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1. Introduction

We begin in the middle, with two of the celebrated problems proposed by
Hilbert in Paris in 1900:

The 20th problem: Is it not the case that every regular variational prob-
lem has a solution, provided certain assumptions on the boundary condi-
tions are satisfied, and provided also, if need be, that the concept of solution
is suitably extended?

The 19th problem: Are the solutions of regular problems in the calculus
of variations always analytic?

These questions bear upon the following basic problem in the calculus
of variations: to minimize the functional

J(u) :=
∫

Ω

F (x, u(x), Du(x)) dx

over the functions u : Ω → R assuming prescribed values on Γ := ∂Ω:

u(x) = φ(x), x ∈ Γ.
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Here Ω is a domain in Rn: an open bounded connected set, and Du denotes
the gradient of u. In fact, Hilbert was referring to the case n = 2 in his
problems, but we shall assume only n ≥ 2 for now; the case n = 1, which
is the context in which the subject began (in 1696, arguably, but certainly
no later than 1744), has a markedly different character, and will be con-
sidered in the final section. Hilbert also took the function F (x, u, z) (the
Lagrangian) to be analytic; the problem is regular if Fzz is positive definite
everywhere. We do not discuss in this article the so-called vector case of
the problem in which u is vector-valued (that is, in which there are several
unknown functions).

The decade preceding the formulation of Hilbert’s problems had been
marked by a controversy over the Dirichlet principle, which affirms the
equivalence between functions uminimizing the Dirichlet functional (n = 2)∫

Ω

(u2
x + u2

y) dx dy

and solutions u of Laplace’s equation uxx + uyy = 0. As Weierstrass and
Hilbert pointed out in response to (notably) Riemann’s assertions, the ex-
istence of a minimum here (and the very class in which to seek one) is
problematic. Hilbert went on to give the first rigorous treatment of the is-
sue in 1904, in a context which succeeded in limiting the class of functions u
involved to Lipschitz ones. But it became clear that a more general type of
function space was needed, and eventually the work of Levi, Tonelli, Mor-
rey, Sobolev and others, led to the theory of Sobolev spaces, which provides
a suitable context in which to assert the existence of a solution to the basic
problem.

In the meantime, however, significant progress on Hilbert’s regularity
question was made:

(1) If u is C3, then u is analytic [Bernstein 1904];
(2) If u is C2, then u is C3 [Lichtenstein 1912];
(3) If u is C1,α (that is, has a gradient which is Hölder continuous of order

α ∈ (0, 1]), then u is C2 [Hopf 1929].

These results lowered the regularity threshold to C1,α; once this level of
regularity is present in the solution, then it is as regular as the Lagrangian
permits: Cr (r ≥ 2), C∞, or analytic.

Letting W 1,1(Ω) denote the usual Sobolev space, we now consider the
following reduced basic problem (P):

minimize J(u) :=
∫

Ω

F (Du(x)) dx : u− φ ∈W 1,1
0 (Ω)
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under the following Standing Hypotheses:

(1) F is of class C2 and Fzz > 0 everywhere;
(2) F is coercive of order p > 1: for certain constants σ > 0 and µ,

F (z) ≥ σ|z|p + µ, z ∈ Rn;

(3) φ : Rn → R is Lipschitz.

It is a standard exercise in the theory of Sobolev spaces to invoke the direct
method introduced by Tonelli, in which one exploits the weak sequential
compactness of a minimizing sequence and the weak lower semicontinuity
of the convex functional J , to deduce the existence of a solution u to problem
(P) (u is the unique solution, since J is strictly convex). Note that this is
an answer of sorts to Hilbert’s 20th problem. The issue now becomes the
regularity of the solution u, especially since functions in the Sobolev space
W 1,1(Ω) are not even continuous necessarily.

