)), and so constitutes what can be considered the
ultimate solution for this problem: an optimal feed-
back synthesis. There can be no more satisfying an-
swer to the problem: If you find yourself at x, just
choose the control value k(x) to approach the origin
as fast as possible. This goes well beyond finding a
single open-loop optimal control.
Unfortunately, there are serious obstacles to following
the route that we have just outlined, beginning with
the fact that T is nondifferentiable, as simple exam-
ples show, even when it is finite everywhere (which it
generally fails to be).
We will therefore have to examine anew the argument
that led to the Hamilton–Jacobi equation (4), which,
in any case, will have to be recast in some way to
accommodate nonsmooth solutions. Having done so,
will the generalized Hamilton–Jacobi equation admit
T as the unique solution?
The next step (after characterizing T ) offers fresh dif-
ficulties of its own. Even if T were smooth, there
would be in general no continuous function k(·) sat-
isfying (5) for each x. The meaning and existence of
a trajectory x(·) generated by k(·) via the differential
equation (6), in which the right-hand side is discon-
tinuous in the state variable, is therefore problematic
in itself.
The intrinsic difficulties of this approach to the
minimal-time problem have made it an historical fo-
cal point of activity in differential equations and con-
trol, and it is only recently that fully satisfying an-
swers to all the questions raised above have been
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found. We begin with generalized solutions of the
Hamilton-Jacobi equation.

3 Subdifferentials and viscosity
solutions

We require a differential construct that applies to
functions that are not differentiable in the usual
sense. Experience now indicates that several such no-
tions are useful and necessary in general. One very
basic and useful tool of this type is the proximal sub-
gradient. Let φ : R

n → (−∞,∞] be a given function,
and x a point where φ(x) is finite. A vector ζ in R

n is
said to be a proximal subgradient of φ at x provided
that there exist a neighborhood Ω of x and a number
σ ≥ 0 such that

φ(y) ≥ φ(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ Ω.

The set of proximal subgradients at x (which may be
empty, and which is not necessarily closed, open, or
bounded but which is convex) is denoted ∂P φ(x), and
is referred to as the proximal subdifferential. If φ is
differentiable at x, then we have ∂P φ(x) ⊂ {φ′(x)};
equality holds if φ is of class C2 at x. The proximal
density theorem asserts that ∂P φ(x) is nonempty for
all x in a dense subset of

dom φ := {x : φ(x) < ∞}.

The existence of a proximal subgradient ζ at x corre-
sponds to the possibility of approximating φ from be-
low (thus in a one-sided manner) by a function whose
graph is a parabola. The point

(
x, φ(x)

)
is a contact

point between the graph of φ and the parabola, and
ζ is the slope of the parabola at that point. Compare
this with the usual derivative, in which the graph of φ
is approximated by an affine function. As a guide to
understanding, we ask the reader to do the following
exercise (in dimension n = 1): the proximal subdif-
ferential at 0 of the function φ1(x) := −|x| is empty,
while that of φ2(x) := |x| is the interval [−1, 1].

Surprisingly enough, the proximal subgradient ad-
mits a very complete calculus: all the usual calculus

rules that the reader knows (and more) have their
counterpart in terms of ∂P φ, and it is enough to as-
sume merely that φ is lower semicontinuous. In a
thorough treatment, there are some complexities to
be dealt with, of the sort that mathematicians de-
light in , but for present purposes, we only need the
object itself to help us define a generalized solution
concept of the Hamilton-Jacobi equation.

We shall say that φ is a proximal solution of the
Hamilton–Jacobi equation (4) provided that

h(x, ∂P φ(x)) = −1 ∀x ∈ R
n, (7)

a ‘multivalued equation’ which means that for all x,
for all ζ ∈ ∂P φ(x) (if any), we have h(x, ζ) = −1.

Note that the equation holds automatically at a point
x for which ∂P φ(x) is empty; such points play an
important role, in fact. Consider, for example, the
case in which f(x, U) is equal to the unit ball for
all x, in dimension n = 1. Then h(x, p) ≡ −|p|.
The functions φ1 and φ2 defined above both satisfy
h(x,∇φ(x)) = −1 at all points x �= 0, since for both
φ1 and φ2, at all points different from 0, the proximal
subdifferential reduces to the singleton consisting of
the derivative. However, we have (see the exercise
above)

∂P φ1(0) = ∅, ∂P φ2(0) = [−1, 1],

and it follows that φ1 is (but φ2 is not) a proximal
solution of the Hamilton-Jacobi equation (7).

A lesson to be drawn from this example is that in
defining generalized solutions we need to look closely
at the differential behavior at specific and individual
points; we cannot argue in an ‘almost everywhere’
fashion, or by ‘smearing’ via integration (as is done
for linear partial differential equations via distribu-
tional derivatives).

Proximal solutions are just one of the ways to de-
fine generalized solutions of certain partial differen-
tial equations, a topic of considerable interest and ac-
tivity, and one which seems to have begun with the
Hamilton-Jacobi equation in every case. The first
‘subdifferential type’ of definition was given by the
author in the 1970’s, with the ‘generalized gradient’
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(see Section 7 below) and for locally Lipschitz solu-
tions. While no uniqueness theorem holds for that
solution concept, it was shown that the value func-
tion of a related optimal control problem is a solution
(hence existence holds), and is indeed a special solu-
tion: it is the maximal one. In 1980 A.I. Subbotin [51]
defined his ‘minimax solutions’, which are couched
in terms of Dini derivates rather than subdifferen-
tials, and which introduced the important feature of
being ‘two-sided’. This work featured existence and
uniqueness in the class of Lipschitz functions, the so-
lution being characterized as the value of a differen-
tial game. Subsequently, M. Crandall and P.-L. Lions
incorporated both subdifferentials and two-sidedness
in their ‘viscosity solutions’, a theory which they de-
veloped for merely continuous functions.

Let us now explain the relationship between viscosity
and proximal solutions. As introduced by Crandall
and Lions [30], a viscosity solution φ of F (x, φ, φ′) =
0 is a continuous function having the property that,
for all x, whenever g is a smooth function such that
φ − g admits a local minimum at x, then we have
F (x, φ(x), g′(x)) ≥ 0, and whenever g is a smooth
function such that φ− g admits a local maximum at
x, then F (x, φ(x), g′(x)) ≤ 0.

