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In this paper, we derive the stochastic master equations corresponding to the statistical
model of a heat bath. These stochastic differential equations are obtained as continu-
ous time limits of discrete models of quantum repeated measurements. Physically, they
describe the evolution of a small system in contact with a heat bath undergoing continu-
ous measurement. The equations obtained in the present work are qualitatively different
from the ones derived in [6], where the Gibbs model of heat bath has been studied. It
is shown that the statistical model of a heat bath has a clear physical interpretation in
terms of emissions and absorptions of photons. Our approach yields models of random
environment and unravelings of stochastic master equations. The equations are rigor-
ously obtained as solutions of martingale problems using the convergence of Markov
generators.
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0. Introduction

The theory of Quantum Trajectories consists of studying the evolution of the state
of an open quantum system undergoing continuous indirect measurement. The most
basic physical setting consists of a small system, which is the open system, in con-
tact with an environment. Usually, in quantum optics and quantum communication,
the measurement is indirectly performed on the environment [7,8,13,10,28,39,40].
In this framework, the reduced time evolution of the small system, obtained by
tracing over the degrees of freedom of the environment, is described by stochastic
differential equations called stochastic Schrödinger equations or stochastic master
equations. The solutions of these equations are called Continuous Quantum Trajec-
tories. In the literature, two generic types of equations are usually considered

(1) Diffusive equations

dρt = L(ρt)dt+ (Cρt + ρtC
� − Tr[ρt(C + C�)]ρt)dWt, (1)

where (Wt)t≥0 is a one-dimensional Brownian motion.
(2) Jump equations

dρt = L(ρt)dt+
(

CρtC
�

Tr[CρtC�]
− ρt

)
(dÑt − Tr[CρtC

�]dt), (2)

where (Ñt)t≥0 is a counting process with stochastic intensity t �→∫ t

0 Tr[CρsC
�]ds.

Physically, Eq. (1) describes photon detection models called heterodyne or
homodyne detection [7, 8, 39, 40]. Equation (2) relates direct photon detection
model [7, 39, 40]. The driving noise then depends on the type of measurement.
Mathematically, a rigorous approach for justifying these equations is based on the
theory of Quantum Stochastic Calculus [9, 15, 17, 24]. In such a physical setup, the
action of the environment (described usually by a Fock space) on the small system
is modeled by quantum noises [1, 2, 21]. The evolution is then described by the so-
called Quantum Stochastic Differential Equations [1, 2, 24, 20]. Next, by using the
quantum filtering [16, 18, 19] technique, one can derive the stochastic Schrödinger
equations by taking into account the indirect observations. Another approach, not
directly connected with quantum stochastic calculus, consists in using instrumental
operator process and notion of a posteriori state [7, 8, 10–12,22].

In this work, we shall use a different approach, introduced recently by the second
author in [25–27]. This discrete-time model of indirect measurement, called Quan-
tum Repeated Measurements is based on the model of Quantum Repeated Inter-
actions [3–5] introduced by S. Attal and Y. Pautrat. The setup is the following:
a small system H is in contact with an infinite chain,

⊗∞
k=1 Ek, of identical and

independent quantum systems, that is Ek = E for all k. The elements of the chain
interact with the small system, one after the other, each interaction having a dura-
tion τ > 0. After each interaction, a quantum measurement is performed on the
element of the chain that has just been in contact with the small system. Each
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measurement involves a random perturbation of the state of the small system, the
randomness being given by the outcome of the corresponding quantum measure-
ment. The complete evolution of the state of the small system is described by a
Markov chain depending on the time parameter τ . This Markov chain is called a
Discrete Quantum Trajectory. By rescaling the intensity of the interaction between
the small system and the elements of the chain in terms of τ , it has been shown
in [25, 26] that the solutions of Eqs. (1) and (2) can be obtained as limits of the
discrete quantum trajectories when the time step τ goes to zero.

In [25, 26], the author investigated the case when the reference state of each
element of the chain is the ground state (this corresponds also to models at zero
temperature). This setup was generalized in [6], where Gibbs states with positive
temperature were considered and the corresponding equations were derived. In the
present work, we go beyond this generalization and study the statistical model for
the temperature state of the chain. More precisely, the initial state of the elements
of the chain is a statistical mixture of ground and excited states. It is important
to note that both the Gibbs model as well as the ground state model are deter-
ministic. Let us stress that, in the case where no measurement is performed after
each interaction, both the Gibbs and the statistical model give rise to the same
deterministic limit evolution. This limit behavior confirms the idea that a mixed
quantum state and a probabilistic mixture of pure states represent the same phys-
ical reality. Quite surprisingly, we show that, when adding measurement, the limit
stochastic differential equations are of different nature: for the Gibbs model the
only possible limit evolutions are deterministic or diffusive, whereas for the statis-
tical model jump evolutions become a possibility. Furthermore, the Gibbs model
limit equations involve at most one random noise, whereas two driving noises may
appear at the limit when considering the statistical model.

The article is structured as follows. In Sec. 1, we introduce the different discrete
models of quantum repeated interactions and measurements. In our approach, we
present the statistical model of the thermal state as the result of a quantum mea-
surement applied to each element of the chain before each interaction. Next, we
describe the random evolution of the open system by deriving discrete stochastic
equations. In Sec. 2, we investigate the continuous time models obtained as limits
of the discrete models when the time-step parameter goes to zero. We remind the
results of [6] related to the thermal Gibbs model and we describe the new contin-
uous models related to the thermal statistical model. Section 3 is devoted to the
analysis of the different models. The qualitative differences between the continuous
time evolutions are illustrated by concrete examples. Within these examples, it is
shown that the statistical approach provides clear physical interpretations which
cannot be reached when considering the Gibbs model. We show that the model at
zero temperature (each element of the chain is at the ground state) can be recovered
by the statistical model; however, this is not possible with the Gibbs model. More-
over, we show that considering the statistical model allows to obtain unravelings of
heat master equations with a measurement interpretation. Section 4 contains the
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proofs of the convergence of the discrete time model to the continuous model. Such
results are based on Markov chain approximation techniques using the notion of
convergence of Markov generators and martingale problems.

1. Quantum Repeated Interactions and
Discrete Quantum Trajectories

In this section we present the mathematical model of quantum repeated measure-
ments. In the first subsection we briefly recall the model of quantum repeated
interactions [4] and in the second subsection we describe three different situations
of indirect quantum measurements, in which environment particles are measured
before and/or after each interaction. Discrete evolution equations are obtained in
each case.

1.1. Quantum repeated interactions model without measurement

Let us introduce here the mathematical framework of quantum repeated interac-
tions. We consider a small system H in contact with an infinite chain of identical
and independent quantum systems. Each piece of the chain is represented by a
Hilbert space E . Each copy of E interacts, one after the other, with the small sys-
tem H during a time τ . Note that all the Hilbert spaces we consider are complex
and finite-dimensional.

We start with the simpler task of describing a single interaction between the
small system H and one piece of the environment E . Let ρ denote the state of H
and let σ be the state of E . States are a positive self-adjoint operators of trace one;
in Quantum Information Theory they are also called density matrices. The coupled
system is described by the tensor product H⊗E and the initial state is in a product
form ρ⊗σ. The evolution of the coupled system is given by a total Hamiltonian
acting on H⊗E

Htot = H0 ⊗ I + I ⊗H +Hint,

where the operators H0 and H are the free Hamiltonians of the systems H and E
respectively, and the operator Hint is the interaction Hamiltonian. The operator
Htot gives rise to a unitary operator

U = exp(−iτHtot),

where τ represents the time of interaction. After the interaction, in the Schrödinger
picture, the final state of the coupled system is

µ = U(ρ⊗ σ)U�.

In order to describe all the repeated interactions, we need to describe an infinite
number of quantum systems. The Hilbert space of all possible states is given by the
countable tensor product

Γ = H⊗
∞⊗

k=1

Ek = H⊗Φ,
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where Ek � E for all k ≥ 1. If {e0, e1, . . . , eK} denotes an orthonormal basis of
E � C

K+1, the orthonormal basis of Φ =
⊗∞

k=1 Ek is constructed with respect to
the stabilizing sequence e⊗N

∗
0 (we shall not develop the explicit construction of the

countable tensor product since we do not need it in the rest of the paper; we refer
the interested reader to [4] for the complete details).

Let us now describe the interaction between H and the kth piece of environment
Ek, from the point of view of the global Hilbert space Γ. The quantum interaction is
given by a unitary operator Uk which acts like the operator U on the tensor product
H⊗Ek and like the identity operator on the rest of the space Γ. In the Schrödinger
picture, a state η of Γ evolves as a closed system, by unitary conjugation

η �→ UkηU
�
k .

Therefore, the whole procedure up to time k can be described by a unitary operator
Vk defined recursively by {

Vk+1 = Uk+1Vk,

V0 = I.
(3)

In more concrete terms we consider the initial state µ = ρ⊗
⊗∞

k=1σ for the small
system coupled with the chain (notice that all the elements of the chain are initially
in the same state σk = σ). After k interactions, the reference state is given by

µk = VkµV
�
k .

Since we are interested only in the evolution of the small system H, we discard
the environment Φ. The reduced dynamics of the small system is then given by the
partial trace on the degrees of freedom of the environment. If α denotes a state on
Γ, we denote by TrΦ[α] the partial trace of α on H with respect to the environment
space Φ =

⊗∞
k=1 Ek. We recall the definition of the partial trace operation.

Definition. Let H and K be two Hilbert spaces. For all state α on H⊗K, there
exists a unique state on H denoted by TrK[α] which satisfies

Tr[TrK[α]X ] = Tr[α(X ⊗ IK)],

for all X ∈ B(H). The state TrK[α] is called the partial trace of α on H with respect
to K.

With this notation, the evolution of the state of the small system is given by

ρk = TrΦ[µk]. (4)

The reduced dynamics of (ρk) is entirely described by the following proposition
[4, 23].

Proposition 1. The sequence of states (ρk)k defined in Eq. (4) satisfies the recur-
rence relation

ρk+1 = TrE [U(ρk ⊗σ)U�].
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Furthermore, the application

L : B(H) → B(H)

X �→ TrE [U(X ⊗ σ)U�]

defines a trace preserving completely positive map (or a quantum channel) and the
state of the small system after k interactions is given by

ρk = Lk(ρ0). (5)

1.2. Quantum repeated interactions with measurement

In this section we introduce Quantum Measurement in the model of quantum
repeated interactions and we show how Eq. (5) is modified by the different observa-
tions. We shall study three different situations of indirect measurement, as follows:

(1) The first model concerns “quantum repeated measurements” before each inter-
action. It means that we perform a measurement of an observable on each copy
of E before the interaction with H. We call such a setup “Random Environ-
ment” (we shall explain the terminology choice later on).

(2) The second model concerns “quantum repeated measurements” after each inter-
action. It means that we perform a measurement of an observable on each copy
of E after the interaction with H. We call such a setup “Usual Indirect Quantum
Measurement”.

(3) The third setup is a combination of the two previous models. Two quantum
measurements (of possibly different observables) are performed on each copy
of E , one before and one after each interaction with H. Such a setup is called
“Indirect Quantum Measurement in Random Environment”.