The reasons for wanting regularity of the solution u are manifold. For
example, continuity of u (or more precisely, of one of its representaives) on
the closure Ω of Ω would mean that the boundary conditions are assumed
in the conventional pointwise manner (rather than in the sense of trace).
Differentiability of u would mean that Du can be interpreted as the true
gradient, and not just the weak distributional derivative. If u is locally
Lipschitz in Ω (or equivalently, Lipschitz on compact subsets of Ω), then
the Euler equation in weak form can be asserted to hold:∫

Ω

∇F (Du(x)) ·Dψ(x) dx = 0, ψ ∈ Cc(Ω).

And finally, in view of the results cited above, local C1,α regularity would
imply that the full regularity of the Lagrangian F is inherited by u, up to
and including analyticity (as in Hilbert’s 19th problem).

There are two major 20th century developments on the regularity issue
to report, and both were first obtained in the context of the reduced problem
(P). We now examine these in turn.

2. The theorem of De Giorgi

The Lagrangian F is said to uniformly elliptic provided that for some ε > 0
we have Fzz(z) ≥ εI for all z ∈ Rn. It is said to be almost quadratic if for
certain constants c0, c1, d0 > 0, d1 > 0 we have

c0 + d0|z|2 ≤ F (z) ≤ c1 + d1|z|2, z ∈ Rn.
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The Dirichlet integrand, which is precisely quadratic, is the canonical exam-
ple of such a Lagrangian. As we know from harmonic analysis, its minimiz-
ers are analytic in Ω. In 1957, De Giorgi? proved the following celebrated
result:

Theorem 2.1. Let F be C2, uniformly elliptic and almost quadratic. Then
the solution u to (P) is locally C1,α in Ω.

Note that the boundary function φ plays no role here, and that the
theorem is strictly one of ‘interior regularity’. De Giorgi’s proof proceeded
by obtaining a linearized Euler equation for u, to which a new regularity
result on elliptic pde’s was then applied to get the required conclusion.
This difficult result was introduced in the same article, and other proofs of
it were later given by Nash (1958), and by Moser (1960).

The main effect of the theorem, from the point of view of the present
discussion, is to reduce the regularity threshold to ‘locally Lipschitz’. Let
us make this explicit by recording the following simple consequence of the
theorem which, surprisingly, is not stated in De Giorgi’s article:

Corollary 2.1. Under merely the hypotheses that F is C2 and regular, if
the solution u to the problem (P) is locally Lipschitz, then it is locally C1,α.

This is proved by replacing the original Lagrangian by one which agrees with
F on a bounded set containing the values of Du(x) and which is uniformly
elliptic and almost quadratic. Then u is still a solution of the problem (by
convexity), and De Giorgi’s theorem applies to yield the conclusion.

The theorem above has been extended in a variety of ways. Certain
evident limits to such extensions, however, as well as possible grounds for
pessimism, arise from certain examples due to Giusti and Giaquinta. We
refer here to special cases of (P) in which the Lagrangian is uniformly elliptic
and satisfies

c0 + d0|z|2 ≤ F (z) ≤ c1 + d1|z|4, z ∈ Rn,

and yet the solution fails to be continuous in Ω. In such examples, though,
the boundary function φ is itself discontinuous. This motivates the thought
that if some regularity properties were imposed on φ, then perhaps this
would induce regularity of the solution u.

This idea, which harkens back to Hilbert’s successful analysis of the
Dirichlet principle, is precisely the one that underlies the other significant
approach to the regularity issue; we turn to it now.
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3. Hilbert-Haar theory

The classical Hilbert-Haar approach, which in contrast to Theorem ??
makes no additional structural assumptions on F , requires instead that
φ satisfy the bounded slope condition (BSC) defined below. The ingredi-
ents of the theory come from several sources. Hilbert is responsible for the
first version of the comparison (or maximum) principle (in the Dirichlet
context), which Haar extended to other Lagrangians. Rado introduced the
‘three point condition’, a forerunner of the BSC below. The idea of applying
comparison to a translated solution is due to von Neumann. The BSC was
formulated and studied in its present form by Hartman and Nirenberg, while
Stampacchia? coined the term BSC and applied it to variational problems.

