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1. Introduction

The notion of a Zariski geometry was introduced in [3] as a model-theoretic gener-
alisation of objects of algebraic geometry and compact complex manifolds.

The main result of [3] was the classification of nonlinear (nonlocally modular)
irreducible Zariski geometries of dimension one. The initial hope that every such
geometry is definably isomorphic to an algebraic curve over an algebraically closed
field F had to be corrected in the course of the study. The final classification theorem
states that given a nonlinear irreducible one-dimensional Zariski geometry M there
is an algebraically closed field F definable in M and an algebraic curve C over F
such that M is a finite cover of C(F ), that is there is a Zariski continuous map
p : M → C(F ) which is a surjection with finite fibres.

The paper [3] also provides a class of examples that demonstrates that in general
we cannot hope to reduce p to a bijection. Given a smooth algebraic curve C with a
big enough group G of regular automorphisms with a nonsplitting finite extension
G̃, one can produce a “smooth” irreducible Zariski curve C̃ along with a finite cover
p : C̃ → C and G̃ its group of Zariski-definable automorphisms.

Typically C̃ cannot be identified with any algebraic curve because G̃ is
not embeddable into the group of regular automorphisms of an algebraic curve
([3], Sec. 10).

Taking into account known reductions of covers we can say that the above
construction of C̃ is essentially the only way to produce a nonclassical Zariski
curve. In other words, a general Zariski curve essentially looks like C̃ above.
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A simple example of an unusual group G̃ for such a C̃, used in [3], is the class-
2-nilpotent group of two generators u and v with the central commutator [u,v]
of finite order N. The correspondent G is then the free Abelian group on two
generators. One can identify this G̃ as the quotient of the integer Heisenberg group
H3(Z) by the subgroup of its centre of index N.

Also, since the group of regular isomorphisms of the smooth curve C must be
infinite, we have very little freedom in choosing C; it has to be either the affine line
over F, or the torus F∗, or an elliptic curve.

This paper undertakes the case study of the geometries of the corresponding C̃
for C an algebraic torus and an affine line.

The most comprehensive modern notion of a geometry is based on the consid-
eration of a coordinate algebra of the geometric object. The classical meaning of a
coordinate algebra comes from the algebra of coordinate functions on the object,
that is, in our case, functions ψ : C̃(F ) → F of a certain class. The most natural
algebra of functions seems to be the algebra F [C̃] of Zariski continuous (definable)
functions. But by the virtue of the construction F [C̃] is naturally isomorphic to
F [C], the algebra of regular functions on the algebraic curve C, that is the only
geometry which we see by looking into F [C̃] is the geometry of the algebraic curve
C. To see the rest of the structure we had to extend F [C̃] by introducing semi-
definable functions, which satisfy certain equations but are not uniquely defined by
these equations. The F -algebra of H(C̃) of semi-definable functions contains the
necessary information about C̃ but is not canonically defined. On the other hand,
it is possible to define an F -algebra A(C̃) of linear operators on H(C̃) in a canonical
way, depending on C̃ only. We proceed with this construction for both examples
and write down explicit lists of generators and defining relations for algebras A(C̃).
One particular type of a semi-definable function which we call ∗-functions, of a
clearly non-algebraic nature, plays a special role. The ∗-function induces an invo-
lution ∗ on A. We show, for F = C, that A thus gets the structure of a ∗-algebra,
that is the involution ∗ associates with any X ∈ A its formal adjoint operator X∗

satisfying usual formal requirements. Moreover, there is an A-submodule of H(C̃)
with an inner product for which ∗ does indeed define adjoint operators.

Our first main theorem states that there is a reverse canonical construction
which recovers C̃ from the algebra A uniquely. The points of C̃ correspond to one-
dimensional eigenspaces (states) of certain self-adjoint operators, relations on C

correspond to ideals of Cartesian powers of a commutative subalgebra of A and
operations u and v correspond naturally to actions of certain operators of A on the
states. This scheme is strikingly similar to the operator representations of quantum
mechanics. Note that this construction is similar but not identical with the one we
used in [7].

The final section of the paper concentrates on understanding the limit of the
structures C̃ = C̃N , depending on N by the construction of G̃, as N tends to
infinity. Among many possible ways to define the notion of the limit we found
metric considerations most relevant. It turns out possible, when F = C, to consider
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metric on each C̃N and to use correspondingly the notion of Hausdorff limit. Our
main result in this section states that, for both types of examples, the Hausdorff
limit C̃∞ of C̃N , as N tends to infinity, is the structure identified as the principal
U(1)-bundle over a Riemann surface with u and v defining a connection (covariant
derivative) on the bundle. In physicists’ terminology this is a gauge field with a
connection of nonzero curvature (see e.g. [1] or [5]).

Combining with the results of the previous section one could speculate that C̃N

are quantum deformations of the classical structure on C̃∞, and conversely, the
latter is the classical limit of the quantum structures.

2. Non-Algebraic Zariski Geometries

2.0.1. The definitions on Zariski geometries in this section are all from [6].

Theorem 1. There exists an irreducible pre-smooth Zariski structure (in particular
of dimension 1) which is not interpretable in an algebraically closed field.

The construction

Let M = (M, C) be an irreducible pre-smooth Zariski structure, ZAutM the
group of Zariski-continuous bijections of M, G ≤ ZAutM a subgroup acting freely
on M and, for some G̃ with a finite subgroup H ≤ G̃,

1 → H → G̃
pr→ G→ 1,

a short exact sequence.
Consider a set X ⊆M of representatives of G-orbits: for each a ∈M, G ·a ∩X

is a singleton.
Consider the formal set

M̃(G̃) = M̃ = G̃×X

and the projection map

p : (g, x) �→ pr(g) · x.
Consider also, for each f ∈ G̃ the function

f : (g, x) �→ (fg, x).

We have thus obtained the structure

M̃ = (M̃, {f}f∈G̃ ∪ p−1(C))

on the set M̃ with relations induced from M together with maps {f}f∈G̃. We
set the closed subsets of M̃n to be exactly those which are definable by positive



July 5, 2010 13:46 WSPC/S1793-7442 251-CM S1793744210000181

268 B. Zilber

quantifier-free formulas with parameters. Obviously, the structure M and the map
p : M̃ →M are definable in M̃. Since, for each f ∈ G̃,

∀ v, pf(v) = fp(v)

the image p(S) of a closed subset S ⊆ M̃n is closed in M. We define dimS :=
dimp(S).

Lemma 1. The isomorphism type of M̃ is determined by M and G̃ only. The
theory of M̃ has quantifier elimination. M̃ is an irreducible pre-smooth Zariski
structure.

Proof. One can use obvious automorphisms of the structure to prove quantifier
elimination. The statement of the claim then follows by checking the definitions.
The detailed proof is given in [3] Proposition 10.1.