In all the cases, the measurement is called indirect because the small system
is not directly observed, the measurement being performed on an auxiliary system
(an element of the chain) which interacted previously with the system. The main
purpose of this work is to study and analyze the three different limit behaviors
obtained when the interaction time τ goes to zero (see Sec. 2). Let us mention that
the second setup has been studied in detail in [25–27]. We chose to describe in great
detail the more general case of the third model, since the other two models can be
easily recovered from the third one, by choosing to measure the trivial observable I.

1.2.1. Indirect quantum measurement in random environment

In order to make the computations more easy to follow, we shall focus on the case
where the environment is a chain of qubits (two-dimensional quantum systems).
Mathematically, this is to say that E = C

2.
Let us start by making more precise the physical model for one copy of E . To

this end, we consider {e0, e1} an orthonormal basis of E , which diagonalizes the
Hamiltonian

H =
(
γ0 0
0 γ1

)
,
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where we suppose that γ0 < γ1. The reference state σ of the environment corre-
sponds to a Gibbs thermal state at positive temperature, that is

σ =
e−βH

Tr[e−βH ]
, with β =

1
KT

, (6)

where T corresponds to a finite strictly positive temperature and K is a constant.
In the basis {e0, e1}, σ is diagonal

σ = p|e0〉〈e0| + (1 − p)|e1〉〈e1|,

with

p =
e−βγ0

e−βγ0 + e−βγ1
.

Notice that since β > 0, we have 0 < p < 1.
We are now in a position to describe the measurement before the interaction.

We consider a diagonal observable A of E of the form

A = λ0|e0〉〈e0| + λ1|e1〉〈e1|.

The extension of the observable A to an observable of H⊗E is I ⊗A. According
to the axioms of Quantum Mechanics, the outcome of the measurement of the
observable I ⊗A is an element of its spectrum, the result being random. If the
initial state (before the interaction) is ρ⊗σ, we shall observe the eigenvalue λi

with probability

P[λi is observed] = Tr[(ρ⊗σ) I ⊗Pi] = Tr[σPi], i = 0, 1,

where Pi = |ei〉〈ei| are the eigenprojectors of A. It is straightforward to see that in
this case

P[λ0 is observed] = p = 1 − P[λ1 is observed].

Furthermore, according to the wave packet reduction principle, if the eigenvalue λi

is observed, the initial state ρ⊗σ is modified and becomes

µ1
i =

I ⊗Pi(ρ⊗σ) I ⊗Pi

Tr[(ρ⊗σ) I ⊗Pi]
= ρ⊗ PiσPi

Tr[σPi]
. (7)

This defines naturally a random variable µ1 valued in the set of states on H⊗E .
More precisely, the state µ1 takes the value µ1

0 = ρ ⊗ |e0〉〈e0| with probability
Tr[(ρ⊗σ)|e0〉〈e0|] = p and the value µ1

1 = ρ⊗ |e1〉〈e1| with probability 1 − p.

Remark 1. Since both the initial state of the system and the observable measured
have product form, only the state of E is modified by the measurement before the
interaction. Instead of describing the evolution of the coupled system, we could have
considered that the state of E is a random variable σ1

i where σ1
i is either |e0〉〈e0|

with probability p either |e1〉〈e1| with probability 1 − p. This is the statistical
model for a thermal state and its random character justifies the name “Random
environment”. In conclusion, we could have replaced from the start the setup (Gibbs
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state + Quantum measurement) with the probabilistic setup Random environment,
the results being identical. We shall give more details and comments on this point
of view in Sec. 3.

We now move on to describe the second measurement, which is performed after
the interaction. In this case we consider an arbitrary (not necessarily diagonal in
the basis {e0, e1}) observable B of E which admits a spectral decomposition

B = α0Q0 + α1Q1,

where Qj corresponds to the eigenprojector associated with the eigenvalue αj . Let
µ1 be the random state after the first measurement. After the interaction, the state
on H⊗E is

η1
i = Uµ1

iU
�, i = 0, 1.

Now, assuming that the measurement of the observable A (before the interaction)
has given the result λi, the probability of observing the eigenvalue αj of B is
given by

P[αj is observed] = Tr[η1
i I ⊗Qj]

and the state after the measurement becomes

θ1i,j =
I ⊗Qjη

1
i I ⊗Qj

Tr[η1
i I ⊗Qj]

.

The random state θ1 (which takes one of the values θ1i,j) on H⊗E describes the
random result of the two indirect measurements which were performed before and
after the interaction.

Having described the interaction between the small system H and one copy of
E , we look now at the repeated procedure on the whole system Γ. The probability
space underlying the outcomes of the repeated quantum measurements before and
after each interaction is given by Ω = (ΣA×ΣB)N

�

, where ΣA = {0, 1} corresponds
to the index of the eigenvalues of the observable A and ΣB = {0, 1} for the ones of
B. On Ω, we consider the usual cylinder σ-algebra Λ generated by the cylinder sets

Λ(i1,j1),...,(ik,jk) = {(ω, ϕ) ∈ (ΣA × ΣB)N
�

|ω1 = i1, . . . , ωk = ik,

ϕ1 = j1, . . . , ϕk = jk}.

Now, we shall define a probability measure describing the results of the repeated
quantum measurements. To this end, we introduce the following notation. For an
operator Z on Ej, we note Z(j) the extension of Z as an operator on Γ, which acts
as Z on the jth copy of E and as the identity on H and on the other copies of E :

Z(j) = I ⊗
j−1⊗
p=1

I ⊗Z⊗
⊗

p≥j+1

I .
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Furthermore, for all k ≥ 1 and {(i1, j1), . . . , (ik, jk)} ∈ (ΣA × ΣB)k, we put

µ̃k((i1, j1), . . . , (ik, jk))

=

(
k∏

s=1

Q
(s)
js

)
Vk

(
k∏

s=1

P
(s)
is

)
µ

(
k∏

s=1

P
(s)
is

)
V �

k

(
k∏

s=1

Q
(s)
js

)
, (8)

where Pi and Qj are the respective eigenprojectors of A and B and µ =
ρ⊗

⊗∞
k=1 σk, with σk = σ = p|e0〉〈e0| + (1 − p)|e1〉〈e1| for all k ∈ N�, is the

initial state on Γ. Notice that the products in the previous equation need not be
ordered, since two operators X(i) and Y (j) commute whenever i 	= j. In the same
vein, the following important commutation relation

Q
(k)
ik
UkP

(k)
ik

· · ·Q(1)
i1
U1P

(1)
i1

=

(
k∏

s=1

Q
(s)
js

)
Vk

(
k∏

s=1

P
(s)
is

)
,

shows that the operator µ̃k((i1, j1), . . . , (ik, jk)) in Eq. (8) is actually the non-
normalized state of the global system after the observation of eigenvalues
λi1 , . . . , λik

for k first measurements of A and αj1 , . . . , αjk
for the k first mea-

surements of the observable B.
We have now all the elements needed to define a probability measure on the

cylinder algebra Λ by

P[Λ(i1,j1),...,(ik,jk)] = Tr[µ̃k((i1, j1), . . . , (ik, jk))].

This probability measure satisfies the Kolmogorov Consistency Criterion, hence we
can extend it to the whole σ-algebra Λ to the unique probability measure P with
these finite dimensional marginals.

The global random evolution on Γ is then described by the random sequence (ρ̃k)

ρ̃k : Ω −→ B(Γ)

(ω, ϕ) �−→ ρ̃k(ω, ϕ) =
µ̃((ω1, ϕ1), . . . , (ωk, ϕk))

Tr[µ̃k((ω1, ϕ1), . . . , (ωk, ϕk))]
.

This random sequence describes the random modification involved by the result of
measurement before and after the interactions. In order to recover the measurement
setup only before or only after the interactions, one has just to delete the projector
P

(j)
ij

or Q(j)
ij

in Eq. (8).
The reduced evolution of the small system is obtained by the partial trace

operation:

ρk(ω, ϕ) = TrΦ [ρ̃k(ω, ϕ)] (9)

for all (ω, ϕ) ∈ Ω and all k ∈ N�. The random sequence (ρk)k≥1 is called a Discrete
Quantum Trajectory. It describes the random modification of the small system
undergoing the sequence of successive measurements.
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Remark 2. The dynamics of the sequence of states ρk can be seen as a ran-
dom walk in random environment dynamics in the following way. Assume that
all the elements of the chain are measured before the first interaction; the results
of this procedure define a random environment in which the small system will
evolve. All the randomness coming from the measurement before each interaction
is now contained in the environment ω. Given a fixed value of the environment
ω, the small system interacts repeatedly with the chain (whose states depend on
ω) and the random results of the repeated measurement of the second observ-
able B are encoded in ϕ. In this way, the global evolution of ρ can be seen as a
random walk (where random modifications of the states are due to the second mea-
surement) in a random environment (generated by the measurements before each
interaction).

1.2.2. Discrete evolution equations

In this section, using the Markov property of the discrete quantum trajectories, we
obtain discrete evolution equations which are random perturbations of the master
equation (5) given in Proposition 1. The Markov property of the random sequence
(ρk)k is expressed as follows.

Proposition 2. The random sequence of states (ρk)k on H defined by the formula
(9) is a Markov chain on (Ω,Λ,P). More precisely, we have the following random
evolution equation

ρk+1(ω, ϕ) =
∑

i,j∈{0,1}

Gij(ρk(ω, ϕ))
Tr[Gij(ρk(ω, ϕ))]

1k+1
ij (ω, ϕ), (10)

where

Gij(ρ) = TrE [(I ⊗Qj)U(I ⊗Pi(ρ⊗ σ) I ⊗Pi)U�(I ⊗Qj)]

and 1k+1
ij (ω, ϕ) = 1ij(ωk+1, ϕk+1) = 1i(ωk+1)1j(ϕk+1) for all (ω, ϕ) ∈ (ΣA×ΣB)N

�

.

Equation (10) is called a Discrete Stochastic Master Equation. In order to make
more explicit Eq. (10) and to compute the partial trace, we introduce a suitable
basis for H⊗E , which is {e0 ⊗ e0, e1 ⊗ e0, e0 ⊗ e1, e1 ⊗ e1}. In this basis, the unitary
operator U can be written in block format in the following way:

U =
(
L00 L01

L10 L11

)
,

where Lij are operators in M2(C). We shall treat two different situations, depending
on the form of the observable B that is being measured after each interaction. On
one hand, we consider the case where the observable B of E is diagonal in the basis
(e0, e1) and on the other hand we consider the case where B is non-diagonal.
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Let us start with the case where the observableB is diagonal in the basis {e0, e1},
that is B = α0|e0〉〈e0| + α1|e1〉〈e1|. In this case, Eq. (10) becomes

ρk+1(ω, ϕ) =
L00ρk(ω, ϕ)L�

00

Tr[L00ρk(ω, ϕ)L�
00]

100(ωk+1, ϕk+1)

+
L10ρk(ω, ϕ)L�

10

Tr[L10ρk(ω, ϕ)L�
10]

101(ωk+1, ϕk+1)

+
L01ρk(ω, ϕ)L�

01

Tr[L01ρk(ω, ϕ)L�
01]

110(ωk+1, ϕk+1)

+
L11ρk(ω, ϕ)L�

11

Tr[L11ρk(ω, ϕ)L�
11]

111(ωk+1, ϕk+1). (11)

Usually, a stochastic master equation appears as a random perturbation of the
master equation (see Eqs. (1) and (2) in the Introduction). Moreover, the noises
driving the equations are centered, that is of zero mean (this is the case of the
Brownian motion and the counting process compensated with the stochastic inten-
sity in Eqs. (1) and (2)). In order to obtain a similar description in the discrete
case, we introduce the following random variables:

Xk(ω, ϕ) =
110(ωk, ϕk) + 111(ωk, ϕk) − (1 − p)√

p(1 − p)
, k ∈ N

�. (12)

Now, we rewrite Eq. (11) in terms of the random variables Xk, 101 110:

ρk+1 = (p(L00ρkL
�
00 + L10ρkL

�
10) + (1 − p)(L01ρkL

�
01 + L11ρkL

�
11))1

+ (−
√
p(1 − p)(L00ρkL

�
00 + L10ρkL

�
10)

+
√
p(1 − p)(L11ρkL

�
11 + L01ρkL

�
01))Xk+1

+
(
− L00ρkL

�
00

Tr[L00ρkL�
00]

+
L10ρkL

�
10

Tr[L10ρkL�
10]

)
(101 − pTr[L10ρkL10])

+
(
− L11ρkL

�
11

Tr[L11ρkL�
11]

+
L01ρkL

�
01

Tr[L10ρkL�
10]

)
(110 − (1 − p)Tr[L01ρkL01]). (13)

It is important to emphasize that the last three terms in the previous equation have
mean zero:

E[Xk] = E[101 − pTr[L10ρkL10]] = E[110 − (1 − p)Tr[L01ρkL01]] = 0.

