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A Maximum Principle for Hybrid Optimal Control
Problems with Pathwise State Constraints

P. E. CainesKIEEE), F. H. Clarke, X. Liu, R. B. Vinter FIEEE)

Abstract— This paper provides necessary conditions of opti- in establishing properties of limit points of sequences of
mality, in the form of a maximum principle , for a broad class  continuous variables generated by such schemes (‘comegge
of hybrid optimal control problems, in which the dynamics of analysis"). The role of the hybrid maximum principle, thés,

the constituent processes take the form of differential equaties to aftend to the ‘minimizati ti iablas
with control terms, and restrictions on the transitions or switches 0 attend to the ‘minimizalion over coninuous varia s

between operating modes are described by collections of func- Of two-step interative schemes for solving optimal (andted
tional equality and inequality constraints. Different choices of numerical optimization schemes) for solving hybrid optima
the constraint functionals capture a wide range of possible au- control problems.
tonomous and controlled switching strategies. A notable feature A cparacteristic of hybrid systems is the occurence of
of our formulation is the provision it makes for pathwise state . ; - .
constraints on the continuous variables. switches in the structure of the dynamics, constraints, sets
etc., governing the evolution of the continuous variables.
a hybrid optimal control problem a particular choice of the
discrete variables typically fixes a sequence of dynamical
systems for the continuous variables and imposes certain
|. INTRODUCTION constraints on transition times and on the values of coatisu

M | irol tasks. f le th . tv%riables just before, and just after, a transition occurs.
any complex controf tasks, for example those associate A very general formulation of a dynamic optimization prob-

with controlling an autonomous vehicle to carry out a SEGaeng 4t arises from fixing the discrete variables in a hybrid

of Manoeuvres or with controliing a colIgguon of |.nterag| optimal control problem, takes the form of a finite colleatio
process units, involve two levels of decision making. At thS]t ‘continuous’ control systems and a collection of coristsa

glghe.r Ievel,. ILIIS nCiec:tessgry to set t.rt])? V?Aues of dls%retgn the times transitions between these control systems,occu
ecision variables determining, possibly, theé SeqUENTNg .o q|| as on the values of the continuous variables before

operations or the selection of way stations. At the loweellev and after each transition time. Such a formulation. reterre
we are concerned with providing ‘continuous’ input signaltc,o as optimal control of ‘multiprocesses’, was proéosed by
that control the constituent devices, consistent with thpen Clarke and Vinter, and was aimed at unif);ing earlier work on
level decision making. Hybrid control addresses the pmble‘multi-stage' dyna’mic optimization reported in, for exalp

of integrating discrete and continuous decision makindnia t the aeronautical control and resource econémics litexatur

co:'teé(t-. q imal i h hvbrid IHowever with the growth interest hybrid control, we can
ybrid optimal control is an approach to hybrid contro expect that the principal forum for future application otku

|n.wh|ch \;vg seek ?trategles to minimize ‘;’1‘ cost fznchon,. Ynditions will be to hybrid control. The papers [3], [4]
criterion of best performance. One approach to seekingapti provide a Maximum Principle for optimal multiprocesses of

strategies, followed by Shaikh and Caines [7] is to carryaut 5 o1y general nature, in which the constraints take the form

fterated twq—s_,tep.procedure, accordmg to which we altemnaye set inclusions and the dynamics of the consituent presess
betvx{een minimizing the cost function over the discrete ar&ie governed by (possibly nonsmooth) differential inausi
co‘ntlnuc_)us var_|ables. o ) The philosophy of [3] was to derive optimality conditions
Hybrid maximum principle’ is the name given 0 SOM&, e apsence of any presumed structure on the constraints
set of first order necessary conditions of optimality, alon tyerning transitions times and end-values of constituent
the traditional maximum principle, relating to a selectioh processes (apart from their being expressible in termsosed
continuo_us_ variables in a hybrid optima_ll control_ problemyq inclusions). In such conditions, degeneracy manifess
that optimizes the cost function for a fixed choice of thgs |ack of information in the optimality conditions. (If, rfo
discrete variables. For some simple cases of hybrid optimglympie, the conditions are satisfied with the cost muttipli
control problems, it can be used to carry out the minimizatiqaking the value zero, they convey no useful properties of
over the continuous variables analytically. For other sase,iimizers). The conditions are of significance then, only
such conditions inspire numerical schemes for minimizimgy t\ o aqditional hypotheses (typically of a ‘controllatyli
cost over the continuous time variables and are of asshsterﬁgture) are imposed which exclude satisfaction of the op-
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ing, McGill University, Montreal, Quebec, Canada H3A 2A7 followed also by Sussmann [9], but in the narrower context
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X. Liu and R. B. Vinter are with the Electrical and Electrofiagineering time tranSIatlonS)* for which the time intervals associatéth
Department, Imperial College, Exhibition Road,London SW7 2BK the individual ‘subprocesses’ are contiguous.

