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1 Introduction

The theory of necessary conditions in the calculus of variations is a classical
subject whose birth can be traced back to the famous monograph published
by Euler in 1744. Within the more general framework of dynamic optimization
(which includes optimal control), the subject has remained active ever since.
One modern approach (among others) to the issues involved has been based
on the methods of nonsmooth analysis, a branch of the subject that began in
1973 with the author’s thesis [2]. A number of people have contributed in the
past decades to the substantial progress that has been made along these lines;
we refer to the recent monograph [7] for details, comments, and references.

It is natural that the dominant theme in this work has been an ongoing
effort to make the results as general, powerful, and unifying as possible. It
is our view that the results of [7] are a culmination of these efforts in many
ways.1 Furthermore, it turns out that the nonsmooth analysis approach has
given rise to the current state of the art in the subject.

The goal of this article, however, lies in a different direction. We attempt
here to find, for the two most standard paradigms in dynamic optimization,
the simplest proofs that can be based on the techniques invented and refined
over the last thirty years in connection with the nonsmooth analysis approach.
Specifically, we present a proof of Theorem 1 below, which asserts all the first-
order necessary conditions for the basic problem in the calculus of variations,
and a proof of Theorem 2, which is the Pontryagin maximum principle in a
classical context.

The devices used below (such as decoupling, penalization, use of an ap-
proximate minimization principle) are now familiar in the subject; they were
introduced in the given references for much the same purposes as here. It is
the elementary, self-contained, and economical nature of the proofs which is

1This is not to say, however, that we are announcing the end of history in this
regard.
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new. Of course, a concept such as “self-contained” is relative (and subjective),
so let us now identify the pre-requisites in detail.

Background

The proofs of the theorems below mostly call upon standard tools of measure
and integration. Frequent use is made of measurable set-valued mappings and
their selections, a theory which is perhaps not as well known as it should be.
Our needs are elementary, and the short overview given in [6, pp. 149-151]
is adequate. We also require a sequential compactness result that is a conse-
quence of the Dunford-Pettis criterion for weak compactness in L1, together
with Ascoli’s theorem. We state it now for convenience (a proof is given in [5,
p. 119]).

An absolutely continuous function x : [a, b] → Rn (where [a, b] is a fixed
interval in R) is called an arc. Let a sequences of arcs xi be given which satisfy
the inclusion

x′i(t) ∈ Γ (t, xi(t) + yi(t)) + ri(t)B, t ∈ Ωi a.e.,

where the set-valued mapping Γ (t, x) from [a, b] × Rn to the closed convex
subsets of Rn is measurable in t and has closed graph relative to x. The
functions yi and ri are assumed to go to 0 in L1, and the measure of the sets
Ωi converges to b− a. It is assumed that the sequence xi(a) is bounded, and
that for some summable function k we have Γ (t, x) ⊂ k(t)B and, for each i,
|x′i(t)| ≤ k(t) a.e. Then there is an arc x̄ satisfying x̄′(t) ∈ Γ (t, x̄(t)) a.e. which
is the uniform limit of a subsequence xni

having the additional property that
x′ni

converges weakly in L1 to x̄′.
Also used in the proofs is the variational principle of Ekeland (see for

example [5]), which at this point can be viewed as a familiar property of
complete metric spaces. Finally, a few simple facts from nonsmooth calculus
will be invoked. However, it is a striking feature of the proofs given here
that (in contrast to other work) they require very little beyond the actual
definitions of the objects in question; we give these now (see [6] for details).

Given a lower semicontinuous function f : X → R ∪ {+∞} and a point x
at which f is finite, we say that ζ is a proximal subgradient of f at x if there
exists σ ≥ 0 such that

f(x′)− f(x) + σ ‖x′ − x‖2 ≥ 〈ζ, x′ − x〉

for all x′ in a neighborhood of x. The set of such ζ, which may be empty,
is denoted ∂P f(x) and referred to as the proximal subdifferential. A closure
operation then defines the limiting subdifferential :

∂Lf(x) := {lim ζi : ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)} .

It can be shown that the same limiting subdifferential is obtained if this closure
operation is applied to the subgradients usually employed in the theory of
viscosity solutions.
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The indicator of a set S is the function denoted IS which takes the value
0 on S and +∞ elsewhere. If S is a closed subset of Rn, and if x is a point in
S, then the limiting normal cone NL

S (x) to S at x can be defined as ∂LIS(x).
This normal cone reduces to the familiar normal vectors when S is convex, or
when S is a manifold or a manifold with boundary.

