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1. Introduction

The study of rational and integral points on algebraic varieties defined over a num-
ber field often leads to considerations of volumes of real, p-adic or adelic spaces. A
typical problem in arithmetic geometry is to establish asymptotic expansions, when
B → ∞, for the number Nf(B) of solutions in rational integers smaller than B of
a polynomial equation f(x) = 0.

When applicable, the circle method gives an answer in terms of a “singular
integral” and a “singular series”, which itself can be viewed as a product of p-adic
densities. The size condition is only reflected in a parameter in the singular integral,
whose asymptotic expansion therefore governs that of Nf (B).

More generally, one considers systems of polynomial equations, i.e. algebraic
varieties over a number field or schemes of finite type over rings of integers, together
with embedding into a projective or affine space. Such an embedding induces
a height function (see, e.g. [34, 43, 30]) such that there are only finitely many
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solutions of bounded height, in a fixed number field (resp. ring of integers). A natural
generalization of the problem above is to understand the asymptotic behavior of
the number of such solutions, as well as their distribution in the ambient space for
the local or adelic topologies, when the bound grows to infinity.

Apart from applications of the circle method, many other instances of this prob-
lem have been successfully investigated in recent years, in particular, in the context
of linear algebraic groups and their homogeneous spaces. For such varieties, tech-
niques from ergodic theory and harmonic analysis are very effective; for integral
points, see [22–24, 7, 36, 28]; for rational points, see [3, 25, 38, 5, 13].

In most cases, the proof is subdivided into two parts:

(1) comparison of the point counting with a volume asymptotic;
(2) explicit computation of this volume asymptotic.

In this paper, we develop a general geometric framework for the second part, i.e.
for the understanding of densities and volumes occurring in the counting problems
above. We now explain the main results.

1.1. Tamagawa measures for algebraic varieties

Let F be a number field. Let Val(F ) be the set of equivalence classes of absolute
values of F . For v ∈ Val(F ), we write v | p if v defines the p-adic topology on Q, and
v | ∞ if it is archimedean. For v ∈ Val(F ), let Fv be the corresponding completion
of F and, if v is ultrametric, let ov be its ring of integers. We identify v with the
specific absolute value |·|v on Fv defined by the formula µ(aΩ) = |a|vµ(Ω), where
µ is any Haar measure on the additive group Fv, a ∈ Fv and Ω is a measurable
subset of Fv of finite measure.

Let X be a smooth projective algebraic variety over F . Fix an adelic metric on
its canonical line bundle KX (see Sec. 2.2.3). For any v ∈ Val(F ), the set X(Fv)
carries an analytic topology and the chosen v-adic metric on KX induces a Radon
measure τX,v on X(Fv) (see Sec. 2.1.7).

Let X be a projective flat model of X over the ring of integers of F . Then, for
almost all finite places v, the measure τX,v coincides with the measure on X (ov) =
X(Fv) defined by Weil in [47].

Let D be an effective divisor on X which, geometrically, has strict normal cross-
ings and set U = X\D. Let fD denote the canonical section of the line bundle
OX(D) (corresponding to the regular function 1 when OX(D) is viewed as a sub-
sheaf of the sheaf of meromorphic functions); by construction, its divisor is D. Let
us also fix an adelic metric on this line bundle. We let D be the Zariski closure of D
in the model X and U = X \D be its complement.

For any place v ∈ Val(F ), we define a measure

τ(X,D),v =
1

‖fD‖v
τX,v
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on U(Fv). Note that it is still a Radon measure; however U(Fv) has infinite volume.
If U is an algebraic group, this construction allows one to recover the Haar measure
of U(Fv) (see Sec. 2.1.11).

Let AF be the adele ring of F , that is, the restricted product of the fields Fv

with respect to the subrings ov.
A nonzero Radon measure τ on the adelic space U(AF ) induces measures τv

on any of the sets U(Fv), which are well-defined up to a factor. Conversely, we
can recover the Radon measure τ as the product of such measures τv if the
set of measures (τv)v�∞ satisfies the convergence condition: the infinite product∏

v�∞ τv(U (ov)) is absolutely convergent.
A family of convergence factors for (τv) is a family (λv)v�∞ of positive real

numbers such that the family of measures (λvτv) satisfies the above convergence
condition.

Our first result in this paper is a definition of a measure on U(AF ) via an
appropriate choice of convergence factors.

Let F̄ be an algebraic closure of F and let Γ = Gal(F̄ /F ) be the absolute Galois
group. Let M be a free Z-module of finite rank endowed with a continuous action
of Γ; we let L(s,M) be the corresponding Artin L-function, and, for all finite places
v ∈ Val(F ), Lv(s,M) its local factor at v. The function s �→ L(s,M) is holomorphic
for Re(s) > 1 and admits a meromorphic continuation to C; let ρ be its order at
s = 1 and define

L∗(1,M) = lim
s→1

(s− 1)−ρL(s,M);

it is a positive real number.

