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We prove that if all roots of the discrete Wronskian with step 1 of a set of quasi-
exponentials with real bases are real, simple and differ by at least 1, then the complex
span of this set of quasi-exponentials has a basis consisting of quasi-exponentials with real
coefficients. This theorem generalizes the statement of the B. and M. Shapiro conjecture
about spaces of polynomials.

The proof is based on the Bethe ansatz method for the XXX model.
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1. Introduction

The B. and M. Shapiro conjecture asserts that if the Wronskian of N polynomials
with complex coefficients has real roots only, then the space spanned by these poly-
nomials has a basis consisting of polynomials with real coefficients. This conjecture
has many algebro-geometric reformulations and has generated a lot of interest in
the past decade, see for example [14, 15].

The B. and M. Shapiro conjecture in the case of two polynomials was proved in
[3] by complex-analytic methods. In [9] we proved the general case using a different
approach. We showed that a generic space of polynomials V can be constructed
by the Bethe ansatz method for the periodic Gaudin model. It turns out that
the coefficients of the monic differential operator D of order N annihilating V

are eigenvalues of the transfer matrices — linear operators, acting on the space
of states of the Gaudin model. If the roots of the Wronskian of V are real, then
the transfer matrices are self-adjoint with respect to a positive definite Hermitian
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form, hence, their eigenvalues are real. This implies that the coefficients of the
differential operator D are real, which gives the existence of a basis for V consisting
of polynomials with real coefficients.

In this paper we prove a similar statement about spaces of quasi-exponentials by
the same method. Namely, we prove that if the Wronskian of N quasi-exponentials
eλixpi(x), where λi are real numbers and pi(x) are polynomials with complex coef-
ficients, has real roots only, then the space spanned by these quasi-exponentials
has a basis such that all polynomials have real coefficients, see Theorem 4.1. The
proof is based on the Bethe ansatz for the quasi-periodic Gaudin model. The case
λ1 = · · · = λN = 0 is the statement of the original B. and M. Shapiro conjecture.

Using the Bethe ansatz for the quasi-periodic XXX model, we obtain a similar
statement about spaces of quasi-exponentials with the Wronskian replaced by the
discrete Wronskian, see Theorem 2.1. In this case, a new phenomenon occurs: the
statement is true only if some additional restrictions are imposed on the roots of
the discrete Wronskian. For example, it is sufficient to require that the roots of the
discrete Wronskian differ by at least one. The first item of Theorem 2.1 for N = 2
and λ1 = λ2 = 0 follows from Theorem 1 in [4].

We also consider spaces of quasi-polynomials of the form xzipi(x, log x), where
zi are real numbers and pi(x, y) are polynomials with complex coefficients, and their
Wronskians. Theorem 5.2 describes sufficient conditions for such a space to have a
basis consisting of polynomials with real coefficients. Theorem 5.2 is a statement
bispectral dual to Theorem 2.1 in the sense of [13, 1].

Theorems 2.1, 4.1 and 5.2 have reformulations in terms of explicit matrices
depending on two groups of complex parameters, see Theorems 6.2, 6.4 and 6.6.
For example, if a matrix




a1
1

λ2 − λ1

1
λ3 − λ1

· · · 1
λN − λ1

1
λ1 − λ2

a2
1

λ3 − λ2
· · · 1

λN − λ2
...

...
...

...
...

1
λ1 − λN

1
λ2 − λN

1
λ3 − λN

· · · aN




has real eigenvalues and the numbers λ1, . . . , λN are real, then the numbers
a1, . . . , aN are real. Those reformulations, see Corollaries 6.3, 6.5, are related to
properties of Calogero–Moser spaces. They also imply a criterion for the reality of
irreducible representations of Cherednik algebras, see [7].

The paper is organized as follows. We state the discrete version of B. and M.
Shapiro conjecture in Sec. 2 and prove this result in Sec. 3. In Sec. 4, we deduce
Theorem 4.1 for spaces of quasi-exponentials from Theorem 2.1. In Sec. 5, we con-
sider spaces of quasi-polynomials, see Theorem 5.2. In Sec. 6, we reformulate our
results in terms of matrices.
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The results of the paper were presented at the workshop “Contemporary Schu-
bert Calculus and Schubert Geometry” at Banff, Canada, in March 2007 and the
conference “ISLAND III: Algebraic Aspects of Integrable Systems” in Scotland in
July 2007.

2. Spaces of Quasi-Exponentials and the Discrete Wronski Map

2.1. Formulation of the statement

A function of the form p(x)Qx, where Q is a nonzero complex number with the
argument fixed, and p(x) ∈ C[x], is called a quasi-exponential function with base Q.

Fix a natural number N ≥ 2. Let Q = (Q1, . . . , QN) be a sequence of nonzero
complex numbers with their arguments fixed. We always assume that if Qi = Qj

for some i, j, then the chosen arguments of Qi and Qj are the same.
We call a complex vector space of dimension N spanned by quasi-exponential

functions pi(x)Qx
i , i = 1, . . . , N , a space of quasi-exponentials with bases Q.

A quasi-exponential function p(x)Qx is called real if Q ∈ R× and p(x) ∈ R[x].
The space of quasi-exponentials is called real if it has a basis consisting of real
quasi-exponential functions.

The discrete Wronskian of functions f1(x), . . . , fN(x) is the determinant

Wrd(f1, . . . , fN ) = det




f1(x) f1(x + 1) · · · f1(x + N − 1)
f2(x) f2(x + 1) · · · f2(x + N − 1)

...
...

...
...

fN(x) fN (x + 1) · · · fN(x + N − 1)


 . (2.1)

The discrete Wronskians of two bases for a vector space of functions differ by
multiplication by a nonzero number.

Let V be a space of quasi-exponentials with bases Q. The discrete Wronskian of
any basis for V is a quasi-exponential of the form w(x)

∏N
j=1Q

x
j , where w(x) ∈ C[x].

The unique representative with a monic polynomial w(x) is called the discrete
Wronskian of V and is denoted by Wrd(V ).

Theorem 2.1. Let V be a space of quasi-exponentials with real bases Q ∈ (R×)N ,

and let Wrd(V ) =
∏n

i=1(x− zi)
∏N

j=1Q
x
j . Assume that z1, . . . , zn are real. We have:

(1) If |zi − zj| ≥ 1 for all i �= j, then the space V is real.
(2) Let Q1, . . . , QN be either all positive or all negative. Assume that there exists

a subset I ⊂ {1, . . . , n} such that |zi − zj| ≥ 1 for i �= j provided either i, j ∈ I

or i, j �∈ I. Then the space V is real.

Theorem 2.1 is proved in Sec. 3.
Part (1) of Theorem 2.1 for N = 2 and λ1 = λ2 = 0 follows from Theorem 1

in [4].
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2.2. Examples

For Q ∈ (R×)N let Ln(Q) be the set of points z = (z1, . . . , zn) of Rn such that all
spaces of quasi-exponentials with bases Q and the discrete Wronskian Wrd(V ) =∏n

i=1(x − zi)
∏N

j=1Q
x
j are real.