2 The Lipschitz problem of Bolza

We study in this section a version of the basic problem in the calculus of
variations. The problem (P) consists of minimizing the (Bolza) functional

J(x) := `0(x(a)) + `1(x(b)) +
∫ b

a

L(t, x(t), x′(t)) dt (1)

over all arcs x : [a, b] → Rn satisfying the constraints

x(a) ∈ C0, x(b) ∈ C1, x
′(t) ∈ V (t) a.e. (2)

where [a, b] is a given fixed interval in R, C0, C1 are closed subsets of Rn,
`0, `1 : Rn → R are locally Lipschitz functions, and V is a measurable mapping
from [a, b] to the closed convex subsets of Rn.

An arc x is said to be admissible for (P) if x satisfies the constraints (2),
and the integral in (1) is well-defined and finite. We are given an admissible
arc x∗ which is a local minimum in the sense that, for some ε∗ > 0, for any
admissible arc x satisfying ‖x− x∗‖∞ ≤ ε∗, we have J(x∗) ≤ J(x).

The Lagrangian L(t, x, v) is a mapping from [a, b] × Rn × Rn to R; we
assume that it is measurable with respect to t and Lipschitz with respect to
(x, v) near x∗ in the following sense: for a summable function k : [a, b] → R,
we have, for almost all t, for all x, y ∈ B(x∗(t), ε∗) and v, w ∈ V (t),

|L(t, x, v)− L(t, y, w)| ≤ k(t){|x− y|+ |v − w|}. (3)

The theorem below requires the following interiority hypothesis which distin-
guishes the problem from one in optimal control: There is a positive δ such
that B(x′∗(t), δ) ⊂ V (t) a.e.

Theorem 1. There exists an arc p which satisfies the Euler inclusion

p′(t) ∈ co
{
ω : (ω, p(t)) ∈ ∂LL(t, x∗(t), x′∗(t))

}
a.e. t ∈ [a, b] (4)

together with the Weierstrass condition

〈p(t), v〉 − L(t, x∗(t), v) ≤
〈p(t), x′∗(t)〉 − L(t, x∗(t), x′∗(t)) ∀ v ∈ V (t), a.e. t ∈ [a, b] (5)

and the transversality condition

p(a) ∈ ∂L`0(x∗(a)) +NL
C0

(x∗(a)), −p(b) ∈ ∂L`1(x∗(b)) +NL
C1

(x∗(b)). (6)
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Remark.

The limiting subdifferential ∂LL in the Euler inclusion is taken with respect
to the (x, v) variables for each fixed t. It reduces to a singleton when L is of
class C1 in (x, v) (or just strictly differentiable); in that case, (4) becomes

p′(t) = ∇xL(t, x∗(t), x′∗(t)), p(t) = ∇vL(t, x∗(t), x′∗(t)),

the familiar integral (or duBois-Reymond) form of the Euler equation. This
subsumes the classical first Erdmann condition: that is, the essential conti-
nuity of the function t 7→ ∇vL(t, x∗(t), x′∗(t)), a property which serves as the
gateway to higher order regularity.

2.1 Proof of Theorem 1

We begin by identifying certain additional hypotheses that can be made with-
out any loss of generality, by simple reformulations.

Note first that the theorem’s hypotheses and conclusions are unaffected if
we redefine L(t, x, v) to be L(t, πt(x), π′t(v)), where πt(x) denotes the projec-
tion of x onto the set B(x∗(t), ε∗) and π′t(v) is the projection of v onto V (t).
Since πt and π′t are globally Lipschitz, this convention allows us to suppose
that the Lipschitz condition (3) holds globally. By similar arguments, we may
suppose that `0 and `1 are bounded below and globally Lipschitz, and that
C0 is compact. We suppose as well that k(t) ≥ 1. Finally, by reformulating
we may take x∗ ≡ 0 and [a, b] = [0, 1].

We proceed now to prove the theorem under two additional hypotheses
whose removal will constitute the last step in the proof.

Temporary hypotheses:

(TH1) C1 = Rn (so that there is no explicit constraint on x(b)).
(TH2) There exists R > 0 such that V (t) ⊂ B(x′∗(t), R) a.e.

A.

