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A Maximum Principle for Hybrid Optimal Control
Problems with Pathwise State Constraints

P. E. Caines (FIEEE), F. H. Clarke, X. Liu, R. B. Vinter (FIEEE)

Abstract— This paper provides necessary conditions of opti-
mality, in the form of a maximum principle , for a broad class
of hybrid optimal control problems, in which the dynamics of
the constituent processes take the form of differential equations
with control terms, and restrictions on the transitions or switches
between operating modes are described by collections of func-
tional equality and inequality constraints. Different choices of
the constraint functionals capture a wide range of possible au-
tonomous and controlled switching strategies. A notable feature
of our formulation is the provision it makes for pathwise state
constraints on the continuous variables.

Index Terms— Hybrid control, Maximum Principle, State Con-
straints

I. I NTRODUCTION

Many complex control tasks, for example those associated
with controlling an autonomous vehicle to carry out a sequence
of manoeuvres or with controlling a collection of interacting
process units, involve two levels of decision making. At the
higher level, it is necessary to set the values of ‘discrete’
decision variables determining, possibly, the sequencingof
operations or the selection of way stations. At the lower level,
we are concerned with providing ‘continuous’ input signals
that control the constituent devices, consistent with the upper
level decision making. Hybrid control addresses the problem
of integrating discrete and continuous decision making in this
context.

Hybrid optimal control is an approach to hybrid control,
in which we seek strategies to minimize a cost function, or
criterion of best performance. One approach to seeking optimal
strategies, followed by Shaikh and Caines [7] is to carry outan
iterated two-step procedure, according to which we alternate
between minimizing the cost function over the discrete and
continuous variables.

‘Hybrid maximum principle’ is the name given to some
set of first order necessary conditions of optimality, akin to
the traditional maximum principle, relating to a selectionof
continuous variables in a hybrid optimal control problem,
that optimizes the cost function for a fixed choice of the
discrete variables. For some simple cases of hybrid optimal
control problems, it can be used to carry out the minimization
over the continuous variables analytically. For other cases,
such conditions inspire numerical schemes for minimizing the
cost over the continuous time variables and are of assistence

P. E. Caines is with the Department of Electrical and Computer Engineer-
ing, McGill University, Montreal, Quebec, Canada H3A 2A7

F. H. Clarke is with L’Institut Camille Jordan, Universite Lyon I, 43
Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France.

X. Liu and R. B. Vinter are with the Electrical and ElectronicEngineering
Department, Imperial College, Exhibition Road,London SW7 2BT, UK

in establishing properties of limit points of sequences of
continuous variables generated by such schemes (‘convergence
analysis’). The role of the hybrid maximum principle, then,is
to attend to the ‘minimization over continuous variables’ step
of two-step interative schemes for solving optimal (and related
numerical optimization schemes) for solving hybrid optimal
control problems.

A characteristic of hybrid systems is the occurence of
switches in the structure of the dynamics, constraints sets,
etc., governing the evolution of the continuous variables.In
a hybrid optimal control problem a particular choice of the
discrete variables typically fixes a sequence of dynamical
systems for the continuous variables and imposes certain
constraints on transition times and on the values of continuous
variables just before, and just after, a transition occurs.

A very general formulation of a dynamic optimization prob-
lem that arises from fixing the discrete variables in a hybrid
optimal control problem, takes the form of a finite collection
of ‘continuous’ control systems and a collection of constraints
on the times transitions between these control systems occur,
as well as on the values of the continuous variables before
and after each transition time. Such a formulation, referred
to as optimal control of ‘multiprocesses’, was proposed by
Clarke and Vinter, and was aimed at unifying earlier work on
‘multi-stage’ dynamic optimization reported in, for example,
the aeronautical control and resource economics literature.
However with the growth interest hybrid control, we can
expect that the principal forum for future application of such
conditions will be to hybrid control. The papers [3], [4]
provide a Maximum Principle for optimal multiprocesses of
a very general nature, in which the constraints take the form
of set inclusions and the dynamics of the consituent processes
are governed by (possibly nonsmooth) differential inclusions.

