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Abstract: This paper provides new analytic tools leading to
the first rigorous stability and robustness analysis of sliding-mode
feedback controllers. Unrestrictive conditions are given under which
these controllers are stabilizing in the presence of large disturbances,
as well as modeling, actuator and observation errors. The stability
conditions invoke the existence of two Lyapunov-type functions, the
first associated with passage to the sliding set in finite time, and
the second with convergence to the desired state. In this approach,
account is taken, from the outset, of implementational constraints.
We provide a framework for establishing stability and robustness of
the closed-loop system, for a variety of implementation schemes. We
illustrate our results by means of two examples of the type frequently
encountered in the sliding-mode literature.
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1. Introduction

Sliding-mode control is a well established technique for dynamic system sta-
bilization which has generated a large literature: we refer to the monographs
of Utkin (1992) and Edwards and Spurgeon (1998) and overviews of the field
by Slotine and Li (1991) and Young et al. (1999). Under sliding-mode control,
the state is first driven towards a subset Σ of the state space, the sliding set.
Subsequently, the state trajectory remains near Σ and moves asymptotically to
a value consistent with the desired equilibrium. A major advantage of sliding-
mode controls is their stabilizing properties for dynamic systems subject to large
disturbances. On the negative side, implementation of sliding-mode controllers
typically involves the use of large, rapidly switching control signals, leading in
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some applications to excessive energy expenditure or reduced lifetime of the
control actuators.

Sliding-mode controllers, relating the control u to the current state x, com-
monly take the form

u(x) = g(x) + χ(x) (1)

in which g(x) and χ(x) are respectively smooth and discontinuous terms. The
purpose of the discontinuous term χ(x) is to force the state to approach Σ at a
uniformly positive rate (controllers containing such terms are said to satisfy the
‘sliding condition’). The continuous term g(x) can be thought of as preliminary
feedback, configuring the system so that the sliding condition can be achieved.
Since, if ever the state trajectory departs from Σ, the controller drives it back
towards Σ, we expect that the state trajectory attains Σ and then remains
in it in some sense. If sliding-mode control is implemented digitally, with a
high sample rate, the control values generated by the control law are typically
observed to switch rapidly, after the state trajectory first crosses Σ, in such a
manner that the state trajectory remains close to Σ, and lies in Σ, in the limit
as the sample period tends to zero.

The classical approach to analysing the closed-loop response of a system
under sliding-mode control is to seek a smooth control law that approximates the
effects of the rapidly switching control observed under digital implementation.
Since rapid switching keeps the state close to Σ, we may decide to view the
state trajectory as attaining the sliding set and then being generated by an
‘equivalent’ control law,

uequiv(x) = g(x) + χequiv(x)

in which χequiv(x) is a smooth function, chosen to ensure that the time deriva-
tive of the evolving state vector is tangent to Σ. In terms of this heuristic,
traditional techniques (Lyapunov theory and eigenvalue analysis in the case
that the sliding set is a linear subspace) have then been used, for example in
Utkin (1992), to study the stabilizing properties of the equivalent control on the
sliding surface.

The purpose of this paper is to provide analytic tools for a truly rigorous
stability analysis of sliding-mode controllers. We give broad, unrestrictive con-
ditions under which these controllers are stabilizing, in the presence not only of
large disturbances, but also of modeling, actuator and observation errors. These
conditions invoke the existence of two Lyapunov-type functions V1 and V2, the
first associated with approach to the sliding set in finite time, and the second
with convergence to the desired final state.

A distinctive feature of our approach is that it takes account, from the
outset, of implementational constraints. (The question of how the action of
sliding-mode control is affected by implementational effects such as time delays
and regularization of the switching function has also been addressed in Utkin’s
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book.) Besides such effects, we assume from the start that the feedback is
implemented in the ‘sample-and-hold’ sense, which allows one to dispense with
the heuristic argument in which the state is assumed to lie in the sliding set
after a certain time.

The main theorem concerns the stabilizing properties of a sample-and-hold
implementation of the feedback controller (1), in the presence of modeling, actu-
ator and measurement errors, when the bounds on these errors and the sample
period are suitably small. The principal advantages of our approach over the
classical one are
(a): By examining the behaviour of the sample-and-hold implementation of

the controller directly, we circumvent the additional hypotheses and the
analytical apparatus associated with defining generalized solutions of Fil-
ippov type (via equivalent controls), and also the difficulties of choosing
the ‘correct’ equivalent control from among the candidate equivalent con-
trols, when they are not unique. (See Filippov (1988), Utkin (1992), and
the references therein.)

(b): Our approach provides the first rigorous basis for the conclusion that the
controller retains its stabilizing properties when we take account of both
the way in which it is implemented, and the presence of small modeling,
actuator and measurement errors.

Theorem 1 below gives conditions under which the controller is stabilizing,
for a ‘delay-free, zero-order hold (ZOH)’ digital control implementation scheme;
that is, one in which the state is measured and the corresponding control value
is calculated instantaneously at each sample time, and this control value is ap-
plied until the next sample time. The focus on a particular implementation
scheme, and an idealised one at that – in practice, time will be required to
capture the measurement and to calculate the new control value – might seem
restrictive. But this is not the case. Indeed we show in Section 5 that many
practical implementation schemes ( ZOH digital control with time delay, and
various schemes involving the regularization of the discontinuous controller on a
boundary layer about the sliding set, for example) can be interpreted as a delay-
free ZOH scheme with measurement and/or actuator error, and are therefore
covered by this paper. Our delay-free ZOH controller implementation descrip-
tion should therefore be regarded not as a restriction, but rather as a convenient
vehicle, for studying the robustness properties of sliding-mode control systems
for a wide range of controller implementation schemes.

While the use of a pair of Lyapunov functions to establish stability proper-
ties of digitally implemented sliding-mode control systems, in the presence of
modeling and measurement errors, is apparently new, this paper includes several
ingredients from earlier research. The sliding-mode controller is discontinuous;
the use of a single control Lyapunov function to establish the stabilizing prop-
erties of sample-and-hold implementations of discontinuous controllers has been
systematically studied, and is the subject of numerous papers (see for example
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Clarke et al. (1997, 2000) and Sontag (1999)). The link between the existence
of a single smooth control Lyapunov function and the robustness of the cor-
responding control system to measurement errors is also well understood (see
Ledyaev and Sontag (1999)).

In Euclidean space, the length of a vector x is denoted by |x|, and the closed
unit ball {x : |x− a| ≤ R} by B(a,R). dΣ(x) denotes the Euclidean distance of
the point x from the set Σ, namely min{|x− x′| : x′ ∈ Σ}.