We proceed to define via penalization a sequence of decoupled problems con-
verging in an appropriate sense to (P). We introduce, for a given sequence of
positive numbers ni tending to +∞,

`1i (y) := min
β∈Rn

{
`1(β) + ni|y − β|2

}
, (7)

a type of expression known as a quadratic inf-convolution, and which figures
in the Moreau-Yosida approximation to `1. Since `1 is globally Lipschitz and
bounded below, there is a constant c such that

`1i ≤ ` ≤ `1i + c/
√
ni.
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We set

Li(t, x, v) := min
u∈Rn

{
L(t, u, v) + nik(t)|u− x|2

}
Ji(x) := `0(x(0)) + `1i (x(1)) +

∫ 1

0

Li(t, x(t), x′(t)) dt

and we define Ii to be the infimum of Ji(x) over all arcs x satisfying

x(0) ∈ C0, x
′(t) ∈ V (t) a.e., |x(0)| ≤ ε∗/2,

∫ 1

0

|x′(t)| dt ≤ ε∗/2. (8)

Note that these constraints imply ‖x‖∞ ≤ ε∗. Because of (TH2) we have (for
some constant c0)

c0 ≤ Ii ≤ Ji(0) ≤ `0(0) + `1(0) +
∫ 1

0

L(t, 0, 0) dt = J(0).

Lemma 1. limi→+∞ Ii = J(0).

To see this, let xi satisfy (8) together with Ji(xi) ≤ Ii + n−1
i , and let ui be a

measurable function such that ui(t) is (almost everywhere) a point at which
the minimum defining Li(t, xi(t), x′i(t)) is achieved:

Li(t, xi(t), x′i(t)) = L(t, ui(t), x′i(t)) + nik(t)|ui(t)− xi(t)|2 a.e.

(This is the first of several times that the existence of a measurable selection
is left as an exercise.) This equality together with (3) leads to |ui(t)−xi(t)| ≤
n−1

i a.e. We now observe

Ii + n−1
i ≥ Ji(xi)

= `0(xi(0)) + `1i (xi(1)) +
∫ 1

0

{
L(t, ui, x

′
i) + nik(t)|ui − xi|2

}
dt

≥ `0(xi(0)) + `1(xi(1))− c/
√
ni +

∫ 1

0

{
L(t, xi, x

′
i)− k(t)|ui − xi|

}
dt

≥ J(0)− c/
√
ni − ‖k‖1/ni,

and the assertion of the lemma follows.
We may view the problem defining Ii as one that is defined relative to the

couples (x(0), x′) in the complete metric space Rn × L1 lying in the closed
set S defined by (8). The lemma implies that the arc x∗ = 0 is ε2i -optimal for
the problem, where εi is a positive sequence tending to 0. We apply Ekeland’s
theorem (see [5]) to deduce the existence of an arc xi ∈ S satisfying

|xi(0)|+
∫ 1

0

|x′i(t)| dt ≤ εi, (9)
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and which minimizes over S the functional J ′i defined by

J ′i(x(0), x′) := `0(x(0)) + εi|x(0)− xi(0)|+ `1i (x(1))

+
∫ 1

0

min
u

{
L(t, u, x′(t)) + nik(t)|u− x(t)|2 + εi|x′(t)− x′i(t)|

}
dt.

We may pass to a subsequence (without relabeling) to assure x′i(t) → 0 a.e.

B.

We now fix i and reformulate the optimality of xi for J ′i in a more useful
manner, one that will allow us to identify an arc pi that is “close” to satisfying
the necessary conditions. Let ui be a measurable function such that almost
everywhere the minimum

min
u

{
L(t, u, x′i(t)) + nik(t)|u− xi(t)|2

}
is achieved at ui(t); it follows as in the proof of the lemma that |ui(t)−xi(t)| ≤
n−1

i a.e. Now let βi be a point achieving the minimum in (7) when y = xi(1).
We proceed to define an arc pi via

p′i(t) = 2nik(t)(xi(t)− ui(t)), pi(1) = −2ni(xi(1)− βi).