The set of values g′(x), where g is a smooth function
such that φ−g admits a local minimum at x, is known
as the Dini subdifferential (or viscosity subdifferen-
tial) of φ at x, denoted ∂Dφ(x). The corresponding
object with ‘maximum’ instead is the Dini superdif-
ferential ∂Dφ(x). The reason for this terminolgy is
that (in the subdifferential case) one has ζ ∈ ∂Dφ(x)
iff

Dφ(x; v) ≥ 〈ζ, v〉 ∀ v ∈ R
n,

where the Dini subderivate is defined by

Dφ(x; v) := lim inf
t↓0

v′→v

φ(x + tv′) − φ(x)
t

(8)

(see [24] for details).

In terms of subdifferentials, a viscosity solution of
F (x, φ, φ′) = 0 is a continuous function satisfying

{
F (x, φ(x), ∂Dφ(x)) ≥ 0
F (x, φ(x), ∂Dφ(x)) ≤ 0 ∀x ∈ R

n.

Observe now that any element ζ ∈ ∂P φ(x) is such
that the function

y → φ(y) − [〈ζ, y〉 − σ‖y − x‖2]

admits a local minimum at x; further, the derivative
at x of the function in brackets equals ζ. Hence a
viscosity solution necessarily satisfies F (x, φ(x), ζ) ≥
0. Since this holds for each ζ ∈ ∂P φ(x)), we
conclude F (x, φ(x), ∂P φ(x)) ≥ 0. A similar argu-
ment shows that a viscosity solution φ must satisfy
F (x, φ(x), ∂P φ(x)) ≤ 0, where the proximal superdif-
ferential ∂P φ(x) is given by −∂P (−φ)(x). (Alterna-
tively, it can be defined directly as ∂P φ(x) was, by
reversing the defining inequality and taking σ ≤ 0.)
Of course, the proximal subgradients and supergra-
dients correspond to the special case in which the
functions g appearing in the definition of viscosity
solution are linear/quadratic, but the sufficiency of
the two proximal inequalities for φ to be a viscosity
solution can be proven (under mild hypotheses) by a
theorem of Subbotin (see [52] and [24]) which asserts,
roughly speaking, that ‘any Dini subgradient can be
approximated by a proximal subgradient’.
To summarize to this point, φ is a viscosity solution
of F (x, φ, φ′) = 0 iff it satisfies{

F (x, φ(x), ∂P φ(x)) ≥ 0
F (x, φ(x), ∂P φ(x)) ≤ 0 ∀x ∈ R

n.

Now suppose that F is convex in its third argument.
Then it can be shown (under mild hypotheses) that
the two inequalities

F (x, φ(x), ∂P φ(x)) ≤ 0, F (x, φ(x), ∂P φ(x)) ≤ 0

are equivalent (this is the case because every ele-
ment of ∂P φ(x) is almost a convex combination of
elements of ∂P φ(x), and vice versa (see [22] for the
proximal inversion formula that is being alluded to).
In this case, then, it follows that a viscosity solution
of F (x, φ, φ′) = 0 is a function satisfying the ‘single’
(or unilateral) condition

F (x, φ(x), ∂P φ(x)) = 0 ∀x ∈ R
n.

Since the lower Hamiltonian h is concave in its last
argument, we see that the proximal solutions defined
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via (7) above correspond to viscosity solutions of the
partial differential equation −h(x, φ′(x)) = 0 (but
they are not necessarily continuous, just lower semi-
continuous). This type of ‘unilateral’ characteriza-
tion was first derived by E.N. Barron and R. Jensen
[7]. It should be stressed that in the absence of some
convexity hypothesis, viscosity solutions do not gen-
erally admit a unilateral proximal characterization
like the above (see [6]).

Recall that our goal (within the dynamic program-
ming approach) is to characterize the minimal time
function. Using either the proximal or the viscosity
concept, this is now attained, as shown by the follow-
ing, whose mild hypotheses on the data we omit (see
[55], and also the extensive discussion in Bardi and
Capuzzo-Dolcetta [5]).

Theorem 3.1 There exists a unique lower semicon-
tinuous function φ : R

n → (−∞, +∞] bounded below
on R

n and satisfying the following:

[HJ equation] h(x, ∂P φ(x)) = −1 ∀x �= 0;

[Boundary condition]

φ(0) = 0 and h(0, ∂P φ(0)) ≥ −1.

That unique function is T (·).

The proof of this theorem is based upon proximal
characterizations of certain monotonicity properties
of trajectories related to the inequality forms of the
Hamilton–Jacobi equation (see Section 4.7 of [24]).
The fact that monotonicity is closely related to the
solution of the minimal time problem is already evi-
dent in the following elementary assertion: a trajec-
tory x joining α to 0 is optimal iff the rate of change
of the function t �→ T (x(t)) is −1 a.e..

We have reached, then, the following point in our
quest: given that T satisfies the proximal Hamilton–
Jacobi equation h(x, ∂P T (x)) = −1, which can be
written in the form

min
u∈U

〈
ζ, f(x(t), u)

〉
= −1

∀ ζ ∈ ∂P T (x), ∀x �= 0, (9)

how does one proceed to construct a feedback k(x)
having the property that any trajectory x generated
by it via (6) (for which we still have to define the
sense) is such that t �→ T (x(t)) decreases at a unit
rate ?

We shall leave the optimal control problem [OCP]
temporarily at this point in order to discuss [PCP]
and feedback stabilization, for we shall see that in
analyzing that apparently quite different issue, we
shall arrive at precisely the same point as above.

4 Stabilizing feedback

We continue to study the control system (1)(2), but
now from the point of view of [PCP], which is con-
cerned with position rather than optimality. It is
convenient to suppose that 0 is an equilibrium point
of the system; in fact, let us posit f(0, 0) = 0, and
0 ∈ U . In this context, an important property of the
system is that it be Globally Asymptotically Control-
lable [GAC] (to the origin). This means that from
any initial condition x0 there is an open-loop control
u(t) with corresponding trajectory x beginning at x0

such that x(t) → 0 as t → +∞. (The definition also
includes a local stability property at 0 that we ignore
in this discussion.)

In contrast to the optimal control problem, the in-
tended applications of [PCP] force us to consider
feedback from the start. To put it briefly, an open-
loop control u(t), even if it has the property of steer-
ing x0 to 0, is of little interest since it has no robust-
ness with respect to the starting point: it does not
steer the system to 0 except from the one initial con-
dition (which will not be known a priori in any case).
A feedback mechanism is itself the actual goal.