The inequalities on z1, . . . , zn described in Theorem 2.1 give an n-dimensional
subset of Ln(Q) which does not depend on Q. In examples, these inequalities are
sharp in the sense that the corresponding hyperplanes are tangent to the boundary
of the set

⋃
Q Ln(Q).

A larger subset of Ln(Q) which depends on Q is described in Proposition 3.10.
In examples, this subset coincides with Ln(Q), however, its description is rather
ineffective.

Example 2.2. Consider the case N = 2, Q = (1, Q), deg p1 = 1, deg p2 = 1. Then
the discrete Wronskian has two zeros, which we assume to be at 0 and A. This case
corresponds to the equation on a, b,

Wrd(x + a, Qx(x + b)) = Qx(Q − 1)x(x − A),

which has two solutions:

a =
−QA + A − 2Q ±√(Q − 1)2A2 + 4Q

2(Q − 1)
,

b = −1 − A +
QA − A + 2Q ∓√(Q − 1)2A2 + 4Q

2(Q − 1)
.

The solutions are real for real Q, A if and only if A2 ≥ −4Q/(Q− 1)2. Theorem 2.1
claims that the solutions are real if A2 ≥ 1, which gives a sufficient condition because
1 ≥ −4Q/(Q − 1)2 for real Q. The condition is sharp because 1 = −4Q/(Q − 1)2

for Q = −1.

Example 2.3. Consider the case N = 2, Q = (1, 1), deg p1 = 1, deg p2 = 3. Then
the discrete Wronskian has three zeros, which we assume to be at 0, A and B. This
case corresponds to the equation on a, b, c,

Wrd(x + a, x3 + bx2 + c) = 2x(x − A)(x − B),

which has two solutions:

a = −1/2− (A + B)/3 ± 1/3
√
−AB − 3/4 + A2 + B2,

b = −3/2− A − B ±
√
−4AB − 3 + 4A2 + 4B2,

c = 1/2 + 2(A + B)/3 + 1/3
√
−AB − 3 + 4A2 + 4B2 + AB.

The solutions are real for real A, B if and only if A2 + B2 − AB − 3/4 ≥ 0.
The set A2 + B2 −AB − 3/4 < 0 in the real plane with coordinates A, B is the

interior of an ellipse centered at the origin. This ellipse is inscribed in the hexagon
formed by the lines |A| = 1, |B| = 1 and |A − B| = 1, and is tangent to the sides
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of the hexagon at the points (1, 1/2), (−1,−1/2), (1/2,−1/2), (1/2, 1), (−1/2,−1),
(−1/2, 1/2). Theorem 2.1 claims that the numbers a, b, c are real if the point (A, B)
is not inside the hexagon.

3. Proof of Theorem 2.1

3.1. The discrete Wronskian is a finite algebraic map

Fix a natural number N ≥ 2, natural numbers n1, . . . , nk such that
∑k

i=1 ni = N ,
and a natural number l. Fix Q = (Q1, . . . , Q1, . . . , Qk, . . . , Qk) ∈ CN , where Qi �= 0,
Qi �= Qj if i �= j and Qi is repeated ni times.

For a natural number d, let Cd[x] ⊂ C[x] be the space of all polynomials of degree
less than d. For m ≤ d, let Gr(m, d) be the Grassmannian of all m-dimensional
subspaces in Cd[x]. It is an irreducible projective complex variety of dimension
m(d − m).

Let

n = lN. (3.1)

Define the discrete Wronski map:

Wrd
Q: Gr(n1, l + n1) × Gr(n2, l + n2) × · · · × Gr(nk, l + nk) → Gr(1, n + 1),

as follows. For i = 1, . . . , k, let Vi ∈ Gr(ni, l+ni) and let pi,1(x), . . . , pi,ni(x) ∈ C[x]
be a basis for Vi. Then the map Wrd

Q sends the point V1×· · ·×Vk to the line spanned
by the polynomial

Wrd(p1,1(x)Qx
1 , . . . , p1,n1(x)Qx

1 , . . . , pk,1(x)Qx
k, . . . , pk,nk

(x)Qx
k)

k∏
i=1

Q−nix
i .

Let V ∈ Gr(m, d). Then V has a unique basis consisting of monic polynomials
pj(x) ∈ C[x], j = 1, . . . , m, of the form

pj(x) = xdj +
dj∑

s=1

aj,sx
dj−s

such that d > dr > ds whenever r > s and aj,s = 0 whenever dj − s = dr for some
r. We call this basis the standard basis for V .

Proposition 3.1. The discrete Wronski map is a finite algebraic map.

Proof. The sets Gr(n1, l + n1) × Gr(n2, l + n2) × · · · × Gr(nk, l + nk) and
Gr(1, n+1) are projective algebraic varieties of dimension n. The discrete Wronski
map is a well-defined algebraic map. We only need to show that every point of
Gr(1, n + 1) has a finite number of preimages.

Fix a monic polynomial w(x) ∈ Cn+1[x].
Let V1 ∈ Gr(n1, l+n1), . . . , Vk ∈ Gr(nk, l+nk) be such that Wrd

Q(V1×· · ·×Vk) =
Cw(x), and let pi,j(x) = xdi,j +

∑di,j

s=1 ai,j,sx
di,j−s, i = 1, . . . , k, j = 1, . . . , ni, be
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the standard basis for Vi. Here di,j are non-negative integers such that di,j < l +ni

and di,r > di,s if r > s.
We have

Wrd(p1,1(x)Qx
1 , . . . , pk,nk

(x)Qx
k)

= w(x)
∏

1≤i<j≤k

(Qj − Qi)
k∏

i=1


Qnix

i

∏
1≤j<s≤ni

(di,s − di,j)


 . (3.2)

Consider Eq. (3.2) as a system of algebraic equations on the nontrivial coefficients
ai,j,s of the polynomials pi,j(x). The number of equations equals the number of
variables. We claim that this system has finitely many solutions.

Assume that there exist infinitely many solutions. Then there exists a curve of
solutions at

i,j,s, t ∈ R+, such that some of the coefficients at
i,j,s tend to infinity in

the limit t → ∞.
Consider the limit t→∞. There exist αt

1,2,1 ∈ C such that the main terms
of polynomials pt

1,1 and pt
1,2 −αt

1,2,1p
t
1,1 are linearly independent. Indeed, let

tb1,1q1,1(x) be the main term of pt
1,1(x) and let deg q1,1 = c1,1. Let tb1,2q1,2(x)

be the main term of pt
1,2(x). We set αt

1,2,1 = βat
1,2,d1,2−c1,1

/at
1,1,d1,1−c1,1

if q1,2(x) =
βq1,1(x) for some β ∈ C and αt

1,2,1 = 0 otherwise.
Similarly, we find αt

i,j,r ∈ C such that for i = 1, . . . , k, the main terms as t → ∞
of polynomials

p̃t
i,j(x) = pt

i,j(x) +
j−1∑
r=1

αt
i,j,rp

t
i,r(x),

j = 1, . . . , ni, are linearly independent.
Let at

i,j,s tend to infinity and all at
i,r,l with r < j remain bounded. Then

p̃i,r(x) = pi,r(x) for r = 1, . . . , j. Hence, the coefficient of xdi,j−s of p̃t
i,j(x) tends to

infinity.
To obtain the main term of Wrd(p̃t

1,1(x)Qx
1 , . . . , p̃t

k,nk
(x)Qx

k) we can replace
the polynomials p̃t

i,j(x) with their main terms. It follows that Wrd(p̃t
1,1(x)Qx

1 , . . . ,

p̃t
k,nk

(x)Qx
k) has unbounded coefficients as t → ∞. But it is equal to

Wrd(pt
1,1(x)Qx

1 , . . . , pt
k,nk

(x)Qx
k), which does not depend on t. It is a contradiction.