Then we have (by choice of βi)

−pi(1) ∈ ∂P `1(βi). (10)

Using the observation

`1i (y) ≤ `1(βi) + ni|y − βi|2 ∀ y,

(with equality for y = xi(1)) together with the identity

nik|u−x|2 = nik|ui−xi|2−〈p′i, u− ui〉+〈p′i, x− xi〉+nik|(x−xi)−(u−ui)|2,

and integration by parts, we see that the cost functional Φ(u, α, v) defined on
L∞ × Rn × L1 by

`0(α) + εi|α− xi(0)| − 〈pi(0), α〉+ ni |x(1)− βi|2 + 〈pi(1), x(1)〉

+
∫ 1

0

{
L(t, u(t), v(t))− 〈pi(t), v(t)〉 − 〈p′i(t), u(t)〉+ εi|v(t)− x′i(t)|

}
dt

+ 2ni

∫ 1

0

k(t)
{
|u(t)− ui(t)|2 + |x(t)− xi(t)|2

}
dt

satisfies (letting x(t) stand for α+
∫ t

0
v(s) ds, and for a certain constant ci):

Φ(u, α, v) ≥ J ′i(x(0), x′) + ci,
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with equality when (u, α, v) = (ui, xi(0), x′i). It follows that Φ(u, α, v) is min-
imized relative to the constraints

α ∈ C0, |α| ≤ ε∗/2, v(t) ∈ V (t) a.e.,
∫ 1

0

|v(t)|dt ≤ ε∗/2 (11)

at (ui, xi(0), x′i).
It is easy to see (by substituting for x and p) that the last two boundary

terms in the expression for Φ may be rewritten in the form ni

{
|x(1)−xi(1)|2+

|βi|2 − |xi(1)|2
}
. It follows then that the functional Ψ(u, α, v) defined by

`0(α) + εi|α− xi(0)| − 〈pi(0), α〉+ ni|x(1)− xi(1)|2

+
∫ 1

0

{
L(t, u(t), v(t))− 〈pi(t), v(t)〉 − 〈p′i(t), u(t)〉+ εi|v(t)− x′i(t)|

}
dt

+ 2ni

∫ 1

0

k(t)
{
|u(t)− ui(t)|2 + |x(t)− xi(t)|2

}
dt

is minimized relative to the constraints (11) at (ui, xi(0), x′i).

C.

The next step consists of a variational analysis (for i still fixed) of the min-
imum of Ψ just mentioned. Let us first fix u = ui and v = x′i. Then the
function α 7→ Ψ(ui, α, x

′
i) attains a local minimum (for i sufficiently large,

since xi(0) → 0) relative to α ∈ C0 at xi(0). The corresponding necessary
condition is

pi(0) ∈ ∂L

{
`0 + IC0

}
(xi(0)) + εiB. (12)

This, together with (10), is the precursor of the transversality condition (6).
We now exploit the minimum in v of Ψ(ui, xi(0), v) to derive a forerunner of

the Weierstrass condition. The constraint on v in (11) is slack for i sufficiently
large, and a simple argument by contradiction shows that we must then have,
for almost every t,

〈pi(t), v〉 − L(t, ui(t), v)− εi|v − x′i(t)| ≤
〈pi(t), x′i(t)〉 − L(t, ui(t), x′i(t)) ∀ v ∈ V (t). (13)

Let us give this argument. If (13) does not hold, then there exists r > 0 and
a subset S of [a, b] of positive measure m such that, for some measurable
function w defined on S and taking values in V (t), we have

L(t, ui(t), w(t)) + εi|w(t)− x′i(t)| − 〈pi(t), w(t)〉 ≤
L(t, ui(t), x′i(t))− 〈pi(t), x′i(t)〉 − r, t ∈ S a.e.

Of course, m can be taken arbitrarily small. If we let v be the function equal to
w on S and equal to x′i elsewhere, and if x(t) signifies xi(0) +

∫ t

0
v(s) ds, then
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we have ‖x−xi‖∞ ≤ Km for a constant K independent of m (the hypothesis
(TH2) is used for this). It follows that

Ψ(ui, xi(0), v)− Ψ(ui, xi(0), x′i) ≤ −rm+K2ni(1 + 2‖k‖1)m2 < 0

for m sufficiently small. Further, v satisfies the constraint in (11) if m is small
enough. This contradicts the optimality of (ui, xi(0), x′i) and concludes the
argument.