2. System Description

Let {t0 = 0, t1, t2, . . . , } be a strictly increasing sequence of numbers such that
ti → ∞; we refer to such a sequence as a partition (of [0,∞)). Consider the
dynamic system which relates the state trajectory x(·) to the control signal u(·)
as follows:

x(0) = x0

ẋ(t) = f(x(t), u(t), d(t)) a.e. t ∈ [0,∞)
u(t) = ai + g(x(ti) + mi) + vi a.e. t ∈ [ti, ti+1), i = 0, 1, 2, . . .
vi ∈ χ(x(ti) + mi) i = 0, 1, 2, . . .
d(t) ∈ D a.e. t ∈ [0,∞) ,

 (2)

in which f : Rn × Rm × Rk → Rn and g : Rn → Rm are given functions and
χ : Rn  Rm is a given set-valued function satisfying

χ(x) ⊂ V for all x ∈ Rm ,

and D ⊂ Rk and V ⊂ Rm are given sets.
Notice that we have replaced the function χ in the control law (1) by a set-

valued function χ; this introduces a useful extra degree of flexibility into the
ensuing theory, which we will exploit in Section 5. In the preceding equations,
d(·) : [0,∞) → Rk is a measurable function describing the disturbance signal.
The sequences {ai} and {mi} describe the n-vector actuator errors and m-
vector measurement errors at successive sample instants, respectively. Because
the feedback law is applied in a sample-and-hold manner (constant control on
partition subintervals), a physically meaningful state x(·) is generated by the
scheme,depending of course on the initial state x0 and the partition, the control
values vi, the errors mi and ai, and the disturbance d(·).

The following hypotheses will be imposed:

(H1) f and g are continuous and of linear growth: there exist cf , cg > 0 such
that

|f(x, u, d)| ≤ cf (1 + |x|+ |u|) for all (x, u, d) ∈ Rn ×Rm ×D

|g(x)| ≤ cg(1 + |x|) for all x ∈ Rn.
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(H2) For any bounded sets X ⊂ Rn and U ⊂ Rm, there exists K = K(X, U) >
0 such that the following Lipschitz condition holds:

|f(x, u, d)− f(x′, u, d)| ≤ K|x− x′| for all x, x′ ∈ X, (u, d) ∈ U ×D .

(H3) V and D are closed bounded sets.

3. Lyapunov Functions for Sliding-Mode Control
We assume that the control feedback design

u = g(x) + v for some v ∈ χ(x)

has been carried out on the basis of a Lyapunov stability analysis, in ignorance of
the measurement and actuator errors, and on the basis of a possibly inaccurate
nominal dynamic model:

ẋ = f0(x, u, d)

in which the function f0 differs from the true dynamic function f . The only
hypothesis imposed on f0 is that it be continuous. To study the effects of sliding-
mode control via Lyapunov stability analysis, it is helpful to introduce not one,
but two Lyapunov-like functions V1 : Rn → [0,∞) and V2 : Rn → [0,∞), a
decrease function W : Rn → [0,∞) associated with V2, and a subset Σ ⊂ Rn of
the state space (the sliding set). Σ is assumed to be a closed set containing the
origin (the desired equilibrium). V1 will be used to capture the property that
the sliding-mode control drives the state arbitrarily close to Σ, in finite time.
V2 is associated with the subsequent motion of the state to a neighbourhood of
the origin. V1, V2 and W will be required to satisfy the following conditions.

(LF1) V1 is a continuous nonnegative function, and V1(x) = 0 if and only if
x ∈ Σ. Furthermore, the restriction of V1 to Rn\Σ is continuously differentiable,
and there exists ω1 > 0 such that

〈∇V1(x), f0(x, g(x) + v, d))〉 ≤ −ω1 for all v ∈ χ(x), x ∈ Rn\Σ, d ∈ D.

Note that V1 is not assumed to be differentiable at points in Σ. Now write

F0(x) :=
{

lim
i→∞

f0(x, g(x) + vi, d) : vi ∈ χ(xi), xi → x, d ∈ D
}

,

that is, the set of all possible limits of sequences of the form f0(x, g(x) + vi, d),
where vi ∈ χ(xi), where xi is any sequence converging to x, and where d is a
point in D. We may think of F0(x) as consisting of all possible velocity values ẋ
(in limiting terms, and for the nominal dynamics given by f0) when the state is
at x. Note that F0(x) reduces to f0(x, g(x) + χ(x), D) if χ is single-valued and
continuous at x. Another case of special interest is that in which χ(x) takes a
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given value χ+ everywhere on or to one side of a given sliding hypersurface Σ
of dimension n− 1, and a value χ− on the opposite side. Then, at any point x
of Σ, we have

F0(x) = {f0(x, g(x) + χ+, d) : d ∈ D} ∪ {f0(x, g(x) + χ−, d) : d ∈ D}.

The set F0(x) is used to express the decrease condition satisfied by V2.

(LF2) V2 and W are continuous nonnegative functions such that V2(0) =
W (0) = 0 and

V2(x) > 0 and W (x) > 0 for x ∈ Σ\{0}.

Furthermore, the restriction of V2 to Rn\{0} is continuously differentiable, and

sup
w∈F0(x)

〈∇V2(x), w〉 ≤ −W (x) for all x ∈ Σ\{0}.

Observe that (LF1) and (LF2) incorporate variants of the usual ‘infinitesimal
decrease’ condition of Lyapunov functions. That of (LF2) is stated with the
help of F0 because it would not make sense to simply require, for example, that
the inner product 〈∇V2(x), f(x, g(x) + χ(x), d)〉 be negative when x lies in Σ.
The reason for this is that the set Σ may be ‘thin’, and χ may be discontinuous;
an implementation might never actually evaluate χ at any points in Σ, so that
the values of the inner product on merely the sliding set cannot in themselves
assure the required stabilization.

We require one more property of the Lyapunov pair:

(LF3) V1 + V2 is a proper function; that is, for any α ≥ 0 the level set {x :
V1(x) + V2(x) ≤ α} is bounded.

4. Sufficient Conditions for Stabilization
This section provides sufficient conditions for stabilization via sliding-mode con-
trol. The desired equilibrium state is taken to be x = 0. Since the control sys-
tem description we have adopted takes account of digital implementation and
allows for disturbances, we cannot expect state trajectories to converge to the
zero state as t tends to ∞. Instead we give conditions for practical (or approxi-
mate) semiglobal stabilization ; that is, conditions under which, for any two balls
B(0, R) (the set of initial states) and B(0, r) (the target set) in Rn, R > r > 0,
any state trajectory that issues from the set of initial states is driven to the
target set.

The theorem below asserts that if the actuator and measurement errors are
sufficiently small (the proof gives explicit bounds), if the modeling error between
f and f0 (matched to the gradients of V1 and V2) is sufficiently small, and if the
partition size is small enough (or equivalently, the sampling rate high enough),
then stabilization takes place in a prescribed uniform manner.



Stability analysis of sliding-mode feedback control 7

We set

M(x) :=
{

lim
i→∞

(f − f0)(x, g(x) + vi, d) : vi ∈ χ(xi), xi → x, d ∈ D
}

.

We may think of M(x) as consisting of the relevant modeling error (in limiting
terms) at the state x.