Theorem 1.1. Assume that H1(X,OX) = H2(X,OX) = 0. The abelian groups
M0 = H0(UF̄ ,Gm)/F̄ ∗ and M1 = H1(UF̄ ,Gm)/torsion are free Z-modules of finite
rank with a continuous action of Γ. Moreover, the family (λv) given by

λv = Lv(1,M0)/Lv(1,M1)

is a family of convergence factors.

Assume that the hypotheses of the theorem hold. We then define a Radon
measure on U(AF ) by the formula

τ(X,D) =
L∗(1,M1)
L∗(1,M0)

∏
v∈Val(F )

(λvτ(X,D),v),

where λv is given by the theorem if v � ∞ and λv = 1 else. We call it the Tamagawa
measure on U, or, more precisely, on U(AF ). This generalizes the construction of
a Tamagawa measure on an algebraic group, where there is no M1 (see, e.g. [47])
or on a projective variety, where there is no M0, in [38].
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1.2. Volume asymptotics in analytic geometry

Let L be an effective divisor in X whose support contains the support of D; again
let fL be the canonical section of the line bundle OX(L). Fix an adelic metric on
OX(L) and a place v ∈ Val(F ). For any positive real number B, the set of all
x ∈ U(Fv) such that ‖fL(x)‖v ≥ 1/B is a compact subset in U(Fv). It thus has
finite volume V (B) with respect to the measure τ(X,D),v.

Let us decompose the divisor Dv = DFv as a sum of irreducible divisors:

Dv =
∑

α∈Av

dα,vDα,v.

For α ∈ Av, let λα,v be the multiplicity of Dα,v in Lv; there exists an effective
divisor Ev on XFv such that

Lv = Ev +
∑
α∈A

λα,vDα,v.

For any subset A ⊆ Av, we let DA,v be the intersections of the Dα,v, for α ∈ A.
Now let av(L,D) be the least rational number such that for any α ∈ Av, with

Dα,v(Fv) �= ∅, one has av(L,D)λα,v ≥ dα,v − 1. Let Av(L,D) be the set of those
α ∈ Av where equality holds and bv(L,D) the maximal cardinality of subsets
A ∈ Av(L,D) such that DA,v(Fv) �= ∅. To organize the combinatorial structure
of these subsets, we introduce variants of the simplicial complex considered, e.g. in
[16] in the context of Hodge theory.

Theorem 1.2. Assume that v is archimedean.
If av(L,D) > 0, then bv(L,D) ≥ 1 and there exists a positive real number c such

that

V (B) ∼ cBav(L,D)(logB)bv(L,D)−1.

If av(L,D) = 0, then there exists a positive real number c such that

V (B) ∼ cBav(L,D)(logB)bv(L,D).

With the notation above, we also give an explicit formula for the constant c. It
involves integrals over the sets DA,v(Fv) such that #(A) = bv(L,D), with respect
to measures induced from τ(X,D),v via the adjunction formula.

To prove this theorem, we introduce the Mellin transform

Z(s) =
∫

U(Fv)

‖fL(x)‖s
v dτ(X,D),v(x)

and establish its analytic properties. We regard Z(s) as an integral over the compact
analytic manifold X(Fv) of the function ‖fL‖s

v with respect to a singular measure,
connecting the study of such zeta functions with the theory of Igusa local zeta
functions, see [31, 32]. In particular, we show that Z(s) is holomorphic for Re(s) >
av(L,D) and admits a meromorphic continuation to some half-plane {Re(s) >
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av(L,D)− ε}, with a pole at s = av(L,D) of order bv(L,D). This part of the proof
works over any local field.

If v is archimedean (and ε > 0 is small enough), then Z(s) has no other pole
in this half-plane. Our volume estimate then follows from a standard Tauberian
theorem. When v in non-archimedean, we can only deduce a weaker estimate, i.e.
upper and lower bounds of the stated order of magnitude (Corollary 4.9).

1.3. Asymptotics of adelic volumes

Assume that H1(X,OX) = H2(X,OX) = 0. Theorem 1.1 gives us Tamagawa mea-
sures τ(X,D) and τX on the adelic spaces U(AF ) and X(AF ) respectively.

Suppose furthermore that the supports of the divisors L and D are equal. We
then define a height function HL on the adelic space U(AF ) by the formula

HL((xv)v) =
∏

v∈Val(F )

‖fL(xv)‖−1
v .