Making use of such evident estimates as

|x(t)− xi(t)|2 ≤ 2|x(0)− xi(0)|2 + 2
∫ 1

0

|x′(s)− x′i(s)|2ds

and rearranging, we deduce that the cost functional Ψ+(u, α, v) defined by

`0(α) + εi|α− xi(0)| − 〈pi(0), α〉+ 6ni|α− xi(0)|2

+
∫ 1

0

{
L(t, u(t), v(t))− 〈pi(t), v(t)〉 − 〈p′i(t), u(t)〉+ εi|v(t)− x′i(t)|

}
dt

+ 2ni

∫ 1

0

k(t) |u(t)− ui(t)|2 dt+ 6ni

∫ 1

0

k(t) |v(t)− x′i(t)|
2
dt

also attains a minimum relative to the constraints (11) at (ui, xi(0), x′i).
Setting α = xi(0), v = x′i in Ψ+, the attainment of the minimum relative

to u ∈ L∞ implies by measurable selection theory that for t a.e., it is the case
that ui(t) minimizes freely the integrand in Ψ+. This fact yields

p′i(t) ∈ ∂P {L(t, ·, x′i(t))}(ui(t)) a.e.,

which in turn gives
|p′i(t)| ≤ k(t) a.e. (14)

When the constraint on v in (11) is slack, it follows that for almost every
t, the minimum with respect to (u, v) ∈ Rn × V (t) of the integrand in Ψ+

is attained at (ui(t), x′i(t)); this implies an intermediate version of the Euler
inclusion:

(p′i(t), pi(t)) ∈ ∂LL(t, ui(t), x′i(t)) + {0} × εiB, t ∈ Ωi a.e. (15)

where Ωi := {t ∈ [0, 1] : x′i(t) ∈ intV (t)}. Note that the measure of Ωi tends
to 1 as i→∞, in light of the interiority hypothesis.

D.

The next step is to let i tend to infinity. The conditions (14) and (10) allow us
to deduce (for a subsequence, without relabeling) that pi converges uniformly
to an arc p and p′i converges weakly to p′. Passing to the limit in (10) and
(12) (note (9), and that βi → x∗(1)), we see that p satisfies the transversality
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condition (6) (for C1 = Rn). The Euler inclusion (4) follows from (15) by
the sequential compactness result stated in the Introduction. From (13) we
conclude that almost everywhere we have

〈p(t), v〉 − L(t, 0, v) ≤ 〈p(t), 0〉 − L(t, 0, 0) ∀ v ∈ V (t),

which is the desired Weierstrass condition. The theorem is therefore proven,
in the presence of the Temporary Hypotheses (TH1)(TH2).

E.

The final step in the proof is the removal of the Temporary Hypotheses.
It is clear at this point (given our expertise at passing to the limit in the
necessary conditions along subsequences) that it suffices to deduce, for any η >
0 sufficiently small, the necessary conditions for x∗ in which the Weierstrass
condition holds for the following subset of V (t):

Vη(t) :=
{
v ∈ V (t) ∩B(x′∗(t), 1/η) : v + ηB ⊂ V (t)

}
(note the role of the interiority hypothesis in this reduction.) In this setting,
the case of an arbitrary C1 is reduced to the one in which C1 = Rn by an
exact penalization device, as follows. A simple argument by contradiction (as
in [3]) shows that for some K > 0 sufficiently large, x∗ solves the problem of
minimizing

JK(x) := `0(x(0)) + `1(x(1)) +KdC1(x(1)) +
∫ 1

0

L(t, x(t), x′(t)) dt

over the arcs x satisfying

x(0) ∈ C0, ‖x− x∗‖∞ ≤ ε∗/2, x′(t) ∈ Vη(t) a.e.

The argument goes as follows. If the assertion is false, then there exists for
each positive integer j an arc xj admissible for this problem with Jj(xj) <
Jj(x∗) = J(x∗). Since Jj(xj) is bounded below, it follows that dC1(xj(1)) → 0.
Let σj be a closest point in C1 to xj(1). Then for j sufficiently large, the arc
yj(t) := xj(t) + t(σj − xj(1)) satisfies (2) and we have, for a certain constant
K0 depending only upon k(·),

J(yj) ≤ J(xj) +K0dC1(xj(1))
≤ Jj(xj) < J(x∗),

contradicting the optimality of x∗.
This new penalized problem satisfies (TH1) and (TH2), so we may apply

the theorem already proven to deduce the existence of an arc p satisfying the
Euler inclusion and the Weierstrass condition (for Vη, as agreed). It remains
to see that transversality holds. But we have (invoking two simple facts from
nonsmooth calculus)
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−p(1) ∈ ∂L(`1 +KdC1)(x∗(1)) ⊂ ∂L`1(x∗(1)) +K∂LdC1(x∗(1))
⊂ ∂L`1(x∗(1)) +NL

C1
(x∗(1)),

and the theorem is proved.