The natural question to pose, then, is the following:
if the system is GAC, is there a stabilizing feedback
k(x); that is, a function with values in U such that
all solutions of the differential equation

ẋ(t) = f
(
x(t), k

(
x(t)

))
, x(0) = x0 (10)

converge asymptotically to 0 (for all values of x0)? In
some sense, we would wish to ‘piece together’ the var-
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ious open-loop controls that each steer certain points
to 0 into one coherent feedback law.

The classical linear case of our system is that in which
f(x, u) has the form Ax + Bu for certain matrices A
and B, and in which U = R

m. Linear systems theory
has a resoundingly positive answer to the question in
that case: there is even a linear feedback k(x) := Kx
having the desired effect.

The situation for nonlinear systems is much more
complex. As is always the case in nonlinear settings,
one approach that suggests itself is to approximate
the nonlinear system through a linear one obtained
by linearization. Thus we set

A := fx(0, 0), B := fu(0, 0),

and attempt to find a linear (locally) stabilizing feed-
back for the system ẋ = f(x, u) by constructing one
for the approximating system ẋ = Ax + Bu.

This approach has been quite feasible in a large num-
ber of cases, and in fact it underlies the very success-
ful role that control theory has played in a great va-
riety of applications. Still, linearization does require
that a certain number of conditions be met:

• The function f must be smooth (differentiable)
so that the linear system can be constructed;

• The linear system must be a ‘nondegenerate’ ap-
proximation of the nonlinear one (that is, it must
be controllable);

• The control set U must contain a neighborhood
of 0, so that near 0 the choice of controls is un-
constrained;

• Both x and u must remain small so that the
linear approximation remains relevant (the feed-
back is operative only for small perturbations
from the equilibrium state).

The real nonlinear nature of the stabilizing feedback
problem becomes a factor when these conditions are
not met, as in the following simple example taken
from [49].

Example

We consider a state (x, y) in two dimensions and a
one–dimensional control u in which the underlying
system is

{
ẋ = u(x2 − y2)
ẏ = 2uxy

u ∈ [−1, 1].

Let us understand the behavior of the trajectories of
the system. Given an initial condition (x0, y0) ∈ R

2

with y0 �= 0, consider the unique circle of the form

{(x′, y′) : x′2 + (y′ − c)2 = c2}

which is centered on the y-axis and contains both the
origin and (x0, y0). At any point (x, y) of that circle,
the vector (x2 − y2, 2xy) is tangent to the circle at
(x, y). It follows that the circle is an invariant set,
so that any trajectory of the given control system
that starts at (x0, y0) must remain on the circle. For
y0 = 0 we obtain a different invariant set: the x-axis.

The choice of u ≡ +1 (or more generally, u > 0) gives
rise to counter–clockwise movement on the circles
above the x-axis and clockwise movement on those
situated below the x-axis; along the x-axis itself we
get movement toward the right. For the case u < 0,
all these motions are simply reversed. We observe
that this system is GAC.

Let us now suppose that a continuous stabilizing feed-
back k exists for it. Then k(x, y) must be different
from 0 for all (x, y) �= 0, for otherwise the system ad-
mits an equilibrium different from 0. We deduce from
this that k must be strictly negative along the pos-
itive x-axis, and strictly positive along the negative
x-axis. But if we now consider the values of k along
any circle centered at the origin, it follows from the
Intermediate Value Theorem that k vanishes at some
point on that circle, a contradiction which proves that
no continuous stabilizing feedback exists. (The conti-
nuity of k at the origin is not an issue in the analysis.)
Observe that the argument also shows that no con-
tinuous feedback could ‘approximately stabilize’ the
system (to some ball around the origin, say).

We remark that a simple discontinuous stabilizing
feedback law is available here: use k = 1 to the left
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of the y-axis and k = −1 to the right (and either value
on the axis itself). In applying this rule we immedi-
ately leave the set upon which k is discontinuous (the
y-axis), never to return, so that no difficulty arises in
applying k: the control is always constant (+1 or −1,
depending on the initial condition).

The nonholonomic integrator

Another, and rather famous, example in nonlinear
systems theory is that known as the nonholonomic
integrator, a term which refers to the following sys-
tem, which is linear (separately) in the state and in
the control variables:




ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

‖(u1, u2)‖ ≤ 1.

(Thus U is the closed unit ball in R
2.) The fact that

this system is globally asymptotically controllable
can be proven by an elementary ad hoc argument.
It was proven by Brockett in 1983 that, nonethe-
less, there is no continuous feeback law u = k(x)
which will stabilize the system (even locally about
the origin). In fact, he obtained the following neces-
sary condition for the existence of such a stabilizer: if
ẋ = f(x, u) admits a continuous stabilizing feedback,
then for every neighborhood Ω of 0, the set f(Ω, U) is
also a neighborhood of 0. In the case of the nonholo-
nomic integrator, we invite the reader to verify that
f(Ω, U) can contain no point of the form (0, 0, µ) for
any µ �= 0, so that Brockett’s condition rules out the
existence of a continuous stabilizing feedback (even
one that could be discontinuous at 0). We remark
that the Example analyzed earlier does satisfy Brock-
ett’s condition, although it fails to admit a continuous
stabilizer.

Discontinuous feedbacks

The reader may have observed that in each of the last
three instances in which we used the word ‘feedback’,
it was modified by the word ‘continuous’. What
about using discontinuous stabilizing feedback laws,

since examples as seemingly benign as the nonholo-
nomic integrator do not admit continuous ones?

In considering this possibility, there arises what may
seem to be a merely technical point, but one which
in fact turns out to be critical: if k(x) is a discon-
tinuous function, what is meant by a solution of the
differential equation ẋ = f(x, k(x))? In the contin-
uous case, of course, we simply mean that x(·) is a
smooth function whose derivative ẋ(t) coincides for
each t with the value f

(
x(t), k(x(t))

)
. In the dis-

continuous case, we might reasonably try the fol-
lowing definition: a solution x(·) is an absolutely
continuous function whose derivative ẋ(t) coincides
almost everywhere with the value f

(
x(t), k(x(t))

)
.

This Caratheodory solution concept, however, turns
out to be entirely unsatisfactory from several points
of view, notably that of existence. Because of this,
there have been various proposals for what a solution
should mean in a discontinuous setting.

The best known of these is due to Filippov [31]: a
Filippov solution x(·) of ẋ = g(x) (where g is pos-
sibly discontinuous) means an absolutely continuous
function whose derivative ẋ(t) satisfies

ẋ(t) ∈ co




⋂
δ>0, m(Ω)=0

g
(
B(x(t), δ)\Ω

)
 a.e..