Lemma 2. Suppose H does not split, that is for every proper G0 < G̃

G0 ·H 
= G̃.

Then, every equidimensional Zariski expansion M̃′ of M̃ is irreducible.

Proof. Let C = M̃ ′ be an |H |-cover of the variety M, so dimC = dimM and C

has at most |H | distinct irreducible components, say Ci, 1 ≤ i ≤ n. For generic
y ∈M the fibre p−1(y) intersects every Ci (otherwise p−1(M) is not equal to C).

Hence H acts transitively on the set of irreducible components. So, G̃ acts
transitively on the set of irreducible components, so the setwise stabiliser G0 of C1

in G̃ is of index n in G̃ and also H ∩G0 is of index n in H. Hence,

G̃ = G0 ·H, with H � G0

contradicting our assumptions.

Lemma 3. G̃ ≤ ZAut M̃, that is G̃ is a subgroup of the group of Zariski-continuous
bijecions of M̃.

Proof. Immediate by construction.

Lemma 4. There is an integer µ such that given a rational or elliptic curve M
(over an algebraically closed field F of characteristic zero) a subgroup G of the
group of birational automorphisms of M and H and G̃ as above, with G nilpotent,
without normal Abelian subgroups G0 ≤ G̃ such that

|G̃ : G0| < µ.

Then M̃ is not interpretable in an algebraically closed field.
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Proof. Assume that M̃ is definable in an algebraically closed field F ′. Then F

is definable in F ′. The latter is known (B. Poizat) to imply that F ′ is definably
isomorphic to F, so we may assume that F ′ = F.

Also, since dim M̃ = dimM = 1, it follows that M̃, up to finitely many points,
is in a bijective definable correspondence with a smooth projective algebraic curve,
say C = C(F ), and every bijection f ∈ G̃ on M̃ induces a birational transformation
on C. Every birational transformation of a smooth projective algebraic curve C(F )
has a unique extension to a regular automorphism of C(F ), so G̃ is embedded into
the group of regular automorphisms of C(F ).

The automorphism group of a curve is finite if genus of the curve is 2 or higher,
so we can have only rational or elliptic curve for C.

Consider first the case when C is rational, that is C is a projective line. The
group of regular automorphisms of C(F ) then is PGL(2, F ). Since G̃ is nilpotent,
by the well-known fact of the theory of linear groups [M ], for some positive integer
µ0, which does not depend on F , the group G̃ must have a normal unipotent (hence
Abelian) subgroup of index less than µ0. If we choose µ ≥ µ0, this contradicts the
assumptions of the lemma.

In case C is an elliptic curve, the group of automorphisms is a semidirect prod-
uct of a finitely generated Abelian group (the group of “complex multiplications”)
acting freely on the Abelian group of the elliptic curve. This group has no nilpotent
non-Abelian subgroups. This finishes the proof of Lemma 4.

In general it is harder to analyse the situation when dimM > 1 since the
group of birational automorphisms is not so immediately reducible to the group of
biregular automorphisms of a smooth variety in higher dimensions. But nevertheless
the same method can prove the useful fact that the construction produces examples
essentially of non-algebro-geometric nature.

Proposition 1. Suppose M is an Abelian variety without complex multiplication,
H does not split and G̃ is nilpotent non-Abelian. Then M̃ cannot be an algebraic
variety with p : M̃ →M a regular map.

Proof. If M is an Abelian variety and M̃ were algebraic, the map p : M̃ → M

has to be unramified since all its fibres are of the same order (equal to |H |). Hence
M̃ being a finite unramified cover must have the same universal cover as M. So,
M̃ must be an Abelian variety as well. The group of automorphisms of an Abelian
variety without complex multiplication is the canonical Abelian group of the variety.
The contradiction.

Proposition 2. Suppose M is an F -variety and, in the construction of M̃, the
group G̃ is finite. Then M̃ is definable in any expansion of the field F by a total
linear order.

In particular, if M is a complex variety, M̃ is definable in the reals.
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Proof. Extend the ordering of F to a linear order of M and define

X := {x ∈M : x = min G · x}.
The rest of the construction of M̃ is definable.

Problem. (i) Classify Zariski structures definable in the reals.
(ii) Classify Zariski structures definable in the reals as a smooth real manifold.
(iii) Find new Zariski structures definable in Ran as a smooth real manifold.

3. Examples

Let N be a positive integer and F an algebraically closed field of characteristic
prime to N. Consider the groups given by generators and defining relations,

G = 〈u, v : uv = vu〉,
G̃ = G̃N = 〈u,v : [u, [u,v]] = [v, [u,v]] = 1 = [u,v]N 〉,

where [u,v] stands for the commutator vuv−1u−1.

We will consider two examples of the construction of a one-dimensional M̃ from
an algebraic curve M using the groups G and G̃. By Sec. 2, G is going to be a
subgroup of the group of rational automorphisms of M, so M has to be of genus
0 or 1. In our examples M is the algebraic torus F ∗ and the affine line F.

3.1. The N-cover of the affine line

3.1.1. We assume here that the characteristic of F is 0.

Let a, b ∈ F be additively independent.
G acts on F :

ux = a+ x, vx = b+ x.

Taking M to be F this determines, by Sec. 2, a presmooth non-algebraic Zariski
curve M̃ which from now on we denote PN , and PN will stand for the universe of
this structure.

The correspondent definition for the covering map p : M̃ → M = F then
gives us

p(ut) = a+ p(t), p(vt) = b+ p(t). (1)

3.1.2. Semi-definable functions on PN

Lemma. Let ε be a primitive root of 1 of order N. There are functions y and z

PN → F

satisfying the following functional equations, for any t ∈ PN ,

yN (t) = 1, y(ut) = εy(t), y(vt) = y(t), (2)

zN (t) = 1, z(ut) = z(t), z(vt) = y(t) · z(t). (3)
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Proof. Choose a subset S ⊆ M = F of representatives of G-orbits, that is F =
G+ S. By the construction in Sec. 2 we can identify PN = M̃ with G̃ × S in such
a way that p(g, s) = pr(g) + s. This means that, for any s ∈ S, a t in G̃ · s is of the
form t = umvn[u,v]� · s and

p(umvn[u,v]� · s) := ma+ nb+ s.

Set

y(umvn[u,v]� · s) : = εm,

z(umvn[u,v]� · s) : = εl.

This satisfies (2) and (3).

Remark. Notice that it follows from (1)–(3):

(a) p is surjective and N -to-1, with fibres of the form

p−1(λ) = Ht, H = {[u,v]� : 0 ≤ l < N}.
(b) y([u,v]t) = y(t),
(c) z([u,v]t) = εz(t).