2.2 Remarks

Until this final step, no Lipschitz behavior of L with respect to v is used in
the proof. It can in fact be dispensed with, but then the necessary conditions
may hold only in abnormal form. This is but one of several ways in which
the theorem can be extended (at considerable technical expense, however).
As regards necessary conditions for one-dimensional problems in the calculus
of variations with finite-valued Lagrangians, the state of the art is currently
given by [7, Theorem 4.4.1].

It is also possible to consider the problem (P) with extended-valued La-
grangians, as in Theorem 4.1.1 of [7]. From this result, the classical multiplier
rule for mixed constraints such as ψ(t, x(t), x′(t)) = 0 a.e. (for example) follows
as a special case. In addition, the nature of the local minimum is more gen-
eral; it is linked to the hypotheses and conclusions in a stratified manner. The
Lipschitz hypothesis is replaced in such a context by a much weaker pseudo-
Lipschitz one. Finally, one can develop structural criteria on the Lagrangian
(the generalized Tonelli-Morrey conditions) that have the important prop-
erty of automatically yielding the required pseudo-Lipschitz behavior near
the given arc (whatever it may be); see [7, Theorem 4.3.2].

The advantage of Theorem 1 in comparison to these more general re-
sults stems solely from the directness and relative simplicity of the proof
given above. As we have said, the hypotheses can be considerably weakened.
Nonetheless, as we shall now see, Theorem 1 can play a very useful role in
obtaining necessary conditions for optimal control problems. The fact that
nonsmooth Lagrangians are admitted is crucial in this regard.

3 The maximum principle

We consider now the standard control system

x′(t) = f(t, x(t), u(t)), t ∈ [a, b] a.e. (16)

where u is a measurable function on [a, b] whose values are constrained as
follows:

u(t) ∈ U(t) a.e.,

where U is a measurable mapping from [a, b] to the subsets of Rm. Such a
function u is called a control, and the corresponding function x(t) is termed a
trajectory. Our interest centers around a given control-trajectory pair (u∗, x∗)
satisfying x∗(a) ∈ C0, where C0 is a given set in Rn.
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For ε∗ > 0 given, let us define the (local) attainable set from C0, denoted
A[C0], as the set of all points x(b), where x(t) satisfies (16) for some control
u(t), as well as x(a) ∈ C0 and ‖x− x∗‖∞ ≤ ε∗. Now let a function Φ : Rn →
RN be given. Then x∗ is called a local Φ-boundary trajectory if Φ(x∗(b)) ∈
bdryΦ(A[C0]).

Our purpose is to give necessary conditions for such a trajectory and its
associated control. The hypotheses on the data are resolutely simple: f and
Φ are continuously differentiable and C0 compact; as for U , we assume that
U(t) is a closed subset of a compact set U0 for each t.2

Theorem 2. Let x∗ be a local Φ-boundary trajectory corresponding to the con-
trol u∗. Then there exists an arc p satisfying the adjoint equation

−p′(t) = Dxf(t, x∗(t), u∗(t))T p(t) a.e. (17)

as well as the maximum condition

max
u∈U(t)

〈p(t), f(t, x∗(t), u)〉 = 〈p(t), f(t, x∗(t), u∗(t))〉 a.e. (18)

and the transversality condition: for some unit vector ν ∈ RN ,

p(a) ∈ NL
C0

(x∗(a)), p(b) = DΦ(x∗(b))T ν. (19)

3.1 Proof of Theorem 2

A.

We may take [a, b] = [0, 1] and assume (without loss of generality) that f and
Φ are globally Lipschitz. We proceed under the following

Temporary Hypothesis:

There exists η > 0 with the following property: for almost each t, for every
u ∈ U(t) different from u∗(t), one has

|f(t, x∗(t), u)− f(t, x∗(t), u∗(t))| ≥ η. (20)

By the definition of boundary, for any ε ∈ (0, 1), there is a point γ /∈ Φ(A[C0])
such that |Φ(x∗(1))−γ| < ε2. Thus x∗ is ε2-optimal for the problem of minimiz-
ing |Φ(x(1))−γ| over all trajectories x satisfying x(0) ∈ C0 and ‖x−x∗‖∞ ≤ ε∗.
We take the distance between two such trajectories x1, x2 to be

2Thus we do not pursue the greatest generality as regards the regularity of the
data. However, there are structural hypotheses not made here that would signifi-
cantly reduce the complexity of the problem. Notable among these are: linearity of
f in x, one state endpoint being free, and the convexity of the sets f(t, x, U(t)) (this
last condition is connected to the relaxation of the problem).
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|x1(0)− x2(0)|+
∫ 1

0

|x′1(t)− x′2(t)| dt.