The bounded slope condition of rank K is the requirement that given
any point γ on the boundary, there exist two affine functions

y 7→
〈
ζ−γ , y − γ

〉
+ φ(γ), y 7→

〈
ζ+
γ , y − γ

〉
+ φ(γ)

agreeing with φ at γ whose ‘slopes’ satisfy |ζ−γ | ≤ K, |ζ+
γ | ≤ K and such

that 〈
ζ−γ , γ

′ − γ
〉

+ φ(γ) ≤ φ(γ′) ≤
〈
ζ+
γ , γ

′ − γ
〉

+ φ(γ) ∀ γ′ ∈ Γ.

Let Lip(Ω) denote the class of globally Lipschitz functions on Ω. The
Hilbert-Haar theorem (see Chapter 1 of Giusti?) is the following:

Theorem 3.1. Let φ satisfy the BSC of rank K. Then there is a solution
u of problem (P ) when it is restricted to Lip(Ω), and the solution u is
Lipschitz on Ω of rank K.

It is possible to show?,?,? that the solution of (P) relative to Lip(Ω) is
in fact the solution relative to W 1,1(Ω), so we now deduce

Corollary 3.1. If φ satisfies the BSC of rank K, then the solution u of
problem (P ) is Lipschitz on Ω of rank K.

It is clear that Theorems ?? and ??, or rather their corollaries, work in
tandem to assert the higher regularity of the solution u to (P), as follows:
if φ satisfies the BSC, then u is locally C1,α and inherits the full regularity
of the Lagrangian up to analyticity.

It is natural to ask now how restrictive the BSC is. It is certainly a
serious limitation of the allowable boundary conditions on ‘flat parts’ of Γ,
since it forces φ to be affine. But the BSC becomes more interesting when
Ω is sufficiently curved. Ω is said to be uniformly convex if, for some ε > 0,
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every point γ on the boundary admits a hyperplane H through γ such that

dH(γ′) ≥ ε|γ′ − γ|2 ∀ γ′ ∈ Γ.

Miranda’s Theorem? states that when Ω is uniformly convex, then any
φ of class C2 satisfies the BSC. Later, Hartman? showed that when Ω
is uniformly convex and Γ is C1,1, then φ satisfies the BSC if and only
if φ is itself C1,1. We can say therefore that as a hypothesis, the BSC
essentially restricts the boundary data to be smooth. When φ is not affine,
the BSC also forces Ω to be convex, a hypothesis that we will add to our
Standing Hypotheses as we turn now to some new results that center around
a weakening of the BSC.

4. New boundary hypotheses

We now turn our attention to the present, or at least the very recent past.
We assume throughout this section that Ω is convex. Clarke? has introduced
a new hypothesis on φ, the lower bounded slope condition (lower BSC) of
rank K: given any point γ on the boundary, there exists an affine function
y 7→ 〈ζγ , y − γ〉+ φ(γ) with |ζγ | ≤ K such that

〈ζγ , γ′ − γ〉+ φ(γ) ≤ φ(γ′) ∀ γ′ ∈ Γ.

Being one-sided, the lower BSC naturally admits a counterpart: an upper
BSC that is satisfied by φ exactly when −φ satisfies the lower BSC.

4.1. Interior regularity

The significance of the ‘partial’ BSC hypothesis stems from the following
result:?

Theorem 4.1. If φ satisfies the lower bounded slope condition, then the
solution u of (P ) is locally Lipschitz in Ω. In fact, there is a constant K
with the property that for any subdomain Ω′ of distance δ > 0 from Γ, we
have

|u(x)− u(y)| ≤ (K/δ)|x− y| ∀x, y ∈ Ω′.

Thus the one-sided BSC gives the crucial regularity property: u is locally
Lipschitz in Ω. This allows us to assert that u is a weak solution of the
Euler equation, in the absence of any restrictive growth conditions on F ,
and of course allows the application of Theorem ?? to deduce higher-order
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regularity. Informally, it appears that in return for ‘half the BSC hypoth-
esis’, we obtain considerably more than half the conclusion. Of course the
principal thing that has been sacrificed is the continuity of u up to the
boundary, but as we shall see below, this can be recovered under a variety
of additional hypotheses.