3.1.3. Denote F [N ] = {ξ ∈ F : ξN = 1} and define the band function on F as a
function bd : F → F [N ].

Set for λ ∈ F

bd(λ) = y(t), if p(t) = λ,

This is well defined by the remark in Sec. 3.1.2.
Acting by u on t and using (1) and (2) we have

bd(a+ λ) = εbd λ. (4)

Acting by v we obtain

bd(b + λ) = bd λ. (5)

Remark. In a more general context we are going to call the band function and the
angular function of the next section ∗-functions, explaining the reasons for this in
Sec. 3.1.6.

Proposition. The structure PN is definable in

(F,+, ·, bd).

Proof. Set

PN = F × F [N ] = {〈x, ε�〉 : x ∈ F, � = 0, . . . , N − 1}



July 5, 2010 13:46 WSPC/S1793-7442 251-CM S1793744210000181

272 B. Zilber

and define the maps

p(〈x, ε�〉) := x, u(〈x, ε�〉) := 〈a+ x, ε�〉), v(〈x, ε�〉) := 〈b+ x, ε�bd(x)〉.
One checks easily that the action of G̃ is well-defined and (1) holds.

Remark. One can easily define in (F,+, ·, bd) functions p,y and z satisfying (2)
and (3)

Assuming that F = C and for simplicity that a ∈ iR and b ∈ R, both nonzero,
we may define, for z ∈ C,

bd z := exp
(

2πi
N

[
Re
(
z

a

)])
([Re( z

a )] stands for the entire part of Re( z
a )).

This satisfies (4) and (5) and so PN over C is definable in C equipped with the
measurable but not continuous function bd z above.

Question. Does there exist a supersimple structure of the form (F,+, ·, bd) satis-
fying (4) and (5)?

3.1.4. The space of semi-definable functions

Let H be an F -algebra containing all the functions PN → F which are definable in
the expansion of PN by y and z.

The term semi-definable corresponds to the fact that y and z are chosen to
satisfy certain functional equations which do not determine these uniquely. On the
other hand, these functional equations is all we need to know about these functions.

We define linear operators X, Y, Z, U and V on H :

X : ψ(t) �→ p(t) · ψ(t),
Y : ψ(t) �→ y(t) · ψ(t),
Z : ψ(t) �→ z(t) · ψ(t),
U : ψ(t) �→ ψ(ut),
V : ψ(t) �→ ψ(vt).

(6)

Denote G̃∗ the group generated by the operators U, V, U−1, V−1, denote Xε

(or simply X) the F -algebra F [X,Y,Z] and Aε (or simply A) the extension of the
F algebra Xε by G̃∗. We let E to stand for VUV−1U−1.

Lemma. The generators of Aε satisfy the following relations.

XY = YX;XZ = ZX;YZ = ZY;
YN = 1;ZN = 1;
UX −XU = aU;VX − XV = bV;
UY = εYU;YV = VY;
ZU = UZ;
VZ = YZV;
UE = EU;VE = EV;EN = 1.

(7)
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Proof. Immediate from (6), (1), (2) and (3).

While elements of H and H as a whole are not uniquely defined, we prove in
Sec. 3.1.6 that A is exactly the algebra of operators on H generated by X,Y,Z,U
and V satisfying the defining relations (7).

We prove below, in the theorem of Sec. 3.1.5, that the algebra determined by
the relations (7) is exactly A and so the definition of A does not depend on the
arbitrariness in the construction of H.

3.1.5. Let Max(X) be the set of isomorphism classes of one-dimensional irreducible
X-modules.

Lemma 5. Max(X) can be represented by one-dimensional modules 〈eµ,ξ,ζ〉 (eµ,ξ,ζ

generating the module) for µ ∈ F, ξ, ζ ∈ F [N ], defined by the action on the gener-
ating vector as follows:

Xeµ,ξ,ζ = µeµ,ξ,ζ , Yeµ,ξ,ζ = ξeµ,ξ,ζ , Zeµ,ξ,ζ = ζeµ,ξ,ζ .

Proof. This is a standard fact of commutative algebra.

Remark. We can find some of the eµ,ξ,ζ in H, which by definition contains the
following delta-functions, for any t ∈ PN ,

δt(s) =
{

1, if t = s;
0, otherwise.

One checks that

Xδp = p(t) · δt, Yδt = y(t) · δt, Zδt = z(t) · δt.
That is, up to a scalar, we get δt = ep(t),y(t),z(t) in this way.

Assuming F is endowed with a fixed function bd : F → F [N ], we call 〈µ, ξ, ζ〉
as above real oriented if

bdµ = ξ.

Correspondingly, we call the module 〈eµ,ξ,ζ〉 real oriented if 〈µ, ξ, ζ〉 is.
Max+(X) will denote the subspace of Max(X) consisting of real oriented modules

〈eµ,ξ,ζ〉.
Lemma 6. 〈µ, ξ, ζ〉 is real oriented if and only if

〈µ, ξ, ζ〉 = 〈p(t),y(t), z(t)〉,
for some t ∈ PN . Such a t is unique.

Proof. It follows from the definition of bd that 〈p(t),y(t), z(t)〉 is real oriented.
Assume now that 〈µ, ξ, ζ〉 is real oriented. Since p is a surjection, there is t′ ∈ PN

such that p(t′) = µ. By the definition of bd, y(t′) = bdµ. By the remark in Sec. 3.1.2
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both values stay the same if we replace t′ by t = [u,v]k t′. By the same remark, for
some k, z(t) = ζ.

Now we introduce an infinite-dimensional A-module HR. As a vector space HR

is spanned by

{eµ,ξ,ζ : µ = p(t), ξ = y(t), ζ = z(t), for t ∈ PN}.
The action of the generators of A on HR is defined on eµ,ξ,ζ. The action of X, Y
and Z is already defined, so we need only to define the action of U and V.

Since we may identify ep(t),y(t),z(t) = δt, we have by definitions

Uep(t),y(t),z(t) = Uδt = δt(us) = δu−1t = ep(u−1t),y(u−1t),z(u−1t),

Vep(t),y(t),z(t) = Vδt = δt(vs) = δv−1t = ep(v−1t),y(v−1t),z(v−1t).

Equivalently,

Ueµ,ξ,ζ := eµ−a,ε−1ξ,ζ

and

Veµ,ξ,ζ := eµ−b,ξ,ξ−1ζ .

From now on we identify Max+(X) with the family of one-dimensional
X-eigenspaces of HR.

Theorem 2. (i) There is a bijective correspondence Ξ : Max+(X) → PN between
the set of X-eigensubspaces of HR and PN .

(ii) The action of G̃∗ on HR induces an action on Max+(X) → Max+(X). The cor-
respondence Ξ transfers anti-isomorphically the natural action of G̃∗ on Max+(X)
to a natural action of G̃ on PN .