Moreover, recall that the discrete evolution of Proposition 1, without measurement,
is given by

ρk+1 = L(ρk) = (p(L00ρkL
�
00 + L10ρkL

�
10)

+ (1 − p)(L01ρkL
�
01 + L11ρkL

�
11)). (14)

As a consequence, the discrete stochastic master equation (13) is written as a per-
turbation of the discrete master equation (14).
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Remark 3. In this expression, one can see that the random variable Xk depends
only on the outcome of the measurement before the interaction (we sum over the
two possible results of the measurement after the interaction). In other words,
it means that the random variables Xk describe essentially the perturbation of
the measurement before the interaction. On the other hand, the random variables
101 and 110, conditionally on the result of the first measurement, describe the
perturbation involved by the measurement after the interaction. Hence, each term
of Eq. (13) that is linked with either Xk, 101 or 110 expresses how the deterministic
part (14) is modified by the results of the different measurements.

We now analyze the second case, where the observable B is nondiagonal in
the basis {e0, e1}. We write B = α0Q0 + α1Q1, where the eigenprojectors Qi are
written in the {e0, e1} basis Qi = (qi

kl)0≤k,l≤1. In this case, the operators appearing
in Eq. (10) are given by

G0i(ρ) = qi
00L00ρL

�
00 + qi

10L00ρL
�
10 + qi

01L10ρL
�
00 + qi

11L10ρL
�
10,

G1i(ρ) = qi
00L01ρL

�
01 + qi

10L01ρL
�
11 + qi

01L11ρL
�
01 + qi

11L11ρL
�
11.

As before, in order to obtain the expression of the discrete master equation as
a perturbation of the deterministic master equation, we introduce the following
random variables:

Xk+1 =
1k+1

10 + 1k+1
11 − (1 − p)√
p(1 − p)

,

Y 0
k+1 =

1k+1
01 − pTr[G01(ρk)]√

pTr[G01(ρk)](1 − pTr[G01(ρk)])
, (15)

Y 1
k+1 =

1k+1
10 − (1 − p)Tr[G10(ρk)]√

(1 − p)Tr[G10(ρk)](1 − (1 − p)Tr[G10(ρk)])
.

In terms of these random variables, we get

ρk+1 = L(ρk)1

+ (−
√
p(1 − p)(G00(ρk) + G01(ρk)) +

√
p(1 − p)(G11(ρk) + G10(ρk)))Xk+1

+
√
pTr[G01(ρk)](1 − pTr[G01(ρk)])

(
− G00(ρk)

Tr[G00(ρk)]
+

G01(ρk)
Tr[G01(ρk)]

)
Y 0

k+1

+
√

(1 − p)Tr[G10(ρk)](1 − (1 − p)Tr[G10(ρk)])

×
(
− G11(ρk)

Tr[G11(ρk)]
+

G10(ρk)
Tr[G10(ρk)]

)
Y 1

k+1. (16)

Remark 4. As it was the case in Eq. (13), the discrete random variables Xk and
Y i

k , i = 0, 1 are centered. As before, the variables Xk represent the perturbation
produced by the measurement before the interaction and, given the result of this
measurement, the variables Y i

k describe the perturbation generated by the measure-
ment of the second observable. The particular choices made for Y i

k will be justified
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when we shall consider the continuous models. They will appear as discrete analogs
of the noises which drive the continuous stochastic master equations (Wt and Ñt

in Eqs. (1) and (2)).

The above general framework concerns the combination of the two measure-
ments, one before and one after each interaction. Let us present the corresponding
equations when only one type of measurement (before or after each interaction) is
performed.

We start by looking at the case where a measurement is only performed before
the interaction (we called this kind of setup “Random environment”). Since mea-
suring an observable on an element of the chain (which has not yet interacted)
does not alter the state of the little system H, only the reference state of each
copy of E is random. The completely positive evolution operators describing the
two possibilities for the state after the interaction are given by

Ri(ρ) = TrE [U(ρ⊗ |ei〉〈ei|)U�] (17)

= Gi0(ρ) + Gi1(ρ), (18)

for i = 0, 1. Let 1k
i be the random variable which is equal to 1 if we observe the

eigenvalue λi at the kth step, and 0 otherwise. We can describe the evolution of the
small system H by the following equation

ρk+1 = R0(ρk)1k+1
0 + R1(ρk)1k+1

1 .

As before, we introduce

Xk+1 =
1k+1

1 − (1 − p)√
p(1 − p)

, k ∈ N.

With this notation, the evolution equation becomes

ρk+1 = L(ρk) + (−
√
p(1 − p)(L00ρkL

�
00 + L10ρkL

�
10)

+
√
p(1 − p)(L11ρkL

�
11 + L01ρkL

�
01))Xk+1. (19)

The opposite case, where a measurement is only performed after the interaction,
is treated in great detail in [25, 26] when p = 0 (ground states) and in [6] for
0 < p < 1 (Gibbs states). Let us recall briefly the main steps needed to obtain
the appropriate equations. Consider the observable B = α0Q0 + α1Q1, with Qi =
(qi

kl)0≤k,l≤1. The two possible non-normalized states on H that can be obtained
after the measurement are defined via the action of the operators

Fi(ρ) = TrE [I ⊗QiU(p|e0〉〈e0| + (1 − p)|e1〉〈e1|)U�I ⊗Qi] (20)

= pG0i(ρ) + (1 − p)G1i(ρ), (21)

for i = 0, 1. The discrete evolution equation is then given by

ρk+1 =
F0(ρk)

Tr[F0(ρk)]
1k+1

0 +
F1(ρk)

Tr[F1(ρk)]
1k+1

1 . (22)
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Again, we introduce the random variables Xk defined by

Xk+1 =
1k+1

i − Tr[F1(ρk)]√
Tr[F0(ρk)] Tr[F1(ρk)]

.

In terms of these centered random variables, we get

ρk+1 = L(ρk)1 +

(
−

√
Tr[F1(ρk)]
Tr[F0(ρk)]

F0(ρk) +

√
Tr[F0(ρk)]
Tr[F1(ρk)]

F1(ρk)

)
Xk+1. (23)

2. Continuous Time Models of Quantum Trajectories

In this section, we present the continuous versions of the discrete equations (13),
(16), (19) and (23). We start by introducing asymptotic assumptions for the interac-
tion unitaries in terms of the time parameter τ . Next, we implement these assump-
tions in the different equations (13), (16), (19) and (23) and we obtain stochastic
differential equations as limits when the time step τ goes to 0.

Let us present the asymptotic assumption for the interaction with τ = 1/n. In
terms of the parameter n we can write the unitary operator U as

U(n) = exp
(
−i 1
n
Htot

)
=

(
L00(n) L10(n)
L01(n) L11(n)

)
. (24)

Let us recall that the discrete dynamic of quantum repeated interactions is given
by Vk = Uk · · ·U1. In [3,4], it is shown that the asymptotic of the coefficients Lij(n)
must be properly rescaled in order to obtain a nontrivial limit for V[nt]. With proper
rescaling, it is shown in these references that the operator V[nt] converges when n

goes to infinity to an operator Ṽt which satisfies a Quantum Langevin Equation.
When translated in our context of a two-level atom in contact with a spin chain,
we put

L00(n) = I+
1
n
W + ◦

(
1
n

)
,

L01(n) =
1√
n
S + ◦

(
1√
n

)
,

L10(n) =
1√
n
T + ◦

(
1√
n

)
,

L11(n) = I+
1
n
Z + ◦

(
1
n

)
.

(25)

In terms of total Hamiltonian, it is shown in [4] that typical HamiltonianHtot which
gives rise to such asymptotic assumption can be described as

Htot = H0 ⊗ I + I ⊗
(
γ0 0
0 γ1

)
+
√
n

(
C ⊗

(
0 0
1 0

)
+ C� ⊗

(
0 1
0 0

))
.
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Hence, for the operators W,S, T and Z we get

W = −H0 − γ0 I−1
2
C�C,

Z = −H0 − γ1 I−1
2
CC�, (26)

S = T � = −iC.

In the rest of the paper, we shall write all the results in terms of the operators
H0 and C.

Now, we are in a position to investigate the asymptotic behavior of the different
equations (13), (16), (19) and (23) and to introduce the continuous models. The
mathematical arguments used to obtain the continuous models are developed in
Sec. 5. Before presenting the main result concerning the model with measurement,
we treat the simpler model obtained by considering the limit n goes to infinity in
Eq. (5) of Proposition 1.

2.1. Continuous quantum repeated interactions

without measurement

In this section, by applying the asymptotic assumption, we show that the limit
evolution obtained from the quantum repeated interactions model is a Lindblad
evolution (also called Markovian evolution [28]). This result has been stated and
proved in [4]. We recall it here since the more general situations treated in the
current work build upon these considerations. The discrete master equation (5) of
Proposition 1 in our context is expressed as follows:

ρk+1 = L(ρk) = p(L00ρkL
�
00 + L10ρkL

�
10) + (1 − p)(L01ρkL

�
01 + L11ρkL

�
11). (27)

Substituting in the asymptotic assumptions (25), we get (here, n is a parameter)

ρk+1 = ρk +
1
n

[
p

(
−i[H0, ρ] −

1
2
{C�C, ρ} + CρC�

)

+ (1 − p)
(
−i[H0, ρ] −

1
2
{CC�, ρ} + C�ρC

)
+ ◦(1)

]
, (28)

where [X,Y ] = XY −Y X and {X,Y } = XY +Y X are the usual commutator and
anti-commutator. The following theorem is obtained by taking the limit n→ ∞ in
the previous equation.