This function HL : U(AF ) → R+ is continuous and proper. In particular, for any
real number B, the subset of U(AF ) defined by the inequality HL(x) ≤ B is com-
pact, hence has finite volume V (B) with respect to τ(X,D). We are interested in the
asymptotic behavior of V (B) as B → ∞.

Let us decompose the divisors L and D as the sum of their irreducible compo-
nents (over F ). Since L and D have the same support, one can write

D =
∑
α∈A

dαDα, L =
∑
α∈A

λαDα

for some positive integers dα and λα. Let a(L,D) be the least positive rational
number such that the Q-divisor E = a(L,D)L−D is effective; in other words,

a(L,D) = max
α∈A

dα/λα.

Let moreover b(L,D) be the number of α ∈ A for which equality is achieved.
To the Q-divisor E, we can also attach a height function on X(AF ) given by

HE(x) =
∏

v∈Val(F )

‖fL(xv)‖−a(L,D)
v ‖fD(x, v)‖v

if xv ∈ U(Fv) for all v, and by HE(x) = +∞ else. The product can diverge to
+∞ but HE has a positive lower bound, reflecting the effectivity of E. In fact, the
function H−1

E is continuous on X(AF ).

Theorem 1.3. When B → ∞, one has the following asymptotic expansion

V (B) ∼ 1
a(L,D)(b(L,D) − 1)!

Ba(L,D)(logB)b(L,D)−1

∫
X(AF )

HE(x)−1 dτX(x).
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As a particular case, let us take L = D. We see that a(L,D) = 1, b(L,D) is the
number of irreducible components of D and the integral in the theorem is equal to
the Tamagawa volume τX(X(AF )) defined by Peyre.

In both local and adelic situations, our techniques are valid for any metrization
of the underlying line bundles. As was explained by Peyre in [38] in the context of
rational points, this implies equidistribution theorems, see Corollary 4.8 in the local
case, and Theorem 4.13 in the adelic case.

The referee suggested to consider local and global Mellin transforms involving
more general quasi-characters. Indeed, such integrals do play a role in the study of
height zeta functions, see, e.g. our recent paper [15]. For example, we were led to
investigate integrals of the form

I(σ, s, λ, χ, ψ) =
∫

Xσ(Fv)

‖x‖s
vχv(xv)ψv(xv

λ)dx∗v .

In that formula, Xσ is an affine toric variety with underlying torus T over a num-
ber field F , the groups of characters and cocharacter of which are denoted X∗(T )
and X∗(T ), σ is a cone in X∗(T )R defining Xσ, χv is the v-adic component of an
automorphic character χ ∈ (T (AF )/T (F ))∗, ψv is an additive character of Fv, and
λ ∈ X∗(T ) the oscillatory phase. We proved that I is holomorphic for Re(s) con-
tained in the interior of the cone spanned by the dual cone σ∗ and λ, with poles on
the boundary of this cone, and that it admits a meromorphic continuation. Geo-
metric versions of such integrals may be important in other applications and we
intend to return to these interesting questions in the future.

Roadmap of the paper

Section 2 is concerned with heights and measures on adelic spaces. We first recall
notation and definitions for adeles, adelic metrics and measures on analytic man-
ifolds. In Sec. 2.3, we then define height functions on adelic spaces and establish
their basic properties. The construction of global Tamagawa measures is done in
Sec. 2.4. We conclude this section by a general equidistribution theorem.

Section 3 is devoted to the theory of geometric analogues of Igusa integrals,
both in the local and adelic settings. These integrals define holomorphic functions
in several variables which admit meromorphic continuations. (In the adelic case,
these meromorphic continuations may have natural boundaries.) To describe their
first poles we introduce in Sec. 3.1 the geometric, algebraic and analytic Clemens
complexes which encode the incidence properties of divisors involved in the defini-
tion of our geometric Igusa integrals. We then apply this theory in Secs. 4.2 and
4.4, where we establish Theorems 1.2 and 1.3 about volume asymptotics.

In Sec. 5, we make explicit the main results of our paper in the case of wonderful
compactifications of semisimple groups. In particular, we explain how to recover
the volume estimates established in [36] for Lie groups, and in [27, 45] for adelic
groups.
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2. Metrics, Heights, and Tamagawa Measures

2.1. Metrics and measures on local fields

2.1.1. Haar measures and absolute values

Let F be a local field of characteristic zero, i.e. either R, C, or a finite extension
of the field Qp of p-adic numbers. Fix a Haar measure µ on F . Its “modulus” is
an absolute value |·| on F , defined by µ(aΩ) = |a|µ(Ω) for any a ∈ F and any
measurable subset Ω ⊂ F . For F = R, this is the usual absolute value, for F = C,
it is its square. For F = Qp, it is given by |p| = 1/p and if F ′/F is a finite extension,
one has |a|F ′ = |NF ′/F (a)|F .