(iii) The map

pX : 〈eµ,ξ,ζ〉 �→ µ

is an N -to-1-surjection Max+(X) → F such that(
Max+(X),U,V,pX, F

) ∼=ξ (PN ,u,v,p, F ) .

(iv) The action of the algebra A on HR are faithful, that is an operator T of the
algebra annihilates HR if and only if T = 0.
(v) A is represented by defining relations (7).

Proof. (i) Immediate by Lemma 6.
(ii) Indeed, by the definition above the action of U and V corresponds to the action
on real oriented N -tuples:

U : 〈p(t),y(t), z(t)〉 �→ 〈p(t) − a, ε−1y(t), z(t)〉 = 〈p(u−1t),y(u−1t), z(u−1t)〉,
V : 〈p(t) − b,y(t),y(t)−1z(t)〉 �→ 〈p(v−1t),y(v−1t), z(v−1t)〉.
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(iii) Immediate from (i) and (ii).
(iv) Using the relations (7) we can represent

T =
∑
i∈I

ciXi1Yi2Zi3Ui4Vi5Ei6 (8)

for some finite I ⊂ Z6, i = 〈i1 . . . i6〉 and ci ∈ C.
Given an element eµ,ξ,ζ of the basis, the action of T on it produces

Teµ,ξ,ζ =
∑
i∈I

ciXi1Yi2Zi3eµ(i),ξ(i),ζ(i),

where

eµ(i),ξ(i),ζ(i) = Ui4Vi5Ei6eµ,ξ,ζ

is a basis element by definition of the action of U and V, moreover one can check
that eµ(i),ξ(i),ζ(i) are distinct for distinct Ui4Vi5Ei6 .

Since the basis elements are eigenvectors of X, Y and Z

Teµ,ξ,ζ =
∑
i∈I

ci · di(µ, ξ, ζ)eµ(i),ξ(i),ζ(i)

for some nonzero di(µ, ξ, ζ) ∈ C.
Now assume that T annihilates HR. Then the right-hand side of the above must

be zero and by linear independence all ci · di(µ, ξ, ζ) = 0, which can only happen if
all ci = 0 and T = 0.
(v) Let B be the algebra given by the abstract generators X,Y,Z,U,V,U−1,V−1

satisfying the relations (7). Every element T of this algebra can be represented in
the form (8). Let π : B → A be the obvious homomorphism onto A. Suppose there
is an element T of the algebra B such that π(T ) = 0. T can be represented in the
form (8). By (iv) all the coefficients ci must be zero, so T = 0. This proves that π
is an isomorphism.

3.1.6. ∗-representation

Our aim here is to introduce a natural ∗-algebra structure on A. Recall that a
C-algebra A is called a ∗-algebra if there is a map ∗ : A → A (taking adjoints)
satisfying the following properties: for all X,Y ∈ A:

(1) (X∗)∗ = X,

(2) (XY )∗ = Y ∗X∗,
(3) (X + Y )∗ = X∗ + Y ∗,
(4) for every λ ∈ C and every X ∈ A:

(λX)∗ = λX∗.

Of course, this definition is inherently linked with the real–complex structure
of C, which one would not expect to interact well with a ω-stable structure. In



July 5, 2010 13:46 WSPC/S1793-7442 251-CM S1793744210000181

276 B. Zilber

our case the ∗-structure results from the ∗-data we identified while representing
PN in Sec. 3.1.3–3.1.5, namely the band function bd and the basis {eµ,ξ,ζ} of HR.

We tend to think of an operator X as self-adjoint, that is X∗ = X, if for any
eigenvalue x of X, bd x = 1 (compare this with the remark about bd at the end of
Sec. 3.1.3). We think of the basis {eµ,ξ,ζ} as an orthonormal one. Multiplications by
roots of unity preserves orthonormality. Correspondingly, a unitary operator is the
one which transforms this orthonormal basis to an orthonormal one. In particular,
U, V, Y and Z should be assumed unitary. These are the principles that induce
our definitions below.

We will assume F = C and find a ∗-algebra structure on an extension A# of A,
so A is a subalgebra of a ∗-algebra, but not necessarily a ∗-algebra itself.

We will also assume a = 2πi/N = ε, b ∈ R and start by extending the space H
of semi-definable functions with a function w : PN → C such that

expw = y, w(ut) =
2πi
N

+ w(t), w(vt) = w(t).

We can easily do this by setting as in Sec. 3.1.2

w(umvn[u,v]� · s) :=
2πim
N

.

Now we extend A to A# by adding the new operator

W : ψ �→ wψ

which obviously satisfies

WX = XW, WY = YW, WZ = ZW.

UW =
2πi
N

+ WU, VW = WV.

We set

U∗ := U−1, V∗ := V−1, Y∗ = Y−1,

Z∗ := Z−1, W∗ := −W, X∗ := X − 2W,

implying that U,V,Y and Z are unitary and iW and X − W are formally self-
adjoint.

Lemma. There is a representation of A# in an inner product space such that U,V
and Y act as unitary and iW and X− W as self-adjoint operators.

Proof. Let H0
R be the inner product space spanned (finite sums) by vectors eµ,ξ,ζ ,

assumed to be an orthonormal system, such that

µ = x+
2πik
N

, ξ = e
2πik

N , ζ = e
2πim

N , for x ∈ R, k,m ∈ Z. (9)

One checks that H0
R is closed under the action of A defined in Sec. 3.1.5, that is

H0
R is an A-module. We also define the action by W

W : eµ,ξ,ζ �→ 2πik
N

eµ,ξ,ζ
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for µ = x + 2πik/N. This obviously agrees with the defining relations of A#. So
H0

R is an A#-module.
Now U,V,Y and Z are unitary operators on H0

R since they transform the
orthonormal basis into an orthonormal one. iW and X − W are self-adjoint
since their eigenvalues on the orthonormal basis are the reals − 2πk

N and x,

correspondingly.

Corollary. The ∗-operation on the generators of A# defined above extends uniquely
to ∗-operation on the whole A# and (A#, ∗) satisfies all the identities of a C-algebra
with adjoints. Moreover, since A# has a faithful representation on an inner product
space we can introduce the usual operator norm on A# with Y,Z,W,U and V
bounded operators and X unbounded.

Remark 1. Our choice of the ∗-structure on A# has been motivated by

(i) the need to encode the fact that the relevant eµ,ξ,ζ must be “real oriented”,
that is bdµ = ξ;

(ii) the natural interpretation of the band function and the related function w (for
a ∈ iR and b ∈ R and N → ∞) as functions indicating when µ is “almost
real”. More precisely, as remarked in Sec. 3.1.3 bd can be interpreted, for
a = 2πi/N, b ∈ R, as

bd(x+ 2πiy) = exp 2πi
[yN ]
N

,

where x, y ∈ R, and [yN ] is the entire part of yN. Since [yN ]/N converges to y the
condition bdµ = 1 says that µ is “almost real”.