Theorem 1. (Limit model for quantum repeated interactions without measure-
ment) Let (ρ[nt]) be the family of states defined from the sequence (ρk) describing
quantum repeated interactions. We have

lim
n→∞ ‖ρ[nt] − ρt‖ = 0,

where (ρt) is the solution of the master equation

dρt = L(ρt)dt,
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with the Lindblad operator L given by

L(ρ) = p

(
−i[H0, ρ] −

1
2
{C�C, ρ} + CρC�

)

+ (1 − p)
(
−i[H0, ρ] −

1
2
{CC�, ρ} + C�ρC

)
. (29)

The operator L appearing in Eq. (29) is the usual Lindblad operator describing
the evolution of a system in contact with a heat bath at positive temperature T [3];
let us recall that the parameter p can be expressed in terms of the temperature T
as in Eq. (6).

2.2. Continuous quantum repeated interactions with measurement

In this section, we present the different continuous models obtained as limits of
discrete quantum repeated measurement models described in Eqs. (13), (16), (19)
and (23).

Although continuous quantum trajectories have been extensively studied by
the second author in [25–27], the result concerning the combination of the two
kinds of measurement is new and the stochastic differential equations appearing
at the limit have, to our knowledge, never been considered in the literature. The
comparison between the different limiting behaviors is particularly interesting and
will be discussed in detail in Sec. 3.

2.2.1. The “random environment” setup

In Sec. 1.2.1, we have seen that the evolution of the little system in the presence of
measurement before each interaction is described by the following equation:

ρk+1 = L(ρk) + (−
√
p(1 − p)(L00ρkL

�
00 + L10ρkL

�
10)

+
√
p(1 − p)(L11ρkL

�
11 + L01ρkL

�
01))Xk+1. (30)

Using the asymptotic condition for the operator Lij(n), we get the following
expression

ρk+1 = ρk +
1
n

(L(ρk) + ◦(1)) +
1
n

(K(ρk) + ◦(1))Xk+1, (31)

where the expression of L is the same as Theorem 1. The accurate expression of
K is not necessary because these terms disappear at the limit. From Eq. (31), we
want to derive a discrete stochastic differential equation. To this end, we define the
following stochastic processes:

ρn(t) = ρ[nt], Vn(t) =
[nt]
n
, Wn(t) =

1√
n

[nt]−1∑
k=0

Xk+1. (32)
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Next, by writing

ρ[nt] = ρ0 +
[nt]−1∑
k=0

ρk+1 − ρk

and by using Eq. (31) and the definition (32) of stochastic processes, we can write

ρn(t) = ρ0 +
∫ t

0

L(ρn(s−))dVn(s) +
∫ t

0

1√
n
E(ρn(s−))dWn(s) + εn(t), (33)

where εn(t) regroups all the ◦(·) terms. Equation (33) appears then as a discrete
stochastic differential equation whose solution is the process (ρn(t))t.

In order to obtain the final convergence result, we shall use the following propo-
sition concerning the limit behavior of the process (Wn(t)).

Proposition 3. Let (Wn(t)) be the process defined by formula (32). We have the
following convergence result

Wn(t) ⇒Wt,

where ⇒ denotes the convergence in distribution for stochastic processes and
(Wt)t≥0 is a standard Brownian motion.

Proof. In this case, the random variables (Xk+1) are independent and identically
distributed. Furthermore, they are centered and reduced. As a consequence, the
convergence result is just an application of the Donsker Theorem [29,33, 34].

Using Proposition 3, we can now take the limit n→ ∞ in Eq. (33).

Theorem 2. (Limit model for random environment) The stochastic process
(ρn(t)), describing the evolution of the small system in contact with a random
environment, converges in distribution to the solution of the master equation

dρt = L(ρt)dt,

where Lindblad generator L is given in Eq. (29).

This theorem is a straightforward application of a well-known theorem of Kurtz
and Protter [36,35] concerning the convergence of stochastic differential equations.
Without the term 1/

√
n, the process (Wn(t)) converges to a Brownian motion and

thus Eq. (33) converges to a diffusive stochastic differential equation. As the term
1/

√
n converges to zero, this implies the random diffusive part disappears when we

consider the limit. The fact that we recover the deterministic Lindblad evolution
for a heat bath will be discussed in Sec. 3.

The next subsection contains the description of the continuous model when a
measurement is performed after each interaction.
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2.2.2. Usual indirect quantum measurement

In [25,26], it is shown that discrete quantum trajectories for p = 0 converge (when
n goes to infinity) to solutions of classical stochastic master equations (1) and (2).
These models are at zero temperature. The result for positive temperature (0 <

p < 1) is treated in [6]. In this section, we just recall the result of [6] corresponding
to the limit models obtained from Eq. (23).

As was mentioned in Sec. 1.2.1, the final stochastic differential equations depend
on the form of the observable.

(1) If B = α0Q0 + α1Q1 is a diagonal observable, with Qi = (qi
kl)0≤k,l≤1, we have

q000 = q100 = 1 and all the other coefficients are equal to zero. Hence, we obtain
the following asymptotic expression for Eq. (23)

ρk+1 − ρk =
1
n

(L(ρk+1) + ◦(1)) +
1
n

(N (ρk) + ◦(1))Xk+1. (34)

For the random variables (Xk), we have


Xk+1(0) = −
√

Tr[F1(ρk)]
Tr[F0(ρk)]

with probability p+
1
n

(h(ρk) + ◦(1)),

Xk+1(1) =

√
Tr[F0(ρk)]
Tr[F1(ρk)]

with probability 1 − p+
1
n

(g(ρk) + ◦(1)).

(35)

In (34) and (35), the exact expressions of N , h and g are not necessary for
the final result. The expression of L corresponds to the Lindblad operator of
Proposition 1.

(2) The other case concerns an observable B which is not diagonal. We have then
0 < q000 < 1 and 0 < q111 < 1. The final result is essentially the same for all
nondiagonal observables B. Hence, we just focus on the symmetric case where
B is of the form

B = α0

(
1/2 1/2
1/2 1/2

)
+ α1

(
1/2 −1/2
−1/2 1/2

)
.

Thus, in asymptotic form, Eq. (23) becomes

ρk+1 − ρk =
1
n

(L(ρk) + ◦(1)) +
1√
n

(G(ρk) + ◦(1))Xk+1, (36)

where G is defined on the set of states by

G(ρ) = −(p(Cρ+ ρC�) + (1 − p)(C�ρ+ ρC))

+ Tr[p(Cρ+ ρC�) + (1 − p)(C�ρ+ ρC)]ρ.
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The random variables Xk+1 evolve as


Xk+1(0) = −
√

Tr[F1(ρk)]
Tr[F0(ρk)]

with probability
1
2

+
1√
n

(f(ρk)),

Xk+1(1) =

√
Tr[F0(ρk)]
Tr[F1(ρk)]

with probability
1
2

+
1√
n

(m(ρk)).

(37)

Again, the exact expressions of f and m are not necessary for the final result.

We define

ρn(t) = ρ[nt], V[nt] =
[nt]
n
, Wn(t) =

1√
n

[nt]−1∑
k=0

Xk+1.

Depending on which type of observable we consider, we obtain two different discrete
stochastic differential equations.

(1) In the case of a diagonal observable we have

ρn(t) = ρ0 +
[nt]−1∑
k=0

(
1
n

(L(ρk) + ◦(1)) +
1√
n

(N (ρk) + ◦(1))
1√
n
Xk+1

)

= ρ0 +
∫ t

0

L(ρn(s−))dVn(s) +
∫ t

0

1√
n
N (ρn(s−))dWn(s) + εn(t).

(2) In the same way, in the nondiagonal case we obtain

ρn(t) = ρ0 +
[nt]−1∑
k=0

(
1
n

(L(ρk) + ◦(1)) + (G(ρk) + ◦(1))
1√
n
Xk+1

)

= ρ0 +
∫ t

0

L(ρn(s−))dVn(s) +
∫ t

0

G(ρn(s−))dWn(s) + εn(t).

In these equations the terms εn(t) regroup the ◦(·) terms. The final results are
gathered in the following theorem (see [6] for a complete proof).

Theorem 3. (Limit model for usual indirect quantum measurement) Let B be
a diagonal observable. Let (ρn(t)) be the stochastic process defined from the dis-
crete quantum trajectory describing the quantum repeated measurement of B. This
stochastic process converges in distribution to the solution of the master equation

dρt = L(ρt)dt.

Let B be a nondiagonal observable. Let (ρn(t)) be the stochastic process defined
from the discrete quantum trajectory describing the quantum repeated measurement
of B. This stochastic process converges in distribution to the solution of the stochas-
tic differential equation

dρt = L(ρt)dt+ G(ρt)dWt,

where (Wt) is a standard Brownian motion.
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It is important to notice that for a diagonal observable we end up with a mas-
ter equation without random terms. In [26], at zero temperature, it is shown that
the limit evolution is described by a jump stochastic differential equation. Simi-
lar evolutions for diagonal observables will be recovered when we consider both
measurements. The discussion in Sec. 3 will turn around such results.

2.2.3. Continuous model of usual indirect quantum measurement
in random environment

This section contains the main result of the paper. To our knowledge, a random
environment model has never been considered before in the setup of indirect quan-
tum measurement (neither in discrete nor in the continuous case).

We treat separately the case of a diagonal observable and a nondiagonal observ-
able. We show that for a diagonal observable, we recover an evolution including
jump random times. The limit evolution is although different as the case of [26].

Let us start with the nondiagonal case. As in Sec. 2.2.2, we focus on the case

B = α0

(
1/2 1/2
1/2 1/2

)
+ α1

(
1/2 −1/2
−1/2 1/2

)
.

In this situation, the asymptotic form of Eq. (16) is given by

ρk+1 = ρk +
1
n

(L(ρk) + ◦(1)) +
1
n

(K(ρk) + ◦(1))Xk+1

+
1√
n

(−
√

1 − (1 − p)2(Cρk + ρkC
� − Tr[ρk(C + C�)]ρk))Y 0

k+1

+
1√
n

(
√

(1 − p2)(C�ρk + ρkC − Tr[ρk(C� + C)]ρk))Y 0
k+1. (38)

From Eq. (38), we want to derive a discrete stochastic differential equation. To this
aim, we define the processes

ρn(t) = ρ[nt],

Vn(t) =
[nt]
n
, Wn(t) =

1√
n

[nt]−1∑
k=0

Xk+1,

W 0
n(t) = − 1√

n

[nt]−1∑
k=0

Y 0
k+1, W 1

n(t) =
1√
n

[nt]−1∑
k=0

Y 1
k+1,

and the operators

Q(ρ) =
√

1 − (1 − p)2(Cρ+ ρC� − Tr[ρ(C + C�)]ρ), (39)

W(ρ) =
√

(1 − p2)(C�ρ+ ρC − Tr[ρ(C� + C)]ρ). (40)
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This way, the process (ρn(t)) satisfies the following discrete stochastic differential
equation

ρn(t) =
∫ t

0

L(ρn(s−))dVn(s) +
∫ t

0

1√
n
K(ρn(s−))dWn(s)

+
∫ t

0

Q(ρn(s−))dW 0
n(s) +

∫ t

0

W(ρn(s−))dW 1
n(s) + εn(t).

Heuristically, if we assume that

(Wn(t),W 0
n(t),W 1

n(t)) ⇒ (Wt,W
1
t ,W

2
t ),

where the processes (Wt) and (W 1
t ) and (W 2

t ) are independent Brownian motions,
the following theorem becomes natural (the rigorous proof is presented in Sec. 4).