2.1.2. Smooth functions

Let f be a complex-valued function defined on an open subset of the n-dimensional
affine space Fn. We say that f is smooth if it is C∞ in the case where F = R or
C, and if it is locally constant when F is non-archimedean. This notion is local
and extends to functions defined on open subsets of F -analytic manifolds. Smooth
functions are continuous. Observe moreover that for any open subset U of Fn and
any nonvanishing F -analytic function f on U , the function x �→ |f(x)| is smooth.

On a compact F -analytic manifold X , a smooth function f has a sup-norm
‖f‖ = supx∈X |f(x)|. In the archimedean case, using charts (so, non-canonically),
we can also measure norms of derivatives and define norms ‖f‖r (measuring the
maximum of sup-norms of all derivatives of f of orders ≤ r). In the ultrametric
case, using a distance d, we can define a norm ‖f‖1 as follows:

‖f‖1 = ‖f‖
(

1 + sup
f(x) �=f(y)

1
d(x, y)

)
.

For r > 1, we define ‖f‖r = ‖f‖1.

2.1.3. Metrics on line bundles

Let X be an analytic variety over a locally compact valued field F and let L

be a line bundle on X . We define a metric on L to be a collection of functions
L (x) → R+, for all x ∈ X , denoted by 	 �→ ‖	‖ such that

• for 	 ∈ L (x)\{0}, ‖	‖ > 0;
• for any a ∈ F , x ∈ X and any 	 ∈ L (x), ‖a	‖ = |a|‖	‖;
• for any open subset U ⊂ X and any section 	 ∈ Γ(U,L ), the function x �→ ‖	(x)‖

is continuous on U .

We say that a metric on a line bundle L is smooth if for any nonvanishing local
section 	 ∈ Γ(U,L ), the function x �→ ‖	(x)‖ is smooth on U .
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For a metric to be smooth, it suffices that there exists an open cover (Ui) of
X , and, for each i, a nonvanishing section 	i ∈ Γ(Ui,L ) such that the function
x �→ ‖	i(x)‖ is smooth on Ui. Indeed, let 	 ∈ Γ(U,L ) be a local nonvanishing
section of L ; for each i there is a nonvanishing regular function fi ∈ OX(Ui ∩ U)
such that 	 = fi	i on Ui ∩ U , hence ‖	‖ = |fi|‖	i‖. Since the absolute value of a
nonvanishing regular function is smooth, ‖	‖ is a smooth function on Ui ∩U . Since
this holds for all i, ‖	‖ is smooth on U .

Any F -analytic manifold which is paracompact, a hypothesis which will always
hold in this paper, admits smooth partitions of unity. Therefore, any line bundle
on such a manifold can be endowed with a smooth metric.

There exist moreover natural constructions of metrics. For example, the trivial
line bundle OX admits a canonical (smooth) metric, defined by ‖1‖ = 1. If L and
M are two (smooth) metrized line bundles on X , there are (smooth) metrics on
L ⊗ M and on L ∨ defined by

‖	⊗m‖ = ‖	‖‖m‖, ‖ϕ‖ = |ϕ(	)|/‖	‖,
with x ∈ X , 	 ∈ L (x), m ∈ M (x) and ϕ ∈ L ∨(x).

2.1.4. Divisors, line bundles and metrics

The theory of the preceding paragraph also applies if X is an analytic subspace of
some F -analytic manifold, e.g. an algebraic variety, even if it possesses singularities.
Recall that by definition, a function on such a space X is smooth if it extends to a
smooth function in a neighborhood of X in the ambient space.

Let D be an effective Cartier divisor on X and let OX(D) be the corresponding
line bundle. It admits a canonical section fD, whose divisor is equal to D. If OX(D)
is endowed with a metric, the function ‖fD‖ is positive on X and vanishes along D.

More generally, let D be an effective Q-divisor, that is, a linear combination
of irreducible divisors with rational coefficients such that a multiple nD, for some
positive integer n, is a Cartier divisor. By a metric on OX(D) we mean a metric
on OX(nD). By ‖fD‖, we mean the function ‖fnD‖1/n. It does not depend on the
choice of n.

2.1.5. Metrics defined by a model

Here we assume that F is non-archimedean, and let oF be its ring of integers.
Let X be a proper variety over F and L a line bundle on X . Choose a proper
flat oF -scheme X and a line bundle L on X extending X and L. These choices
determine a metric on the line bundle defined by L on the analytic variety X(F ),
by the following recipe: for x ∈ X(F ) let x̃ : Spec oF → X be the unique morphism
extending x; by definition, the set of 	 ∈ L(x) such that ‖	‖ ≤ 1 is equal to x̃∗L ,
which is a lattice in L(x).