It follows from Ekeland’s theorem that some trajectory x̄ satisfying

|x̄(0)− x∗(0)|+
∫ 1

0

|x̄′(t)− x′∗(t)| dt ≤ ε (21)

minimizes the functional J0(x) defined by

|Φ(x(1))− γ|+ ε|x(0)− x̄(0)|+ ε

∫ 1

0

|x′(t)− x̄′(t)| dt (22)

over all the trajectories x in question. Observe that |Φ(x̄(1)) − γ| 6= 0 (since
γ /∈ Φ(A[C0])) and that for ε sufficiently small we have ‖x̄− x∗‖∞ < ε∗/2.

B.

The next step is to reinterpret the problem above in such a way that Theorem
1 can be applied to it. We employ an exact penalization technique that hinges
on the following approximation fact.

Lemma 2. There is a constant K with the following property: if z is any arc
on [0, 1] emanating from C0, then there is a trajectory y with y(0) = z(0) such
that ∫ 1

0

|y′(t)− z′(t)| dt ≤ K

∫ 1

0

min
u∈U(t)

|z′(t)− f(t, z(t), u)| dt. (23)

Proof: Let u have values in U(t) a.e. and satisfy

|z′(t)− f(t, z(t), u(t))| = min
u∈U(t)

|z′(t)− f(t, z(t), u)| a.e.,

and let y be the trajectory generated by the control u, with initial condition
y(0) = z(0). Then, letting Kf denote a Lipschitz constant for f , we have
almost everywhere

|y′(t)− z′(t)| = |f(t, y(t), u(t))− z′(t)|
≤ |f(t, z(t), u(t))− z′(t)|+Kf |y(t)− z(t)|
= min

u∈U(t)
|z′(t)− f(t, z(t), u)|+Kf |y(t)− z(t)|,

and the estimate (23) follows from Gronwall’s Lemma.
Let us set

L0(t, x, v) := min
u∈U(t)

|v − f(t, x, u)|.

Let KΦ be a Lipschitz constant for Φ and set K0 := K(KΦ + 2). We claim
that the arc x̄ minimizes the functional
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J(x) := J0(x) +K0

∫ 1

0

L0(t, x(t), x′(t)) dt

over the arcs x satisfying ‖x− x̄‖∞ ≤ ε∗/2 and x(0) ∈ C0. If this were false,
there would be an admissible arc z such that J(z) < J(x̄). Apply the lemma
to obtain a trajectory y as indicated. Then

J0(y) ≤ J0(z) + (KΦ + 2)
∫ 1

0

|y′(t)− z′(t)| dt

≤ J0(z) + (KΦ + 2)K
∫ 1

0

min
u∈U(t)

|z′(t)− f(t, z(t), u)| dt

= J(z) < J(x̄) = J0(x̄),

contradicting the optimality of x̄ relative to (22).

C.

We now apply the necessary conditions of Theorem 1 relative to the mini-
mization of J by x̄. We deduce the existence of an arc p̄ satisfying

p̄(0) ∈ NL
C0

(x̄(0)) + εB, −p̄(1) = DΦ(x̄(1))T ν, (24)

where ν is the unit vector (Φ(x̄(1))− γ) / |Φ(x̄(1))− γ| , together with the
Euler equation (4) and the Weierstrass condition (5). The latter evidently
implies (take v of the form f(t, x̄(t), u) for u ∈ U(t)) that we have almost
everywhere

〈p̄(t), f(t, x̄(t), u)〉 − ε|f(t, x̄(t), u)− x̄′(t)| ≤ 〈p̄(t), x̄′(t)〉 , u ∈ U(t). (25)

We now examine the Euler inclusion. To begin with, it yields the estimate

|p̄′(t)| ≤ k(t), t ∈ [a, b] a.e. (26)