The philosophy of [3] was to derive optimality conditions
in the absence of any presumed structure on the constraints
governing transitions times and end-values of constituent
processes (apart from their being expressible in terms of closed
set inclusions). In such conditions, degeneracy manifestsitself
as lack of information in the optimality conditions. (If, for
example, the conditions are satisfied with the cost multiplier
taking the value zero, they convey no useful properties of
minimizers). The conditions are of significance then, only
when additional hypotheses (typically of a ‘controllability’
nature) are imposed which exclude satisfaction of the op-
timality conditions in some trivial sense. This approach is
followed also by Sussmann [9], but in the narrower context
of autonomous problems (dynamical behaviour invariant under
time translations), for which the time intervals associated with
the individual ‘subprocesses’ are contiguous.
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An alternative philosophy, followed by Shaikh and Caines
[7] and Garavello and Piccoli [5] is to focus at the outset on
specific classes of constraints relevant to hybrid control and
to introduce hypotheses on the dynamics and transition con-
straints ensuring the validity of the hybrid maximum principle
in a non-degenerate form. We add that the work in [6], [7], and
that in [8], on ’non-degenerate’ hybrid maximum principlesis
part of a programme aimed at the development of numerical
methods and schemes for optimizing over continuous and
discrete variables.

The contribution of this paper is to present a hybrid max-
imum principle, for a generalization of the dynamic opti-
mization problem considered in [3], in which we introduce
pathwise constraints on the continuous ‘state’ variables.For
simplicity of presentation, we have adopted a ‘controlled dif-
ferential equation’ description of the dynamics and expressed
‘transition’ constraints as functional equality/inequality con-
straints. All data is assumed to be differentiable. These restric-
tions can be relaxed, at the cost of a much higher analytical
overhead.

For our purposes, a hybrid system incorporates a number
of ‘continuous’ control systems described as follows: fori =
1, . . .M :

ẋi(t) = fi(t, xi(t), ui(t)) a.e.t ∈ [si, ti] (I.1)

ui(t) ∈ Ui a.e.t ∈ [si, ti] (I.2)

xi(t) ∈ Ai a.e.t ∈ [si, ti] . (I.3)

Here, for eachi, ni, mi are positive integers,fi : R×Rni ×
Rmi → Rni is a given function andUi ⊂ Rmi andAi ⊂ Rni

are given sets. It is assumed that (for eachi) the state constraint
setAi has the representation

Ai = {x |φi(x) ≤ 0}

in which φi(x) : Rni → Rki is a given function. (The
inequality is interpreted in a componentwise sense.) In what
follows, theki scalar valued functions associated withφi will
be denotedφj

i , j = 1, . . . , ki.

A process for the hybrid system is anM -tuple
{(si, ti, xi(.), ui(.))}

M
i=1, whosei’th element comprises num-

bers si, ti (si < ti), an absolutely continuous functionxi :
[si, ti] → Rni and a measurable functionui : [si, ti] → Rmi

satisfying (I.1)– (I.3).

Suppose we are given scalar valued functions

ψj : ΠM
i=1 (R×Rni ×R×Rni) → R,

j = 0, . . . , d1, d1 + 1, . . . , d1 + d2

for some integersd1 ≥ 0, d2 ≥ 0, and functions

Li : R×Rni ×R×Rni , i = 1, . . . ,M.

Consider now the optimization problem:
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Minimize ψ0
(

{(si, xi(si), ti, xi(ti))}
M
i=1

)

+
∑

i

∫ ti

si

Li(t, xi(t), ui(t))dt

over processes{(si, ti, xi(.), ui(.))}
M
i=1

satisfying the constraints
ψj

(

{(si, xi(si), ti, xi(ti))}
M
i=1

)

≤ 0
for j = 1, . . . , d1

ψj
(

{(si, xi(si), ti, xi(ti))}
M
i=1

)

= 0
for j = d1 + 1, . . . , d1 + d2 .