Here, co stands for ‘convex hull’, m(Ω) is the
Lebesgue measure of Ω, and the notation B(x, r)
stands for the open ball of radius r centered at x.
In words, we require that, almost everywhere, ẋ(t)
belong to the convex hull of all values of g that are
(at x(t)) ‘essential and persistent locally in measure’.
As an example, consider for n = 1 the function g(x)
equal to −1 for x > 0 and +1 for x ≤ 0 (with initial
condition x(0) = 0. Then there is no Caratheodory
solution, but a unique Filippov solution (x ≡ 0).

The Filippov solution concept has a number of desir-
able properties from the mathematical point of view,
although from the practical point of view it is not
clear that such system trajectories are necessarily
physically meaningful. In any case, armed with this
notion, we are now led to the natural question: if a
system is GAC, does it necessarily admit a stabiliz-
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ing feedback, possibly discontinuous, if one interprets
the ensuing trajectories in the Filippov sense?

The answer is ‘no’. Indeed, as shown by Ryan [46]
and by Coron and Rosier [29], Brockett’s condition
continues to hold for the Filippov solution concept,
so that the nonholonomic integrator (for example)
cannot be stabilized by a discontinuous feedback in
the Filippov sense.

A recent result of a positive nature appears in [21],
where it was shown that any globally asymptotically
controllable system is stabilizable by a (possibly dis-
continuous) feedback if the trajectory x(·) associated
to the feedback is defined not in the Filippov sense,
but rather in a natural way that involves discretizing
the control law. We refer to this solution concept as
closed-loop system sampling ; it has been used in other
contexts, notably in differential games by Krasovskii
and Subbotin [37]. We proceed now to describe it.

Let π = {ti}i≥0 be a partition of [0,∞), by which we
mean a countable, strictly increasing sequence ti with
t0 = 0 such that ti → ∞ as i → ∞. The diameter
of π, denoted diam (π), is defined as supi≥0(ti+1 −
ti). Given an initial condition x0, the π-trajectory
x(·) corresponding to π and an arbitrary feedback
law k : R

n → U is defined in a step-by-step fashion
as follows. Between t0 and t1, x is a classical solution
of the differential equation

ẋ(t) = f(x(t), k(x0)), x(0) = x0, t0 ≤ t ≤ t1.

(Of course in general we do not have uniqueness of the
solution, nor is there necessarily even one solution,
although nonexistence can be ruled out when blow-
up of the solution in finite time cannot occur, as is
the case in the stabilization problem.) We then set
x1 := x(t1) and restart the system at t = t1 with
control value k(x1):

ẋ(t) = f(x(t), k(x1)), x(t1) = x1, t1 ≤ t ≤ t2,

and so on in this fashion. The trajectory x that
results from this sample and hold procedure is an
actual state trajectory corresponding to a piecewise
constant open-loop control; thus it is a physically
meaningful one. When results are couched in terms of
π-trajectories, the issue of defining a solution concept

for discontinuous differential equations is effectively
sidestepped. Making the diameter of the partition
smaller corresponds to increasing the sampling rate
in the implementation.
We remark that the use of possibly discontinuous
feedback has arisen in other contexts. In linear time-
optimal control, one can find discontinuous feedback
syntheses as far back as the classical book of Pon-
tryagin et alii [42]; in these cases the feedback is in-
variably piecewise constant relative to certain parti-
tions of state space, and solutions either follow the
switching surfaces or cross them transversally, so the
issue of defining the solution in other than a classi-
cal sense does not arise. Somewhat related to this
is the approach that defines a multivalued feedback
law [8, 10]. In stochastic control, discontinuous feed-
backs are the norm, with the solution understood in
terms of stochastic differential equations. In a similar
vein, in the control of certain linear partial differen-
tial equations, discontinuous feedbacks can be inter-
preted in a distributional sense. These cases are all
unrelated to the one under discussion. We remark
too that the use of discontinuous pursuit strategies
in differential games [37] is well-known, together with
examples to show that, in general, it is not possible
to achieve the result of a discontinuous optimal strat-
egy to within any tolerance by means of a continuous
stategy (thus there can be a positive unbridgeable
gap between the performance of continuous and dis-
continuous feedbacks).
Returning now to π-trajectories, it is natural to say
that a feedback k(x) (continuous or not) stabilizes the
system (1)(2) provided that for every initial value x0,
for all ε > 0, there exists δ > 0 and T > 0 such that
whenever the diameter of the partition π is less than
δ, then the corresponding π-trajectory x beginning
at x0 satisfies

‖x(t)‖ ≤ ε ∀ t ≥ T.

The following theorem is proven in [21].

Theorem 4.1 Let the system (1)(2) be GAC. Then
there exists a (possibly discontinuous) feedback k :
R

n → U which stabilizes it in the sense of closed-
loop system sampling.

9



The proof of the theorem actually yields precise es-
timates regarding how small the step size diam (π)
must be for a prescribed stabilization tolerance to en-
sue, and of the resulting stabilization time, in terms
of the given data. These estimates are uniform on
bounded sets of initial conditions, and are relative
to a given Lyapunov function for the system. This
important concept is the next topic for discussion.

5 Lyapunov functions

A smooth function V : R
n → R is said to be a Lya-

punov function for the system (1)(2) if it satisfies the
following three properties:

V is positive definite:

V (x) ≥ 0, V (x) = 0 iff x = 0.

V is proper:

V (x) → ∞ as ‖x‖ → ∞.

Infinitesimal decrease: For some continuous func-
tion W that is positive on R

n\0 we have

min
u∈U

〈∇V (x), f(x, u)〉 ≤ −W (x), x �= 0. (11)

It is well-known that the existence of such a ‘control-
Lyapunov function’ (V, W ) implies global asymptotic
controllability to the origin: for every α ∈ R

n, there
is a control u(t) such that the solution x(·) of (1)
with initial condition x(0) = α satisfies x(t) → 0 as
t → ∞. (In addition, convergence to zero takes place
in a certain uniform and stable manner that we will
not dwell upon here.) In fact, the most common way
to verify that the system is GAC is to exhibit such a
function.

Recall now our desire to produce a state feedback
k(·) : R

n → U which stabilizes the system; i.e., such
that the system ẋ = f(x, k(x)) is globally asymptot-
ically stable. A natural question is whether one can
define such a feedback law through the use of a given
Lyapunov function V .