Therefore, the number of tuples V1 ∈ Gr(n1, l + n1), . . . , Vk ∈ Gr(nk, l + nk)
such that Wrd

Q(V1 × · · · × Vk) = Cw(x), and such that deg pi,j(x) = di,j , where
pi,j , j = 1, . . . , ni, is the standard basis for Vi, is finite for each choice of di,j . The
proposition follows.

For a non-negative integer l, we call a space V of quasi-exponentials with bases
Q = (Q1, . . . , Q1, . . . , Qk, . . . , Qk), where Qi is repeated ni times, Qi �= 0 and
Qi �= Qj for i �= j, a weight zero space of quasi-exponentials of type l if V has a basis
of the form {pi,j(x)Qx

i , i = 1, . . . , k, j = 1, . . . , ni}, where pi,j(x) are polynomials
of degree l + j − 1. We call a space V of quasi-exponentials a weight zero space if
there exists an l ∈ Z≥0 such that V is a weight zero space of type l.
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Corollary 3.2. If Theorem 2.1 holds for weight zero spaces of quasi-exponentials,
then it holds for all spaces of quasi-exponentials.

Proof. Let V be a space of quasi-exponentials with real bases Q. We can choose
l such that V has a basis of the form {pi,j(x)Qx

i , i = 1, . . . , k, j = 1, . . . , ni}, where
pi,j(x) are polynomials of degree at most l + j − 1. Then V defines an element
Ṽ ∈ Gr(n1, l + n1) × Gr(n2, l + n2) × · · · × Gr(nk, l + nk). Let w(t), t ∈ R≥0, be a
continuous curve in Gr(1, n + 1) such that w(0) = Wrd

Q(Ṽ ). Then by Proposition
3.1, there exists a continuous curve Ṽt ∈ Gr(n1, l + n1) × Gr(n2, l + n2) × · · · ×
Gr(nk, l + nk) such that Ṽ0 = Ṽ and Wrd

Q(Ṽt) = w(t). If the corresponding spaces
of quasi-exponentials Vt are real for t > 0, then V is real.

The set of points V ∈ Gr(n, l+n) with the standard basis pj(x), and deg pj(x) =
l + j − 1, j = 1, . . . , n, is dense in Gr(n, l + n). Therefore, the set of points in
Gr(n1, l + n1) × · · · × Gr(nk, l + nk) corresponding to weight zero spaces of quasi-
exponentials is dense. By Proposition 3.1, the image of this set under the discrete
Wronski map is dense in Gr(1, n + 1). The corollary follows.

3.2. Reduction to the case of generic Q

In this section we show that it is sufficient to prove Theorem 2.1 for the case of
generic Q = (Q1, . . . , QN).

Fix some natural number l. For i = 1, . . . , N , let qi(x) =
∑l−1

j=0 qi,jx
j . Set

p(x, Q,Q) = xl +
N∑

j=1

j−1∏
r=1

(Q − Qr)qj(x). (3.3)

Fix natural numbers n1, . . . , nk, such that
∑k

i=1 ni = N .
For

∑s−1
j=1 nj < i ≤ ∑s

j=1 nj we set m(i) = s, r(i) = i −∑s−1
j=1 nj − 1. Let

Q0 = (Q0
1, . . . , Q

0
1, . . . , Q

0
k, . . . , Q0

k), where Q0
i repeats ni times. The ith coordinate

of Q0 is Q0
m(i).

We show that qi,j can be considered as coordinates on the affine space of weight
zero spaces of quasi-exponentials of type l. For i = 1, . . . , N , let

p0
i (x) = (Q−r(i)(x + Q∂Q)r(i)p(x, Q,Q0))|Q=Q0

m(i)
. (3.4)

Clearly p0
i (x) is a polynomial in x of degree l + r(i).

Lemma 3.3. Let V be a weight zero space of quasi-exponentials of type l with bases
Q0 ∈ (R×)N . Then there exist unique qi(x) =

∑l−1
j=0 qi,jx

j ∈ C[x], i = 1, . . . , N,

such that {p0
i (x)(Q0

m(i))
x} is a basis for V . Moreover, V is real if and only if qi,j

are real for all i, j.

Proof. For i = 1, . . . , N , we have

p0
i (x) = Ciqi(x) + p̃0

i (x),
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where p̃0
i (x) is a polynomial in x and qs,j , s < i, with real coefficients, and

Ci = r(i)!
∏
j<i

(Q0
i − Q0

j)
r(i)nj .

Note that Ci is real and nonzero. The lemma follows.

Next, we study the dependence of the discrete Wronskian of the weight zero
spaces of quasi-exponentials on their exponents Q in the coordinates qi,j .

Lemma 3.4. The function

W (x,Q) =
∏N

i=1Q
−x
i∏

i<j(Qj − Qi)
Wrd(p(x, Q1,Q)Qx

1 , . . . , p(x, QN ,Q)Qx
N) (3.5)

is a polynomial in variables x, Q1, . . . , QN .

Proof. If Qi = Qj, then Wrd(p(x, Q1,Q)Qx
1 , . . . , p(x, QN ,Q)Qx

N ) = 0. Therefore,
all denominators cancel.

Lemma 3.5. We have
W (x,Q0) = c(Q0)Wrd(p0

1(x)(Q0
m(1))

x, . . . , p0
N (x)(Q0

m(N))
x),

c(Q0) =
∏k

i=1(Q
0
i )

−nix∏
1≤i<j≤k(Q0

j − Q0
i )ninj

∏k
i=1

∏ni−1
j=1 (ni − j)j

.
(3.6)

Proof. For a function f(Q), we call

τ
(1)
Q,hf(Q) =

f(Q + h) − f(Q)
h

the discrete derivative of f . The nth discrete derivative of function f(Q), is
defined recursively τ

(n)
Q,hf(Q) = τ

(1)
Q,hτ

(n−1)
Q,h f(Q). If f(Q) is a smooth function,

then limh→0 τ
(n)
Q,hf(Q) = f (n)(Q), where f (n)(Q) is the nth derivative of f(Q) with

respect to Q.
Let

Q0
h = (Q0

1, Q
0
1 + h, . . . , Q0

1 + (ni − 1)h, . . . , Q0
k, Q0

k + h, . . . , Q0
k + (nk − 1)h),

where h is small, and we assume that the argument of Q0
i +jh continuously depends

on h. Since the function W (x,Q) is a polynomial, we can compute W (x,Q0) as the
limit limh→0 W (x,Q0

h).
Taking suitable linear combinations of rows of the matrix used to compute the

discrete Wronskian in formula (3.5) for W (x,Q0
h), we obtain the matrix whose (i, j)

entry equals

(τ (r(i))
Q,h (p(x + j − 1, Q,Q0

h)(Q)x+j−1))|Q=Q0
m(i)+r(i)h (3.7)

and whose determinant equals
k∏

i=1

hni(ni−1)/2 Wrd(p(x, Q1,Q)Qx
1 , . . . , p(x, QN ,Q)Qx

N)|Q=Q0
h
.
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Comparing expression (3.7) with the right-hand side of (3.4), we get formula (3.6)
from formula (3.5) in the limit h → 0.