The cases ‘d1 = 0’ and d2 = 0 correpond to ‘no inequality
constraints’ and ‘no equality constraints’, respectively.

A common situation is that in which the time intervals[si, ti]
are contiguous andn1 = . . . = nM = n andm1 = . . . =
mM = m (for somen andm). But the general theory we
develop will not impose these requirements, i.e. our framework
allows for a wide variety of ‘linked’ processes, each of which
may have control and state vectors of different dimensions.

In the literature, transitions between contiguous time
intervals [si, ti] and [si+1, ti+1] are classified according
to whether they are ‘autonomous’ or ‘controlled’. In [1]
autonomous transitions are those for which the value of the
state xi+1(si+1) after a transition is uniquely determined
by the value of the statexi(ti) before the transition time
ti(= si+1), while for controlled transitions, the value of
xi+1(si+1) is a choice variable. In the context of hybrid
system necessary conditions in, for instance, [6], [7], [8],
autonomous transitions are those for which the discrete state
variable must make a jump to a predetermined value when the
continuous state component enters a manifold of co-dimension
1 (sometimes termed a guard), while a controlled transition
denotes a controlled jump of the discrete state component at
an arbitrary time instant and to an arbitrary continuous state
component value (outside a guard).The controlled jump may
be further constrained by discrete dynamics for the discrete
state component and the number of jumps may be constrained
by a bound on the number of allowable jumps. Clearly the
constraint functionals in(P ) can be chosen to accommodate
a wide variety of autonomous and controlled transitions.

A process which achieves the minimum in(P ) over all
processes satisfying the constraints is called a minimizerfor
(P ).

Let {s̄i, t̄i, x̄i(.), ūi(.)}
M
i=1 be a minimizing process of

interest. Definef̃i = (Li, fi) for i = 1, . . . ,M . We shall
impose the following hypotheses on the data.

(H1): ψj , j = 0, . . . , d1 + d2 are continuously differentiable
functions.

(H2): There exists a Borel measurable functionki : [s̄i, t̄i] ×
Rmi → R and ǫ > 0 such thatt → ki(t, ūi(t)) is integrable
and

|f̃i(t
′′, x′′, u) − f̃i(t

′, x′, u)| ≤ ki(t, u)|(t
′′, x′′) − (t′, x′)|
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for all (t′′, x′′), (t′, x′) ∈ (t, x̄i(t)) + ǫB, a.e.t ∈ [s̄i, t̄i].

(H3): f̃i(t, x, .) is Borel measurable for each(t, x).

(H4): Ui is a Borel set.

(H5): φj
i is continuously differentiable forj = 1, . . . , ki.

II. A M AXIMUM PRINCIPLE FORHYBRID OPTIMAL

CONTROL PROBLEMS WITH STATE CONSTRAINTS.

In this section we state necessary conditions for a process
{(s̄i, t̄i, x̄i(.), ūi(.))}

M
i=1 to be a minimizer, in the form of

a maximum principle. The optimality conditions take the
form of maximum principle like conditions on each element
(s̄i, t̄i, x̄i(.), ūi(.)), i = 1, . . . ,M in the process, with common
cost multiplier λ0, coupled through relationships involving
the boundary values of the adjoint variables. Note that the
numberM of ‘locations’ or ‘discrete state regimes’ is fixed
and also the sequence in which they occur; this reflects the fact
that the maximum principle addresses the problem merely of
minimizing the cost over the continuous variables, for fixed
values of the discrete variables.