Theorem 1 Conditions for Practical Semiglobal Stabilization. Assume
(H1)–(H3). Suppose there exist functions V1, V2 and W , and a set Σ satisfying
hypotheses (LF1)–(LF3). Choose any numbers R > 0, r > 0 (R > r), ω̄ ∈
(0, ω1) and ε̄ > 0. Then there exist positive numbers R∗ > R (R∗ does not
depend on r), em, ea, δ, e1, e2 and T > 0, with the following properties:
Take any sequences {mi} and {ai} in Rm and Rn respectively, partition {ti},
measurable function d : [0,∞) → D and x0 ∈ B(0, R) satisfying

|mi| ≤ em, |ai| ≤ ea and |ti+1 − ti| ≤ δ for all i. (3)

Suppose in addition that we have

| 〈∇V1(x), f(x, g(x) + v, d)− f0(x, g(x) + v, d)〉 | ≤ e1

for all v ∈ χ(x), x ∈ B(0, R∗)\Σ, d ∈ D (4)

and

| 〈∇V2(x), w〉 | ≤ e2 for all w ∈ M(x), x ∈ [B(0, R∗) ∩ Σ ] \{0}. (5)

Let x(·) : [0,∞) → Rn be any solution to eqns.(2); one such solution exists.
Then

x(t) ∈ B(0, R∗) for all t ≥ 0 and x(t) ∈ B(0, r) for all t ≥ T.

Furthermore,

dΣ(x(t)) ≤ ε̄ for all t ∈ [V1(x(0)/ω̄,∞).

A proof of the theorem is given in the Appendix.

5. Alternative Digital Implementation Schemes
Our earlier analysis of closed-loop system response corresponding to a discon-
tinuous feedback law

u ∈ g(x) + χ(x) (6)

is based on a model for implementation in which the constant value of u on
[ti; ti+1) satisfies

u(t) = u = ai+g(x(ti)+mi)+vi, vi ∈ χ(x(ti)+mi) t ∈ [ti, ti+1), i = 0, 1, . . .



8 F. Clarke and R.B. Vinter

(7)

in which {ai} and {mi} are unmeasured error variables of sufficiently small
magnitude.

At first sight, it would appear that the model (7) is relevant to only one im-
plementation scheme (and a highly idealised one at that): instantaneous mea-
surement and zero-order hold digital control. But the model (7) has, in fact,
a universal quality and covers a wide range of implementation schemes, as we
now illustrate.

Let us suppose that (H1)–(H3) are satisfied and that there exist functions
V1, V2 and W satisfying (LF1)–(LF3), for the feedback law (6). Fix R > 0 and
r > 0 (R > r). Then Theorem 1 establishes that the controller implementation
scheme (7) has the semiglobal practical stabilization property (with respect to
these parameters); that is, there exist em, ea, δ, e1, e2, R∗ (R∗ > R) and
T > 0 such that each state trajectory starting at time t = 0 in B(0, R) and
corresponding to (7), remains in B(0, R∗) for all t ≥ 0 and is confined to B(0, r)
for all times t ≥ T , provided the modeling error is limited by (4) and (5), and
the sampling period, acutator and measurement errors satisfy:

|mi| ≤ em, |ai| ≤ ea and |ti+1 − ti| ≤ δ for all i .

Let M be a uniform bound on (g + χ)(x + m) for |x| ≤ R∗ and |m| ≤ em, let
K be a uniform bound on |f(x, u, d) + a| for |x| ≤ R∗, |u| ≤ M , |a| ≤ ea and
d ∈ D. Finally, let kg be a Lipschitz constant for g on B(0, R∗ + em).

1. Digital Control with Time Delay. A more realistic model for digital
implementation of the control law is one in which the constant value of u on
[ti; ti+1) must satisfy

u(t) = u ∈ (g + χ)(x(ti−1) + m
′

i) + a
′

i t ∈ [ti, ti+1), for all i, (8)

in which m
′

i and a
′

i are error variables assumed to satisfy

|m
′

i| ≤ e
′

m, |a
′

i| ≤ e
′

a i = 0, 1, . . . ,

for some positive constants e
′

m and e
′

a.
Note that the right side of this relation depends on the delayed state. Here,

the processor uses the time period [ti−1, ti] to capture (approximately) the value
of the signal x at time ti−1 and to calculate (approximately) the constant control
value to be implemented over the subsequent time interval. Observe that we
can rewrite (8) in the form

u(t) ∈ (g + χ)(x(ti) + mi) + a
′

i

by simply defining

mi := x(ti−1)− x(ti) + m
′

i ,
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and that we have |mi| ≤ Kδ + e
′

i. Theorem 1 therefore applies, provided δ is
replaced by δ′ ∈ (0, δ] and e

′

m, δ′ and a
′

m are chosen to satisfy

e
′

m + Kδ′ ≤ em and e
′

a ≤ ea .

Clearly, the preceding analysis extends to situations in which x(ti−1) in (8) is
replaced by x(ti−N ), for some integer N > 1.

A number of implementation schemes are aimed at reducing the rapid switch-
ing of control values near the switching surface Σ. We now describe how these
too are covered by the analytic framework of this paper.

2. Filtering out High Frequency Components of the Control Signal. One
approach to smoothing the control signal generated by the discontinuous control
law is to pass it through a low-pass filter. Let us consider the case when sampling
is uniform (write δ′ = |ti+1 − ti|) and the control is scalar. Then the procedure
might take the following form:

u(t) = zi + a
′

i , for t ∈ [ti, ti+1)
zi = αzi−1 + βvi

vi ∈ (g + χ)(x(ti) + m
′

i) ,

 (9)

i = 0, 1, 2, . . .. Here, a
′

i and m
′

i are error terms that satisfy |a′

i| ≤ e
′

a and
|m′

i| ≤ e
′

m.

The second equation in (9) describes a simple low-pass digital filter (involving
the positive parameters α and β). For concreteness, let us assume that the
digital filter is obtained by digitizing a first-order low-pass analogue filter with
time constant the positive number τ (that is, with transfer function (1+τs)−1).
Now, the digital filter parameters are

α = e−δ′/τ and β = 1− e−δ′/τ .

Assuming that the digital filter is initialized to zero (z0=0), we deduce by
means of a simple calculation that |zi−1| ≤ (1− α)−1βM = M and so

|zi − vi| ≤ 2e−δ′/τM .

It follows that

u(t) ∈ (g + χ)(x(ti) + mi) + ai

where mi := m
′

i and ai := a
′

i + zi − vi.

We see, once again, that Theorem 1 applies, provided the sampling period
δ′ and the parameters τ , e

′

m and e
′

a are chosen to satisfy:

e
′

m ≤ em and e
′

a + 2e−δ′/τM ≤ ea .
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Clearly, the analysis relating to the two preceding implementation schemes
can be combined. For example, if the last equation in (9) is replaced by
vi ∈ (g + χ)(x(ti−1) + m

′

i) (that is, the previous measurement of the state
is employed to allow for processing time), Theorem 1 applies if the first inequal-
ity in the preceding condition is changed to e

′

m + Kδ′ ≤ em .