Proposition 3.6. Assume that Theorem 2.1 holds for generic values of Q. Then
Theorem 2.1 holds for all Q ∈ (R×)N .

Proof. Let z1, . . . , zn be real, satisfying one of the conditions in Theorem 2.1. Let
V be a weight zero space of quasi-exponentials with exponents Q0 ∈ (R×)N such
that Wrd(V ) =

∏n
s=1(x − zs).

Consider the equation W (x,Q) =
∏n

s=1(x − zs) as a system of n equations
on n variables qi,j depending on parameters Q = (Q1, . . . , QN ). It is a system
of algebraic equations with polynomial dependence on parameters. Moreover, the
number of solutions for any Q is finite by Proposition 3.1 and Lemma 3.3.

By Lemma 3.3, the space V corresponds to a solution {q0
i,j} of this system with

parameters Q0. Then there exist smooth functions qi,j(Q) defined in the neighbor-
hood of Q0 such that qi,j(Q0) = q0

i,j and {qi,j(Q)} is a solution of the system with
parameters Q.

By the assumption of the proposition, all qi,j(Q) are real if Q is real and generic.
It follows that all q0

i,j are real.
This proves Theorem 2.1 for the weight zero spaces of quasi-exponentials. Then

the proposition follows from Corollary 3.2.

3.3. Bethe algebra

In this section we recall some results of [10, 11].
Let W = CN with a chosen basis v1, . . . , vN .
For an operator M ∈ EndW , we denote M (i) = 1⊗(i−1)⊗M⊗1⊗(n−i). Similarly,

for an operator M ∈ End(W⊗2), we denote by M (ij) ∈ End(W⊗n) the operator
acting as M on the ith and jth factors of W⊗n.

Let R(x) = x + P ∈ End(W⊗2) be the rational R-matrix. Here P ∈ End(W⊗2)
is the flip map: P (x ⊗ y) = y ⊗ x for all x, y ∈ W . Let Eab ∈ EndW be the linear
operator with the matrix (δiaδjb)N

i,j=1.
Let the Yangian Y (glN ) be the complex unital associative algebra with genera-

tors T
{s}
ab , a, b = 1, . . . , N, s ∈ Z≥1, and relations

R(12)(x − y)T (13)(x)T (23)(y) = T (23)(y)T (13)(x)R(12)(x − y), (3.8)

where T (x) =
∑N

a,b=1 Eab ⊗ Tab(x) and Tab(x) = δab +
∑∞

s=1 T
{s}
ab x−s.

The Yangian Y (glN ) is a Hopf algebra, and the coproduct is given by

∆(Tab(x)) =
N∑

i=1

Tib(x) ⊗ Tai(x).

The Yangian Y (glN ) is a flat deformation of UglN [t], the universal enveloping alge-
bra of the current algebra glN [t].
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Given z ∈ C, define the Y (glN )-module structure on the space W by letting
Tab(x) act as Eba/(x − z). We denote this module W (z) and call it the evaluation
module.

For a matrix M = (Mij) with possibly noncommuting entries, we define the row
determinant by rdet(M) =

∑
σ∈SN

(−1)σM1σ(1)M2σ(2) · · ·MNσ(N).

Let Q = (Q1, . . . , QN ) ∈ (C×)N . Let Q = diag(Q1, . . . , QN) be the diagonal
matrix with diagonal entries Qi . Let ∂ = ∂/∂x. Define the universal difference
operator by

DQ = rdet(1 − QT (x)e−∂).

Write

DQ = 1 − B1,Q(x)e−∂ + B2,Q(x)e−2∂ − · · · + (−1)NBN,Q(x)e−N∂ .

Then Bi,Q(x) are series in x−1 with coefficients in Y (glN ). The series Bi(x) coincides
with the higher transfer-matrices, see [2, 10].

We call the unital subalgebra of Y (glN ) generated by the coefficients of the
series Bi,Q(x), i = 1, . . . , N , the Bethe algebra and denote it by BQ. It is known
that the Bethe algebra is commutative, see [8].

Let z = (z1, . . . , zn) ∈ Cn. Let W(z) = W (z1) ⊗ · · · ⊗ W (zn) be the tensor
product of the evaluation modules.

Let B̄i,Q(x), i = 1, . . . , N, be the image of Bi,Q(x) in (EndW(z))[[x−1]]. The
series B̄i,Q(x) is summed up to a rational function in x.

Let Ki, i = 1, . . . , n, be the qKZ Hamiltonians in W(z):

Ki = R(i,i−1)(zi − zi−1) · · ·R(i,1)(zi − z1)Q(i)R(i,n)(zi − zn) · · ·R(i,i+1)(zi − zi+1).
(3.9)

Lemma 3.7. For i = 1, . . . , n, we have

Ki =
∏

j,j �=i

(zi − zj)Resx=zi B̄1,Q(x).

In particular, Ki belongs to the image of BQ in EndW(z).

Proof. The formula is proved by a direct computation.

The space W⊗n has the standard tensor Shapovalov form:

〈va1 ⊗ · · · ⊗ van , vb1 ⊗ · · · ⊗ vbn〉 =
n∏

i=1

δaibi .

Recall that the module W(z) as a vector space is identified with W⊗n. Let 〈, 〉R
be the form on W(z) defined by

〈v, w〉R = 〈v,Rw〉,
R = R(n−1,n)(zn−1 − zn) · · ·R(2,n)(z2 − zn) · · ·R(2,3)(z2 − z3)

×R(1,n)(z1 − zn) · · ·R(1,3)(z1 − z3)R(1,2)(z1 − z2).

We call this form the Yangian form.
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Lemma 3.8. ([10]) For any b ∈ BQ, v, w ∈ W(z) we have

〈bv, w〉R = 〈v, bw〉R.

Let v ∈ W(z) be an eigenvector of the Bethe algebra BQ. For i = 1, . . . , N , let
Bi,Q,v(x) be the rational function in x with complex coefficients such that

Bi,Q(x)v = Bi,Q,v(x)v.

We denote by DQ,v the scalar difference operator

DQ,v = 1 − B1,Q,v(x)e−∂ + B2,Q,v(x)e−2∂ − · · · + (−1)NBN,Q,v(x)e−N∂ .