Remark 2. The natural interpretation of the band function is used in Sec. 4 to
obtain “the classical limit” P∞ of the PN .

Comments. (1) We have seen that in the representation HR the eµ,ξ,ζ are eigen-
vectors of the self-adjoint operator X − W. So in physics jargon 〈eµ,ξ,ζ〉 would be
called states.
(2) The discrete nature of the imaginary part of µ in (9) is necessitated by two
conditions: the interpretation of ∗ as taking adjoints and the noncontinuous form of
the band function. The first condition is crucial for any physical interpretation and
the second one follows from the description of the Zariski structure PN . Comparing
this with the real differentiable structure P∞ constructed in Sec. 4 as the limit of
the PN , we suggest to interpret the latter along with its representation via A in
this section as the quantisation of the former.

3.2. The algebraic torus case

3.2.1. Let F be an algebraically closed field of any characteristic prime to N and
a, b ∈ F ∗ be multiplicatively independent.
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G acts on F ∗ :

ux = ax, vx = bx.

TakingM to be F ∗ this determines, by Sec. 2, a presmooth non-algebraic Zariski
curve M̃ which from now on we denote TN .

The correspondent definition for the covering map p : M̃ = TN → M = F ∗

then gives us

p(ut) = ap(t), p(vt) = bp(t). (10)

We also note that there exists the well-defined function p′ : TN → F given by

p′(t)p(t) = 1. (11)

For the rest of the section fix ε to be a primitive root of unity of order N, α =
a1/N and β = b1/N , roots of a and b of order N.

3.2.2. Semi-definable functions in TN

Lemma. There exist functions

x,x′,y : TN → F

satisfying the following functional equations, for any t ∈ TN ,

xN (t) = p(t), x(ut) = αx(t), x(vt) = βy(t)x(t), (12)

x(t)x′(t) = 1, (13)

yN (t) = 1, y(ut) = εy(t), y(vt) = y(t). (14)

Proof. Choose a subset S ⊆ F∗ of representatives of G-orbits, that is F = G · S.
By the construction in Sec. 2.0.1 we can identify TN = M̃ with G̃ × S in such a
way that p(γs) = pr(γ) · s. This means that, for any s ∈ S and t ∈ G̃ · s of the form
t = umvn[u,v]� · s,

p(umvn[u,v]� · s) := am · bn · s.
Fix (randomly) a root s1/N of order N for each s ∈ S. Set

x(umvn[u,v]� · s) := αm · βn · ε−�s
1
N .

Set also

y(umvn[u,v]� · s) := εm.

This satisfies (12)–(14).

Remark. Notice that it follows from (12) and (14) that
x([u,v]t) = ε−1x(t),
y([u,v]t) = y(t).
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3.2.3. Define the angular function on F as a function ang : F → F [N ].
Set for λ ∈ F

ang(λ) = y(t), if p(t) = λ.

This is well defined by the remark in Sec. 3.2.2.
Acting by u on t and using (10) and (14) we have

ang(aλ) = ε angλ. (15)

Acting by v we obtain

ang(bλ) = angλ. (16)

Proposition. The structure TN is definable in

(F,+, ·, ang).

Indeed, set TN = F ∗ and define the maps

p(t) := tN

and

u(t) := αt, v(t) := ang(tN )βt.

One checks easily that

vu(t) = ε · uv(t)

and so the action of G̃ is well-defined and (10) holds.

Remark 3. Assuming that F = C and ε = exp(2πi/N), let for an r ∈ R,

a = exp
(

2πi
N

+ r

)
, and b ∈ R+, b 
= 1.

Then we may define, for z ∈ C,

ang z := exp
(

2πi
N

[
N

2π
arg z

])
.

This is a well-defined function satisfying also (15) and (16), and so TN over C is
definable in C equipped with the measurable but not continuous function above.

It is also interesting to remark that, for this angular function,∣∣∣∣ arg z − 2π
N

[
N

2π
arg z

]∣∣∣∣ ≤ 2π
N

and so ang z converges uniformly on z to exp(i arg z) as N tends to ∞.

Remark 4. In the context of noncommutative geometry it is interesting to see
whether there exists an abstract, model-theoretic interpretation of ang which allows
a measure theory for the semi-definable functions introduced above. David Evans
proved the following theorem.
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Theorem. ([2]) The class of fields (F,+, ·, ang) of a fixed characteristic endowed
with a function ang satisfying (15) and (16) has a model companion, which is a
supersimple theory. The models of the theory allow a nontrivial finite measure such
that all definable sets are measurable.

3.2.4. The space of semi-definable functions and the operator algebra

Let H be an F -algebra containing all the functions TN → F which are definable in
TN expanded by x and y.

We define linear operators X,X−1,Y, U and V on H :

X : ψ(t) �→ x(t) · ψ(t),
X−1 : ψ(t) �→ x′(t) · ψ(t),
Y : ψ(t) �→ y(t) · ψ(t),
U : ψ(t) �→ ψ(ut),
V : ψ(t) �→ ψ(vt).

(17)

Denote G̃∗ the group generated by the operators U, V, U−1, V−1, denote Xε the
F -algebra F [X,X−1,Y] and Aε (or simply A) the extension of the F algebra Xε

by G̃∗.
The generators of the algebra Aε obviously satisfy the following relations, for E

standing for VUV−1U−1.

XY = YX;
YN = 1; XX−1 = 1;
XU = α−1UX;
XV = β−1Y−1VX;
YU = ε−1UY;
YV = VY;
UE = EU;VE = EV;EN = 1.

(18)

By the argument in Theorem 2(iv) and (v), the algebra determined by the
relations (18) is exactly A and so the definition of A does not depend on the
arbitrariness in the construction of H.

3.2.5. Let Max(X) be the set of isomorphism classes of one-dimensional irreducible
X-modules.

Lemma 7. Max(X) can be represented by one-dimensional modules 〈eµ,ξ〉
(= Feµ,ξ) for µ ∈ F, ξ ∈ F [N ], defined by the action on the corresponding gen-
erating vector:

Xeµ,ξ = µeµ,ξ, Yeµ,ξ = ξeµ,ξ.

Proof. This is a standard fact of commutative algebra.
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Assuming F is endowed with an angular function ang, we call 〈µ, ξ〉 as above
positively oriented if

angµN = ξ.

Correspondingly, we call the X-module (state) 〈eµ,ξ〉 positively oriented if 〈µ, ξ〉 is.
H+

0 will denote the linear space spanned by the positively oriented states 〈eµ,ξ〉.
Lemma 8. 〈µ, ξ〉 is positively oriented if and only if

〈µ, ξ〉 = 〈x(t),y(t)〉,
for some t ∈ T. Such a t is unique.