For the remaining examples of implementation schemes discussed in this paper,
we restrict attention for simplicity to the common case when f0(x, u, d) is affine
with respect to the u variable, when the input is scalar and when the control
law is continuous feedback + simple switching control:

u(ti) = (g + χ)(x(ti)) (10)

with

χ(x) =
{

K if s(x) > 0
−K if s(x) ≤ 0 .

(11)

Here K is a positive constant and s(x) is the linear function

s(x) = λT x ,

in which λ is a given nonzero n-vector. The sliding set Σ is the set {x : s(x) = 0}.
In this setting, the decrease condition in (LF2) is easily seen to be equivalent
to:

〈∇V2(x), f0(x, g(x) + v, d)〉 < −W (x) for all x ∈ Σ\{0}, v ∈ [−K, +K], d ∈ D .

(12)

An important implication of the choice of the function χ given by (11) is the
following: under the hypotheses of Theorem 1, the assertions of this theorem
(with the same constants R∗, etc.) remain valid when χ is replaced by the
multifunction

χ∗(x) :=

 {+K} if s(x) > 0
[−K, K] if s(x) = 0
{−K} if s(x) < 0 .

(13)

We note in particular that the hypothesis (LF1) governing decrease of V1

continues to be satisfied (with the same decrease parameter ω1), because χ has
been modified only on Σ, and decrease of V1 is not required on this set. On
the other hand, the hypothesis (LF2) governing decrease of V2 continues to be
satisfied (with the same decrease function W ). This special case covers the
example treated in Section 7 below.

3. Regularization/Hysteresis. Fix γ > 0. Another approach to implementa-
tion is to introduce hysteresis. Here the control signal is taken to be

u(t) = g(x(ti) + m
′

i) + χ(x(tj) + m
′

j) + a
′

i (14)
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where j is the maximum value of the index k such that

k ≤ i and |s(x(tk) + m
′

k)| > γ

(if no such k exists, we may take j equal to any index between 0 and i). In other
words, the value of the discontinuous term in the control law is updated only
at times tj for which the magnitude of the switching function at the measured
state, namely |s(x(tj) + m

′

j)|, exceeds a threshold γ.

An alternative approach (‘regularization’) is to replace the switching function χ
by a continuous function, a piecewise linear function for example:

u(t) ∈ (g + χ)(x(ti) + m
′

i) + a
′

i t ∈ [ti, ti+1), i = 0, 1, . . .

χreg(x) =

 +K if s(x) > γ
(K/γ)s(x) if − γ ≤ s(x) ≤ γ
−K if s(x) < −γ

 (15)

Other continuous functions, taking values in the interval [−K, +K] at points in
the state space close to Σ, may be used: spline functions or sigmoidal functions,
for example.

In both these implementation schemes, {a′

i} and {m′

i} are error sequences
satisfying |a′

i| ≤ e
′

a, |m′

i| ≤ e
′

m for all i. We now show that, for both these
schemes, it is possible to derive closed-loop stability properties from Theorem
1. We make use of the following property of the switching function s(x) = λT x:
for any x ∈ Rn

|s(x)| ≤ γ if and only if dΣ(x) ≤ |λ|−1γ . (16)

For either implementation scheme, two situations may possibly arise:
(i) : |s(x(ti) + m

′

i)| > γ. Because, in this case, j = i in (14) and χ(x), χ∗(x)
and χreg(x) all coincide when |s(x)| > γ, we have

u(t) = (g+χ)(x(ti)+mi)+ai ⊂ (g+χ∗)(x(ti)+mi)+ai for t ∈ [ti, ti+1)

where ai = a
′

i and mi = m
′

i. So |ai| ≤ e′a and |mi| ≤ e′m for all such i.
(ii) : |s(x(ti) + m

′

i)| ≤ γ. In this case we deduce from (16) that there exists
an n-vector mi such that s(x(ti) + mi) = 0 and

|m
′

i −mi| ≤ |λ|−1γ. (17)

Using the fact that the range of both χ(·) and χreg(·) are contained in [−K, +K] =
χ∗(0), we deduce that (for both control laws (14) and (15))

u(t) ∈ g(x(ti) + m
′

i) + [−K, +K] + a
′

i

⊂ (g + χ∗)(x(ti) + mi) + ai, t ∈ [ti, ti+1)
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where ai := a
′

i + g(x(ti) + m
′

i)− g(x(ti) + mi). In both situations then, in view
of (17) the error terms satisfy:

|ai| ≤ e
′

a + kg|λ|−1γ and |mi| ≤ e
′

m + |λ|−1γ for all i .

Bearing in mind our earlier observation that the assertions of Theorem 1 remain
valid when χ∗ replaces χ, we have confirmed that both implementations (14)
and (15) have the semiglobal practical stabilization property provided that e

′

a,
e

′

m , γ and λ are chosen to satisfy the conditions:

e
′

m + |λ|−1γ ≤ em and e
′

a + kg|λ|−1γ ≤ ea .

6. A Second-Order Example
We now illustrate in a simple example how sliding modes can yield robust feed-
back stabilization in the presence of arbitrarily large modeling error (at the price
of large and active control laws); we also interpret in our context the known issue
of ‘matching’ the errors. The setting is a familiar one in texts on sliding-mode
control (see for example Slotine and Li (1991)). We take n = 2 and denote
points in state space by (x, y). The dynamics are given by

ẋ(t) = y(t)
ẏ(t) = h(x(t)) + u(t),

The goal is to stabilize the state to the origin by means of continuous + switching
state feedback, where the switching term is bounded in magnitude by some
constant L > 0.

The choice of sliding set is Σ := {(x, y) : x + y = 0}, a choice motivated by
the fact that if the (x, y) could be restricted to a neighborhood of Σ (by some
discontinuous feedback strategy), the dynamics would then imply ẋ ≈ −x, which
in turn seems to imply the stabilization of x to 0. As for the component y of
the state, note that the corresponding differential equation

ẏ(t) = h(x(t)) + u(t)

leaves the fate of y somewhat in doubt; of course, this differential equation is
irrelevant on the sliding set itself, except (possibly) as a limiting idealization.
On the other hand, the relation y(t) ≈ −x(t) tends to confirm that y should
converge to 0. Given that in practice the state (x, y) will not be exactly in Σ,
a rigorous analysis requires a different approach; Theorem 1 provides this.

We take a nominal dynamic system having the same structure:

ẋ(t) = y(t)
ẏ(t) = h0(x(t)) + u(t),
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where the modeling error h − h0 may be large. (However, we suppress the
disturbance signal, for ease of exposition.) It is assumed that h and h0 are
continuous and have linear growth, and that h−h0 is globally bounded; we also
assume that h is Lipschitz on bounded sets.

We wish to place ourselves in the general framework considered by Theorem
1, for n = 2,m = 1 and

f(x, y, u) = [y, h(x) + u]T , V = [−L,L].

Thus we seek a feedback u(x, y) = g(x, y) + χ(x, y), where χ(x, y) ⊂ [−L,L].
The nominal function f0 is simply the same as f , but with h replaced by h0.