Let U be an open subset of X over which the line bundle L is trivial and let
ε ∈ Γ(U ,L ) be a trivialization of L on U . Then, for any point x ∈ U (F ) such
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that x extends to a morphism x̃ : Spec oF → U , one has ‖ε(x)‖ = 1. Indeed, x̃∗ε
is a basis of the free oF -module x̃∗L . Since X is proper, restriction to the generic
fiber identifies the set U (oF ) with a compact open subset of UF (F ), still denoted
by U (oF ). Observe that these compact open subsets cover X(F ).

Let F ′/F be a finite field extension. A model of X determines a model of
XF ′ = X ⊗F F

′ over the ring oF ′ , and thus metrics on the analytic variety X(F ′).
Conversely, note that a model of XF ′ determines metrics on X(F ′) and hence, by
restriction, also on X(F ).

2.1.6. Example: Projective space

Let F be a locally valued field and V a finite-dimensional vector space over F , let
V ∨ denote its dual space. Let |·| be a norm on V . Let P(V ∨) = ProjSym•V ∨ be
the projective space of lines in V ; denote by [x] the point of P(V ∨) associated to
a nonzero element x ∈ V , i.e. the line it generates. This projective space carries
a tautological ample line bundle, denoted O(1), whose space of global sections is
precisely V ∨. The formula

‖	([x])‖ =
|	(x)|
‖x‖ ,

for 	 ∈ V ∨ and x ∈ V , defines a norm on the F -vector space O(1)[x]. These norms
define a metric on O(1).

Assume moreover that F is non-archimedean and let oF be its ring of integers.
If the norm of V takes its values in the set |F×|, the unit ball V of V is an oF -
submodule of V which is free of rank dimV ([48], p. 28, Proposition 6 and p. 29).
Then, the oF -scheme P(V ∨) is a model of P(V ∨) and the metric on O(1) is the
one defined by this model and the canonical extension of the line bundle O(1) it
carries.

2.1.7. Volume forms

Let X be an analytic manifold over a local field F . To simplify the exposition,
assume that X is equidimensional and let n be its dimension. It is standard when
F = R or C, and also true in general, that any n-form ω on an open subset U
of X defines a measure, usually denoted |ω|, on U , through the following formula.
Choose local coordinates x1, . . . , xn on U and write

ω = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn.

These coordinates allow one to identify (a part of) U with an open subset of Fn

which we endow with the product measure µn. (Recall that a Haar measure has
been fixed on F in Sec. 2.1.1.) It pulls back to a measure which we denote

|dx1| · · · |dxn|
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and by definition, we let

|ω| = |f(x1, . . . , xn)| |dx1| · · · |dxn|. (2.1)

By the change of variables formula in multiple integrals, this is independent of the
choice of local coordinates.

2.1.8. Metrics and measures

Certain manifolds X possess a canonical (up to scalar) nonvanishing n-form, some-
times called a gauge form. Examples are analytic groups, or Calabi–Yau varieties.
This property leads to the definition of a canonical measure on X (again, up to
a scalar). In the case of groups, this has been studied by Weil in the context of
Tamagawa numbers ([47]); in the case of Calabi–Yau varieties, this measure has
been used by Batyrev to prove that smooth birational Calabi–Yau varieties have
equal Betti numbers ([2]).

Even when X has no global n-forms, it is still possible to define a measure on X
provided that the canonical line bundle ωX =

∧n Ω1
X is endowed with a metric.

Indeed, we may then attach to any local nonvanishing n-form ω the local measure
|ω|/‖ω‖. It is immediate that these measures patch and define a measure τX on the
whole of X . This is a Radon measure locally equivalent to any Lebesgue measure.
In particular, if X is compact, its volume with respect to this measure is a positive
real number. This construction is classical in differential geometry as well as in
arithmetic geometry (see [42], at the end of p. 146); its introduction in the context
of the counting problem of points of bounded height on algebraic varieties over
number fields is due to E. Peyre ([38]).

2.1.9. Singular measures

For the study of integral points, we will have to consider several variants of this
construction. We assume here that X is an algebraic variety over a local field F and
that we are given an auxiliary effective Cartier Q-divisor D in X . Let U = X\|D|
be the complement of the support of D in X .