As in the case of the BSC, it behooves us to examine the conditions
under which the one-sided BSC can be asserted to hold. In this new context,
the property that Ω be curved has less importance than before; flat parts
of the boundary do not force φ to be affine. Nonetheless, curvature can still
serve a purpose: Bousquet? has shown that when Ω is uniformly convex,
then φ satisfies the lower (upper) BSC if and only if it is the restriction to
Γ of a function which is semiconvex (semiconcave), a familiar and useful
property in pde’s (see for example Ref. ?). In the uniformly convex case,
therefore, Theorem ?? extends Hilbert-Haar theory to boundary data that
is semiconvex or semiconcave rather than C2 (or C1,1).

We remark that the proofs of Theorems ?? and ?? have something in
common: both of them construct a new minimizer from u itself with which
to compare u. In the classical case, this is done by translation. The princi-
pal new idea in the proof of Theorem ?? is to construct a new minimizer
through dilation rather than translation.

4.2. Continuity at the boundary

In a variety of situations, it turns out that the lower or upper BSC does im-
ply continuity at the boundary, and even a global Hölder condition in some
cases. A counterexample due to Bousquet and Cannarsa (in the Dirichlet
context) shows, however, that the gradient of u can become unbounded.

Theorem 4.2. Suppose that in addition to the hypotheses of Theorem ??,
one of the following holds:

(a) Γ is a polyhedron, or
(b) Γ is C1,1 and p > (n+ 1)/2, or
(c) Ω is uniformly convex.

Then u is continuous on Ω. In cases (a) and (b), u satisfies a Hölder con-
dition on Ω.

We remark that we know of no example in which (under the hypotheses
of Theorem ??) the solution fails to be continuous on Ω. Indeed, we know
of no example in which φ is Lipschitz and u fails to be continuous.
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4.3. More general Lagrangians

It turns out to be challenging to extend the new results given above to
Lagrangians depending on x and u as well as Du, principally because the
comparison principle does not hold in that case. However, using the tech-
nique of barrier functions, Bousquet and Clarke? have obtained a result for
Lagrangians of the form F (Du) +G(x, u); we describe it now. We assume
that F is uniformly elliptic, that G(x, u) is measurable in x and differen-
tiable in u, and that for every bounded interval U in R there is a constant
LU such that for almost all x ∈ Ω,

|G(x, u)−G(x, u′)| ≤ LU |u− u′| ∀u, u′ ∈ U.

We also postulate that for some bounded function b, the integral∫
Ω
G(x, b(x)) dx is well-defined and finite.

Theorem 4.3. Under these hypotheses, and when φ satisfies the Lower or
Upper BSC, any bounded solution u of the basic problem is locally Lipschitz
in Ω.

We remark in connection with this result that it is possible to formulate
additional hypotheses on the data which imply a priori that any solution
to the basic problem is bounded, and that additional structural hypotheses
lead as before to continuity at the boundary.

5. The one-dimensional case

Finally, let us address the beginning of the subject: the one-dimensional
case, for which there is always a different notation. The basic problem (P)
now corresponds to the minimization of the functional

J(x) :=
∫ b

a

F (t, x(t), x′(t)) dt

over the functions x : [a, b] → RN in some given class X, and subject to
prescribed endpoint conditions: x(a) = A, x(b) = B. Note that we now
allow N > 1, the case of several unknown functions; the generic name for
the variables becomes (t, x, v) rather than (x, u, z).

For Euler and his contemporaries, all functions were smooth, so the
issue of the regularity of the solutions did not arise; implicitly, X was a
space of very smooth functions. On a more rigorous level, when the degree
of smoothness becomes a consideration, we can deduce that if x is C1 to
start with, and if F is regular (which continues to mean Fvv > 0) and at



February 28, 2008 12:5 WSPC - Proceedings Trim Size: 9in x 6in Clarke˙Regularity˙Final

9

least C2, then x inherits the full degree of regularity of F , up to analyt-
icity. This is known as the Hilbert-Weierstrass theorem (circa 1890), and
is a consequence of the Euler equation together with the implicit function
theorem. By the 19th century, however, the possible nonsmoothness of solu-
tions began to be recognized as an important point, in view of such concrete
evidence as nonsmooth soap (minimal) surfaces.