We must choose Lyapunov functions in accordance with (LF1)–(LF3). A
natural choice for V1 is V1(x, y) := |x+y|, which is continuous, zero precisely on
Σ, and continuously differentiable on R2\Σ. The decrease condition required in
hypothesis (LF1) of the Theorem becomes

x + y

|x + y|
{h0(x) + y + g(x, y) + χ(x, y)} ≤ −ω1.

This suggests taking g(x, y) = −h0(x)− y and χ(x, y) = −L sgn(x + y). (Here,
sgn(x) equals +1 when x is positive, −1 when x is negative; the precise definition
of χ when x + y = 0 is not important, but let us set it equal to the interval
[−L,L] for definiteness.) With these choices, we see that ω1 can be taken to be
L. Note that hypotheses (H1)–(H3) are satisfied.

There are many possible choices for V2, but a function depending only upon
x suggests itself, for the reason that ∇V2 then has a zero inner product with
f − f0: the Lyapunov function is ‘matched’ to the modeling error. This auto-
matically assures that the bound (5) on modeling error will be satisfied. We take
V2(x, y) = x2. With these choices, we see that (LF2) and (LF3) are satisfied,
for W (x, y) = x2.

As mentioned in the Remark following the proof of the Theorem, the only
constraint on modeling error is that given for e1 by (33)(43). This leads to an
explicit estimate for how large L must be:

Proposition 1 Suppose that L is taken larger than

‖h− h0‖∞ := sup
x∈Rn

|(h− h0)(x)|.

Then, for any 0 < r < R, for all sufficiently small levels of actuator and
measurement error, and for all sufficiently fine partitions, the feedback given
above stabilizes initial points in B(0, R) to B(0, r).

In order to apply Theorem 1, we set ω1 = L and then take any ω̄ in the open
interval (0, L − ‖h − h0‖∞). The left side of (4) is bounded by ‖h − h0‖∞,
which is seen to provide a suitable choice of e1 in (33)(43) (for all sufficiently
small values of ea, em and δ). As mentioned, (5) holds automatically, and so
the Theorem applies.
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7. Linear Scalar Control
Consider the linear system in control canonical form, relating the n-vector state
x(t) to the scalar control u(t):

d

dt
x(t) = Ax(t) + b(d(t) + u(t)) (18)

in which

A =


0 1 0 . . 0 0
0 0 1 0 . 0 0
. . . . . .
0 0 0 . . 0 1
−a0 −a1 . . . . −an−1

 and b =


0
.
.
0
1

 .

Here a0, . . . , an−1 are known parameters, while d(t) is an unmeasured scalar
disturbance signal, assumed to satisfy, for some given dmax > 0, the condition

|d(t)| ≤ dmax for all t .

We seek state feedback

u = φ(x), (19)

to achieve closed-loop asymptotic stabilization, for arbitrary disturbance signals
d(·).

This design problem is addressed in the sliding-mode literature as follows
(see, e.g., Edwards and Spurgeon (1998)). Fix coefficients λ0, . . . , λn−1 of a
Hurwitz polynomial, of degree n− 1,

λ(σ) = λ0 + λ1σ + . . . + λn−2σ
n−2 + σn−1

and define the scalar-valued function of the state

s(x) = λ0x1 + λ1x2 + . . . + λn−2xn−1 + xn . (20)

Define also the k-vector

k = col{a0, a1 − λ0, . . . , an−1 − λn−2} .

Fix K > dmax. Consider now the control law (19) in which

φ(x) = kT x−K sgn{s(x)} . (21)

Here, sgn(·) is the ‘signum function’

sgn(s) :=
{

+1 if s > 0
−1 if s ≤ 0 .
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The rationale here is that, if we substitute control law (19) into (18) and take
account of the fact that d

dtxi = xi+1, for i = 1, . . . , n − 1, there results (in the
case s(x(t)) 6= 0)

d

dt
|s(x(t))| = sgn{s(x(t))}[d/dt xn + λn−2xn + . . . + λ0x2]

= sgn{s(x(t))}[−a0x1 + . . .− an−1xn + a0x1

+(a1 − λ0)x2 + . . . + (an−1 − λn−2)xn

−K sgn{s(x(t)}+ d(t) + λn−2xn + . . . + λ0x2]
= sgn{s(x(t))}[−Ksgn{s(x(t))} + d(t)] ≤ −ω ,

where ω = (K − dmax) ( > 0 ). These calculations suggest that, if s(x(0)) 6= 0,
then x(t) arrives at the set

Σ := {x : s(x) = 0} (22)

at a positive time T̄ ≤ |s(x(0))|/(K − dmax), where it remains thereafter.
Moreover, for t > T̄ , we have that

s(x(t)) =
dn−1

dtn−1
x1(t) + λn−2

dn−2

dtn−2
x1(t) + . . . + λ0x1(t) = 0 . (23)

Since λ(σ) is a Hurwitz polynomial, we can surmise that x1(t) (and hence also
x2(t), . . . , , xn(t)) converge to zero, as t →∞.

We now use the methods of this paper to justify these conclusions, taking
account of implementational effects and the presence of modeling and measure-
ment errors. We show:

Proposition 2 Take R > 0 and r > 0 (R > r). Take also dmax > 0 and
K > dmax. Then there exist positive numbers ea, em, δ, R∗ and T with the fol-
lowing properties:

Take any partition {ti}, measurable function d(·) : [0,∞) → R, and sequences
{ai} and {mi} satisfying

|ti+1 − ti| < δ, |ai| ≤ ea, |mi| ≤ em for all i, |d(t)| ≤ dmax for all t .

Then, for any x0 ∈ B(0, R), the solution x : [0,∞) → Rn to

ẋ(t) = Ax(t) + b(d(t) + u(t))) a.e. t ∈ [0,∞)
u(t) = ai + φ(x(ti) + mi) a.e. t ∈ [ti, ti+1)
x(0) = x0

 (24)

where φ(·) is the mapping (21), satisfies |x(t)| ≤ R∗ for all t ≥ 0 and

x(t) ∈ B(0, r) for all t ≥ T .
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Proof. To prove the proposition, we apply Theorem 1, making the following
identifications:

f(x, u, d) = f0(x, u, d) = Ax + b(u + d)
g(x) = kT x, χ(x) = −K sgn{s(x)}
D = [−dmax,+dmax] and V = [−K, +K] .

(Thus, in contrast to the example of the previous section, we now suppress
modeling error; equivalently, we view it as being subsumed by the disturbance
term.) The hypotheses (H1)–(H3) on the dynamics are satisfied for this choice
of data. The assertions of the proposition will have been proved then, if we can
construct functions V1, V2 and W satisfying the conditions (LF1)–(LF3).

We take V1 : Rn → [0,∞) to be the function

V1(x) = |s(x)|,

where s(·) is the function (20). The sliding set is

Σ = {x : V1(x) = 0} = {x : s(x) = 0}.