Index Terms— Hybrid control, Maximum Principle, State Con-
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An alternative philosophy, followed by Shaikh and Caine€onsider now the optimization problem:;
[7] and Garavello and Piccoli [5] is to focus at the outset on o
specific classes of constraints relevant to hybrid contral a Minimize ° ({(si, 2 (s:), ti, 2i(t:) 1)
to introduce hypotheses on the dynamics and transition con- +> fst Li(t,x4(t), ui(t))dt
straints ensuring the validity of the hybrid maximum prplei over process€$s;, t;, z;(.), u;(.))
in a non-degenerate form. We add that the work in [6], [7], and satisfying the constraints

M

1=

P .
that in [8], on 'non-degenerate’ hybrid maximum principles (P) VI ({(s5,2i(s0), ti, i (8))}2,) < 0
part of a programme aimed at the development of numerical Cforj=1,....d
methods and schemes for optimizing over continuous and I ({(s5,2i(s0), ti i (8))}L,) =0

discrete variables.

. The cqntr_ibution of this paper is_ to present a hybr.id Maxs o casesd; = 0’ and d, = 0 correpond to ‘no inequality
imum principle, for a generalization of the dynamic Optl'constraints’ and ‘no equality constraints’, respectively
mization problem considered in [3], in which we introduce '

pathwise constraints on the continuous ‘state’ variabifes.
simplicity of presentation, we have adopted a ‘controllded d
ferential equation’ description of the dynamics and exgeds

forj:d1+1,...,d1+d2.

A common situation is that in which the time intervads, ¢;]
are contiguous ana; .=ny =nandm; = ...

‘transition’ constraints as functional equality/ineqgtialcon-
straints. All data is assumed to be differentiable. Thestice

tions can be relaxed, at the cost of a much higher analyti

overhead.

For our purposes, a hybrid system incorporates a numk?ﬁ{ervals

of ‘continuous’ control systems described as follows: fet

1,...M:
j,‘i(t) = fi(t,xi(t),ui(t)) a.e.t [Si,ti] (|1)
Uz(t) e U; aete [S“tl] (|2)
Zl(t) € A; aete [Sz,tl] . (|3)

Here, for each, n;, m; are positive integersf; : R x R™ X
R™i — R™ is a given function and/; ¢ R™ and A; C R™

are given sets. It is assumed that (for egdhe state constrain

set A; has the representation
Ai = {z]¢i(z) <0}

in which ¢;(x) :

follows, thek; scalar valued functions associated withwill
be denoteds!, j =1,...,k;.

A process for the hybrid system is anM-tuple

R"™ — RF: is a given function. (The
inequality is interpreted in a componentwise sense.) Intwhg

my; = m (for somen and m). But the general theory we
develop will not impose these requirements, i.e. our fraorkw
CaA\ows for a wide variety of ‘linked’ processes, each of whic
may have control and state vectors of different dimensions.
In the literature, transitions between contiguous time
[si,t;] and [s;y1,t;41] are classified according
to whether they are ‘autonomous’ or ‘controlled’. In [1]
autonomous transitions are those for which the value of the
state x;11(s;4+1) after a transition is uniquely determined
by the value of the state;(t;) before the transition time
t;(= s;+1), while for controlled transitions, the value of
x;+1(si+1) is a choice variable. In the context of hybrid
system necessary conditions in, for instance, [6], [7], [8]
autonomous transitions are those for which the discrete sta
variable must make a jump to a predetermined value when the
continuous state component enters a manifold of co-diransi
t 1 (sometimes termed a guard), while a controlled transition
denotes a controlled jump of the discrete state component at
an arbitrary time instant and to an arbitrary continuousesta
component value (outside a guard).The controlled jump may
be further constrained by discrete dynamics for the discret
state component and the number of jumps may be constrained
by a bound on the number of allowable jumps. Clearly the
constraint functionals iff P) can be chosen to accommodate
wide variety of autonomous and controlled transitions.

A process which achieves the minimum {#) over all
processes satisfying the constraints is called a mininfizer

{(ss, i, 24(),u; ()M, whosei'th element comprises num- (P).

berss;, t; (s; < t;), an absolutely continuous functiary :
[si,t;] — R™ and a measurable functian : [s;,t;] — R™
satisfying (1.1)— (1.3).