Given a scalar difference operator D, we call the space of solutions f(x) of the
equation Df(x) = 0 such that f(x) is a linear combination of quasi-exponential
functions the quasi-exponential kernel of the operator D.

Let U be the complex span of 1-periodic quasi-exponentials e2π
√−1kx, k ∈ Z.

Lemma 3.9. ([11]) Let v ∈ W(z) be an eigenvector of the Bethe algebra BQ.
Then the quasi-exponential kernel of the operator DQ,v has the form Vv ⊗U, where
Vv is an N -dimensional complex space of quasi-exponentials with bases Q, and the
discrete Wronskian Wrd(Vv) =

∏n
i=1(x − zi)

∏N
j=1Q

x
j .

Moreover, for generic z,Q, and every N -dimensional complex space V of quasi-
exponentials with bases Q and Wrd(V ) =

∏n
i=1(x − zi)

∏N
j=1Q

x
j , there exists an

eigenvector v ∈ W(z) of the Bethe algebra BQ such that the quasi-exponential
kernel of the operator DQ,v has the form V ⊗ U.

3.4. Proof of Theorem 2.1 for the case of generic Q1, . . . , QN

Let all z1, . . . , zn be real. Let all Q1, . . . , QN also be real and nonzero.
Let W R be the real part of W generated by the chosen basis v1, . . . , vN , and let

WR(z) = W R(z1) ⊗ · · · ⊗ W R(zn) be the real part of W(z). Let Y R(glN ) be the
real unital algebra generated by T

{s}
a,b , a, b = 1, . . . , N , s ∈ Z≥1, and relations (3.8).

Let BR

Q ⊂ Y R(glN ) be the real subalgebra generated by the coefficients of the series
Bi,Q(x), i = 1, . . . , N . Clearly, BR

Q acts in the space WR(z).
For g ∈ BR

Q, define the form 〈, 〉Rg on WR(z) by the formula

〈v, w〉Rg = 〈v, gw〉R = 〈v,Rgw〉.
The form 〈, 〉Rg is a real bilinear symmetric form.

Proposition 3.10. Let z1, . . . , zn be real numbers. Let g ∈ BR

Q be such that the
form 〈, 〉Rg is positive definite on WR(z). Let V be a space of quasi-exponentials
with bases Q and Wrd(V ) =

∏n
i=1(x − zi)

∏N
j=1Q

x
j . Then V is real.

Proof. Since the condition of a form being positive definite is open, we can assume
that z,Q are generic. Then by Lemma 3.9, there exists a vector v ∈ W(z), such
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that v is an eigenvector of the Bethe algebra BQ, and V ⊗U is the quasi-exponential
kernel of the operator DQ,v. By Lemma 3.8, the coefficients of the operator DQ

are rational functions in x which are symmetric operators with respect to the form
〈, 〉Rg. Since this form is positive definite on WR(z), the coefficients of the operator
DQ,v are rational functions with real coefficients.

Let Q be a real number. Consider the equation DQ,v(p(x)Qx) = 0 as a system
of equations for the coefficients of the polynomial p(x) =

∑n
i=0 an−ix

i. This is a
system of linear equations with real coefficients. Therefore, the space of solutions
has a real basis. The proposition follows.

In Example 2.3, the converse to Proposition 3.10 is also true. Namely, let
Q1, . . . , QN be real. Let z1, . . . , zn be real numbers such that every space of quasi-
exponentials V with bases Q and Wrd(V ) =

∏n
i=1(x − zi)

∏N
j=1Q

x
j , is real. Then

there exists g ∈ BQ such that the form 〈, 〉Rg is positive definite on WR(z). How-
ever, the existence of such g ∈ BQ is usually difficult to check.

We deduce Theorem 2.1 from Proposition 3.10.

Lemma 3.11. Assume that zi−zj > 1 if i > j. Then the restriction of the Yangian
form to WR(z) is a positive definite bilinear form.

Proof. The restriction of the tensor Shapovalov form to (W R)⊗n is a positive
definite bilinear form. In the limit z1 � z2 � · · · � zn, the Yangian form on W(z)
tends to the tensor Shapovalov form. Moreover, the Yangian form is nondegenerate
if zi − zj > 1 for all i > j. The lemma follows, since the dependence of the Yangian
form on z is continuous.

The first part of Theorem 2.1 with the additional condition zi − zj �= 1 for all
i, j follows from Lemma 3.11 and Proposition 3.10 with g = 1. Then the condition
that zi − zj �= 1 for all i, j can be dropped by the continuity with respect to zi, see
Proposition 3.1.

Assume that Q1, . . . , QN are all positive. Assume there exists 0 ≤ s ≤ n such
that zi − zj > 1 if either s ≥ i > j ≥ 1 or n ≥ i > j > s. Consider Gs =
(K1K2 · · ·Ks)−1, where Ki are given by (3.9).

If z is generic, then there exists an element gs ∈ BQ which acts on W(z) by
Gs. Indeed, Ki ∈ End(W(z)) are in the image of the Bethe algebra by Lemma 3.7
and the inverse of a nondegenerate operator in a finite-dimensional space can be
written as a polynomial of the operator itself.

Lemma 3.12. Assume that Q1, . . . , QN are all positive. Assume there exists 0 ≤
s ≤ n such that zi − zj > 1 if either s ≥ i > j ≥ 1 or n ≥ i > j > s. Then the form
〈, 〉RGs is a positive definite bilinear form on WR(z).
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Proof. We have

RGs = (R(s−1,s) · · ·R(2,s) · · ·R(2,3)R(1s) · · ·R(1,3)R(1,2))

× (R(n−1,n) · · ·R(s+2,n) · · ·R(s+2,s+3)R(s+1,n) · · ·R(s+1,s+3)R(s+1,s+2))

× (Q(1) · · ·Q(s))−1,

where R(i,j) = R(i,j)(zi − zj). In the limit z1 � z2 � · · · � zn, the form 〈, 〉RGs

tends to the positive definite form 〈, 〉s given by

〈v, w〉s = 〈v, (Q(1) · · ·Q(s))−1W 〉.
Moreover, the form 〈, 〉RGs is clearly nondegenerate if zi − zj > 1 for all i > j such
that either i ≤ s or j > s. The lemma follows since the dependence of the form
〈, 〉RGs on z is continuous.

The second part of Theorem 2.1 with positive Q1, . . . , QN , and the additional
condition that zi−zj �= 1 for all i, j, follows from Lemma 3.12 and Proposition 3.10
with g = Gs. Then the condition that zi − zj �= 1 for all i, j can be dropped by the
continuity with respect to zi, see Proposition 3.1.

The second part of Theorem 2.1 with negative Q1, . . . , QN follows from the case
of positive Q1, . . . , QN .

4. Spaces of Quasi-Exponentials and the Differential Wronski Map

4.1. Formulation of statement

A function of the form p(x)eλx, where λ ∈ C and p(x) ∈ C[x], is called a quasi-
exponential function with exponent λ.

Fix a natural number N ≥ 2. Let λ = (λ1, . . . , λN ) ∈ CN . We call a complex
vector space of dimension N spanned by N quasi-exponential functions pi(x)eλix,
i = 1, . . . , N , a space of quasi-exponentials with exponents λ.