We show that V1 satisfies (LF1). V1 is continuous, and continuously differen-
tiable on Rn\Σ. Write

A0 =


0 1 0 . . 0 0
0 0 1 0 . 0 0
. . . . . .
0 0 0 . . 0 1
0 −λ0 . . . . −λn−2


For any x ∈ Rn\Σ and d ∈ D we calculate:

〈∇V1(x), f(x, g(x) + χ(x), d)〉
= 〈∇V1(x), A0x + b(−Ksgn{s(x)}+ d)〉
= sgn {s(x)}[λ0, . . . , λn−2, 1]

[x2, . . . , xn, (−λ0x2 . . .− λn−2xn −Ksgn{s(x)}+ d)]T

= −K + sgn {s(x)} d ≤ −ω ,

where ω is the positive number ω = K − dmax. We have confirmed (LF1).
With a view to constructing V2 and W , we introduce the matrices

Ā =


0 1 0 . . 0
0 0 1 0 . 0
. . . . .
0 . . . . 1

−λ0 . . . . −λn−2

 and J =

 I(n−1)×(n−1)

−λT


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in which λ is the vector

λ = col{λ0, . . . , λn−2} .

Note that J has full column rank and that Σ = range{J}. It follows that
JT J is invertible and, given any x ∈ Rn, there exists a unique ξ ∈ Rn−1 (it is
ξ = (JT J)−1JT x) such that x = Jξ. Since Ā is a ‘stable’ matrix, there exists a
symmetric matrix P̄ and γ > 0 and c > 0 such that

ξT P̄ Āξ ≤ −γ|ξ|2 and ξT P̄ ξ ≥ c|ξ|2 for all ξ ∈ Rn−1.

(See Willems (1970).) Define

P =
[

P̄ 0
0T 0

]
in which 0 is the (n− 1)-vector col{0, . . . , 0}. Finally we set

V2(x) =
1
2
xT Px for all x ∈ Rn .

The function W is taken to be

W (x) =
1
2
γ|[JT J ]−1JT x|2.

We observe that V2 and W are continuously differentiable, nonnegative, and
vanish at the origin. Take any x ∈ Σ\{0}. Then x = Jξ, where ξ is the nonzero
vector ξ = (JT J)−1JT x.
Note the following identities

JT PJ = P̄ , JT P = [P̄ 0], A0J =
[

Ā
eT

]
, (25)

in which e is some (possibly nonzero) (n− 1)-vector. With the help of the first
identity, we deduce that

W (x) =
1
2
|[JT J ]−1JT Jξ|2 =

γ

2
|ξ|2 > 0,

V2(x) =
1
2
xT Px =

1
2
ξT JT PJξ =

1
2
ξT P̄ ξ > 0.

We have shown that V2 and W are positive on Σ\{0}. To complete the verifi-
cation of (LF2), it remains to check its decrease property.
Let x be any point in Σ\{0}. Note that any element w of F0(x) is of the form
f(x, g(x) + v, d) for some v ∈ V and d ∈ D. We calculate

〈∇V2(x), f(x, g(x) + v, d)〉
= 〈∇V2(x), A0x + b(v + d)〉
= xT PA0x + 0

= ξT JT PA0Jξ = ξT [P̄ 0]
[

Ā
eT

]
ξ

≤ −γ|ξ|2 = −γ|[JT J ]−1JT x|2 < −W (x) .
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(To derive these relations we have used (25) and the fact that Pb = 0.) The
decrease property of (LF2) is confirmed.
Finally we must show that V1 + V2 is proper (condition (LF3)). Fix a number
α and take any n-vector x satisfying

V1(x) + V2(x) ≤ α .

Define the n × n nonsingular matrix M := [J, b] and write ζ = M−1x. A
simple calculation gives V1(x) = |ζn| and

V2(x) =
1
2

[ζ1, . . . , ζn−1] P̄ [ζ1, . . . , ζn−1]
T ≥ 1

2
σ|[ζ1, . . . , ζn−1]T |2 ,

where σ > 0 is the minimum eigenvalue of P̄ . It follows that

1
2
σ(|ζ1|2 + . . . |ζn−1|2) + |ζn| ≤ α .

It follows that ζ, and hence x, is confined to a bounded set depending only upon
α. Thus V1 + V2 is proper. The functions V1, V2 and W have been shown to
satisfy (LF1)–(LF3). The proof of the proposition is complete.

Appendix: Proof of Theorem 1.
We shall be considering state trajectories generated by eqns.(2) for partitions
and errors which satisfy bounds of the type (3)-(5). We begin with the following
result, which addresses the issue of stabilization near the sliding set; that is, for
small values of V1.

Lemma 1. For any 0 < β < b there exists α > 0 arbitrarily small such that
the set

S := {x : V1(x) ≤ α, V2(x) ≤ b}

is invariant in the following sense. Let S+ := {x : V1(x) ≤ 2α, V2(x) ≤ 2b}.
Then, for all sufficiently small values of the positive parameters em, ea, δ, e1, e2,
for any trajectory x(·) generated by (2) with x(0) ∈ S and for data satisfying

|mi| ≤ em, |ai| ≤ ea and |ti+1 − ti| ≤ δ for all i (26)
| 〈∇V1(x), f(x, g(x) + v, d)− f0(x, g(x) + v, d)〉 | ≤ e1

∀v ∈ χ(x), x ∈ S+\Σ, d ∈ D (27)
| 〈∇V2(x), f(x, g(x) + v, d)− f0(x, g(x) + v, d)〉 | ≤ e2

∀v ∈ χ(x), x ∈ S+\{0}, d ∈ D (28)

we have x(t) ∈ S ∀t ≥ 0. Further, there exists Tα > 0 such that we have
V2(x(t)) ≤ β ∀t ≥ Tα for any such trajectory x.
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Proof. A simple proof by contradiction (based on the hypotheses (LF2)
and (LF3)) shows that if the positive values of α, ea, em are sufficiently small,
then there exists ωα > 0 such that

V1(x) ≤ 2α, β/2 ≤ V2(x) ≤ 2b, v ∈ χ(x), d ∈ D, |a| ≤ ea, |m| ≤ em =⇒
〈∇V2(x), f0(x, a + g(x + m) + v, d)〉 < −ωα. (29)

We fix such values. We next specify in what sense the remaining parameters
δ, e1 and e2 must be small.

A modulus of continuity for a function h on a set X refers to a continuous
nondecreasing function µ : [0,∞) → [0,∞) with µ(0) = 0 such that

|h(x)− h(y)| ≤ µ(|x− y|) ∀x, y ∈ X.

(Such a function always exists if h is continuous and X compact.) We define
the following compact sets:

S1 := {x : α/2 ≤ V1(x) ≤ 2α, V2(x) ≤ 2b}
S2 := {x : V1(x) ≤ 2α, β/4 ≤ V2(x) ≤ 2b}.

We introduce the following moduli of continuity: µ1 for V1 on S+, µ2 for V2 on
S+, ν1 for ∇V1 on S1, ν2 for ∇V2 on S2. We set

φ := sup{|f(x, a + g(x + m) + v, d)| :
x ∈ S+, |a| ≤ ea, |m| ≤ em, v ∈ V, d ∈ D}

G1 := max{|∇V1(x)| : x ∈ S1}
G2 := max{|∇V2(x)| : x ∈ S2}.