Suppose we are given scalar valued functions

Y T2 (Rx R™ x Rx R™) — R,
§=0,...,d1,di +1,...,dy + dy

for some integergl; > 0, d> > 0, and functions

Li:RxRY"xRxR", i=1 M.

gee ey

Let {5;,%;,7:(.),u:(.)}}L, be a minimizing process of
interest. Definef; (L, f;) for i = 1,..., M. We shall

impose the following hypotheses on the data.

(H1): 7,5 = 0,...,d, + do are continuously differentiable
functions.

(H2): There exists a Borel measurable functign: [s;,#;] x
R™i — R ande > 0 such thatt — k;(¢,u;(¢)) is integrable
and

[it" 2" u) = filt' o' w)] < kit w)|(t",2") = (t,2")]
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for all (t",2"),(t',2') € (t,Z;(t)) + €B, a.e.t € [3;,t;]. if t € (5;,t;] andgq;(5;) = pi(8:).)

(H3): fi(t,z,.) is Borel measurable for eadh, z).
(): (non-triviality of Lagrange Multipliers)

(H4): U, is a Borel set. ({)\i}fgg‘i?,{pi Mo fﬁl) 40
(H5): ¢/ is continuously differentiable fof = 1,...,k;. (ii): (Transversality Conditions)

{(=hi(5:), qlz‘j(gid), hi({i‘)v *qz‘(@))}%_l i
= V(S5 M (G (50, B T (E) VL )
II. AMAXIMUM PRINCIPLE FORHYBRID OPTIMAL

) ) - If, for somej € {1,...,d1},
In this section we state necessary conditions for a process Wi ({(51'7fi(@),fi,fi(fi))}fil) < 0, then); = 0.

{(55,t;,7:(.),u;(.))}M, to be a minimizer, in the form of

a maximum principle. The optimality conditions take thend, fori =1,..., M,
form of maximum principle like conditions on each element
(8isti,2i(.),wi(.)), e =1,..., M in the process, with common(iv): (Continuity of the Maximized Hamiltonian)

cost multiplier \g, coupled through relationships involving hi(t) = sup,ey, Hi(t, 7i(t), qi(t),u) a.e.t € [5;, 1],
the boundary values of the adjoint variables. Note that the
number M of ‘locations’ or ‘discrete state regimes’ is fixed(v): (Adjoint Equations)
and also the sequence in which they occur; this reflects tiie fa ~ —p;(¢) = (H;). (t,2:(t), q:(t), u:(t)) a.e.t € [5;,1;]
that the maximum principle addresses the problem merely of
minimizing the cost over the continuous variables, for fix¢di): (Maximization of the Hamiltonian).
values of the discrete variables. hi(t) = Hi(t,z;(t), qi(t), u;(t)) a.e.t € [5;,1;]

It is well known in optimal control that the ‘Lagrange
multiplier’ asssociated with a unilateral state constragékes (vii): (Comp. Slackness of State Constraint Multipliers)
the form of a function of bounded variation defining the If, for somej € {1,...,k}, ¢! (Z:(t)) < 0, then u;(.)
‘integrator’ in a Stieltjes integral. Such multipliers s&i also is constant on a relative neighborhoodtah [s;, 7;].
in optimal hybrid control, when state constraints are pnese
NBV*([5,%]; R¥) is the space ofR"-valued functions of
bounded variation on the intervg, ], which are (component- ] ] o o .
wise) non-decreasing and right continuous on the half openThe idea 'behlnd th_e.dc_erlvatlon of the op'tlmallt.y conditions
interval (s,7]. Given a continuous functiow : [5,] — IS to asso_(:late a minimizer for the hybrld opt!mal control
R* and an elemenyy € NBV*([s,; R*, we denote by problem with a minimizer for a conve_nt|0nal optlmal cqntr_ol
f[g,ﬂ #(t)u(dt) the Stieltjes integral of(.) with respect to the prob!em, apply a known state.constramed Maxmum Pnnmple
‘integrator’ ;.. An R-valued functiony in NBV+([s, 7); RY) to this latter probler.n,. and to interpret the condltlc_)ns _mme
can also be thought of as a collection bfscalar valued of the data of the original problem. The reformulation irves

functions in NBV+([s,7); R). We write these scalar valuedthe mtroduphon Qf additional control yarlables. The new
functions i/, j = 1..... k. control variables induce a change of independent variable,