Results were obtained for the class PWS of piecewise smooth functions,
notably. An important breakthrough was duBois-Reymond’s proof of the
integral form of the Euler equation: if x solves (P) relative to PWS, then
there exists a piecewise smooth function p such that

(p′(t), p(t)) = ∇F (t, x(t), x′(t))

at all non-corner points; here, ∇F refers to the gradient in the (x, v) vari-
ables. This condition subsumes the earlier Erdmann condition, and like
it, can sometimes be used to deduce the smoothness of x (in this setting,
the absence of corners). Note however that x has to be assumed piecewise
smooth a priori. This is unfortunate, since, although suitable necessary
conditions can be asserted in PWS, the class of piecewise smooth functions
is of no help in regard to the existence issue.

It was Tonelli’s major contribution to show that existence theory can be
developed successfully in the class AC of absolutely continuous functions.
But within AC, the ability to derive the Euler equation fails in general,
so our steps forward (on existence) are accompanied by one step back (on
the necessary conditions). A way out of this quandary is to find reasonable
supplementary hypotheses on the Lagrangian which will imply that x is
Lipschitz. The reason for this is that all the classical results for the class
PWS carry over to this class (now that Lebesgue has given us his integral).
In other words, just as in the multi-dimensional case treated in the previous
sections, the regularity threshold is situated at Lipschitz continuity of the
solution.

Of course, in the one-dimensional case there is little help to be found
from examining the boundary conditions (as in the Hilbert-Haar theory).
In fact, the methodology used to obtain regularity theorems has been over-
whelmingly based upon analyzing the necessary conditions. This is in stark
contrast to the multi-dimensional case, where the necessary conditions don’t
seem to yield very much directly. We conclude therefore that our best hope
to extend regularity theory lies in the possibility of deriving stronger nec-
essary conditions in more general circumstances.

We proceed to report on just such a recent development. For this pur-



February 28, 2008 12:5 WSPC - Proceedings Trim Size: 9in x 6in Clarke˙Regularity˙Final

10

pose, we examine a Lagrangian F (t, x, v) which is merely measurable in
t and (x, v) (see? for the precise meaning of this) and lower semicontinu-
ous in (x, v). No hypotheses of smoothness or convexity are made. Instead,
we assume the following generalized Tonelli-Morrey condition [GTM]: for
every bounded subset S of Rn there exist a constant c and a summable
function d such that for almost every t, for every (x, v) ∈ S ×Rn, for every
(ζ, ψ) ∈ ∂PF (t, x, v), one has

|ζ|
1 + |ψ|

≤ c {|F (t, x, v)|+ |v|}+ d(t).

Here, ∂PF refers to the proximal subgradient of F with respect to the (x, v)
variables, a basic construct in nonsmooth analysis.

When F is C2 (or somewhat less), the growth condition of [GTM] is
equivalent to

|DxF | ≤ c1 {|F |+ |v|+ |DvF |}+ d1(t) + {c2 (|F |+ |v|) + d2(t)} |DvF | .

The special case c2 = d2 = 0 corresponds to a class of Lagrangians that
has been considered by Clarke and Vinter? in connection with regularity.
In this case, and when in addition the term involving |DvF | is placed on
the left side of the inequality, as follows:

|DxF |+ |DvF | ≤ c1 {|F |+ |v|}+ d1(t),

(thereby making the condition a more stringent hypothesis), we obtain a
growth condition first postulated by Tonelli in order to be able to derive
the necessary conditions in the class AC.

In the much more general setting now being considered, the new [GTM]
still has the same effect: it allows one to deduce necessary conditions that
must be satisfied by any solution to (P). These conditions have the nature
of the classical ones, but expressed in such a way as to take account of the
nonsmoothness of F . Here is just one such result taken from Clarke:?