Let us first consider the case where D is a Cartier divisor and assume that
the line bundle ωX(D) is endowed with a metric. If fD is the canonical section of
OX(D) and ω a local n-form, we can then consider the non-negative function ‖fDω‖;
it vanishes on |D|. In the general case, we follow the conventions of Sec. 2.1.4 and
will freely talk of the function ‖ωfD‖, defined as ‖ωnfnD‖ where n is any positive
integer such that nD is a Cartier divisor, assuming the line bundle ω⊗n

X (nD) is
endowed with a metric.

Then, the measures |ω|/‖fDω‖, for ω any local nonvanishing n-form ω, patch
and define a measure τ(X,D) on the open submanifold U(F ). This measure is a
Radon measure on U(F ), locally equivalent to the Lebesgue measure. When U(F )
is not compact, the volume of U(F ) may be infinite; this is in particular the case
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if D is an effective divisor with integer coefficients and the smooth locus of D has
F -rational points.

We shall always identify this measure and the (generally not locally finite) mea-
sure on X(F ) obtained by push-out.

2.1.10. Example: Gauge forms

Let us show how the definition of a measure using a gauge form can be viewed as a
particular case of this construction. Let ω be a meromorphic differential form on X ;
let D be the opposite of its divisor. One can write D =

∑
dαDα, where the Dα are

codimension 1 irreducible subvarieties in X and dα are integers. Let U = X\|D|
be the complement of the support of D. In other words, ω defines a trivialization
of the line bundle ωX(D). There is a unique metrization of ωX(D) such that ω,
viewed as a global section of ωX(D), has norm 1 at every point in X . The measure
on the manifold U(F ) defined by this metrization coincides with the measure |ω|
defined by ω as a gauge form.

Moreover, if the line bundle OX(D) is endowed with a metric, then so is the
line bundle ωX . In this case, the manifold X(F ) is endowed with three measures,
τU , τX and τ(X,D). Locally, one has:

• τX = |ω|/‖ω‖;
• the measure τU is its restriction to U ;
• τ(X,D) = |ω| = |ω|/‖fDω‖ = ‖fD‖−1τX .

Note that on each open, relatively compact subset of X(F )\|D|, the measures τX
and τ(X,D) are equivalent.

2.1.11. Example: Compactifications of algebraic groups

We keep the notation of the previous paragraph, assuming moreover that U is an
algebraic group G over F of which X is an equivariant compactification, and that
the restriction to G of ω is invariant. If we consider ω as a gauge form, it then
defines an invariant measure |ω| on G(F ), in other words, a Haar measure on this
locally compact group, and also τ(X,D).

2.1.12. Residue measures

Let us return to the case of a general manifold X . Let Z be a closed submanifold
of X . To get a measure on Z, we need as before a metrization on ωZ . However, the
“adjunction formula”

ωX |Z � ωZ ⊗ detNZ(X)

implies that given a metric on ωX , it suffices to endow the determinant of the normal
bundle of Z in X with a metric. The case where Z = D is a divisor (i.e. locally in
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charts, Z is defined by the vanishing of a coordinate) is especially interesting. In
that case, one has

ωD = ωX(D)|D
and a metric on ωX plus a metric on OX(D) automatically define a metric on ωD,
hence a measure on D.

Let us give an explicit formula for this measure. Let ω ∈ Γ(ωD) be a local
(n− 1)-form and ω̃ any lift of ω to

∧n−1 Ω1
X . If u ∈ O(−D) is a local equation for

D, the image of ω in ωX(D)|D is nothing but the restriction to D of the differential
form with logarithmic poles ω̃ ∧ u−1du. Let fD be the canonical section of OX(D).
Then,

‖ω‖ = ‖ω̃ ∧ u−1du‖ = ‖ω̃ ∧ du‖ ‖u−1‖.
By definition, fD corresponds locally to the function 1, hence, for x �∈ D,

‖u−1(x)‖ =
1

|u(x)| ‖fD(x)‖

and this possesses a finite limit when x approaches D, by the definition of a metric.
(As a section of OX(D), fD vanishes at order 1 on D). Moreover, the function
lim ‖fD‖/|u| on D defined by

x �→ lim
y→x
y �∈D

‖fD(y)‖/|u(y)|

is continuous and positive on D.
By induction, if Z is the transverse intersection of smooth divisors Dj (1 ≤ j ≤

m), with metrizations on all OX(Dj), we have a similar formula:

‖ω‖ = ‖ω̃ ∧ du1 ∧ · · · ∧ dum‖ lim
‖fD1‖
|u1| · · · lim ‖fDm‖

|um| , (2.2)

where u1, . . . , um are local equations for the divisors D1, . . . , Dm.