Define H> : R x R™ x R™ x R™i — R the result of which is to replace each sub-interys|, ¢;]
¢ associated with a process;,t;, z;(.),u;(.)) by a common

H{\(t7$’p, u) = pr,;(t,a:,u) — AL;(t,z,u) sub-interval of the real line. A similar technique has besedu
_ in other contexts, to derive first order optimality conditso
fori=1,...,M and\ > 0. for conventional optimal control problems, for example,

~ o or to establish constancy of the maximized Hamiltonian
Theorem 2.1:Let {(Ei,tufi(-),ﬁi(-))}f\L be a minimizer along an optimal process for autonomous optimal control
for (P). Assume (H1)-(H5) are satisfied. Then there exist problems. (See [2], [10].) Details of the derivation will be

« non-negative numbers;, j =0,...,d; given elsewhere.
e numbers);, j=di +1,...,d1 +do

and, fori =1...., M, It is of interest to explore the detailed implications of the
« an elementy; € NBV*([s;,L;]; R*), above optimality conditions for a number of significant case
« an abs. continuous functign : [5;, ;] — R™, of problem(P). We consider one such case, in which the time
« a continuous functior; : [5;,%;] — R, intervals are contiguous and the state variable is contisuo

across a transition between time intervals. ¥ix R” — R,

ith th ies (N—(vii) below.
with the properties (i—(vii) below xo € R™, [3,t] C R. Assume that, for some integersand,

(In these relationshipsy (t) is taken to be

Qi(t) - pi(t)—i_ [;“t]vm(bl(.’lﬁz(S))Ml(dS) ny,...,Npy =n and k’l,...,kM:k.
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Consider the hybrid optimal control problem

Minimize ¢ (zn (%))
over processd$s;, t;, z;(.), u;(.)) M,
satisfying the constraints
§1 =38,t1 = S89,...,tp—1 = Sp
1'1(51) = xo,l’l(tl) = IQ(Sl),
N ,{EMfl(thl) = I,CM(SM)

(P)

By considering the special case of (P), in whith= 0, ds
2M + 1 and

(W1, ... p2MHT =
(s1 — 5,tar — Lty — s2,...,ty—1 = sum),x1(s1) =
zo,x1(t1) = x2(t2), ..., xm—1(tm—1) = xa(snmr))

we may deduce the following optimality conditions fro

Thm. 2.1:

‘¢l (2(t)) < 0" implies ‘7 (.) is constant

g —

on a relative neighbourhood afin [5;,¢,]".

Notice that, in this case, the transversality conditioassr
late into a number of conditions, which include the assertio
that the maximized Hamiltonian is continuous across a *free
transition time and that, if the continuous state does nwipju
at a transition time, then neither does the adjoint variable

Il. A SIMPLE EXAMPLE

We consider a simple example, which exemplifies multi-
stage optimal control problems with state constraints. Boto

Arm of unit mass, initially at rest, moves along a line frora th

origin. It picks up a load of unit mass when it has travelled
a distancel, from its starting point, and returns to its starting

Let {(5i, 5, 7i(.), @l ))}M1 be a minimizer. Assume thatpomt- At the end of the manoeuvre the velocity of the robot
iy liy Lg\- i i= . . .
the data for the above optimization problem, regarded as M Must be zero. A double integrator model is used to

special case of P), satisfies (H1)-(H5). Assume furthermor

that, for: =1,..., M,

$1(71(51)) < 0,¢1(Z1(f1)) <O0,...,
on(ZN(5n)) <0,6n(Zn(EN)) <O.
Then there exists a non-negative number and, for i =
1,..., M,
« an elemenyy; € NBV*([5;,t;]; R*),
« an abs. continuous functiop; : [5;,t;] — R™,
« a continuous functior; : [5;,%;] — R,
with the properties (a)—(e) below (in which

q(t) = pi(t)Jr/

[§i7t]

Va¢i(Zi(s))pi(ds)
if t e (Ei,fi] and Qi(gi) = pi(gi)-)

(a): (non-triviality of Lagrange Multipliers)

(/\07 {,U'Z}z]\il) 7é 0

(b): (Tra_nsversality Conditions)_
hi(t1) = ha(52), ..., har—1(tar—1) = har(5r)
q1(t1) = q2(52), - -y qr—1(tnr—1) = qur(501)
—qn = MV (Za(tar))
and, fori =1,..., M,
(c): (Continuity of the Maximized Hamiltonian)
hz(t) = SUDy ey, H,L(t7 fz(t), qz(t), ’LL) a.e.t € [52'7 {Z],
(d): (Adjoint Equations) B
—pi(t) = (Hi)a (t,7i(t), qi(t), wi(t)) a.e.t € [3;, 1]