Proof. Indeed, since p is a surjection, there is t′ ∈ T such that p(t′) = µN .

Hence, by the definition of x(t′) and ang(t′) we have x(t′) = εkµ, y(t′) = ξ, for
some k. By the remark in Sec. 3.2.2 we have x([u,v]kt′) = ε−kx(t′) = µ and
y([u,v]kt′) = y(t′) = ξ. So t = [u,v]kt′ is as required.

Remark. It is immediate from the lemma and Remark 3 that all the positively
oriented eµ,ξ are represented by the delta-functions δt, t ∈ TN .

Using the representation of the eµ,ξ by the delta-functions and the action of U
and V on the space of functions defined in (17) we get

Ueµ,ξ := eν,ζ , with ν = αµ, ζ = ε−1ξ

and

Veµ,ξ := eν,ζ , with ν = βξ−1µ, ζ = ξ.

We denote H+
0 the linear space spanned by all the positively oriented eµ,ξ, and

denote Max+(X) the family of one-dimensional positively oriented X-eigenspaces of
H+

0 or states as such things are referred to in physics literature.

Theorem 3. (i) There is a bijective correspondence Ξ : Max+(X) → TN between
the set of positively oriented states and TN .

(ii) The action of G̃∗ on H leaves H+
0 and Max+(X) setwise invariant. The corre-

spondence Ξ transfers anti-isomorphically the natural action of G̃∗ on Max+(X) to
the natural action of G̃ on TN .

(iii) The map

pX : 〈eµ,ξ〉 �→ µN

is an N -to-1-surjection Max+(X) → F such that(
Max+(X),U,V,pX, F

) ∼=Ξ (TN ,u,v,p, F ).

(iv) The action of the algebra A on H+
0 are faithful, that is an operator T of the

algebra annihilates H+
0 if and only if T = 0.

(v) A is represented by defining relations (18).
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Proof. (i) Immediate by Lemma 8.
(ii) Indeed, by the definition above the action of U and V corresponds to the action
on positively oriented pairs:

u : ex(t),y(t) �→ U−1ex(t),y(t) = eαx(t),εy(t) = ex(ut),y(ut),

v : ex(t),y(t) �→ V−1ex(t),y(t) = eβy(t)x(t), y(t) = ex(vt),y(vt).

(iii), (iv) and (v). Same as for Theorem 2 in Sec. 3.1.5.

3.2.6. ∗-structure

We add to Sec. 3.2.2 the new semi-definable function w satisfying, for some δ, such
that δN = ε,

y = wN , w(ut) = δw(t), w(vt) = y(t)−1w(t).

In accordance with Sec. 3.2.2 we can define

w(umvn[u,v]l) = δmεl.

Now we introduce

ˆang x := w(t), for x = x(t).

Since x is a bijection, this is well defined on F. Moreover, using the unique repre-
sentation

x = x(umvn[u,v]l) = αmβnε−ls1/N

of Sec. 3.2.2 we have

ˆang(αmβnε−ls
1
N ) = δmεl.

Taking a = ερ, ρ ∈ R+ (positive reals), ρ 
= 1, as suggested in Sec. 3.2.3, and
α−1δ ∈ R+, we have

ˆang(αx) = δ ˆang x, ˆang(βx) = ˆang x.

Extend the list of operators on H to include

W : ψ �→ w · ψ.
Obviously W commutes with X. As in Sec. 3.2.5 denote eµ,w an eigenvector of X
and W with eigenvalues µ and w correspondingly. The action of U and V is defined
on eµ,w similarly to Sec. 3.2.5:

U : eµ,w �→ eα−1µ, δ−1w,

V : eµ,w �→ eβ−1w−Nµ,w1−N .
(19)

Consider the algebra A as a ∗-algebra with the condition that XW−1 is self-
adjoint and W, U and V are unitary.
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Set

W∗ := W−1, U∗ := U−1, V∗ := V−1

that is define these operators as unitary. Set

X∗ := W−1XW−1 = XW−2,

so

(XW−1)∗ = W∗−1X∗ = WX∗ = XW−1

that is XW−1 is self-adjoint.

Lemma. There is an inner product space H+ with the faithful action of A on it
such that ∗ corresponds to taking adjoint operators.

Proof. Consider H+ ⊆ H generated by all eµ,w satisfying the condition

µ · w−1 ∈ R+, w = exp
2πik
N2

, for k ∈ Z. (20)

We introduce the inner product in H+ assuming the eµ,w to form an orthonormal
basis.

Now, by definition XW−1 acts as a positive self-adjoint operator

XW−1 : eµ,w �→ µw−1eµ,w.

W acts as unitary since w is a root of unity.
H+ is closed under U and V since α−1µδw−1 and β−1µδw−1 are in R+.

The fact that the action is faithful is essentially proved in Theorem 3.

Comment. Using the representation on H+ one can clearly interpret the angular
function ˆangµ as exp argµ, for µ satisfying (20). For general µ we can use the
interpretation as in Sec. 3.2.3:

ˆangµ = exp
2πi
N2

[
N2

2π
argµ

]
,

where [r] stands for the integer part of a real number r. Of course, we stress again
that ˆangµ is very well approximated by exp argµ:∣∣∣∣2πiN2

[
N2

2π
argµ

]
− argµ

∣∣∣∣ ≤ 2π
N2

.

In other words, the condition on the states being positively oriented in Theo-
rem 3 is similar to conditions usually stated in terms of C∗-algebras. This must
justify the name ∗-functions for ang, ˆang and bd.

4. The Metric Limit

Our aim in this section is to find an interpretation of the limit, as N tends to
∞, of structures TN and PN in “classical” terms. “Classical” here is supposed to
mean “using function and relations given in terms of real manifolds and analytic
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functions”. Of course, we have to define the meaning of the “limit” first. We found
a satisfactory solution to this problem in case of PN which is presented below.

4.0.1. First we want to establish a connection of the group G̃N with the integer
Heisenberg group H(Z) which is the group of matrices of the form

1 k m

0 1 l

0 0 1


 (21)

with k, l,m ∈ Z. More precisely, G̃N is isomorphic to the group

H(Z)N = H(Z)/N.Z,

where N.Z is the central subgroup

N.Z =




1 0 Nm

0 1 0
0 0 1


 : m ∈ Z


 .

Similarly the real Heisenberg group H(R) is defined as the group of matrices of
the form (21) with k, l,m ∈ R. The analogue (or the limit case) of H(Z)N is the
factor-group

H(R)∞ := H(R)

/1 0 Z

0 1 0
0 0 1


 .