Theorem 5.1. Let x be a solution to (P) relative to the class AC, where
F satisfies the generalized Tonelli-Morrey growth condition [GTM]. Then
there exists an arc p satisfying the Euler inclusion

p′(t) ∈ co {ω : (ω, p(t)) ∈ ∂LF (t, x(t), x′(t))} a.e.,

and the Weierstrass condition: for almost all t ∈ [a, b] we have

F (t, x(t), v)− F (t, x(t), x′(t)) ≥ 〈p(t), v − x′(t)〉 ∀ v ∈ Rn.
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The Euler inclusion in this statement involves the limiting subdifferential
∂LF ; it reduces to the integral form of the Euler equation when F is smooth.
The Weierstrass condition is the familiar one of the classical theory.

This theorem admits a more general form in which the cost depends
on the endpoint values of the arc x, which need be only a local minimum
in a specified sense. Beyond this, and most significantly, the theorem can
be stated for extended-valued Lagrangians F , so that problems in optimal
control are subsumed by it. But these are chapters in a different story, so
let us proceed instead with our quest for regularity consequences.

We say that the Lagrangian F is coercive if for any bounded subset S
of Rn there exists a function θ : [0,∞) → R satisfying

lim
r→+∞

θ(r)
r

= +∞

and such that

F (t, x, v) ≥ θ(|v|) ∀ (t, x, v) ∈ [a, b]× S × Rn.

We remark that coercivity is a familiar ingredient in the theory of existence
of solutions. The symbiosis between necessary conditions and regularity is
well illustrated by the following new result.

Corollary 5.1. If x solves (P) relative to the class AC, where F is coercive,
bounded above on bounded sets, and satisfies the generalized Tonelli-Morrey
growth condition [GTM], then x is Lipschitz on [a, b].

Proof. In view of Theorem ??, we know that an arc p exists which satisfies
the Weierstrass condition. Let M be an upper bound on

F

(
t, x(t),

x′(t)
1 + |x′(t)|

)
for t ∈ [a, b], and let θ be a coercivity function for F when the variable x is
restricted to the bounded set consisting of the values of x(t) on [a, b]. Then,
taking v := x′(t)/(1+ |x′(t)|) in the Weierstrass inequality leads to (almost
everywhere)

θ(|x′(t)|) ≤ F (t, x(t), x′(t)) ≤M + |p(t)| |x′(t)| .

Since |p(t)| is bounded and limr→∞ θ(r)/r = +∞, it follows from this
inequality that x′(t) is essentially bounded on [a, b]. �
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This corollary even extends (relative to previous results) the class of
smooth Lagrangians for which the necessary conditions can be asserted and
regularity inferred. A simple example of this is provided (for N = 1) by

F (t, x, v) = exp
{
(1 + x2 + t2)v2

}
.

This Lagrangian satisfies the hypotheses of the classical Tonelli existence
theorem as well as those of the corollary. Thus a solution to (P) over AC
exists, and any solution x is Lipschitz. Because F is strictly convex in v, it
then follows? that x is C1, and finally we derive all the higher regularity of
x from the Hilbert-Weierstrass theorem.

There are other structural hypotheses yielding regularity results that
serve to highlight the extremely general Lagrangians that can be treated
in the one-dimensional case, as compared to the very special structure that
seems to be required in the multi-dimensional case. We end the discus-
sion with one further example,? which asserts the regularity of the solution
for one-dimensional problems having autonomous Lagrangians (F is called
autonomous when it has no explicit dependence on the variable t).

Theorem 5.2. Let x solve (P) relative to AC, where the Lagrangian F

is coercive, bounded above on bounded sets, and autonomous. Then x is
Lipschitz on [a, b].

This result (among others that we do not touch upon here) was first
proved by Clarke and Vinter? under the added requirement that F be locally
Lipschitz and convex in v. A more direct and simplified proof in that setting
can be given.?

The literature on the venerable subject of regularity in the calculus of
variations, and on the inextricably linked issues of existence and necessary
conditions, is huge and still growing. We make no attempt here to be com-
plete, but rather we refer the interested reader to the classic books of Gi-
aquinta, Giusti and Morrey, and to the representative (but not exhaustive)
more recent references appearing below, in which detailed bibliographic
information appears.
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