It is well known in optimal control that the ‘Lagrange
multiplier’ asssociated with a unilateral state constraint takes
the form of a function of bounded variation defining the
‘integrator’ in a Stieltjes integral. Such multipliers arise also
in optimal hybrid control, when state constraints are present.
NBV +([s̄, t̄];Rk) is the space ofRn-valued functions of
bounded variation on the interval[s̄, t̄], which are (component-
wise) non-decreasing and right continuous on the half open
interval (s̄, t̄]. Given a continuous functionφ : [s̄, t̄] →
Rk and an elementµ ∈ NBV +([s̄, t̄];Rk, we denote by
∫

[s̄,t̄]
φ(t)µ(dt) the Stieltjes integral ofφ(.) with respect to the

‘integrator’ µ. An Rk-valued functionµ in NBV +([s̄, t̄];Rk)
can also be thought of as a collection ofk scalar valued
functions inNBV +([s̄, t̄];R). We write these scalar valued
functionsµj , j = 1. . . . , k.

DefineHλ
i : R×Rni ×Rni ×Rmi → R:

Hλ
i (t, x, p, u) = pT fi(t, x, u) − λLi(t, x, u)

for i = 1, . . . ,M andλ ≥ 0.

Theorem 2.1:Let {(s̄i, t̄i, x̄i(.), ūi(.))}
M
i=1 be a minimizer

for (P ). Assume (H1)-(H5) are satisfied. Then there exist

• non-negative numbersλj , j = 0, . . . , d1

• numbersλj , j = d1 + 1, . . . , d1 + d2

and, fori = 1. . . . ,M ,

• an elementµi ∈ NBV +([s̄i, t̄i];R
ki),

• an abs. continuous functionpi : [s̄i, t̄i] → Rni ,
• a continuous functionhi : [s̄i, t̄i] → R,

with the properties (i)–(vii) below.
(In these relationships,qi(t) is taken to be

qi(t) = pi(t) +

∫

[s̄i,t]

∇xφi(x̄i(s))µi(ds)

if t ∈ (s̄i, t̄i] andqi(s̄i) = pi(s̄i).)

(i): (non-triviality of Lagrange Multipliers)
(

{λi}
d1+d2

i=0 , {pi}
M
i=1, {µi}

M
i=1

)

6= 0

(ii): (Transversality Conditions)
{(−hi(s̄i), qi(s̄i), hi(t̄i),−qi(t̄i))}

M
i=1

= ∇
(

∑d1+d2

j=0 λjψ
j{(s̄i, x̄i(s̄i), t̄i, x̄i(t̄i))}

M
i=1

)

(iii): (Comp. Slackness of Endpoint Multipliers )
If, for somej ∈ {1, . . . , d1},
ψj

(

{(s̄i, x̄i(s̄i), t̄i, x̄i(t̄i))}
M
i=1

)

< 0, thenλj = 0.

and, fori = 1, . . . ,M ,

(iv): (Continuity of the Maximized Hamiltonian)
hi(t) = supu∈Ui

Hi(t, x̄i(t), qi(t), u) a.e.t ∈ [s̄i, t̄i],

(v): (Adjoint Equations)
−ṗi(t) = (Hi)x (t, x̄i(t), qi(t), ūi(t)) a.e.t ∈ [s̄i, t̄i]

(vi): (Maximization of the Hamiltonian).
hi(t) = Hi(t, x̄i(t), qi(t), ūi(t)) a.e.t ∈ [s̄i, t̄i]

(vii): (Comp. Slackness of State Constraint Multipliers)
If, for some j ∈ {1, . . . , ki}, φj

i (x̄i(t)) < 0, thenµj(.)
is constant on a relative neighborhood oft in [s̄i, t̄i].

The idea behind the derivation of the optimality conditions
is to associate a minimizer for the hybrid optimal control
problem with a minimizer for a conventional optimal control
problem, apply a known state constrained Maximum Principle
to this latter problem, and to interpret the conditions in terms
of the data of the original problem. The reformulation involves
the introduction of additional control variables. The new
control variables induce a change of independent variable,
the result of which is to replace each sub-interval[si, ti]
associated with a process(si, ti, xi(.), ui(.)) by a common
sub-interval of the real line. A similar technique has been used
in other contexts, to derive first order optimality conditions
for conventional optimal control problems, for example,
or to establish constancy of the maximized Hamiltonian
along an optimal process for autonomous optimal control
problems. (See [2], [10].) Details of the derivation will be
given elsewhere.