In fact there is the natural group embedding

iN :


1 k m

0 1 �

0 0 1


 �→




1 k√
N

m
N

0 1 �√
N

0 0 1




inducing the embedding H(Z)N ⊂ H(R)∞.
Notice the following

Lemma 9. Given the embedding iN for every 〈u, v, w〉 ∈ H(R)∞ there is
〈 k√

N
, �√

N
, m

N 〉 ∈ iN (H(Z)N ) such that

∣∣∣∣u− k√
N

∣∣∣∣+
∣∣∣∣v − �√

N

∣∣∣∣+
∣∣∣∣w − m

N

∣∣∣∣ < 3√
N
.

In other words, the distance (given by the sum of absolute values) between any
point of H(R)∞ and the set iN(H(Z)N ) is at most 3/

√
N. Obviously, also the
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distance between any point of iN (H(Z)N ) and the set H(R)∞ is 0, because of the
embedding. In other words, this defines that the Hausdorff distance between the two
sets is at most 3/

√
N.

In situations when the pointwise distance between sets M1 and M2 is defined,
we also say that the Hausdorff distance between two L-structures on M1 and M2

is at most α if the Hausdorff distance between the universes M1 and M2 as well as
between R(M1) and R(M2), for any L-predicate or graph of an L-operation R, is
at most α.

Finally, we say that an L-structure M is the Hausdorff limit of L-structures
MN , N ∈ N, if for each positive α there is N0 such that for all N > N0 the distance
between MN and M is at most α.

Remark. The notion of limit that we use differs from the very similar and now
standard notion of the Gromov–Hausdorff limit in that we do not require that
our metric spaces be compact. This can be amended by choosing an appropriate
compactification of the spaces involved.

Lemma 10. The group structure H(R)∞ is the Hausdorff limit of its substructures
H(Z)N , where the distance is defined by the embeddings iN .

Proof. Lemma 1 proves that the universe of H(R)∞ is the limit of the cor-
responding sequence. Since the group operation is uniformly continuous in the
topology determined by the distance, the graphs of the group operations converge
as well.

4.0.2. Given nonzero real numbers a, b, c the integer Heisenberg group H(Z) acts
on R3 as follows:

〈k, l,m〉〈x, y, s〉 = 〈x+ ak, y + bl, s+ acky + abcm〉, (22)

where 〈k, l,m〉 is the matrix (21).
We can also define the action of H(Z) on C×S1, equivalently on R×R×R/Z,

as follows:

〈k, l,m〉〈x, y, exp 2πis〉 = 〈x+ ak, y + bl, exp 2πi(s+ acky + abcm)〉, (23)

where x, y, s ∈ R.
In the discrete version intended to model Sec. 3.1.1 we consider q/N, q ∈ Z, in

place of s ∈ R and take a = b = 1/
√
N, c = 1. We replace (23) by

〈k, l,m〉〈x, y, e 2πiq
N 〉 =

〈
x+

k√
N
, y +

�√
N
, exp 2πi

q + k[y
√
N ] +m

N

〉
. (24)



July 5, 2010 13:46 WSPC/S1793-7442 251-CM S1793744210000181

286 B. Zilber

Check that this is still an action:

〈k′, �′,m′〉
(
〈k, �,m〉

〈
x, y, exp

2πiq
N

〉)

= 〈k′, �′,m′〉
〈
x+

k√
N
, y +

�√
N
, exp 2πi

q + k[y
√
N ] + m

N

〉

=

〈
x+

k√
N

+
k′√
N
, y +

�√
N

+
�′√
N
,

exp 2πi
q + k[y

√
N ] + m + k′[(y + �√

N
)
√
N ] + m′

N

〉

=

〈
x+

k + k′√
N

, y +
� + �′√
N

, exp 2πi
q + (k + k′)[y

√
N ] + k′l + m + m′

N

〉

= (〈k′, l′,m′〉〈k, l,m〉)
〈
x, y, exp

2πiq
N

〉
.

Moreover, we may take m modulo N in (24), that is 〈k, l,m〉 ∈ H(Z)N , and simple
calculations similar to the above show the following:

Lemma 11. The formula (24) defines the free action of H(Z)N on R×R×exp 2πi
N Z

(equivalently on C × exp 2πi
N Z).

We think of 〈x, y, exp 2πiq
N 〉 as an element t of PN (see Sec. 3.1.1), x + iy as

p(t) ∈ C. The actions x + iy �→ a + x + iy and x + iy �→ x + i(y + b) are obvious
rational automorphisms of the affine line C.

We interpret the action of 〈1, 0, 0〉 and 〈0, 1, 0〉 by (24) on C×exp 2πi
N Z as u and

v correspondingly. Then the commutator [u,v] corresponds to 〈0, 0,−1〉, which
is the generating element of the centre of H(Z)N . In other words, the subgroup
gp(u,v) of H(Z)N generated by the two elements is isomorphic to G̃. We thus get,
using Lemma 1 of Sec. 2.0.1.

Lemma 12. Under the above assumption and notation the structure on C ×
exp 2πi

N Z in the language of Sec. 3.1.1 described by (24) is isomorphic to the example
PN of Sec. 3.1.1 with F = C.

Below we identify PN with the structure above based on C × {exp 2πi
N Z}.

Note that every group word in u and v gives rise to a definable map in PN . We
want to introduce a uniform notation for such definable functions.

Let α be a monotone nondecreasing converging sequence of the form

α =
{
kN√
N

: kN , N ∈ Z, N > 0
}
.
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We call such a sequence admissible if there is an r ∈ R such that∣∣∣∣r − kN√
N

∣∣∣∣ ≤ 1√
N
. (25)

Given r ∈ R and N ∈ N one can easily find kN satisfying (25) and so construct an
α converging to r, which we denote α̂,

α̂ := limα = lim
N

kN√
N
.

We denote I by the set of all admissible sequences converging to a real on
[0, 1], so

{α̂ : α ∈ I} = R ∩ [0, 1].

For each α ∈ I we introduce two operation symbols uα and vα. We denote P#
N

the definable expansion of PN by all such symbols with the interpretation

uα = ukN , vα = vkN (kN -multiple of the operation),

if kN√
N

stands in the Nth position in the sequence α.
Note that the sequence

dt :=
{

1√
N

: N ∈ N

}

is in I and udt = u, vdt = v in all P#
N .

4.0.3. We now define the structure P∞ to be the structure on sorts C × S1

(denoted P∞) and sort C, with the field structure on C and the projection map
p : 〈x, y, e2πis〉 �→ 〈x, y〉 ∈ C, and definable maps uα and vβ , α, β ∈ I, acting on
C × S1 (in accordance with the action by H(R)∞) as follows:

uα(〈x, y, e2πis〉) = 〈α̂, 0, 0〉〈x, y, e2πis〉 = 〈x+ α̂, y, e2πi(s+α̂y)〉,
vβ(〈x, y, e2πis〉) = 〈0, β̂, 0〉〈x, y, e2πis〉 = 〈x, y + β̂, e2πis〉. (26)

Theorem 4. P∞ is the Hausdorff limit of structures P#
N .