The ideal case, a well-known heuristic useful for mo-
tivational purposes, is the one in which we can find a
continuous function k(x) that selects a value of u ∈ U
attaining (or almost) the minimum in (11):

〈∇V (x), f(x, k(x))〉 ≤ −W (x) ∀x �= 0. (12)

Then any (classical) solution of ẋ = f(x, k(x)) is such
that

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 ≤ −W (x(t)) < 0,

a monotonicity conclusion that, together with the
growth property of V , assures that x(t) → 0 as
t → ∞.

There are two fundamental difficulties with this ideal
picture, and again both concern regularity issues.
The first is whether a smooth Lyapunov function ac-
tually exists in the first place (when the system is
GAC), and the second is whether, even assuming a
smooth V does exist, the continuous selection k(·)
exists. If we have recourse to a discontinuous se-
lection k(·), then, as above, the issue arises of how
to interpret the discontinuous differential equation
ẋ = f(x, k(x)).

Let us first discuss the existence or otherwise of a
smooth Lyapunov function V .

An early and important result of Artstein [2] implies
in particular that the nonholonomic integrator fails
to admit a smooth V (see [23] for related results).

Let us show directly for the Example of Section 4 the
nonexistence of a smooth Lyapunov function V . If
such a one exists, then consider the maximization of
V over a given circle centered on the y-axis and pass-
ing through the origin. The maximum is attained at
a point (x, y) �= 0, and we have ∇V (x, y) normal to
the circle at (x, y). But then ∇V (x, y) makes a zero
inner product with any element of the velocity set
f(x, y, U), which implies that the Infinitesimal De-
crease Condition must fail.

Although a smooth Lyapunov function may not exist
for a GAC system, it has been shown by Sontag [47]
that globally asymptotically controllable systems al-
ways admit a continuous Lyapunov function V satis-
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fying, instead of (11), the following nonsmooth ver-
sion of the Infinitesimal Decrease Condition:

inf
v∈co f(x,U)

DV (x; v) ≤ −W (x) < 0, x �= 0, (13)

where the lower Dini derivate DV has been defined
previously (see (8)).

The theory of nonsmooth analysis asserts the equiv-
alence to (13) of another, and for our purposes more
useful, form of the Infinitesimal Decrease Condition:

inf
u∈U

〈f(x, u), ζ〉 ≤ −W (x) < 0

∀ζ ∈ ∂P V (x),∀x �= 0. (14)

The equivalence of (13) and (14) is a consequence
of Subbotin’s Theorem, which links Dini derivates to
proximal calculus (see [24]). In terms of the lower
Hamiltonian h introduced in Section 2, (14) can be
written

h(x, ∂P V (x)) ≤ −W (x),

which is to be compared to (4)

It is at this precise point that we can observe the
confluence of the problems [OCP] and [PCP]. Recall
that we suspended our analysis of the problem [OCP]
(at the end of Section 2) before its conclusion. In
that case, as in the present one, we have a function
(T or V ) satisfying a Hamilton-Jacobi condition (14)
(with W ≡ 1 in the case of [OCP], see (9)), and
the object in both cases is to find a feedback which
induces trajectories x along which V decreases at rate
W : in differential form, we seek

d

dt
V (x(t)) = −W (x(t)).

(For the minimal time problem we want
d/dt T

(
x(t)

)
= −1; recall that this is equivalent to

the optimality of the trajectory.)

Let us now discuss how such a feedback is constructed
in [20]. We shall work in the stabilization setting,
and assume that we have a (nonsmooth) Lyapunov
function V ; optimal control synthesis is then just a
special case.

The essential reason for which proximal calculus is
well-suited to our approach is because of its relation

to metric projection onto sets, upon which is based
the ‘proximal aiming’ method that we employ. The
crux is this: when x(ti) = x lies outside a level set
S = S(c) := {V ≤ c} and admits closest point (or
projection) s in S, then x − s is a ‘proximal normal’
vector to S at s, and for some λ > 0 we have λ(x −
s) ∈ ∂P V (s) (a fact from proximal calculus). Then
(14) can be invoked at s to find a suitable value of
the control u which moves the state toward S, in the
sense that the Euclidian distance dS decreases at a
certain positive rate ∆:

dS(x(t)) − dS(x(ti)) ≤ −∆(t − ti), ti ≤ t ≤ ti+1,

provided x(ti) is close enough to S to start with, and
provided diam (π) is small enough. A sequence of
such sets S and associated local feedbacks is ‘glued
together’ to produce the global stabilizing feedback
k(·) that is sought.
The details of this construction require the Lyapunov
function V to be locally Lipschitz. In the case of a
system which is globally asymptotically controllable
to the origin, the theorem of Sontag cited above pro-
vides one which is only continuous. And if we dealing
with the minimal time function (for example), that
may not be locally Lipschitz either. There are differ-
ent ways of dealing with this gap.
In [21] the proof uses Moreau-Yosida inf convolution
to make a continuous Lyapunov function Lipschitz
as an intermediate step. This methodology was also
employed earlier in [25], in a differential game setting.
Another approach is taken in [20] , where it is shown
that one may directly construct an explicit locally
Lipschitz function which serves as a Lyapunov func-
tion for so-called practical stabilization. ‘Practical
stabilization’ refers to the possibility of stabilizing
the system via feeback to an arbitrarily small ball
about the origin (in finite time), instead of asymp-
totically to zero. Thus the function V constructed
in this way only has the Lyapunov properties out-
side a ball around the origin. It is locally Lipschitz,
however, so that the proximal aiming construction
sketched above can be carried out.
A conclusion that appears to be emerging from re-
cent work is that the continuity of stabilizing feed-
back may not in fact be as important a consideration
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as was at first believed. If one is implementing a feed-
back in the sample-and-hold method used in system-
sampling (which now appears to be the right thing to
do), then its continuity or otherwise is irrelevant. An
issue of greater importance seems to be the degree of
regularity that one can obtain for a control Lyapunov
function.

In this connection, a major step in the theory has
been taken by L. Rifford in [43, 45]. He proved that
a GAC system always admits a global Lyapunov func-
tion which is locally Lipschitz, which settles an open
question in the subject. In fact, his results go beyond
this in asserting the existence of a Lyapunov function
which is semiconcave.