It is of interest to explore the detailed implications of the
above optimality conditions for a number of significant cases
of problem(P ). We consider one such case, in which the time
intervals are contiguous and the state variable is continuous
across a transition between time intervals. Fixψ : Rn → R,
x0 ∈ Rn, [s̄, t̄] ⊂ R. Assume that, for some integersn andk,

n1, . . . , nM = n and k1, . . . , kM = k .
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Consider the hybrid optimal control problem

(P )
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Minimize ψ(xN (t̄))
over processes{(si, ti, xi(.), ui(.))}

M
i=1

satisfying the constraints
s1 = s̄, t1 = s2, . . . , tM−1 = sM

x1(s1) = x0, x1(t1) = x2(s1),
. . . , xM−1(tM−1) = xM (sM )

By considering the special case of (P), in whichd1 = 0, d2 =
2M + 1 and
(ψ1, . . . , ψ2M+1 =

(s1 − s̄, tM − t̄, t1 − s2, . . . , tM−1 = sM ), x1(s1) =
x0, x1(t1) = x2(t2), . . . , xM−1(tM−1) = xM (sM ))

we may deduce the following optimality conditions from
Thm. 2.1:

Let {(s̄i, t̄i, x̄i(.), ūi(.))}
M
i=1 be a minimizer. Assume that

the data for the above optimization problem, regarded as a
special case of(P ), satisfies (H1)-(H5). Assume furthermore
that, for i = 1, . . . ,M ,

φ1(x̄1(s̄1)) < 0, φ1(x̄1(t̄1)) < 0, . . . ,
φN (x̄N (s̄N )) < 0, φN (x̄N (t̄N )) < 0 .

Then there exists a non-negative numberλ0 and, for i =
1, . . . ,M ,

• an elementµi ∈ NBV +([s̄i, t̄i];R
ki),

• an abs. continuous functionpi : [s̄i, t̄i] → Rni ,
• a continuous functionhi : [s̄i, t̄i] → R,

with the properties (a)–(e) below (in which

qi(t) = pi(t) +

∫

[s̄i,t]

∇xφi(x̄i(s))µi(ds)

if t ∈ (s̄i, t̄i] and qi(s̄i) = pi(s̄i).)

(a): (non-triviality of Lagrange Multipliers)
(

λ0, {µi}
M
i=1

)

6= 0

(b): (Transversality Conditions)
h1(t̄1) = h2(s̄2), . . . , hM−1(t̄M−1) = hM (s̄M )

q1(t̄1) = q2(s̄2), . . . , qM−1(t̄M−1) = qM (s̄M )

−qN = λ0∇ψ(x̄M (t̄M ))

and, for i = 1, . . . ,M ,

(c): (Continuity of the Maximized Hamiltonian)
hi(t) = supu∈Ui

Hi(t, x̄i(t), qi(t), u) a.e. t ∈ [s̄i, t̄i],

(d): (Adjoint Equations)
−ṗi(t) = (Hi)x (t, x̄i(t), qi(t), ūi(t)) a.e. t ∈ [s̄i, t̄i]

(e): (Maximization of the Hamiltonian).
hi(t) = Hi(t, x̄i(t), qi(t), ūi(t)) a.e. t ∈ [s̄i, t̄i]

(f): (Comp. Slackness of the State Constraint Multipliers)
For j = 1, . . . , ki

‘φj
i (x̄i(t)) < 0’ implies ‘µj

j(.) is constant
on a relative neighbourhood oft in [s̄i, t̄i]’.