2.1.13. Residue measures in an algebraic context

Let X be a smooth algebraic variety over F ; endow the canonical line bundle ωX

on X(F ) with a metric. Let F ′ be a finite Galois extension of F and let Dj , for
1 ≤ j ≤ m, be smooth irreducible divisors on XF ′ , whose union is a divisor D with
strict normal crossings which is defined over F . Then the intersection Z =

⋂m
j=1Dj

is defined over F ; if Z(F ) �= ∅, then Z(F ) is a smooth F -analytic submanifold of
X(F ), of dimension dimZ = dimX−m. Moreover, the normal bundle of Z in XF ′

is isomorphic to the restriction to Z of the vector bundle
⊕m

j=1 OX′(Dj), hence the
isomorphism detNZ(X) � OX(D), at least after extending the scalars to F ′.

Endow the line bundles OXF ′ (Dj) on the F ′-analytic manifold X(F ′) with met-
rics. By the previous formulas, we obtain from the metrics on OXF ′ (Dj) a metric
on the determinant of the normal bundle of Z(F ′) in the manifold X(F ′). The
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restriction of this metric to Z(F ) gives us a metric on the determinant of the
normal bundle of Z(F ) in X(F ).

Accordingly, we obtain a positive Radon measure τZ on Z(F ) which is locally
equivalent to any Lebesgue measure. In particular, one has τZ(Z(F )) = 0 if and
only if Z(F ) = ∅.

2.2. Adeles of number fields: Metrics and heights

2.2.1. Notation

We specify some common notation concerning number fields and adeles that we
will use throughout this text.

Let F be a number field and Val(F ) the set of places of F . For v ∈ Val(F ), we
let Fv be the v-adic completion of F . This is a local field; its absolute value, defined
as in Sec. 2.1.1, is denoted by |·|v. With these normalizations, the product formula
holds. Namely, for all a ∈ F ∗, one has

∏
v∈Val(F )|a|v = 1, where only finitely many

factors differ from 1.
Let v ∈ Val(F ). The absolute value |·|v is archimedean when Fv = R or Fv = C;

we will say that v is infinite, or archimedean. Otherwise, the absolute value |·|v is
ultrametric and the place v is called finite, or non-archimedean.

Let v be a finite place of F . The set ov of all a ∈ Fv such that |a|v ≤ 1 is
a subring of Fv, called the ring of v-adic integers. Its subset mv consisting of all
a ∈ Fv such that |a|v < 1 is its unique maximal ideal. The residue field ov/mv is
denoted by kv. It is a finite field and we write qv for its cardinality. The ideal mv

is principal; a generator will be called a uniformizing element at v. For any such
element �, one has |�|v = q−1

v .
Fix an algebraic closure F̄ of F . The group ΓF of all F -automorphisms of F̄

is called the absolute Galois group of F . For any finite place v ∈ Val(F ), fix an
extension |·|v̄ of the absolute value |·|v to F̄ . The subgroup of ΓF consisting of all
γ ∈ ΓF such that |γ(a)|v̄ = |a|v̄ for all a ∈ F̄ is called the decomposition subgroup
of ΓF at v and is denoted by Γv.

These data determine an algebraic closure k̄v of the residue field kv, together
with a surjective group homomorphism Γv → Gal(k̄v/kv). Its kernel Γ0

v is called
the inertia subgroup of ΓF at v. Any element in Γv mapping to the Frobenius
automorphism x �→ xqv in Gal(k̄v/kv) is called an arithmetic Frobenius ele-
ment at v; its inverse is called a geometric Frobenius element at v. The sub-
groups Γv and Γ0

v, and Frobenius elements, depend on the choice of the chosen
extension of the absolute value |·|v; another choice changes them by conjugation
in ΓF .

The ring of adeles AF of the field F is the restricted product of all local
fields Fv, for v ∈ Val(F ), with respect to the subrings ov for finite places v.
It is a locally compact topological ring and carries a Haar measure µ. The quo-
tient space AF /F is compact; we shall often assume that µ is normalized so that
µ(AF /F ) = 1.



November 15, 2010 14:37 WSPC/S1793-7442 251-CM 00022

364 A. Chambert-Loir & Y. Tschinkel

2.2.2. The adelic space of an algebraic variety

Let U be an algebraic variety over F . The space U(AF ) of adelic points of U has a
natural locally compact topology which we recall now. Let U be a model of U over
the integers of F , i.e. a scheme which is flat and of finite type over Spec oF together
with an isomorphism of U with U ⊗ F . The natural maps AF → Fv induce a map
from U(AF ) to

∏
v∈Val(F ) U(Fv). It is not surjective unless U is proper over F ;

indeed its image — usually called the restricted product — can be described as the
set of all (xv)v in the product such that xv ∈ U (ov) for almost all finite places v.
Since two models are isomorphic over a dense open subset of Spec oF , observe also
that this condition is independent of the choice of the specific model U .