Semiconcavity

A function φ : R
n → R is said to be (globally) semi-

concave provided that for every ball B(0, r) there
exists γ = γ(r) ≥ 0 such that the function x �→
φ(x) − γ‖x‖2 is concave on B(0, r). (Hence φ is the
sum of a concave function and a quadratic one.) Ob-
serve that any function of class C2 is semiconcave;
also, any semiconcave function is locally Lipschitz,
since both concave functions and smooth functions
have that property. (There is also a local definition
of semiconcavity that we omit for present purposes.)

Semiconcavity is an important regularity property in
differential equations. The fact that the semiconcav-
ity of a Lyapunov function V turns out to be useful in
stabilization is a new observation, and may be coun-
terintuitive: V often has an interpretation in terms
of energy, and it may seem more appropriate to seek
a convex Lyapunov function V . We proceed now to
explain why semiconcavity is a highly desirable prop-
erty, and why a convex V would be of less interest
(unless it were smooth, but then it would be semi-
concave too).

Recall the ideal case discussed above, in which (for a
smooth V ) we select a function k(x) such that (12)
holds.

How might this appealing idea be adapted to the case
in which V is nonsmooth? We cannot use the prox-
imal subdifferential ∂P V (x) directly, since it may be

empty for ‘many’ x. We are led to consider the limit-
ing subdifferential ∂LV (x), which, when V is contin-
uous, is defined by applying a natural limiting oper-
ation to ∂P V :

∂LV (x) := (15){
ζ = lim

i→∞
ζi : ζi ∈ ∂P V (xi), lim

i→∞
xi = x

}
.

It follows readily that, when V is locally Lipschitz,
∂LV (x) is nonempty for all x. And the Infinitesimal
Decrease Condition (14) for proximal subgradients
implies the following:

inf
u∈U

〈f(x, u), ζ〉 ≤ −W (x) ∀ζ ∈ ∂LV (x),∀x �= 0.

Accordingly, let us consider the following idea: for
each x �= 0, choose some element ζ ∈ ∂LV (x), then
choose k(x) ∈ U such that

〈f(x, k(x)), ζ〉 ≤ −W (x).

Does this lead to a stabilizing feedback, when (of
course) the discontinuous differential equation is in-
terpreted in the closed-loop system sampling sense?
When V is smooth, the answer is ‘yes’, but when V
is merely locally Lipschitz, a certain ‘dithering’ phe-
nomenon may arise to prevent k from being stabiliz-
ing. However, if V is semiconcave (on R

n\{0}), this
does not occur, and stabilization is guaranteed. This
accounts in part for the desirability of a semiconcave
Lyapunov function, and the importance of knowing
one always exists.

The properties of a semiconcave Lyapunov function
also play an important role in another theorem of Rif-
ford [43, 44] in which it is shown that for a certain
class of systems (which includes the nonholonomic in-
tegrator), there is always a stabilizing feedback hav-
ing the pleasant properties of the simple discontin-
uous one found in connection with the Example of
Section 4. That is, the feedback in question is con-
tinuous on an open dense set, and when it is applied,
the points of discontinuity are repulsive: the state
lies in that set at most at the initial point. Thus
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the stabilization is ‘essentially’ achieved by continu-
ous feedback.

The proof of this result uses the properties of semi-
concave functions, together with both proximal and
generalized gradient calculus (see below).

6 Robustness of discontinuous
feedback

In applying a given stabilizing feedback law to the
system, there will in general arise some inaccuracy.
The nominal system ẋ = f(x, k(x)) may become

ẋ = f(x + e, k(x + p) + q) + r, (16)

where e, p, q and r are unknown perturbations or er-
rors. The effect of the external disturbance r is rel-
atively benign: if r is small, then (in the absence of
other errors) although the system may not be stabi-
lized, the state is nonetheless driven to a ball around
the origin whose radius is proportional to the size of
r (thus, a small error has a small effect). The ef-
fect of e and q can be reduced to that of r if f is a
continuous function. The truly troublesome term in
(16) is p, which is a measurement error: when the
state is x we measure it as x + p, and hence apply
the ‘wrong’ value of k. Because k may not be con-
tinuous, even a small p could lead to a big change
in the resulting control value; this explains in part
the natural preference that a systems engineer would
have for continuous feedbacks. In the general discon-
tinuous case, we wish to know whether stabilization
still occurs in the presence of measurement error. If
so, we refer to this as a robustness property of the
given feedback.

If a feedback k is defined according to the ‘ideal case’
presented above at the beginning of Section 5, where
V is smooth, then some robustness is to be expected,
as evidenced by the following observation due to Son-
tag [49]. We defined k so as to have

〈∇V (x), f(x, k(x))〉 ≤ −W (x).

With measurement error present, the decrease rate is
actually given by

〈∇V (x), f(x, k(x + p))〉,

and this may seem to be potentially quite different if
k is discontinuous, even when p is small. However,
bear in mind that we also have

〈∇V (x + p), f(x + p, k(x + p))〉 ≤ −W (x + p).

Thus, if ∇V is continuous (that is, if V is
smooth),and since W and f are continuous, we shall
indeed have

〈∇V (x), f(x, k(x + p))〉 ≤ −W (x)/2

provided that p is small, and this gives adequate de-
crease to imply stabilization. This informal argument
indicates that the existence of a smooth Lyapunov
function implies robust stabilization, even if no con-
tinuous stabilizing feedback exists. But a smooth
Lyapunov function may not exist; what then is the
situation more generally?

Ledyaev and Sontag [38] have proved that there is
a close relationship between the issues of ‘how regu-
lar a Lyapunov function does the system admit’ and
‘how robust a stabilizing feedback does the system
admit’. Consider for example a perturbed equation
ẋ = f(x, k(x + p)), where, as above, p represents a
measurement error in applying the feedback k. Full
robustness of the feedback k is taken to mean that
for any ε, there is a δ > 0 such that whenever the
perturbation p(t) satisfies ‖p(t)‖ ≤ δ for all t, then
stabilization to the ε-ball takes place.