Theorem 4. (Limit model for indirect quantum measurement of nondiagonal
observables in random environment) Let (ρn(t)) be the stochastic process defined
from the discrete quantum trajectory (ρk) which describes the repeated measure-
ment of a nondiagonal observable in random environment. Then the process (ρn(t))
converges in distribution to the solution of the stochastic differential equation

ρt = ρ0 +
∫ t

0

L(ρs)ds+
∫ t

0

Q(ρs)dW 1
s +

∫ t

0

W(ρs)dW 2
s , (41)

where (W 1
t ) and (W 2

t ) are two independent Brownian motions.

It is important to notice that we get two Brownian motions at the limit whereas
in Theorem 3 there is only one Brownian motion. We have already described a
situation where the random noise disappears.

Let us now deal with the diagonal case. In asymptotic form, Eq. (13) becomes

ρk+1 = ρk +
1
n

(L(ρk) + ◦(1)) +
1
n

(E(ρk) + ◦(1))Xk+1

+
(

CρkC
�

Tr[CρkC�]
− ρk + ◦(1)

)(
101 −

p

n
(Tr[CρkC

�] + ◦(1))
)

+
(

C�ρkC

Tr[C�ρkC]
− ρk + ◦(1)

)(
110 −

1 − p

n
(Tr[C�ρkC] + ◦(1))

)
. (42)

Such an equation can be written in the following way:

ρk+1 = ρk +
1
n

(L(ρk) + p(−CρkC
� + Tr[CρkC

�]ρk)

+ (1 − p)(−C�ρkC + Tr[C�ρkC]ρk) + ◦(1)) +
1
n

(E(ρk) + ◦(1))Xk+1

+
(

CρkC
�

Tr[CρkC�]
− ρk + ◦(1)

)
101 +

(
C�ρkC

Tr[C�ρkC]
− ρk + ◦(1)

)
110.

In order to define the discrete stochastic differential equation, we need to introduce
the operator

T (ρ) = L(ρ) + p(−CρC� + Tr[CρC�]ρ) + (1 − p)(−C�ρC + Tr[C�ρC]ρ)



October 20, 2009 15:44 WSPC/251-CM 00010

270 I. Nechita & C. Pellegrini

and the following processes

ρn(t) = ρ[nt], (43)

Vn(t) =
[nt]
n
, Wn(t) =

1√
n

[nt]−1∑
k=0

Xk+1, (44)

Ñ1
n(t) =

[nt]−1∑
k=0

101, Ñ2
n(t) =

[nt]−1∑
k=0

110. (45)

We obtain a discrete stochastic differential equation

ρn(t) = ρ0 +
∫ t

0

T (ρn(s−))dVn(s) +
∫ t

0

1√
n
E(ρn(s−))dWn(s)

+
∫ t

0

(
CρkC

�

Tr[CρkC�]
− ρk

)
Ñ1

n(s) +
∫ t

0

(
C�ρkC

Tr[C�ρkC]
− ρk

)
Ñ2

n(s). (46)

Let us motivate briefly what follows concerning the convergence of (Ñ1
n(t)) and

(Ñ2
n(t)) (this will be rigorously justified in Sec. 3). Let us deal with (Ñ1

n(t)) for
example. By definition of 101, we have


101(ωk+1, ϕk+1) = 1 with probability

1
n

(pTr[CρkC
�] + ◦(1)),

101(ωk+1, ϕk+1) = 0 with probability 1 − 1
n

(pTr[CρkC
�] + ◦(1)).

(47)

Hence, for a large n, the random variable 101 takes the value 1 with a low probability
and 0 with a high probability. This behavior is typical of the classical Poisson process
[38, 37]. Heuristically we can consider a counting process (Ñ1

t ) as the continuous
limit of (Ñ1

n(t)). Since a counting process is entirely determined by its intensity
([37, 31]), we can guess its intensity by computing E[Ñ1

n(t)]. We have

E[Ñ1
n(t)] =

[nt]−1∑
k=0

1
n
E[pTr[CρkC

�] + ◦(1)]

=
∫ t

0

E[pTr[Cρn(s−)C�]]dVn(s) + ε̃n(t). (48)

Assuming that the processes (Ñ1
n(t)) and (ρn(t)) converge, we get

E[Ñ1
t ] =

∫ t

0

E[pTr[Cρs−C�]]ds.

We thus define the limit process (Ñ1
t ) as a counting process with stochastic intensity

t →
∫ t

0
pTr[Cρs−C�]ds. In the same way, we assume that (Ñ2

n(t)) converges to a
counting process (Ñ2

t ) with stochastic intensity t→
∫ t

0
(1 − p)Tr[C�ρs−C]ds.
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The limit stochastic differential equation would then be

dρt = T (ρt−)dt+
(

Cρt−C�

Tr[Cρt−C�]
− ρt−

)
dÑ1

t +
(

C�ρt−C
Tr[C�ρt−C]

− ρt−

)
dÑ2

t .

(49)

From a mathematical point of view, the way of defining this equation is not abso-
lutely rigorous because the definition of the driving processes depends on the solu-
tion (ρt) (usually, in order to define solutions of a stochastic differential equation,
one needs to consider previously the driving processes).

A rigorous way to introduce this equation consists in defining it in terms of
two Poisson Point processes N1 and N2 on R

2 which are mutually independent
(see [26, 32]). More precisely, we consider the stochastic differential equation

ρt = ρ0 +
∫ t

0

T (ρs−)ds+
∫ t

0

∫
R

(
Cρs−C�

Tr[Cρs−C�]
− ρs−

)
10<x<p Tr[Cρs−C�]N

1(ds, dx)

+
∫ t

0

∫
R

(
C�ρs−C

Tr[C�ρs−C]
− ρs−

)
10<x<(1−p) Tr[C�ρs−C]N

2(ds, dx). (50)

This allows one to write the equation in an intrinsic way and, if (50) admits a
solution, we can define the processes

Ñ1
t =

∫ t

0

∫
R

10<x<p Tr[Cρs−C�]N
1(ds, dx) and

Ñ2
t =

∫ t

0

∫
R

10<x<(1−p) Tr[C�ρs−C]N
2(ds, dx).

(51)

We can now state the convergence theorem in this context.

Theorem 5. (Limit model for indirect quantum measurement of diagonal observ-
ables in random environment) Let N1 and N2 be two independent Poisson point
processes on R

2 defined on a probability space (Ω,F ,P). Let (ρn(t)) be the process
defined from the discrete quantum trajectory (ρk) which describes the measurement
of a diagonal observable A in a random environment. The stochastic process (ρn(t))
converges in distribution to the solution of the stochastic differential equation

ρt = ρ0 +
∫ t

0

T (ρs−)ds+
∫ t

0

∫
R

(
Cρs−C�

Tr[Cρs−C�]
− ρs−

)
10<x<p Tr[Cρs−C�]N

1(ds, dx)

+
∫ t

0

∫
R

(
C�ρs−C

Tr[C�ρs−C]
− ρs−

)
10<x<(1−p) Tr[C�ρs−C]N

2(ds, dx). (52)

Remark 5. It is not obvious that the stochastic differential equations (4) and (5)
admit a unique solution (even in the diffusive case, the coefficients are not Lipschitz
and the jump term can vanish). The uniqueness questions is treated in [25,26,32,31].
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Let us stress at this point that in this paper we have focused on the particu-
lar case E = C2. This case allows one to consider observables with two different
eigenvalues. In [27,6], situations with more than two eigenvalues are considered but
only when measurements are performed after the interactions. The statistical model
(Random environment) is not treated. Here, our aim was to compare the situation
with and without measurement before the interaction in order to emphasize the sit-
uations appearing in the case of random environment. The situation that we have
treated is sufficiently insightful to point out the differences between the statistical
model and the Gibbs model. Higher dimension can easily be treated by adapting
the presentation of this paper and the results of [27, 6]; the continuous evolutions
involve mixing between jump and diffusion evolution (see also [8, 22, 14] for other
references on such types of equations).

In the following section, we compare the different continuous stochastic master
equations in the different models of environment.

3. Discussion

The different models we have considered and the limiting continuous equations
that govern the dynamics are summed up in Table 1. Each cell of the table contains
the type of evolution equation in the zero temperature case (T = 0) and in the
positive temperature case (T > 0). Hence, in what follows, the parameter p, until
now supposed constant, will be allowed to vary. Continuous, master equations’
evolutions are denoted by Lp where p is the parameter related to the temperature
(T = 0 corresponds to p = 1). In these terms the two differential equation at T = 0
are given by

dρt = L1(ρt−)dt+
(

Cρt−C�

Tr[Cρt−C�]
− ρt−

)
(dÑt − Tr[Cρt−C�]dt), (53)

where (Ñt) is a counting process with stochastic intensity
∫ t

0
Tr[Cρs−C�]ds and

dρt = L1(ρt−)dt+ (Cρt + ρtC
� − Tr[ρt(C + C�)]ρt)dWt, (54)

where (Wt) is a Brownian motion.
Note that when no measurement is performed after the interaction (the “No

measurement” and “Before” columns), the type of the observable B is irrelevant.
Moreover, at zero temperature, the measurement before the interaction is irrelevant,

Table 1. Different models and the corresponding continuous behavior.

No measurement Before After Before & After

B diagonal T = 0 1J T = 0 1J
T = 0 L1 T = 0 L1 T > 0 Lp T > 0 2J

B non-diagonal T > 0 Lp T > 0 Lp T = 0 1D T = 0 1D
T > 0 1D T > 0 1D
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since the state of the system to be measured is an eigenstate of the observable. Hence
the last two columns contain identical information in the case T = 0.

The discussion that follows is meant to provide insight about this table and
on the different limit behaviors that appear. We shall try, as much as possible,
to provide physical explanations for the similarities and differences between the
different models treated in the present work.

3.1. Gibbs vs. statistical models at near zero temperatures

In order to emphasize the differences between the statistical model and the Gibbs
model, we investigate the stochastic equations when the parameter p goes to 1,
that is the temperature goes to zero (this fact is related to the assumption γ0 > γ1

in the description of the free Hamiltonian of E). In particular, we show that we
can recover the zero temperature case from the statistical model by considering the
limit p goes to 1, while it is not the case in the Gibbs model. This can be seen in
the case of a diagonal observable. At zero temperature for a diagonal observable,
the continuous model is given by the jump equation (53). In the Gibbs model, for
a diagonal observable, we get only the master equation dρt = Lp(ρt)dt. It is then
obvious that we do not recover Eq. (53) when we consider the limit p goes to one.
Concerning the statistical model, i.e. random environment, the limit equation is
given by

dρt = Lp(ρt−)dt+
(

Cρt−C�

Tr[Cρt−C�]
− ρt−

)
(dÑ1

t − pTr[Cρt−C�]dt)

+
(

C�ρt−C
Tr[C�ρt−C]

− ρt−

)
(dÑ2

t − (1 − p)Tr[C�ρt−C]dt), (55)

where (Ñ1
t ) is a counting process with stochastic intensity

∫ t

0
pTr[Cρs−C�]ds and

(Ñ2
t ) is a counting process with stochastic intensity

∫ t

0
(1−p)Tr[C�ρs−C]ds. Heuris-

tically, if we consider the limit p = 1, we get a counting process (Ñ2
t ) with an

intensity equal to zero and (Ñ1
t ) is a counting process with stochastic intensity∫ t

0
Tr[Cρs−C�]ds. As a consequence, we have that almost surely, for all t Ñ2

t = 0.
Hence, we recover Eq. (53) at the limit p = 1 (this result can be rigorously proved
by considering the limit p = 1 in the Markov generator see Sec. 4). Let us notice
that the limit p = 1 in the diffusive evolution allows to recover the model at zero
temperature for the diffusive evolution in both models (statistical and Gibbs).