A quasi-exponential function p(x)eλx is called real if λ ∈ R and p(x) ∈ R[x].
The space of quasi-exponentials V is called real if it has a basis consisting of real
quasi-exponential functions.

The Wronskian of functions f1(x), . . . , fN (x) is the determinant

Wr(f1, . . . , fN ) = det




f1 f ′
1 · · · f

(N−1)
1

f2 f ′
2 · · · f

(N−1)
2

...
...

...
...

fN f ′
N · · · f

(N−1)
N


 . (4.1)

The Wronskians of two bases for a vector space of functions differ by multiplication
by a nonzero number.

Let V be a space of quasi-exponentials with exponents λ. The Wronskian of any
basis for V is a quasi-exponential of the form w(x)e

PN
i=1 λix, where w(x) ∈ C[x].
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The unique representative with a monic polynomial w(x) is called the Wronskian
of V and is denoted by Wr(V ).

Theorem 4.1. Let V be a space of quasi-exponentials with real exponents λ ∈ R
N .

If zeros of the Wronskian Wr(V ) are real, then the space V is real.

Theorem 4.1 is proved in Sec. 4.2.
Theorem 4.1 in the case λ1 = λ2 = · · · = λN = 0 is the statement of the B. and

M. Shapiro conjecture proved in [3] for N = 2 and in [9] for all N .

4.2. Proof of Theorem 4.1

Theorem 4.1 can be proved similarly to Theorem 2.1. However, it is not difficult to
deduce Theorem 4.1 from Theorem 2.1; we do that in this section.

Let λ = (λ1, . . . , λ1, . . . , λk, . . . , λk), where λi is repeated ni times. Consider the
Wronski map:

Wrλ: Gr(n1, l + n1) × Gr(n2, l + n2) × · · · × Gr(nk, l + nk) → Gr(1, n + 1),

which maps V1 × · · · × Vk to the line spanned by

Wr(p1,1(x)eλ1x, . . . , p1,n1(x)eλ1x, . . . , pk,1(x)eλkx, . . . , pk,nk
(x)eλkx)

k∏
i=1

e−niλix.

Here n is given by (3.1), and we used the notation of Sec. 3.1 for the bases for Vi.

Proposition 4.2. The Wronski map is a finite algebraic map.

Proof. The proof of Proposition 4.2 is similar to the proof of Proposition 3.1.

For h ∈ C, h �= 0, the discrete Wronskian with step h of functions f1(x), . . . ,
fN (x) is the determinant

Wrd
h(f1, . . . , fN) = det




f1(x) f1(x + h) · · · f1(x + h(N − 1))
f2(x) f2(x + h) · · · f2(x + h(N − 1))

...
...

...
...

fN (x) fN(x + h) . . . fN (x + h(N − 1))


 . (4.2)

The discrete Wronskians with step h of any two bases for a vector space of functions
differ by multiplication by a nonzero number.

Let V be a space of quasi-exponentials with exponents λ. The discrete
Wronskian with step h of any basis for V is a quasi-exponential of the form
w(x)

∏N
j=1 eλjx, where w(x) ∈ C[x]. The unique representative with a monic poly-

nomial w(x) is called the discrete Wronskian of V with step h and is denoted by
Wrd

h(V ).
Theorem 2.1 implies the following statement.
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Corollary 4.3. Let h be real. Let V be a space of quasi-exponentials with real
exponents λ ∈ (R×)N , and let Wrd

h(V ) =
∏n

i=1(x − zi)
∏N

j=1 eλjx. Assume that
z1, . . . , zn are real and |zi − zj | ≥ |h| for all i �= j. Then the space V is real.

Proof. Let V be a space of quasi-exponentials with real exponents λ ∈ (R×)N ,
and let Wrd

h(V ) =
∏n

i=1(x − zi)
∏N

j=1 eλjx. Then

V̄ = {f(xh) | f(x) ∈ V }
is a space of quasi-exponentials with real bases (ehλ1 , . . . , ehλN ), and

Wrd(V̄ ) =
n∏

i=1

(x − zi/h)
N∏

j=1

ehλjx .

Therefore, the corollary follows from Theorem 2.1.

Define the discrete Wronski map with step h:

Wrd
λ,h: Gr(n1, l + n1) × Gr(n2, l + n2) × · · · × Gr(nk, l + nk) → Gr(1, n + 1),

which maps V1 × · · · × Vk to the line spanned by

Wrd
h(p1,1e

λ1x, . . . , p1,n1(x)eλ1x, . . . , pk,1(x)eλkx, . . . , pk,nk
(x)eλkx)

k∏
i=1

e−niλix,

where we used the notation of Sec. 3.1 for the bases for Vi. Let

W̄rd
λ: C×Gr(n1, l + n1)×Gr(n2, l + n2)× · · · ×Gr(nk, l + nk) → C×Gr(1, n + 1)

be the map which equals

id×Wrd
λ,h on {h} × Gr(n1, l + n1) × · · · × Gr(nk, l + nk), h ∈ C

×,

id×Wrλ on {0} × Gr(n1, l + n1) × · · · × Gr(nk, l + nk).

Lemma 4.4. The map W̄rd
λ is a continuous map of smooth varieties.

Proof. Taking linear combinations of the columns in the matrix used to compute
the determinant (4.2), we obtain the matrix of the discrete derivatives which tend
to the usual derivatives as h → 0. In particular, let p1(x), . . . , pN(x) ∈ C[x] and
λ ∈ CN . Then the function Wrd

h((p1(x)eλ1x, . . . , pN(x)eλN x) is a smooth function
of h and

Wrd
h(eλ1xp1(x), . . . , eλN xpN (x))

= hN(N−1)/2Wr(p1(x)eλ1x, . . . , pN(x)eλN x) + o(hN(N−1)/2)

as h → 0, see (4.1), (4.2). The lemma follows.

From Proposition 4.2, we obtain that it is sufficient to prove Theorem 4.1 for
the case of distinct zeros of the Wronskian Wr(V ).
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Let w(x) =
∏n

i=1(x − zi) and zi �= zj, i �= j. Let V be a space of quasi-
exponentials with exponents λ = (λ1, . . . , λN ) such that Wr(V ) = w(x)e

PN
i=1 λix.

Then by Lemma 4.4, there exists a family Vh of spaces of quasi-exponentials with
exponents λ such that Wrd

h(Vh) = Wr(V ) and Vh → V as h → 0. Then by Corol-
lary 4.3, for real h such that |h| ≤ min1≤i<j≤n |zi − zj |, the spaces Vh are real. It
follows that the space V is real.

Theorem 4.1 is proved.

5. Unramified Spaces of Quasi-Polynomials

5.1. Formulation of the statement

A function of the form p(x, log x)xz , where z is a complex number, and p(x, y) ∈
C[x, y], is called a quasi-polynomial function with exponent z.

The quasi-polynomials are multi-valued functions and the exponents are defined
modulo integers. This does not present any difficulty in this paper since we use only
algebraic properties of the quasi-polynomial functions.