Proof. The sort C is the same in all structures.
The sort P∞ is the limit of its substructures PN since S1 (= exp iR) is the limit

of exp 2πi
N Z in the standard metric of C. Also, the graph of the projection map

p : P∞ → C is the limit of p : PN → C for the same reason.
Finally it remains to check that the graphs of u and v in P∞ are the limits of

those in PN . It is enough to see that for any 〈x, y, exp 2πiq
N 〉 ∈ PN the result of the

action by uα and vβ calculated in P#
N is at most at the distance 2/

√
N from the
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ones calculated in P∞, for any 〈x, y, exp 2πiq
N 〉 ∈ P∞. And indeed, the action in P#

N

by definition is

uα :
〈
x, y, exp 2πiq

N

〉
�→
〈
x+ kN√

N
, y, exp 2πi

N (q + kN [y
√
N ])
〉
,

vβ :
〈
x, y, exp 2πiq

N

〉
�→
〈
x, y + lN√

N
, exp 2πi q

N

〉
.

(27)

Obviously,∣∣∣∣∣kNy√
N

− kN [y
√
N ]

N

∣∣∣∣∣ =
kN√
N

∣∣∣∣∣y
√
N − [y

√
N ]√

N

∣∣∣∣∣ < kN√
N

1√
N

≤ 1√
N
,

which together with (25) proves that the right-hand side of (27) is at the distance at
most 2/

√
N from the right-hand side of (26) uniformly on the point 〈x, y, exp 2πiq

N 〉.

4.0.4. The structure P∞ can be seen as the principal bundle over R × R with the
structure group U(1) (the rotations of S1) and the projection map p. The action
by the Heisenberg group allows to define a connection on the bundle. A connection
determines “a smooth transition from a point in a fibre to a point in a nearby fibre”.
As noted above u and v in the limit process correspond to infinitesimal actions (in
a nonstandard model of P∞) which can be written in the form

u(〈x, y, e2πis〉) = 〈x+ dx, y, e2πi(s+ydx)〉,
v(〈x, y, e2πis〉) = 〈x, y + dy, e2πis〉,

where dx and dy are infinitesimals equal to the dt of Sec. 4.0.2.
These formulas allow one to calculate the derivative of a section

ψ : 〈x, y〉 �→ 〈x, y, e2πis(x,y)〉
of the bundle in any direction on R×R. In general moving infinitesimally from the
point 〈x, y〉 along x we get 〈x+dx, y, exp 2πi(s+ds)〉. We need to compare this to the
parallel transport along x given by the formulas above, 〈x+dx, y, exp 2πi(s+ydx)〉.
So the difference is

〈0, 0, exp 2πi(s+ ds) − exp 2πi(s+ ydx)〉.
Using the usual laws of differentiation one gets for the third term

exp 2πi(s+ ds) − exp 2πi(s+ ydx)

= (exp 2πi(s+ ds) − exp 2πis) − (exp 2πi(s+ ydx) − exp 2πis)

= d exp 2πis− 2πiy exp 2πis dx

=
(
d exp 2πis

dx
− 2πiy exp 2πis

)
dx

which gives for a section ψ = exp 2πis the following covariant derivative along x,

∇xψ =
d

dx
ψ − 2πiyψ =

(
d

dx
+Ax

)
ψ.
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Similarly, the covariant derivative along y

∇yψ =
d

dy
ψ =

(
d

dy
+Ay

)
ψ

with the second term Ay = 0.
The curvature of the connection is by definition the commutator

[∇x,∇y] =
dAy

dx
− dAx

dy
= 2πi,

that is in physicists’ terms this pictures an U(1)-gauge field theory over R2 with a
connection of constant nonzero curvature.

4.1. Algebraic torus

4.1.1. We
think of elements of C∗ × S1 as pairs 〈z, exp is〉, where z = exp(ix + y) ∈ C∗

x, y, s ∈ R.
The action of H(Z) on C∗ × S1, can be given, following (22) by

u〈exp(ix+ y), exp is〉 = 〈exp(ix+ ia+ y), exp i(s+ ay)〉,
v〈exp ix+ y, exp is〉 = 〈exp(ix+ y + b), exp is〉. (28)

The action by v is well defined since it simply takes the pair 〈z, t〉 to 〈ebz, t〉.
To calculate u 〈z, t〉 one first takes

ln z = ix+ y + 2πin = i(x+ 2πn) + y, n ∈ Z.

This recovers y uniquely and so u is well-defined.
The corresponding discrete version will be

〈k, l,m〉
〈

exp(2πix+ y), exp 2πi
q

N

〉

=
〈

exp
(

2πi
(
x+

k

N

)
+ y +

�

N

)
, exp 2πi

q + k[Ny] +m

N

〉
. (29)

This is a group action, by the same calculation as in Sec. 4.0.2.
In this discrete version t = 〈exp(2πix + y), exp 2πi q

N is an element of TN

and correspondingly p(t) = exp(2πix + y). The a and b of Sec. 3.2 will be e2πi/N

and e1/N correspondingly.

Theorem 5. The structure on C∗×{exp 2πiZ
N } in the language of Sec. 3.2 described

by (29) is isomorphic to the example TN of Sec. 3.2 with F = C.
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We want to calculate the covariant derivative following the method of 4.0.4. We
use similar notation for the infinitesimal action

dx =
{

1
N

: N ∈ N

}
= dy,

the infinitesimal corresponding to the sequence. But the actual coordinates on C∗

are

z1 = e2πix and z2 = ey,

so

dz1 = 2πiz1dx, dz2 = z2dy.

Now for

ψ : z �→ 〈x, y, e2πis(z)〉

the difference between the shift dz1 and the parallel transport along the same shift
will be, by the same formulas as in Sec. 4.0.4,

exp 2πi(s+ ds) − exp 2πi(s+ ydx).

This is equal to(
d exp 2πis

dx
− 2πiy exp 2πis

)
dx =

(
d exp 2πis

dz1
− ln z2

z1
exp 2πis

)
dz1

which gives the covariant derivative along z1

∇z1ψ =
d

dz1
ψ − ln z2

z1
ψ.

Similarly, ∇z2 the covariant derivative along z2 is just d
dz2ψ, the second term being

zero.
The curvature of the connection is

[∇z1 ,∇z2 ] =
1

z1z2
,

which is a nonconstant curvature (note also that z1z2 = exp(2πix + y) does not
vanish on C∗).
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