3.2. Gibbs vs. statistical models: Absorption and

emission interpretation

In the preceding section, we have seen that the Gibbs model and the statistical
model give rather different continuous evolution equations, especially in the case
where a diagonal observable is measured. We are now going to provide a more
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complete interpretation of the Table 1. To this end, we shall concentrate on the
special case where H = E and

C =
(

0 0
1 0

)
.

This particular choice for the Hamiltonians is known as the dipole type interaction
model and it has the property that the interaction between the small system and
each copy of the chain is symmetric. This will allow us to give an interpretation of
the evolution of the small system in terms of emissions and absorption of photons.
In such a setup, we shall clearly identify and explain the differences between the
two models (Gibbs and statistical).

Let us start by commenting on the similarities between these models. If no
measure is performed after each interaction, we have seen that the limit evolution is
the same in both models. In particular, the randomness generated by the measure in
the statistical model disappears at the limit and we get a classical master equation.

The models become different when one considers a measurement, after each
interaction. As in the previous section, the differences are more significant in the
case where the measured observable B is diagonal. In order to illustrate the differ-
ences between the two models, we start by describing the trajectory of the solutions
of the jump equations and by explaining the apparition of jumps.

At zero temperature, the evolution equation (53) can be rewritten as

dρt = S1(ρt−)dt+
(

Cρt−C�

Tr[Cρt−C�]
− ρt−

)
dÑt (56)

by regrouping the dt terms. The solution of such a stochastic differential equation
can be described in the following manner. Let (Tn)n be the jump times of the
counting process (Ñt), that is Tn = inf{t/Ñt = n}. We have then

ρt =
∫ t

0

S1(ρs−)ds+
∞∑

k=0

(
CρTk−C

�

Tr[CρTk−C�]
− ρTk−

)
1Tk≤t. (57)

This expression is rigorously justified in [26]. What this means is that in the time
intervals between the jumps, the solution satisfies the ordinary differential equation
dρt = S1(ρt−)dt and at jump times its discontinuity is given by

ρTk
= ρTk− +

CρTk−C
�

Tr[CρTk−C�]
− ρTk− =

CρTk−C
�

Tr[CρTk−C�]
. (58)

In a similar fashion, the solution of Eq. (55) satisfies

ρt =
∫ t

0

Sp(ρs−)ds+
∞∑

k=0

(
CρT 1

k−C�

Tr[CρT 1
k−C�]

− ρT 1
k−

)
1T 1

k≤t

+
∞∑

k=0

(
C�ρT 2

k
−C

Tr[C�ρT 2
k−C]

− ρT 2
k−

)
1T 2

k≤t,
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where for i = 0, 1, the terms (T i
k) correspond to the jump times of the processes

(Ñ i
t ). Depending on the type of the jump, the discontinuity of the solution is

given by

ρT 1
k

=
CρT 1

k−C�

Tr[CρT 1
k−C�]

or ρT 2
k

=
C�ρT 2

k−C

Tr[C�ρT 2
k−C]

. (59)

Remark 6. Since the two Poisson point processes N1 and N2 are independent, on
the probability space (Ω,F ,P) supporting these two processes, we have

P[{ω ∈ Ω | ∃ k ∈ N, T 1
k (ω) = T 2

k (ω)}] = 0.

This means that a jump of type 1 cannot occur at the same time as a jump of
type 2. We shall see later on that this condition is also physically relevant.

An explicit computation with the particular value of C we considered gives

CρC�

Tr[CρC�]
=
(

1 0
0 0

)
= |e0〉〈e0| and

C�ρC

Tr[C�ρC]
=
(

0 0
0 1

)
= |e1〉〈e1|, (60)

for all states ρ.
In the setup with two possible jumps, depending on the type of jump, the state

of the small system after the jump is either the ground state or the excited state.
This has a clear interpretation in terms of the emission and absorption of photons.
At zero temperature, it is well known that Eq. (56) describes a counting photon
experiment [13, 7] and that the jump corresponds to the emission of a photon,
which will be detected by the measuring apparatus. In the case where two jumps
can occur, the same interpretation remains valid for type 1 jumps (emission of a
photon). After such an emission, the state of the small system is projected on the
ground state |e0〉〈e0|. Type 2 jumps are characterized by the fact that the state
of the small systems jumps to the excited state |e1〉〈e1|; this corresponds to the
absorption of a photon by the small system, which justifies its excitation. Note that
the impossibility of simultaneous jumps of the two types (see the above remark)
is physically justified by the fact that the small system cannot absorb and emit a
photon at the same time.

This interpretation has a clear meaning in the discrete model. Let us con-
sider the experimental setup in Fig. 1. This setup, with two measuring apparatus,
corresponds to the statistical model.

Fig. 1. Experimental setup.
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• At zero temperature, each copy of E is in the ground state |e0〉〈e0|. In this case, the
first measurement device will never click and only the result of the second appara-
tus is relevant. If, at the step k+1, the second apparatus does not click, the state
of the small system is given by ρk+1 = L00ρkL

�
00/Tr[L00ρkL

�
00]. In the asymptotic

regime, we get ρk+1 = ρk +1/nS1(ρk)+◦(1), which is an approximation of a con-
tinuous evolution. On the other hand, if the second apparatus clicks, then the evo-
lution is given by ρk+1 = L10ρkL

�
10/Tr[L10ρkL

�
10] = CρkC

�/Tr[CρkC
�] + ◦(1),

which corresponds to the emission of a photon. This corresponds to a jump, as
indicated by the result of the measurement.

• At positive temperature, both devices can click. If the first apparatus does not
click, the state of E before the interaction is |e0〉〈e0| and we have the same inter-
pretation of the second measurement as before. In the other case, a click for
the first measurement implies that the state of E is |e1〉〈e1|. Now, the interpre-
tation of the second measurement is the following. If we have a click, then the
evolution is continuous, and the absence of a click corresponds to a jump of
the form C�ρkC/Tr[C�ρkC] + ◦(1) (absorption of a photon). Let us stress that
this corresponds to the inverse of the situation where no click occurs at the first
measurement. The different cases are summarized in Table 2.

We are now in the position to explain the difference between the Gibbs and
the statistical models. In the statistical model, the first measurement allows us to
clearly identify if the small system absorbs or emits a photon. If we consider the
same experiment without the first measurement device, we obtain the Gibbs model.
In this setup, the information provided by the second apparatus is not sufficient to
distinguish between a continuous evolution, an absorption or an emission. Indeed,
as it has been pointed out in the above description, in order to have the exact
variations of the state of the small system, it is necessary to know if the state of E
is |e0〉〈e0| or |e1〉〈e1| before the interaction.

3.3. Unraveling

In order to conclude Sec. 3, we shall investigate an important physical feature called
unraveling. This concept is related with the possibility to describe the stochastic
master equations in terms of pure states. More precisely, an important category
of stochastic master equations preserve the property of being valued in the set
of pure states, that is if the initial state is pure, then, at all times, the state of
the small system will continue to be pure. This property is of great importance
for numerical simulations; indeed, less parameters are needed to describe a pure

Table 2. Physical interpretation of measurements.

App. A\App. B No click Click

No click Continuous Emission
Click Absorption Continuous
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state than an arbitrarily density matrix (for a K-dimensional Hilbert space, a pure
state is “equivalent” to a vector that is we need 2K − 1 real parameters, whereas
for a density matrix we need K2 such real coordinates). Since the expectation of
the solution of a stochastic master equation reproduces the solution of the master
equation, by taking the average of a large number of simulations of the stochastic
master equations we get a simulation of the master equation. An important gain of
simulation is obtained by the pure state property. This technique is called Monte
Carlo Wave Function Method.

When a stochastic master equation preserves the property of being a pure state,
it is said that the stochastic master equations gives an unraveling of the master equa-
tion (or unravels the master equation). In this setup, one can express a stochastic
differential equation for vectors in the underlying Hilbert space. This equation is
called stochastic Schrödinger equation. In this subsection, we want to show that the
continuous models obtained from the limits of the repeated measurements before
and after the interaction give rise to unraveling of the master equation for a heat
bath whereas the unraveling property is not satisfied if we consider the measure-
ment only after the interaction. Let us stress that at zero temperature, this property
has already been established in [25, 26] (the author do not refer to unraveling but
he shows that the stochastic master equations (53) and (54) preserve the property
of being valued in the pure states set).

In order to obtain the expression of the stochastic Schrödinger equation for
the heat bath, we show that the quantum trajectories can be expressed in terms
of pure states. To this end, we show that for all k, there exists a norm 1 vector
ψk ∈ H such that ρk = |ψk〉〈ψk|. Next, by considering the process ψ(n)

t and the
convergence when n goes to infinity, we get a stochastic differential equation for
norm one vectors in H. Following the form of observables, we obtain two types of
equations, which are equivalent of (53) and (54) (the equivalence is characterized
by the fact that a solution (ψt) of an equation for vectors allow to consider the
process (|ψt〉〈ψt|) which satisfies the corresponding stochastic master equation).

We proceed by recursion. Let assume that there exists ψk such that ρk =
|ψk〉〈ψk|. Let Qi be one of the eigenprojectors of the observable B which is
measured after the interaction. Since Qi is a one-dimensional projector, there
exists a norm 1 vector ϑi such that Qi = |ϑi〉〈ϑi|. For j ∈ {0, 1}, the transi-
tions between ρk+1 and ρk are given by the non-normalized operators ξk+1(ji) =
TrE [I ⊗QiU(ρk ⊗ |ej〉〈ej |)U�I ⊗Qi], for (i, j) ∈ {0, 1}2 and we have

ξk+1(ji) = TrE [I ⊗ |ϑi〉〈ϑi|U(|ψk〉〈ψk| ⊗ |ej〉〈ej |)U�I ⊗ |ϑi〉〈ϑi|]

= TrE


I ⊗ |ϑi〉〈ϑi|

∑
p,l

Lpl|ep〉〈el|(|ψk〉〈ψk| ⊗ |ej〉〈ej |)

×
∑
u,v

L�
uv|ev〉〈eu|I ⊗ |ϑi〉〈ϑi|



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= TrE


 ∑

p,l,u,v

Lpl|ψk〉〈ψk|L�
uv ⊗ |ϑi〉〈ϑi||ep〉〈el||ej〉〈ej ||ev〉〈eu||ϑi〉〈ϑi|




= TrE


I ⊗ |ϑi〉〈ϑi|

∑
p,l

Lpl|ep〉〈el|(|ψk〉〈ψk| ⊗ |ej〉〈ej |)

×
∑
u,v

L�
uv|ev〉〈eu|I ⊗ |ϑi〉〈ϑi|




= TrE

[∑
p,u

Lpj |ψk〉〈ψk|L�
uj ⊗ |ϑi〉〈ϑi||ep〉〈eu||ϑi〉〈ϑi|

]

= TrE

[∣∣∣∣∣
∑

p

〈ep;ϑi〉Lpjψk

〉〈∑
u

〈eu;ϑi〉Lujψk

∣∣∣∣∣ ⊗ |ϑi〉〈ϑi|
]

=

∣∣∣∣∣
∑

p

〈ep;ϑi〉Lpjψk

〉〈∑
u

〈eu;ϑi〉Lujψk

∣∣∣∣∣ . (61)

We can then define

ψk+1(ji) =

∑
p〈ep;ϑi〉Lpjψk

‖
∑

p〈ep;ϑi〉Lpjψk‖
1ji, (62)

which describes the evolution of the wave function of H. This equation is equivalent
to the discrete stochastic master equations in the sense that almost surely (with
respect to P) |ψk〉〈ψk| = ρk, for all k. Let us stress that, here, the normalizing fac-
tor ‖

∑
p〈ep;ϑi〉Lpjψk‖ appearing in the quotient is not the probability of outcome.