Fix a natural number n ≥ 2. Let z = (z1, . . . , zn) be a sequence of complex num-
bers. We call a complex vector space of dimension n spanned by quasi-polynomial
functions pi(x, log x)xzi , i = 1, . . . , n, a space of quasi-polynomials with exponents z.

A quasi-polynomial function p(x, log x)xz is called real if z ∈ R and p(x, y) ∈
R[x, y]. The space of quasi-polynomials is called real if it has a basis consisting of
real quasi-polynomial functions.

The space of quasi-polynomials V is called non-degenerate if it does not contain
monomials of the form xz.

Given a space of quasi-polynomials V , let DV = xn∂n + · · · be the unique
differential operator of order n with kernel V and top coefficient xn. The space of
quasi-polynomials V is called unramified if coefficients of DV are rational functions
of x.

Let V be an n-dimensional unramified space of quasi-polynomials with
exponents z.

The operator DV is Fuchsian. Let χ
(∞)
V (α) and χ

(0)
V (α) be the indicial polyno-

mials of DV at x = ∞ and x = 0 respectively. The polynomials χ
(∞)
V (α), χ(0)

V (α)
are polynomials in α of degree n. For a natural number k and c ∈ C, the poly-
nomial χ

(∞)
V (α) is divisible by (α − c)k if and only if there exists a polynomial

p(x, y) ∈ C[x, y] such that p(0, y) = yk−1 and xcp(1/x, logx) ∈ V .
For a natural number k and c ∈ C, the polynomial χ

(0)
V (α) is divisible by (α−c)k

if and only if there exists a polynomial p(x, y) ∈ C[x, y] such that p(0, y) = yk−1

and xcp(x, log x) ∈ V .

Lemma 5.1. There exists a unique monic polynomial YV (x) such that

χ
(0)
V (α)

χ
(∞)
V (α)

=
YV (α − 1)

YV (α)
.
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Proof. Note that if k is a natural number and c is a complex number, then

α − c − s

α − c
=

Y (α − 1)
Y (α)

,

where Y (α) =
∏s−1

i=0 (α − c − i). Clearly, for every root c of χ
(∞)
V (α) of order k, we

have the corresponding roots of χ
(0)
V (α) of the form c − si such that si are natural

numbers and the sum of orders of the roots c − si is k. The lemma follows.

The Wronskian of any basis for V has the form w(x)xr , where r ∈ C and
w(x) ∈ C[x], w(0) �= 0. The unique representative with a monic polynomial w(x) is
called the Wronskian of V and is denoted by Wr(V ).

Theorem 5.2. Let V be an unramified space of quasi-polynomials with real expo-
nents z ∈ Rn, YV =

∏m
i=1(x−z̃i) and Wr(V ) = xr

∏N
i=1(x−Qi), where

∏N
i=1Qi �= 0.

Assume that Q1, . . . , QN are real. We have:

(1) If |z̃i − z̃j| ≥ 1 for all i �= j, then the space V is real.
(2) Let Q1, . . . , QN be either all positive or all negative. Assume that there exists
a subset I ⊂ {1, . . . , n} such that |z̃i − z̃j| ≥ 1 for i �= j provided either i, j ∈ I or
i, j �∈ I. Then the space V is real.

Theorem 5.2 is proved in Sec. 5.2.

5.2. Proof of Theorem 5.2

If xz ∈ V for some z ∈ R, then Ṽ = (x∂ − z)V is an unramified space of quasi-
polynomials of dimension n − 1, with the same exponents (except maybe for z).
We have Wr(V ) = Wr(Ṽ ) and YṼ = YV . Moreover, if Ṽ is real then V is real.
Therefore, without loss of generality we can assume that V is non-degenerate.

Let V be an unramified non-degenerate space of quasi-polynomials with real
exponents z ∈ Rn, YV =

∏m
i=1(x− z̃i) and Wr(V ) = xr

∏N
i=1(x−Qi), where r ∈ C,

Qi �= 0. Let

DV = (x∂)n + A1(x)(x∂)n−1 + · · · + An(x)

be the unique differential operator of order n with kernel V and the top coefficient
xn. The coefficients Ai(x) are rational functions in x.

Let Ā0(x) ∈ C[x] be a monic polynomial such that Āi(x) = Ai(x)Ā0(x) is a
polynomial for i = 1, . . . , n, and polynomials Ā0(x), . . . , Ān(x) are relatively prime.
Write

A0(x)DV =
s∑

i=1

n∑
j=1

Āijx
i(x∂)j ,

where Āij ∈ C and s = maxi(deg Āi(x)). It is sufficient to prove that Āij are real
numbers.
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Define a difference operator with polynomial coefficients D∗
V by the formula

D∗
V =

s∑
i=1

n∑
j=1

Āijx
je−i∂ .

Proposition 5.3. The quasi-exponential kernel of the operator D∗
V has the form

V ∗ ⊗ U, where V ∗ is a space of quasi-exponentials with bases (Q̄1, . . . , Q̄s) and
Q̄i ∈ {Q1, . . . , QN} for i = 1, . . . , s. Moreover, Wrd(V ∗) = YV .

Proof. Proposition 5.3 is proved using a suitable integral transform in the same
way as Theorem 4.1 in [13]. An alternative proof can be found in [1].

By Theorem 2.1, the space V ∗ is real, and therefore, all Āij are real numbers.

6. Reformulations

6.1. The discrete case

In this section we give a reformulation of Theorem 2.1.
Fix Q = (Q1, . . . , QN) ∈ (C×)N , such that Qi �= Qj if i �= j.
Let S be the N × N Vandermonde matrix with the (i, j) entry

sij = Qj−1
i .

We have detS =
∏

i<j(Qj − Qi).
Let S̄ be the N × N matrix with the (i, j) entry

s̄ij = (j − 1)Qj−1
i .

Let A = diag(a1, . . . , aN ) be the diagonal matrix with diagonal entries
a1, . . . , aN .

Clearly, the discrete Wronskian of N quasi-exponentials with linear polynomial
part is given by

Wrd
1((x − a1)Qx

1 , . . . , (x − aN )Qx
N ) =

(
N∏

i=1

Qx
i

)
det((x − A)S + S̄). (6.1)

Denote S̄S−1 = M . Let mij denote the (i, j) entry of M .

Lemma 6.1. We have

mij = Qi

∏
s�=i,j(Qi − Qs)∏
s�=j(Qj − Qs)

(i �= j),

mii = Qi

∑
s�=i

1
Qi − Qs

.

Proof. Let s∗ij denote the i, j entry of W−1. Define the polynomials s∗i (u) =∑N
s=1 s∗jsu

s−1. We have

deg s∗j (u) = N − 1, s∗j (Qi) = δij .
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Therefore,

s∗j (u) =

∏
s�=j(u − Qs)∏

s�=j(Qj − Qs)
.

Furthermore, we have

mij = Qi

(
d

du
s∗j

)∣∣∣∣
u=Qi

.

The lemma follows.

Define the matrix Zd by

Zd =




a1
Q1

Q2 − Q1

Q1

Q3 − Q1
· · · Q1

QN − Q1

Q2

Q1 − Q2
a2

Q2

Q3 − Q2
· · · Q2

QN − Q2
...