It is shown in [38] that the system admits a fully ro-
bust stabilizing feedback iff it admits a smooth (C1

or C∞) Lyapunov function. Thus the nonholonomic
integrator, which can be stabilized by a discontinu-
ous feedback (as we have seen), does not admit a fully
robust stabilizing feedback. We remark that it is pos-
sible to recover robustness, however, through the use
of a dynamic feedback . This involves the construc-
tion of an auxiliary state variable z and of a feedback
law depending on both x and z; since z depends on
(all) the past values of x (and so indirectly on the
initial condition), this is also referred to as ‘feedback
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with memory’. We remark that the issue of the ro-
bustness of discontinuous feedbacks with respect to
measurement error seems to have been raised first by
Hermes [35].
The above concept of full robustness is not closely re-
lated to the system sampling method that we employ.
Let us instead introduce a type of relative robustness
in which we relate the size of the measurement error
to the maximum step size δ of the underlying parti-
tion. To begin, we ask whether for small but nonzero
p, sufficiently small steps (or equivalently, sufficiently
high sampling rate) will lead to stabilization.
A look at the simple discontinuous stabilizing feed-
back k found for the Example of Section 4 can lead to
a troubling conclusion in this regard. Suppose that
the state is currently at (x, y) = (ε1, 1) ,where ε1 is
small but positive. The presence of a measurement
error p = (−2ε1, 0) may lead us to believe that the
state lies to the left of the y-axis; accordingly we ap-
ply u = 1, in keeping with k. This has the effect of
moving the state counterclockwise at the next par-
tition point, let us say to (−ε2, 1) . Although the
state is now to the left of the axis, a new small mea-
surement error may lead us to believe that it lies to
the right; in this case we would apply k = −1 on
the next partition interval, thereby inducing clock-
wise movement and possibly returning to the initial
point (ε1, 1). We could keep ‘dithering’ back-and-
forth in this way, so that an arbitrarily small (and
insidiously clever) error has blocked stabilization.
The problem above can be viewed as being due to
‘oversampling’, in the sense that if we had allowed the
state to evolve for a longer period before measuring it
anew, the stabilizing effect would have had a chance
to make itself felt adequately. (To be precise in our
example, the problem is avoided if ε2 is greater than
the next measurement error can be.) This is, in effect,
an argument in favor of bigger steps in the system
sampling scheme.
This heuristic can be made precise and a positive re-
sult proven for the stabilizing feedbacks constructed
either through proximal aiming or, more directly,
through the limiting subdifferential of a semiconcave
Lyapunov function, as explained above. For these
feedbacks, it turns out that by suitably limiting the

partition step size from below, the dithering can be
excluded. At the same time, of course, the step size
must be limited from above, in order for the feed-
back to be stabilizing. This insight leads in [20] to
the stipulation of reasonably uniform partitions. This
is taken to mean that the following holds for some
δ > 0:

δ

2
≤ ti+1 − ti ≤ δ ∀i ≥ 0,

although it is possible to replace the factor 1/2 by
any constant in (0, 1].

Theorem 3 of [20] affirms that if the system (1)(2) is
GAC, it admits a relatively robust stabilizing feed-
back k to any prescribed tolerance r > 0. Thus,
for all initial conditions in a bounded set, for some
positive T and δ0, we will have ‖x(t)‖ ≤ r for all
t ≥ T , whenever x is a π-trajectory, if π is a rea-
sonably uniform partition whose diameter δ satisfies
δ < δ0, and whenever measurement error p does not
exceed a critical level E(δ) related to the sampling
rate. We remark that the values of T and δ0 can be
estimated in terms of r and the data of the system;
the ‘maximum error’ function E(δ) is linear in δ.

Among the many important variants of the stabiliza-
tion issue that can be considered is the one in which
it is required to constrain the state to lie in a given
closed set. Progress on such state-constrained feed-
back is reported in [27]. In connection with robust-
ness, the issue of dealing with measurement error that
is big in relation to the step sizes required for (error-
less) stabilization appears to be open, as do a num-
ber of substantial issues stemming from incomplete
information (for example, when only a partial obser-
vation of the state x is available). We remark that
there exists a general method for calculating stabiliz-
ing feedback in the absence of an explicit Lyapunov
function. It is optimization-based, and referred to as
the receding horizon (or model predictive) method;
see for example the recent article of Fontes [32]
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7 Necessary conditions for op-
timality

We now return to the optimal control problem [OCP]
of Section 1, in order to discuss the deductive method
for solving it (as opposed to, say, the dynamic pro-
gramming method). This refers to the use of neces-
sary conditions in an optimization problem in order
to identify its solutions. In the case of [OCP], it is the
celebrated Maximum Principle of Pontryagin that is
best known; we proceed to recall its statement, in
the original smooth setting. To ease the exposition,
we shall consider only the case in which the horizon
T is fixed, and C = R

n (thus, the terminal state is
unconstrained).

It is convenient to introduce two functions, the (up-
per) Hamiltonian H and the pseudo-Hamiltonian H:

H(x, p, u) := 〈p, f(x, u)〉 − L(x, u),

H(x, p) := sup
u∈U

H(x, p, u).

Theorem 7.1 Let the trajectory x and its control
u solve [OCP]. Then there is a function p on [0, T ]
which satisfies

(a) −ṗ(t) = ∇x

(
H(·, p(t), u(t))

)
(x(t)) a.e.,

(b) H(x(t), p(t), u(t)) = H(x(t), p(t)) a.e.,

(c) H(x(t), p(t)) = c = constant on [0, T ],

(d) −p(T ) = ∇�(x(T )).

There is much to say concerning the meaning of this
result, its classical origins in the calculus of varia-
tions, and its applications. For present purposes, we
refer the reader to [19] or [54] for these matters, and
we assume some familiarity with the theorem on the
part of the reader. The issue we address is the follow-
ing: suppose now that the functions f, L, and � are
nondifferentiable; how does one extend the Maximum
Principle to that setting?

The problem is not merely one of stating a general-
ization, since the classical methodology for proving

the theorem is precisely the linearization technique
that is unavailable for nonsmooth data. Certain al-
ternative approaches to the problem were developed
by Clarke [12, 16], together with the calculus of gen-
eralized gradients [13], which has been widely applied
in nonsmooth analysis and optimization

Generalized gradients

Let φ : R
n → R be a locally Lipschitz function, and

define its generalized directional derivative as follows:

φ◦(x; v) := lim sup
y→x,t↓0

φ(y + tv) − φ(y)
t

.

A vector ζ belongs to the generalized gradient of φ
at x, denoted ∂Cφ(x), iff one has

φ◦(x; v) ≥ 〈ζ, v〉 ∀ v ∈ R
n.