Indeed, the probability of outcome is ‖
∑

p〈ep;ϑi〉Lpjψk‖2. Now, we can investi-
gate the continuous limit of this equation by applying the asymptotic assumptions
described in Sec. 2. Depending on the form of the observable B, we obtain two
different kinds of equations:

• A jump equation (B diagonal)

ψt = ψ0 +
∫ t

0

Fp(ψs−)ds+
∫ t

0

∫
R

(
Cψs−√
µs−

− ψs−

)
10<x<pµs−N

1(dx, ds)

+
∫ t

0

∫
R

(
C�ψs−√
νs−

− ψs−

)
10<x<(1−p)νs−N

2(dx, ds), (63)

where

Fp(ψs−) = p

(
−iH0 −

1
2
(C�C − µs−I)

)
ψs−

+ (1 − p)
(
−iH0 −

1
2
(CC� − νs−I)

)
ψs− (64)

and µs− = 〈ψs−, C�Cψs−〉 and νs− = 〈ψs−, CC�ψs−〉.
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• A diffusive equation (B nondiagonal)

ψt = ψ0 +
∫ t

0

Gp(ψs)ds+
∫ t

0

√
1 − (1 − p2)(C − κsI)ψsdW

1
s

+
∫ t

0

√
(1 − p2)(C� − ζsI)ψsdW

2
s , (65)

where

Gp(ψs) = p

(
−iH0 −

1
2
(C�C − 2κsC + κ2

sI)
)
ψs

+ (1 − p)
(
−iH0 −

1
2
(CC� − 2ζsC� + ζ2

s I)
)
ψs, (66)

with κs = Re(〈ψs, Cψs〉) and ζs = Re(〈ψs, C
�ψs〉).

By applying the Itô rules in stochastic calculus, we can make the following obser-
vation which establishes the connection between the equations for vectors and the
equations for states. Let (ψt) be the solution of Eq. (63) (respectively (65)), then
almost surely |ψt〉〈ψt| = ρt, for all t ≥ 0, where (ρt) is the solution of (52) in The-
orem 5 (respectively (41) in Theorem 4). Such considerations are the continuous
equivalent of the remark following Eq. (62).

In other words, the description of the evolution of the system H in the setup
with both measurements can be described in terms of pure states. A key property
for unraveling is that

dE[|ψt〉〈ψt|] = Lp(E[|ψt〉〈ψt|])dt, (67)

for any solutions of (63) or (65).

4. Proofs of Theorems 4 and 5

The last section of the paper is devoted to showing that discrete quantum trajecto-
ries in random environment converge to solutions of stochastic differential equations
(41) and (52). We proceed in the following way.

In a first step, we justify rigorously the form of the stochastic differential equa-
tions provided in Theorems 4 and 5. Starting with the description of discrete quan-
tum trajectories in terms of Markov chains, we can define the so-called discrete
Markov generators of these Markov chains. These generators depend naturally on
the parameter n of the length of interaction. When n goes to infinity, the limit of
the discrete Markov generators gives rise to infinitesimal generators. Next, these
limit generators can be naturally associated with problems of martingale [31, 30].
The solution of martingale problems associated with these generators (see Defini-
tion 1 below) can then be expressed in terms of solutions of particular stochastic
differential equations. We show that the appropriate equations are the same as the
ones in Theorems 4 and 5. This justifies the heuristic presentation of (41), (52) in
Sec. 2.2.3.
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This first step provides actually the convergence of finite-dimensional laws of the
discrete quantum trajectories to the continuous one. Finally, in a second step, we
prove the total convergence in distribution by showing that the discrete quantum
trajectories own the property of tightness (see [29, 33]).

4.1. Convergence of Markov generators and martingale problems

Let us start by defining the infinitesimal generator of a discrete quantum trajectory.
Let B = α0Q0 +α1Q1 be an observable where Qi = (qi

kl). Let (ρk) be any quantum
trajectory describing the measurement of the observableA in a random environment
with initial state ρ0. Using the Markov property (Proposition 2 in Sec. 1.2.2) of (ρk)
on (Ω,Λ,P), we can consider the process (ρn(t)) which satisfies

P[ρn(0) = ρ] = 1,

P
[
ρn(t) = ρk

∣∣∣k
n
≤ t <

k + 1
n

]
= 1 for all k, (68)

P[ρk+1 ∈ B|ρk = ρ] = Π(ρ,B) for all Borel sets B,

where Π is the transition function of the Markov chain (ρk). More precisely, the
transition function Π is defined, for all Borel sets B, by

Π(ρ,B) = pTr[G00(ρ)]δh0(ρ)(B) + pTr[G01(ρ)]δh1(ρ)(B)

+ (1 − p)Tr[G10(ρ)]δg0(ρ)(B) + (1 − p)Tr[G11(ρ)]δg1(ρ)(B),

where, for i = 0, 1, we recall that

G0i(ρ) = qi
00L00ρL

�
00 + qi

10L00ρL
�
10 + qi

01L10ρL
�
00 + qi

11L10ρL
�
10

G1i(ρ) = qi
00L01ρL

�
01 + qi

10L01ρL
�
11 + qi

01L11ρL
�
01 + qi

11L11ρL
�
11 (69)

hi(ρ) =
G0i(ρ)

Tr[G0i(ρ)]
and gi(ρ) =

G1i(ρ)
Tr[G1i(ρ)]

.

It is worth noticing that the transition function Π is defined on the set of states.
The discrete Markov generator of the Markov process (ρn(t)) is defined as

Anf(ρ) = n

∫
E

(f(µ) − f(ρ))Π(ρ, dµ),

where E denotes the set of states and f is any function of class C2 with compact
support. The set of such functions is denoted by C2

c (E). In our situation, for all
f ∈ C2

c (E), we have

Anf(ρ) = n(pTr[G00(ρ)](f(h0(ρ)) − f(ρ)) + pTr[G01(ρ)](f(h1(ρ)) − f(ρ))

+ (1 − p)Tr[G10(ρ)](f(g0(ρ)) − f(ρ))

+ (1 − p)Tr[G11(ρ)](f(g1(ρ)) − f(ρ))). (70)

Now, we can implement the asymptotic assumptions (25) introduced at the begin-
ning of Sec. 2 and we can consider the limit of An when n goes to infinity. In a
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similar way as Sec. 2.2.3, the result is divided into two parts depending on the form
of the observable B.

Proposition 4. Let An be the infinitesimal generator of the discrete quantum
trajectory describing the measurement of a diagonal observable. We have for all
f ∈ C2

c (E)

lim
n→∞ sup

ρ∈E
‖Anf(ρ) −Ajf(ρ)‖ = 0, (71)

where Aj is an infinitesimal generator defined, for all f ∈ C2
c (E), by

Ajf(ρ) = Dρf(L(ρ))+
[
f

(
CρC�

Tr[CρC�]

)
−f(ρ) −Dρf

(
CρC�

Tr[CρC�]
− ρ

)]
pTr[CρC�]

+
[
f

(
C�ρC

Tr[C�ρC]

)
− f(ρ) −Dρf

(
C�ρC

Tr[C�ρC]
− ρ

)]
(1 − p)Tr[C�ρC].

(72)

Let An be the infinitesimal generator of the discrete quantum trajectory describ-
ing the measurement of the nondiagonal observable

B = α0

(
1/2 1/2
1/2 1/2

)
+ α1

(
1/2 −1/2
−1/2 1/2

)
.

We have for all f ∈ C2
c (E)

lim
n→∞ sup

ρ∈E
‖Anf(ρ) −Adf(ρ)‖ = 0, (73)

where Ad is an infinitesimal generator defined, for all f ∈ C2
c (E), by

Adf(ρ) = Dρf(L(ρ)) +
1
2
D2

ρf(Q(ρ),Q(ρ)) +
1
2
D2

ρf(W(ρ),W(ρ)),

where Q and W are defined by the expressions (39) and (40).

We do not provide the proof of this proposition (similar computations are
presented in great detail in [27]). Now, we can introduce the martingale problem
associated with the limit generators of the above Proposition 4. To this aim, we
denote (Fµ

t ), the filtration generated by a process (µt), where Fµ
t = σ(µs, s ≤ t)

for all t ≥ 0.

Definition 1. Let (Ω,F ,P) be a probability space. Let i ∈ {j, d} and let ρ0 be
a state on E. A solution associated with the problem of martingale (Ai, ρ0) is a
process (ρi

t) such that, for all f ∈ C2
c , the process (M i

t (f)) defined by

M i
t (f) = f(ρi

t) − f(ρ0) −
∫ t

0

Aif(ρi
s)ds

is a (Fρi

t ) martingale with respect to P.
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Usually, solutions of stochastic differential equations are used to solve the problems
of martingale [31,30]. In our context, we recover the stochastic differential equations
(41), (52) introduced in Theorems 4 and 5. Let us start by the nondiagonal case.

Theorem 6. (Solution of the problem of martingale for a nondiagonal observ-
able) Let (Ω,F ,P) be a probability space which supports two independent Brownian
motions (W 1

t ) and (W 2
t ). Let Ad the infinitesimal generators corresponding to the

discrete quantum trajectory describing the measurement of

A = λ0

(
1/2 1/2
1/2 1/2

)
+ λ1

(
1/2 −1/2
−1/2 1/2

)
.

Let (ρ0) be any state. The solution of the problem of martingale associated to
(Ad, ρ0) is given by the solution of the following stochastic differential equation:

ρt = ρ0 +
∫ t

0

L(ρs)ds+
∫ t

0

Q(ρs)dW 1
s +

∫ t

0

W(ρs)dW 2
s . (74)

The equivalent theorem in the diagonal observable case is expressed as follows.

Theorem 7. (Solution of the problem of martingale for a diagonal observable) Let
(Ω,F ,P) be a probability space which supports two independent Poisson Point Pro-
cess N1 and N2. Let Aj the infinitesimal generators corresponding to the discrete
quantum trajectory describing the measurement of a diagonal observable. Let ρ0 be
any state. The solution of the problem of martingale associated to (Aj , ρ0) is given
by the solution of the following stochastic differential equation

ρt = ρ0 +
∫ t

0

T (ρs−)ds+
∫ t

0

∫
R

(
Cρs−C�

Tr[Cρs−C�]
− ρs−

)
10<x<p Tr[Cρs−C�]N

1(ds, dx)

+
∫ t

0

∫
R

(
C�ρs−C

Tr[C�ρs−C]
− ρs−

)
10<x<(1−p) Tr[C�ρs−C]N

2(ds, dx). (75)

These theorems can be proved by using Itô stochastic calculus (see [27] for explicit
computations).