(e): (Maximization of the Hamiltonian).

h; (t) = H; (t, Z; (t), q; (t), Us; (t)) a.e.t e [§i7 {Z]
(f): (Comp. Slackness of the State Constraint Multipliers)
Forj:L...,ki

&describe the effect of a force, which is regarded as the

control, on the robot arm displacement Denote byT and

T, the overall time of the manoeuvre and of the pickup time
respectively. It is assumed that both the velogityf the robot
arm and the control are subject to pathwise constraints:

lg#)] <1 and [u(t)] <1 aetel0,T].

Finally, we assume that the load is stationary just before
pickup. It is struck by the robot arm at the pickup timeand

the subsequent velocity of robot arm and load is governed by
the law of conservation of momentum:

2xo(rt) = Ixo(r).

Regardingy andy and as ther; andz, components respec-
tively of a 2-vector state variabler, we can formulate the
problem of determining a ‘minimum time’ strategy as a ‘multi
stage’ optimal problem:

Minimize T

over numberd” > 0, 7 € [0, 7] and ((z(.), u(.)) s.t

L Ax(t) 4 biu(t), ae.tel0,7)
T Az(t) +bu(t), aete(r,T)
u(t) € [-1,+1] a.e.te[0,T]

lz2(t)) <1 a.e.te0,7]

z(0)=z(T) =0
1 (7)) = a1(17)
xo(7T) = (1/2)z(77) .

Here,
0 0
LRI R
This problem can be alternatively expressed as a special cas
of (P), in which the hybrid system has two ‘modes’, those
corresponding to the unloaded and the loaded weight of the
robot arm respectively. Assume that

L>2.

0 1
0 0

It can be shown that a minimizer exists for this problem, and
that the hypotheses of the Thm. 2.1 are satisfied with respect
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to every minimizer. Furthermore, there is a unique process]

satisfies the conditions of Thm. 2.1. Since this is a necgssar
condition, it follows that there is a unique minimizer and it

(4]

satisfies the conditions of the hybrid maximum principle.t&/ri [5]

T*, 7* and u*(.) for the optimal time horizon, pickup time

and control respectively. It can be deduced from the hybri&6 ]

maximum principle that:
T*=3+4+2L, 7"=1+1L
and writing
ti=1,to=L,t3=3+L, ty=2L+1

we have

+1 O0<t<ty
0 t1 <t <to
-1 te<t<ts
0 t3 <t<ty
+1 ty<t<T*

wi(t) =

(7]

F. H. Clarke and R. B. VinteQptimal MultiprocessesSIAM J. Control
and Optimization, 27, 1989, pp. 1072-1091.

F. H. Clarke and R. B. VinterApplications of Optimal Multiprocessges
SIAM J. Control and Optimization, 27, 1989, pp. 1048-1071.

M. Garavello and B. PiccoliHybrid Necessary PrincipleSIAM J.
Control and Optimization, Vol 43, No. 5, 2005 pp 1867 - 1887.
Shaikh M. S. and Caines P.E., “Optimal Control of Hybridsg&ms:
Trajectories, Switching Times, Zones and Location Schedul&EEE
Conference on Decision and ContrdiA, USA, December, 2003, pp
2144 - 2149.

Shaikh M. S. and Caines P.E., “Optimality Zone Algorithnms Hy-
brid Systems Computation and Control: From Exponential toe&ain
Complexity”, 44th IEEE Conference on Decision and Control and 2005
European Control Conference. CDC-ECC ;®eville, Spain, December,
2005, pp 1403 - 1408.

[8] Axelsson, H.; Wardi, Y.; Egerstedt, M.; Verriest, E.; “Rrovably

&l
(10]

Figure 1 shows a phase plane portrait of the optimal state

trajectory. Full details will be reported elsewhere. Netin
interesting feature of the optimal strategy: while polcire

permitted for which the velocity of the robot arm at the pipku
time is non-zero, the optimal policy is to pick up the load whe

the robot arm is stationary. This phenomenon is connecttd wi

the fact that the change of velocity at pickup is modelled by
an appeal to ‘conservation of momentum’. The optimal pickup
may occur at a time when the robot arm velocity is non-zero,
if another law is invoked to determine the robot arm velocity

after pickup.
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X1

Fig. 1. Phase plane portrait of the optimal state trajectory
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