...
...

...
...

QN

Q1 − QN

QN

Q2 − QN

QN

Q3 − QN
· · · aN




. (6.2)

Let D = diag(d1, . . . , dN ) be the diagonal matrix with diagonal entries

di =
∏
s�=i

(Qi − Qs).

Let B = diag(m11, . . . , mNN ) be the diagonal matrix with diagonal entries mii.
Then we have the equality of matrices

A + B − D−1S̄S−1D = Zd. (6.3)

Theorem 6.2. Let Q1, . . . , QN be distinct real numbers and a1, . . . , aN complex
numbers. Let z1, . . . , zN be eigenvalues of the matrix Zd. Assume that z1, . . . , zN

are real. Then we have:

(1) If |zi − zj| ≥ 1 for all i �= j, then the numbers a1, . . . , aN are real.
(2) Let Qi be either all positive or all negative. Assume that there exists a subset

I ⊂ {1, . . . , N} such that |zi − zj| ≥ 1 for i �= j provided either i, j ∈ I or
i, j �∈ I. Then the numbers a1, . . . , aN are real.

Proof. By formulas (6.1), (6.3) the eigenvalues of the matrix Zd are zeros of the
discrete Wronskian Wrd((x − ā1)Qx

1 , . . . , (x − āN )Qx
N ), where āi = ai + mii. Since

mii are real, Theorem 6.2 follows from Theorem 2.1.

Remark. We are not aware of a direct proof of Theorem 6.2.

Corollary 6.3. Let Q and Z be complex N ×N -matrices such that Q is invertible
and

Z − Q−1ZQ = 1 − K,
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where K is a rank-one matrix. Assume that all eigenvalues of Q and Z are real.
Let z1, . . . , zN be the eigenvalues of Z. Then we have:

(1) If |zi − zj| ≥ 1 for i �= j, then there exists an invertible matrix C such that
C−1QC and C−1ZC are real matrices.

(2) Let eigenvalues of Q be either all positive or all negative. Assume that there
exists a subset I ⊂ {1, . . . , N} such that |zi − zj | ≥ 1 for i �= j provided either
i, j ∈ I or i, j �∈ I. Then there exists an invertible matrix C such that C−1QC

and C−1ZC are real matrices.

Proof. Let M̃N be the set of pairs of complex N × N matrices (Z, Q) such that
Q is invertible and such that the rank of the matrix Z − Q−1ZQ − 1 is one. We
call (Z1, Q1), (Z2, Q2) ∈ M̃N equivalent if there exists an invertible N × N matrix
C such that Z2 = C−1Z1C and Q2 = C−1Q1C. Let MN be the set of equivalence
classes.

Define a map:

τ : MN → C
N/SN × C

N/SN ,

which sends the class of (Z, Q) to (Spec Z, Spec Q).
Then similarly to [6], one can show that MN is a smooth variety and the map

τ is a finite map of degree N !, [5].
Let MR

N ⊂ MN be the subset of classes of pairs (Z, Q) ∈ MN with real matrices
Z, Q. By Proposition 3.1 of [7], the subset MR

N is closed.
If Q is a diagonalizable matrix with eigenvalues Qi, then there exists a matrix

C such that C−1QC is diagonal and then it is easy to see that Z is given by (6.2).
Therefore, the corollary follows from Theorem 6.2 by continuity.

6.2. The smooth case

In this section we give a reformulation of Theorem 4.1.
Fix λ = (λ1, . . . , λN ), such that λi �= λj if i �= j. Define the matrix Z by

Z =




a1
1

λ2 − λ1

1
λ3 − λ1

· · · 1
λN − λ1

1
λ1 − λ2

a2
1

λ3 − λ2
· · · 1

λN − λ2
...

...
...

...
...

1
λ1 − λN

1
λ2 − λN

1
λ3 − λN

· · · aN




. (6.4)

Theorem 6.4. Let λ1, . . . , λN be distinct real numbers. If all eigenvalues of the
matrix Z are real, then the numbers a1, . . . , aN are real.
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Proof. By a computation similar to the one in Sec. 6.1, we obtain that the eigenval-
ues of the matrix Z are zeros of the Wronskian Wr((x− ã1)eλ1x, . . . , (x− ãN )eλN x),
where

ãi = ai +
∑
s�=i

1
λi − λs

.

Therefore, Theorem 6.4 follows from Theorem 4.1.

The matrix Z in relation to the Wronskian of quasi-exponentials appeared
in [16].

Corollary 6.5. ([7]) Let Q and Z be complex N × N -matrices such that

[Q, Z] = 1 − K,

where K is a rank-one matrix. If all eigenvalues of Q and Z are real, then there
exists an invertible matrix C such that C−1QC and C−1ZC are real matrices.

Proof. The proof is similar to the proof of Corollary 6.3.

We are not aware of a direct proof of Theorem 6.4.
Using the duality studied in [12], one can show that the case of quasi-

exponentials with linear polynomials is generic, so Theorem 4.1 can be deduced
from Theorem 6.4.

Moreover, a proof of the B. and M. Shapiro conjecture can be obtained from
Theorem 6.4 for the case of a nilpotent matrix Z.

6.3. Trigonometric case

In this section we give a dual version of Theorem 6.2.
Fix complex numbers z1, . . . , zN such that zi − zj �= 1.
Define the matrix Qd by

Qd =




b1
b2

z1 − z2 + 1
b3

z1 − z3 + 1
· · · bN

z1 − zN + 1
b1

z2 − z1 + 1
b2

b3

z2 − z3 + 1
· · · bN

z2 − zN + 1
...

...
...

...
...

b1

zN − z1 + 1
b2

zN − z2 + 1
b3

zN − z3 + 1
· · · bN




.

Theorem 6.6. Let z1, . . . , zN be real numbers such that zi − zj �= 1 and let
b1, . . . , bN be complex numbers. Let Q1, . . . , QN be eigenvalues of the matrix Qd.
Assume that Q1, . . . , QN are nonzero distinct real numbers. Then we have:

(1) If |zi − zj| > 1 for all i �= j, then the numbers b1, . . . , bN are real.
(2) Let Qi be either all positive or all negative. Assume that there exists a subset

I ⊂ {1, . . . , N} such that |zi − zj| ≥ 1 for i �= j provided either i, j ∈ I or
i, j �∈ I. Then the numbers b1, . . . , bN are real.
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Proof. Let Z = diag(z1, . . . , zN ) be the diagonal matrix with diagonal entries
zi. Then QdZ − ZQd − Qd is a rank 1 matrix. Theorem 6.6 follows from
Corollary 6.3.

Alternatively, since Qd is invertible, z1, . . . , zN are all distinct. Then one can
show that the eigenvalues of the matrix Qd are zeros of the Wronskian Wr(xz1(x−
b̃1), . . . , xzN (x − b̃N)), where

b̃i = bi

∏
s�=i

zi − zs

zi − zs − 1

and deduce Theorem 6.6 from Theorem 5.2.
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