We also require a modulus ρ of uniform continuity such that

x ∈ S+, v ∈ V, d ∈ D =⇒
|f(x, a + g(x + m) + v, d)− f(x, g(x) + v, d)| ≤ ρ(|(a,m)|). (30)

Hypotheses (H2)–(H3) imply the existence of a Lipschitz constant K for f in
the following sense:

x, x′ ∈ S+, |a| ≤ ea, |m| ≤ em, v ∈ V, d ∈ D =⇒
|f(x, a + g(x + m) + v, d)− f(x′, a + g(x + m) + v, d)| ≤ K|x− x′|.

(31)

We now fix any ω̄ ∈ (0, ω1) and we choose positive numbers δ, e1, e2 small enough
so that

µ1(δφ) < α/2, µ2(δφ) < β/4, (32)
e1 + G1ρ(ea + em) + δG1Kφ + φν1(δφ) < ω1 − ω̄, (33)
e2 + G2ρ(ea + em) + δG2Kφ + φν2(δφ) < ωα/2 (34)
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(if necessary we reduce ea and em and consequently φ in order to obtain (33)
and (34)). With these choices, we now proceed to verify the assertions of the
Lemma. Accordingly, let x(·) be any solution of eqns.(2), for data satisfying
(26)-(28), and with x(0) ∈ S. We prove that x(t) ∈ S for 0 = t0 < t ≤ t1
(the next sampling time), which will confirm the stated invariance. While x(t)
remains in S+, the estimate |ẋ(t)| ≤ φ applies; in conjunction with (32), this
implies that V1(x(t)) < 2α and V2(x(t)) < 2b for 0 < t ≤ t1, whence x(t)
lies in S+ throughout the interval [0, t1]. We now wish to prove that we have
V1(x(t)) ≤ α on the interval. Observe that if there is a point τ ∈ [0, t1] for
which V1(x(τ)) < α/2, then this follows from (32), so we may limit ourselves to
the case in which x(t) ∈ S1 for all t ∈ [0, t1]. Fix any t ∈ (0, t1). Then, for some
t′ ∈ (0, t) and d ∈ D, we have

V1(x(t))− V1(x(0))
≤ t 〈∇V1(x(t′)), f(x(t′), a0 + g(x(0) + m0) + v0, d)〉 (mean value)
≤ t 〈∇V1(x(0)), f(x(t′), a0 + g(x(0) + m0) + v0, d)〉+ tφν1(δφ)

(by definition of ν1, and since |x(t′)− x(0)| ≤ tφ ≤ δφ)

≤ t 〈∇V1(x(0)), f(x(0), a0 + g(x(0) + m0) + v0, d)〉
+ t2G1Kφ + tφν1(δφ) (by (31))

≤ t 〈∇V1(x(0)), f(x(0), g(x(0)) + v0, d)〉+ tG1ρ(ea + em)

+ t2G1Kφ + tφν1(δφ) (by (30))
≤ t 〈∇V1(x(0)), f0(x(0), g(x(0)) + v0, d)〉+ te1 + tG1ρ(ea + em)

+ t2G1Kφ + tφν1(δφ)(in view of (27))
≤ t{−ω1 + e1 + G1ρ(ea + em) + δG1Kφ + φν1(δφ)} (by (LH1))
≤ −tω̄ (in view of (33)).

It follows that V1(x(t)) ≤ α as claimed. In fact, the argument implies that for
any two successive nodes x(ti) and x(ti+1), either there exists τ ∈ (ti, ti+1) for
which V1(x(τ)) < α/2, or else we have a type of decrease condition:

V1(x(t))− V1(x(ti)) ≤ −ω̄(t− ti), t ∈ [ti, ti+1].

The same argument as above applied to V2 (invoking (29) rather than (LH1) at
the appropriate point) establishes that for any two successive nodes x(ti) and
x(ti+1), either there exists τ ∈ (ti, ti+1) for which V2(x(τ)) < β/4, or else we
have

V2(x(t))− V2(x(ti)) ≤ −(t− ti)ωα/2, t ∈ [ti, ti+1].

It follows that V2(x(t)) ≤ b ∀t ≥ 0, which confirms that S has the stated
invariance property. Furthermore, the decrease property implies that some node



Stability analysis of sliding-mode feedback control 21

x(ti) must satisfy V2(x(ti)) ≤ β/4 for a value of ti no greater than Tα := 2b/ωα

(since V2 is nonnegative). It follows from (32) and the decrease property that
all subsequent nodes x(tj) must then satisfy V2(xj)) ≤ β/2, whence V2(x(t)) ≤
β ∀t ≥ Tα. This completes the proof of Lemma 1.

We next address the issue of stabilization for points distant from the sliding
set; that is, for which V1 is not necessarily small. We are given R > 0 and we
consider initial conditions x(0) ∈ B(0, R). If the measurement errors mi are
bounded a priori by a parameter Em, and the actuator errors by Ea (which we
may suppose without loss of generality), then hypotheses (H1)–(H3) imply the
existence of constants c1, c2 such that, for any state trajectory x,

|ẋ(t)| ≤ c1|x(t)|+ c2(Em + Ea).

With |x(0)| ≤ R, this yields via Gronwall’s Lemma the following bound:

|x(t)| ≤ ec1t{R + c2(Ea + Em)/c1} =: h(t), t ≥ 0. (35)

We set

TR := max
|x|≤R

V1(x)/ω̄, (36)

where, as before, ω̄ is a given number in (0, ω1), and we take R′ to be the right
side of (35) when t = TR:

R′ = h(TR), (37)

a choice which clearly depends only upon V1, R, ω1, ω̄, and of course the pa-
rameters appearing in the hypotheses (H1)–(H3).

Lemma 2. For any α > 0, for sufficiently small values of the positive
parameters em, ea, δ, e1, for any trajectory x(·) generated by (2) with x(0) ∈
B(0, R) and for data satisfying

|mi| ≤ em, |ai| ≤ ea and |ti+1 − ti| ≤ δ for all i (38)
| 〈∇V1(x), f(x, g(x) + v, d)− f0(x, g(x) + v, d)〉 | ≤ e1

∀v ∈ χ(x), x ∈ B(0, R′)\Σ, d ∈ D, (39)

there exists t̄ ∈ [0, V1(x(0))/ω̄] such that V1(x(t̄)) ≤ α, and such that

x(t) ∈ B(0, R′), t ∈ [0, t̄].