Next, let us define

Ω := {t : Kf |x̄(t)− x∗(t)|+ |x̄′(t)− x′∗(t)| < η} . (27)

Consider a value of t ∈ Ω for which x̄′(t) = f(t, x̄(t), ū(t)), and let (x, v) and
L0(t, x, v) satisfy

|(x, v)− (x̄(t), x̄′(t))|+ L0(t, x, v) < δ

for some δ > 0 (note that L0(t, x̄(t), x̄′(t)) = 0). If u ∈ U(t) provides the
minimum in the definition of L0(t, x, v), then it follows that for δ sufficiently
small we have |f(t, x∗(t), u)−f(t, x∗(t), u∗(t))| < η, so that (by the Temporary
Hypothesis (20)), u = u∗(t). Locally therefore, L0(t, x, v) is given by |v −
f(t, x, u∗(t))|.
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A simple exercise is in order: let (q, p) ∈ ∂Ph(x, v), where h(x, v) = |v −
g(x)|; then q = −Dg(x)T p. Invoking this, the Euler equation is seen to imply

p̄′(t) +Dxf(t, x̄(t), u∗(t))T p̄(t) ∈ εB, t ∈ Ω a.e. (28)

It is now time for ε to experience its usual fate and go to 0 (at least along
a sequence εi). The arc x̄ depends of course on this parameter: x̄ = x̄εi

, as do
the arc p̄, the unit vector ν, and the set Ω defined by (27). In light of (26)(24)
and (21), for an appropriate subsequence we have p̄εi

converging to an arc p,
x̄εi

converging uniformly to x∗, x̄′εi
(t) converging almost everywhere to x′∗(t),

and νεi converging to a unit vector ν. The measure of Ωεi goes therefore to 1,
and it follows from (28)(25) and (24) that the limiting arc p satisfies all the
requirements of Theorem 2.

D.

There remains the Temporary Hypothesis to deal with. We define

Uη(t) := {u∗(t)} ∪ {u ∈ U(t) : |f(t, x∗(t), u)− f(t, x∗(t), u∗(t))| ≥ η} .

When we replace U by Uη, x∗ is still a local Φ-boundary trajectory for the
new system, and all the hypotheses of the theorem continue to hold, as well as
the Temporary Hypothesis (20). We therefore deduce the existence of an arc
pη satisfying all the required conditions, except that the maximum condition
holds only for the control values in Uη. An appeal to a subsequence of ηi

converging to 0 gives the required arc p, in a now familiar fashion.

3.2 Remarks

It is well-known that the necessary conditions for a boundary trajectory sub-
sume those that correspond to optimality. To be specific, consider now the
minimization of a cost functional

`1(x(b)) +
∫ b

a

L(t, x(t), u(t)) dt

over the same trajectory-control pairs (x, u) as above satisfying x(a) ∈
C0, x(b) ∈ C1, where we take L smooth, `1 Lipschitz, C0, C1 closed. Then
if x∗ is a local solution corresponding to the control u∗ there is an arc p sat-
isfying the following versions of the three necessary conditions: the adjoint
equation

−p′(t) = Dxf(t, x∗(t), u∗(t))T p(t)− λLx(t, x∗(t), u∗(t)) a.e.,

the maximum condition

max
u∈U(t)

{〈p(t), f(t, x∗(t), u)〉 − λL(t, x∗(t), u)}

= 〈p(t), f(t, x∗(t), u∗(t))〉 − λL(t, x∗(t), u∗(t)) a.e.
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and the transversality condition

p(a) ∈ NC0(x∗(a)), −p(b) ∈ λ∂L`1(x∗(b)) +NC1(x∗(b)).

Here, λ is a scalar equal to 0 or 1 (the case λ = 1 being called “normal”) and
it is also asserted that (λ, p(t)) is nonvanishing. These necessary conditions
follow from Theorem 2 by simple reformulation; see for example [5, pp. 212].

Once again, Theorem 2 is a long way from being the best that can be
obtained. In [7, Theorem 5.1.1], under greatly reduced regularity hypotheses,
necessary conditions are given in the setting of differential inclusions (see
[1]) and generalized control systems. It is also possible to treat a new hybrid
problem [7, Theorem 5.3.1] that goes well beyond the standard formulation
of optimal control, allowing for example the consideration of mixed state-
control constraints ψ(t, x(t), u(t)) ≤ 0 (see also [8]). To obtain these more
general results requires considerably greater investment, however.
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