Notice that, in this case, the transversality conditions trans-
late into a number of conditions, which include the assertion
that the maximized Hamiltonian is continuous across a ‘free’
transition time and that, if the continuous state does not jump
at a transition time, then neither does the adjoint variable.

III. A S IMPLE EXAMPLE

We consider a simple example, which exemplifies multi-
stage optimal control problems with state constraints. A robot
arm of unit mass, initially at rest, moves along a line from the
origin. It picks up a load of unit mass when it has travelled
a distanceL from its starting point, and returns to its starting
point. At the end of the manoeuvre the velocity of the robot
arm must be zero. A double integrator model is used to
describe the effect of a forceu, which is regarded as the
control, on the robot arm displacementy. Denote byT and
τ , the overall time of the manoeuvre and of the pickup time
respectively. It is assumed that both the velocityẏ of the robot
arm and the control are subject to pathwise constraints:

|ẏ(t)| ≤ 1 and |u(t)| ≤ 1 a.e.t ∈ [0, T ] .

Finally, we assume that the load is stationary just before
pickup. It is struck by the robot arm at the pickup timeτ , and
the subsequent velocity of robot arm and load is governed by
the law of conservation of momentum:

2 × v(τ+) = 1 × v(τ−) .

Regardingy and ẏ and as thex1 andx2 components respec-
tively of a 2-vector state variablex, we can formulate the
problem of determining a ‘minimum time’ strategy as a ‘multi-
stage’ optimal problem:


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Minimize T
over numbersT > 0, τ ∈ [0, T ] and ((x(.), u(.)) s.t

ẋ =

{

Ax(t) + b1u(t), a.e.t ∈ [0, τ)
Ax(t) + b2u(t), a.e.t ∈ (τ, T ]

u(t) ∈ [−1,+1] a.e.t ∈ [0, T ]
|x2(t)| ≤ 1 a.e.t ∈ [0, T ]
x(0) = x(T ) = 0
x1(τ

+) = x1(τ
−)

x2(τ
+) = (1/2)x2(τ

−) .

Here,

A =

[

0 1
0 0

]

, b1 =

[

0
1

]

, b2 =

[

0
1/2

]

.

This problem can be alternatively expressed as a special case
of (P ), in which the hybrid system has two ‘modes’, those
corresponding to the unloaded and the loaded weight of the
robot arm respectively. Assume that

L > 2 .

It can be shown that a minimizer exists for this problem, and
that the hypotheses of the Thm. 2.1 are satisfied with respect
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to every minimizer. Furthermore, there is a unique process
satisfies the conditions of Thm. 2.1. Since this is a necessary
condition, it follows that there is a unique minimizer and it
satisfies the conditions of the hybrid maximum principle. Write
T ∗, τ∗ and u∗(.) for the optimal time horizon, pickup time
and control respectively. It can be deduced from the hybrid
maximum principle that:

T ∗ = 3 + 2L, τ∗ = 1 + L

and writing

t1 = 1, t2 = L, t3 = 3 + L, t4 = 2L+ 1

we have

u∗(t) =























+1 0 < t < t1
0 t1 < t < t2
−1 t2 < t < t3
0 t3 < t < t4
+1 t4 < t < T ∗

Figure 1 shows a phase plane portrait of the optimal state
trajectory. Full details will be reported elsewhere. Notice an
interesting feature of the optimal strategy: while policies are
permitted for which the velocity of the robot arm at the pickup
time is non-zero, the optimal policy is to pick up the load when
the robot arm is stationary. This phenomenon is connected with
the fact that the change of velocity at pickup is modelled by
an appeal to ‘conservation of momentum’. The optimal pickup
may occur at a time when the robot arm velocity is non-zero,
if another law is invoked to determine the robot arm velocity
after pickup.

X2

X1

u=+1

u=+1

u=0

u=0

u=−1

u=−1

L

1

−1

Fig. 1. Phase plane portrait of the optimal state trajectory
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