Proof. We set

V1(R′) := max{V1(y) : |y| ≤ R′}
S1 := {x : α/2 ≤ V1(x) ≤ V1(R′)}
φ := sup{|f(x, a + g(x + m) + v, d)| :

x ∈ B(0, R′), |a| ≤ Ea, |m| ≤ Em, v ∈ V, d ∈ D}
G := max{|∇V1(x)| : x ∈ S1}.
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Let µ be a modulus of continuity for V1 on B(0, R′), ν a modulus of continuity
for ∇V1 on S1, and ρ a modulus of uniform continuity such that

x ∈ B(0, R′), v ∈ V, d ∈ D =⇒
|f(x, a + g(x + m) + v, d)− f(x, g(x) + v, d)| ≤ ρ(|(a,m)|). (40)

Hypotheses (H2)–(H3) imply the existence of a Lipschitz constant K for f in
the following sense:

x, x′ ∈ B(0, R′), |a| ≤ ea, |m| ≤ em, v ∈ V, d ∈ D =⇒
|f(x, a + g(x + m) + v, d)− f(x′, a + g(x + m) + v, d)| ≤ K|x− x′|.

(41)

We choose positive numbers δ, e1, e2 and ea < Ea, em < Em small enough so
that

µ(δφ) < α/4, δω̄ < α/2 (42)
e1 + Gρ(ea + em) + δGKφ + φν(δφ) < ω1 − ω̄ . (43)

With these choices, we now proceed to verify the assertions of the Lemma.
Accordingly, let x(·) be any solution of eqns.(2), for data satisfying (38)-(39),
and with x(0) ∈ B(0, R).

We may suppose that V (x(0)) > α, for otherwise there is nothing to prove.
Consider the subintervals [ti, ti+1] (i ≥ 0) for which ti+1 ≤ V1(x(0))/ω̄ (at least
the first subinterval is of this type, by the second part of (42)). It follows from
(35) and the definition of R′ that for any such subinterval, we have x(t) ∈
B(0, R′) for t ∈ [ti, ti+1].
Case 1. For some such subinterval, there is a point τ ∈ [ti, ti+1] for which
V1(x(τ)) < α/2. In this case it is clear that the assertion of the Lemma holds.
Case 2. The remaining case is that in which x(t) lies in S1 throughout the
subinterval, for all the subintervals [ti, ti+1] in question. Then, for any t ∈
[ti, ti+1], for some t′ ∈ (ti, ti+1) and d ∈ D, we have (by the mean value theorem)

V1(x(t))−V1(x(ti)) = (t−ti) 〈∇V1(x(t′)), f(x(t′), ai + g(x(ti) + mi) + vi, d)〉 .

The right side is in turn bounded above by

(t− ti) 〈∇V1(x(ti)), f(x(t′), ai + g(x(ti) + mi) + vi, d)〉
+ (t− ti)φν(δφ) (by definition of ν, and since |x(t′)− x(ti)| ≤ δφ)

≤ (t− ti) 〈∇V1(x(ti)), f(x(ti), ai + g(x(ti) + mi) + vi, d)〉
+ (t− ti){δGKφ + φν(δφ)} (by the Lipschitz condition (41))

≤ (t− ti) 〈∇V1(x(ti)), f(x(ti), g(x(ti)) + vi, d)〉
+ (t− ti){Gρ(ea + em) + δGKφ + φν(δφ)} (see (40)).
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In view of (39), this last expression is in turn bounded above by

(t− ti){〈∇V1(x(ti)), f0(x(ti), g(x(ti)) + vi, d)〉+ e1 + Gρ(ea + em)
+ δGKφ + φν(δφ)}

≤ (t− ti){−ω1 + e1 + Gρ(ea + em) + δGKφ + φν(δφ)} (by (LH1))
≤ −(t− ti)ω̄ (in view of (43)).

If Case 1 never holds, then this decrease conclusion is valid up to the last
partition point tj+1 no greater than V1(x(0))/ω̄. For that last one, we have
V1(x(tj+1) ≥ α/2 (since otherwise Case 1 would apply) and tj+1 > V1(x(0))/ω̄−
δ. Summing in the decrease estimate yields

V1(x(tj+1))− V1(x(0)) ≤ −tj+1ω̄,

which, combined with the preceding inequality, gives

V1(x(tj+1)) ≤ δω̄ < α/2 (in light of (42)).

This contradiction shows that Case 2 does not occur, and the Lemma is proved.

We now proceed to prove the Theorem by combining the ‘near Σ’ and the
‘distant from Σ’ analyses given above. Given r, R, ω̄ and ε̄ as in its statement,
we define R′ as above, via (37). Now set

b := max{V2(x) : x ∈ B(0, R′)},

and choose ᾱ ∈ (0, TR/2) and β ∈ (0, b) small enough so that

{x : V1(x) ≤ ᾱ, V2(x) ≤ β} ⊂ B(0, r)
{x : V1(x) ≤ ᾱ, V2(x) ≤ b} ⊂ {x : dΣ(x) < ε̄}.

Apply Lemma 1 to find α ∈ (0, ᾱ] so that the conclusions of that Lemma hold, for
certain bounds on the errors and the mesh size. Suppose now that these bounds
are further reduced (if necessary) to make Lemma 2 operative. Then any state
trajectory x(·) emanating from B(0, R), in the presence of data satisfying the
bounds in question, satisfies V1(x(t̄)) ≤ α at a certain time t̄ ≤ V1(x(0))/ω̄ for
which x(t̄) ∈ B(0, R′). Thus we have

x(t̄) ∈ S := {x : V1(x) ≤ α, V2(x) ≤ b} ⊂ {x : dΣ(x) < ε̄}.

The set S is invariant (in the sense of Lemma 1) and for some R′′ (in view of
(LF3)) we have

S+ := {x : V1(x) ≤ 2α, V2(x) ≤ 2b} ⊂ {x : V1(x) ≤ TR, V2(x) ≤ 2b} ⊂ B(0, R′′).

Set R∗ := max{R′, R′′}. Then R∗ depends upon R, ω1, ω̄, the functions V1 and
V2, the parameters in the hypotheses (H1)–(H3), but not upon r. Since B(0, R∗)
contains both S+ and B(0, R′), the bounds on modeling error prescribed by the
lemmas (that is, (27),(28) and (39)) are all subsumed by the corresponding
bounds relative to the set B(0, R∗) (that is, the relations (4) and (5) in the
statement of the Theorem). All the conclusions of the Theorem now follow.
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Remark (error estimates). The statement of the Theorem does not make
explicit how small the error parameters must be, but some information does
emerge in the proof. For example, let us suppose that we are concerned primar-
ily with modeling error. Observe that if actuator and measurement error are
small enough, a suitably small value of the mesh size δ will allow in the inequal-
ities (33)(34)(43) values of e1 and e2 as close as desired to ω1 − ω̄ and ωα/2
respectively. (Thus the maximum allowable modeling error is determined by the
available decrease rate.) Note that a trade-off exists: taking ω̄ smaller allows for
greater error, but this may make the convergence slower (see (36)). These ob-
servations can yield estimates on how large the modeling error can be (to still be
able to guarantee the conclusions of the Theorem). See the example of Section
6 in this connection, where the corresponding bound e2 is rendered irrelevant
because the Lyapunov function V2 and the modeling error are ‘matched’: the
inner product of ∇V2 and f − f0 vanishes.
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