In case the reader has lost count, we mention that
this is the fourth subdifferential to be introduced in
this article. We believe that no others are required,
for all current purposes. These objects together pos-
sess geometric counterparts and a complete interre-
lated calculus that we are unable to delve into here.
Nonetheless, let us remark that the generalized gra-
dient possesses a few characteristics that make its
calculus especially useful in certain applications (we
cited one earlier: Rifford’s theorem on discontinuous
but ‘nice’ stabilizing feedback). An example of such
a property is the formula

∂C(−φ)(x) = −∂Cφ(x),

which does not hold for the three other subdiffer-
entials we have seen (and which shows that ∂Cφ is
not really a subdifferential). Another is the following
Gradient Formula:

∂Cφ(x) = co
{

lim
i→∞

∇φ(xi) : xi → x, xi /∈ Ω
}

,

where Ω is any set of measure zero containing the
local points of nondifferentiability of φ. Thus the
generalized gradient is ‘blind to sets of measure zero’.
This formula resembles (15), the defining one for ∂Lφ.
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However, the latter fails to have that insensitivity
property. It can be shown that [24]

∂Cφ(x) = co ∂Lφ(x).

In [12] and [14] it is proven that when the data of
[OCP] are locally Lipschitz, the Maximum Principle
holds with derivatives replaced by generalized gradi-
ents. Thus, for example, the ‘adjoint equation’ (as-
sertion (a) of the Maximum Principle) becomes a dif-
ferential inclusion

−ṗ(t) ∈ ∂C

(
H(·, p(t), u(t))

)
(x(t)) a.e..

Many other extensions and refinements of the Max-
imum Principle have been obtained since this initial
work, to the point that the theory of generalized nec-
essary conditions could be viewed as rather complete
for the moment. For these and related matters, we
refer the interested reader to [19] (which is rather
expository in style) and to R. B. Vinter’s book [54]
(which has very thorough discussions of the recent
literature).

Hamiltonian multipliers; sensitivity

We shall close our necessarily brief discussion of op-
timality conditions with the subject of Hamiltonian
multipliers, which at its origins reflected a desire to
express necessary conditions entirely in terms similar
to those of the classical calculus of variations (and
hence in terms of the true Hamiltonian H). This also
involves viewing [OCP] as a ‘generalized problem of
Bolza’; we refer to [19] for a detailed discussion of
the topics of this section. The following result was
proven in parallel to the extended Maximum Princi-
ple [12, 15]:

Theorem 7.2 Let the trajectory x and its control
u solve [OCP]. Then there is a function p on [0, T ]
which satisfies

(i)
(
− ṗ(t), ẋ(t)

)
∈ ∂CH(x(t), p(t)) a.e.,

(ii) H(x(t), p(t)) = c = constant on [0, T ],

(iii) −p(T ) = ∇�(x(T )).

The point here is that the single condition (i) encap-
sulates both (a) and (b) of the Maximum Principle
(as well as the state equation (1)). These Hamilto-
nian necessary conditions also apply to situations in
which the control set U depends on x, in contrast
to the Maximum Principle. Being in true Hamilto-
nian form, they are more closely related to classical
mechanics; this has made them useful in , for ex-
ample, the study of periodic orbits of Hamiltonian
sytems [19]. There have been a number of interest-
ing developments in connection with the Lagrangian
and Hamiltonian approach to problems of Bolza, (by
Rockafellar, Loewen, Mordukhovic, Vinter, and oth-
ers), and of course other issues arise (such as existence
and regularity); we refer the reader to [54].

A function p satisfying the three conditions of the
theorem is referred to as a Hamiltonian multiplier
for the trajectory x. We denote by M(x) the set of
such multipliers associated with a given trajectory x.
It turns out that a great deal of sensitivity informa-
tion resides in these mutipliers, in the sense that they
yield information on the rate of change of the value
of the problem with respect to perturbation. Let us
illustrate this in a simple case, one in which we con-
sider a perturbation of the underlying system (1)(2)
by a nonautonomous function α in L2

(
[0, T ], Rn

)
:

ẋ(t) = f(x(t), u(t)) + α(t) a.e., 0 ≤ t ≤ T,

Let the value of the resulting problem [OCP] (which
is otherwise unchanged) be denoted V (α). As we
know, value functions like V will not be differentiable
in general, even if the problem data is smooth. How-
ever, we can estimate the subdifferential of V , as in
the following result taken from [17]. (We denote by
Σ the set of trajectories x which solve the original
unperturbed problem [OCP].)

Theorem 7.3 The function V is Lipschitz (in the
L2 norm) in a neighborhood of 0, and one has

∅ �= ∂LV (0) ⊂ −
⋃
x∈Σ

M(x).
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The function V will be differentiable at 0 if ∂LV (0)
reduces to a singleton. The theorem gives an evident
sufficient condition for this: when the problem admits
a unique solution x, and x in turn admits a unique
Hamiltonian multiplier p. In that case, the theorem
yields the following information on the asymptotic
effect of small (in L2) perturbations of the dynamics:

V (α) ≈ V (0) −
∫ T

0

p(t) · α(t) dt

Sensitivity formulas of this general type can be ob-
tained for a variety of parametric perturbations (see
[26]). The most classic scheme of all is the one that
varies the initial condition, so that the corresponding
value function is given by

V (τ, α) :=

min{�(x(T )) +
∫ T

τ

L(x(t), u(t)) dt : x(τ) = α},

the minimum being taken over the trajectories x of
the control system on [τ, T ] and corresponding con-
trol u. In this case we find:

Theorem 7.4 The function V is Lipschitz in a
neighborhood of (0, x0), and one has

∅ �= ∂LV (0, x0) ⊂ −
⋃
x∈Σ

{(c, p(0)) : p ∈ M(x)}.

(It is understood above that c refers to the constant
value of the Hamiltonian along the given (x, p).) This
result not only leads to a sensitivity estimate, but
actually subsumes the necessary conditions of The-
orem 7.2 above, since (as a simple argument shows)
it yields that for any solution x to [OCP], we have
M(x) �= ∅. Furthermore, it follows from the formula
that for any (θ, ζ) ∈ ∂LV (0, x0), we have

θ + H(x0,−ζ) = 0.

Since (0, x0) can be replaced by any initial condition
here, we see that V satisfies a Hamilton-Jacobi equa-
tion in the proximal sense. We recognize this as the
initial point of the article: we have, quite appropri-
ately, described a closed loop.
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Order PDEs. Birkhäuser, Boston, 1995.

[53] A. R. Teel and L. Praly. A smooth Lyapunov
function from a class-KL estimate involving two
positive semidefinite functions. ESAIM: COCV,
5:313–367, 2000.

[54] R. B. Vinter. Optimal Control. Birkhäuser,
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