In order to complete the study of the limit infinitesimal generators, we express
a uniqueness theorem of solutions for the problems of martingale. Moreover, this
result is essential to prove the final convergence theorem.

Proposition 5. Let (ρ0) be a state and let Ai, i = 0, 1 be a generator defined
in Proposition 5. The problem of martingale (Ai, ρ0) admits a unique solution in
distribution. It means that two solutions of the martingale problem (Ai, ρ0) have
the same law.

This proposition is actually a consequence of the uniqueness of solution for
the stochastic differential equation associated with Ai. Complete reference about
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Markov generators and problems of martingales (uniqueness, existence) can be
found in [30].

The next section contains the final convergence result.

4.2. Tightness property and convergence result

We prove that discrete quantum trajectories (ρn(t)) have the tightness property
(also called relative compactness for stochastic processes). Next, we show that the
convergence result of Markov generators (Proposition 4) implies the convergence
of finite-dimensional laws. The tightness property and the finite-dimensional laws
convergence imply then the convergence in distribution for stochastic processes [29].

Concerning the tightness property, we have the following result.

Proposition 6. (Tightness) Let (ρn(t)) be any quantum trajectory describing the
repeated quantum measurement of an observable A (diagonal or not). There exists
some constant Z such that for all t1 < t < t2

E[‖ρn(t2) − ρn(t)‖2‖ρn(t) − ρn(t1)‖2] ≤ Z(t1 − t2)2. (76)

As a consequence, the sequence of discrete processes (ρn(t)) is tight.

In order to see that the property (76) implies the tightness property, the reader
can consult [29]. Before proving Proposition 6, we need the following lemma.

Lemma 1. Let (ρk) be the Markov chain describing the discrete quantum trajectory
defined by the repeated quantum measurement of an observable A. Let

M(n)
r = σ{ρj , j ≤ r},

and let (r, l) ∈ N2 such that r < l. Then there exists a constant KA such that

E[‖ρl − ρr‖2/M(n)
r ] ≤ KA × l − r

n
.

Proof. We just treat the case where B is diagonal (similar reasoning yield the
nondiagonal case). Let us start with the term defined by E[‖ρl − ρr‖2/M(n)

l−1].
We have

E[‖ρl − ρr‖2/M(n)
l−1] = E



∥∥∥∥∥
∑

i

φi(ρl−1)1l+1
0i +

∑
i

θi(ρl−1)1l+1
1i − ρr

∥∥∥∥∥
2 /

M(n)
l−1




= E

[∑
i

‖φi(ρl−1) − ρr‖2pTr[G0i(ρl−1)]

/
M(n)

l−1

]

+E

[∑
i

‖θi(ρl−1) − ρr‖2(1 − p)Tr[G1i(ρl−1)]

/
M(n)

l−1

]
.

(77)
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With the asymptotic description of φi and θi, we have for the first term on the right
of expression (77)

E

[∑
i

‖φi(ρl−1) − ρr‖2pTr[G0i(ρl−1)]

/
M(n)

l−1

]

= E

[∥∥∥∥ρl−1 +
1
n

(L0(ρl−1) + ◦(1)) − ρr

∥∥∥∥
2

× p

(
1 − 1

n
(Tr[Cρl−1C

�] + ◦(1))
)/

M(n)
l−1

]

+E

[
‖f2(ρl−1) − ρr‖2 p

n
(Tr[Cρl−1C

�] + ◦(1))

/
M(n)

l−1

]

≤ pE[‖ρl−1 − ρr‖2
/
M(n)

l−1] +
1
n
× E

[∥∥∥∥ 1
n
L0(ρl−1) + ◦(1)

∥∥∥∥
2

× p

(
1 − 1

n
(Tr[Cρl−1C

�] + ◦(1))
)/

M(n)
l−1

]

+
1
n
× E[‖f2(ρl−1) − ρr‖2(Tr[Cρl−1C

�] + ◦(1))
/
M(n)

l−1].

As the discrete quantum trajectory (ρk) takes values in the set of states which is
compact and as the function defined on the set of state ρ �→ f2(ρ)(Tr[CρC�]+◦(1))
is continuous, there exists a constant Z1 such that, almost surely

E

[∑
i

‖φi(ρl−1) − ρr‖2pTr[G0i(ρl−1)]

/
M(n)

l−1

]

≤ pE[‖ρl−1 − ρr‖2
/
M(n)

l−1] +
Z1

n
. (78)

In the same way there exists a constant Z2 such that

E

[∑
i

‖θi(ρl−1) − ρr‖2pTr[G1i(ρl−1)]

/
M(n)

l−1

]

≤ (1 − p)E[‖ρl−1 − ρr‖2
/
M(n)

l−1] +
Z2

n
. (79)

Finally, for an appropriate constant Z, we have almost surely

E[‖ρl − ρr‖2
/
M(n)

l−1] ≤ E[‖ρl−1 − ρr‖2
/
M(n)

l−1] +
Z

n
. (80)

As a consequence, by remarking that

E[‖ρl − ρr‖2
/
M(n)

r ] = E[E[‖ρl − ρr‖2
/
M(n)

l−1]
/
M(n)

r ]

by induction, we have

E[‖ρl − ρr‖2
/
M(n)

r ] ≤ KA
l− r

n
.
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In the nondiagonal case, the computation and estimation are similar and the
lemma holds.

Proposition 6 follows from this lemma.

Proof. (Proposition 6) Thanks to Lemma 1, for all quantum trajectories (ρn(t)),
we have:

E[‖ρn(t2) − ρn(t)‖2‖ρn(t) − ρn(t1)‖2]

= E[E[‖ρn([nt2]) − ρn([nt])‖2/M(n)
[nt]]‖ρn([nt]) − ρn([nt1])‖2]

≤ KA([nt2] − [nt])
n

E[E[‖ρn([nt]) − ρn([nt1])‖2/Mn
[nt1]

]]

≤ KA([nt2] − [nt])
n

KA([nt] − [nt1])
n

≤ ZA(t2 − t1)2,

with ZA = 4(KA)2 and the result follows.

Since the tightness property holds, it remains to prove that the finite-
dimensional laws converge. This result follows from the following proposition.

Proposition 7. Let ρ0 be a state. Let (ρn(t)) be a quantum trajectory describing a
repeated quantum measurement of an observable A. Let Ai, i = 0, 1 be the associated
Markov generator, we have

lim
n→∞E

[(
f(ρn(t+ s)) − f(ρn(t)) −

∫ t+s

t

Aif(ρn(s))
) m∏

i=1

θi(ρn(ti))

]
= 0 (81)

for all m ≥ 0, for all 0 ≤ t1 < t2 < · · · < tm ≤ t < t+s, for all functions (θi)i=1,...,m

and for all f in C2
c .

Proof. Let (ρn(t)) be any discrete quantum trajectory and Ai the associated gen-
erator. Let (F (n)

t ) denote the natural filtration of the process (ρn(t)), that is

(F (n)
t ) = σ{ρn(s), s ≤ t} = M(n)

[nt].

For m ≥ 0, 0 ≤ t1 < t2 < · · · < tm ≤ t < t+ s and f, θ1, . . . , θm ∈ C2
c , we have

E

[(
f(ρn(t+ s)) − f(ρn(t)) −

∫ t+s

t

Aif(ρn(s))
) m∏

i=1

θi(ρn(ti))

]

= E

[
E

[(
f(ρn(t+ s)) − f(ρn(t)) −

∫ t+s

t

Aif(ρn(s))
)/

Fn
t

]

×
m∏

i=1

θi(ρn(ti))

]
. (82)
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Let us now estimate the term E[(f(ρn(t + s)) − f(ρn(t) −
∫ t+s

t Aif(ρn(s))))/Fn
t ].

To this end, from the definition of infinitesimal generators, we can notice that the
discrete process defined for all n by

f(ρn(k/n)) − f(ρ0) −
k−1∑
j=0

1
n
Ai

nf(ρn(j/n)) (83)

is a (Fn
k/n)-martingale (this is the discrete equivalent of solutions for problems of

martingale for discrete processes).
Now, assuming r/n ≤ t < (r + 1)/n and l/n ≤ t + s < (l + 1)/n, we have

Fn
t = Fn

r/n. The random states ρn(t) and ρn(t + s) satisfy then ρn(t) = ρn(r/n)
and ρn(t+ s) = ρn(l/n). The martingale property (83) then implies

E[f(ρn(t+ s)) − f(ρn(t)/Fn
t ]

= E[f(ρn(l/n)) − f(ρn(k/n))/Fn
r/n]

= E


 l−1∑

j=k

1
n
Ai

nf(ρn(j/n))

/
Fn

r/n




= E

[∫ t+s

t

Ai
nf(ρn(s))ds

/
Fn

t

]

+E

[(
t− r

n

)
Ai

nf(ρn(t)) +
(
l

n
− (t+ s)

)
Ai

nf(ρn(t+ s))

/
Fn

t

]
. (84)

As a consequence, we have∣∣∣∣∣E
[(

f(ρn(t+ s)) − f

(
ρn(t) −

∫ t+s

t

Aif(ρn(s))
)) m∏

i=1

θi(ρn(ti))

]∣∣∣∣∣
≤ E

[∣∣∣∣
∫ t+s

t

Ai
nf(ρn(s)) −Aif(ρn(s))ds

∣∣∣∣
] m∏

i=1

‖θi‖∞

+E
[∣∣∣∣
(
t− [nt]

n

)
Anf(ρn(t))

+
(

[n(t+ s)]
n

− (t+ s)
)
Ai

nf(ρn(t+ s))
∣∣∣∣
] m∏

i=1

‖θi‖∞

≤ M sup
ρ∈S

|Ai
nf(ρ) −Aif(ρ)| + L

n
sup
ρ∈S

|Ai
nf(ρ)|, (85)

where M and L are constants depending on ‖hi‖ and s. Thanks to the condition
of uniform convergence from Proposition 2, we obtain

lim
n→∞

∣∣∣∣∣E
[(

f(ρn(t+ s)) − f(ρn(t)) −
∫ t+s

t

Aif(ρn(s))
) m∏

i=1

θi(ρn(ti))

]∣∣∣∣∣ = 0. (86)



October 20, 2009 15:44 WSPC/251-CM 00010

Quantum Trajectories in Random Environment 287

We finish by showing that Propositions 6 and 7 imply the convergence in distri-
bution. Indeed the tightness property, which is equivalent to relative compactness
for the Topology of Skorohod [33, 29], implies that all converging subsequence of
(ρn(t)) converges in distibution to the solution of the problem martingale (Ai, ρ0).
In other terms, let (Yt) be a limit process of a subsequence of (ρn(t)), Proposition 7
implies that

E

[(
f(Yt+s) − f(Yt) −

∫ t+s

t

Aif(Ys)ds
) m∏

i=1

θi(Yti)

]
= 0, (87)

for all m ≥ 0, for all 0 ≤ t1 < t2 < · · · < tm ≤ t < t+s, for all functions (θi)i=1,...,m

and for all f in C2
c . As a consequence (Yt) is a Markov process (with respect to its

natural filtration (FY
t )), which is also a solution of the martingale problem (Ai, ρ0).

Now, the uniqueness of the solution of the problem of martingale (Proposition 5)
allows to conclude that the discrete quantum trajectory converges in distribution
to the solution of the problem of martingale.
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