We endow each U(Fv) with the natural v-adic topology; notice that it is locally
compact. Moreover, for any finite place v, U (ov) is open and compact in U(Fv) for
this topology.

We then endow U(AF ) with the “restricted product topology”, a basis of which
is given by products

∏
v Ωv, where for each v ∈ Val(F ), Ωv is an open subset of

U(Fv), subject to the additional condition that Ωv = U (ov) for almost all finite
places v. Let Ω ⊂ U(AF ) be any subset of the form

∏
v Ωv, with Ωv ⊂ U(Fv), such

that Ωv = U (ov) for almost all finite places v. Then Ω is compact if and only if
each Ωv is compact. It follows that the topology on U(AF ) is locally compact.

2.2.3. Adelic metrics

Let X be a proper variety over a number field F and L a line bundle on X . An adelic
metric on L is a collection of v-adic metrics on the associated line bundles on the
Fv-analytic varieties X(Fv), for all places v in F , which, except for a finite number
of them, are defined by a single model (X ,L ) over the ring of integers of F .

By standard properties of schemes of finite presentation, any two flat proper
models are isomorphic at almost all places and will therefore define the same v-adic
metrics at these places.

2.2.4. Example: Projective space

For any valued field F , let us endow the vector-space Fn+1 with the norm given
by |(x0, . . . , xn)| = max(|x0|, . . . , |xn|). When F is a number field and v ∈ Val(F ),
the construction in Sec. 2.1.6 on the field Fv furnishes a metric on the line bundle
O(1) on Pn. This collection of metrics is an adelic metric on O(1), which we will
call the standard adelic metric.

2.2.5. Extension of the ground field

If F ′ is any finite extension of F , observe that an adelic metric on the line bundle
L ⊗ F ′ over X ⊗ F ′ induces by restriction an adelic metric on the line bundle L
over X . We only need to check that the family of metrics defined by restriction are
induced at almost all places by a model of X on F .
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Indeed, fix a model (X ′,L ′) of (X ⊗ F ′,L ⊗ F ′) over Spec oF ′ , as well as a
model (X ,L ) over Spec oF . There is a nonzero integer N such that the identity
map X ⊗ F ′ → X ⊗ F ′ extends to an isomorphism X ⊗ oF ′ [ 1

N ] → X ′ ⊗ oF ′ [ 1
N ].

Consequently, at all finite places of F ′ which do not divide N , both models define
the same metric on L⊗F ′. It follows that the metrics of L are defined by the model
(X ,L ) at all but finitely many places of F .

2.2.6. Heights

Let X be a proper variety over a number field F and let L be a line bundle on X
endowed with an adelic metric. Let x ∈ X(F ) and let 	 be any nonzero element in
L (x). For almost all places v, one has ‖	‖v = 1; consequently, the product

∏
v ‖	‖v

converges absolutely. It follows from the product formula that its value does not
depend on the choice of 	. We denote it by HL (x) and call it the (exponential)
height of x with respect to the metrized line bundle L .

As an example, assume that X = Pn and L = O(1), endowed with its standard
adelic metric see Sec. 2.2.4. Then for any point x ∈ Pn(F ) with homogeneous
coordinates [x0 · · · : xn] such that x0 �= 0, we can take the element 	 to be the value
at x of the global section X0. Consequently, the definition of the standard adelic
metric implies that

HL (x) =
∏

v∈Val(F )

( |x0|v
max(|x0|v, . . . , |xn|v)

)−1

=
∏

v∈Val(F )

max(|x0|v, . . . , |xn|v),

in view of the product formula
∏

v∈Val(F )|x0|v = 1. We thus recover the classical
(exponential) height of the point x in the projective space.

In general, the function

logHL : X(F ) → R

is a representative of the class of height functions attached to the line bundle L

using Weil’s classical “height machine” (see [30], especially Part B, §10).
When L is ample, the set of points x ∈ X(F ) such that HL (x) ≤ B is finite

for any real number B (Northcott’s theorem).

2.3. Heights on adelic spaces

Let f be a nonzero global section of L and let Z denote its divisor. We extend the
definition of HL to the adelic space X(AF ) by defining

HL ,f(x) =


 ∏

v∈Val(F )

‖f‖v(x)




−1

(2.3)

for any x ∈ X(AF ) such that the infinite product makes sense.
To give an explicit example, assume again that X is the projective space Pn

and that L is the line bundle OP(1) endowed with its standard adelic metric;
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let us choose f = x0. Then, U = X\ div(f) can be identified to the set of points
[1 : · · · : xn] of Pn whose first homogeneous coordinate is equal to 1, i.e. to the
affine space An. For any x = (xv)v ∈ U(AF ), given by x = [1 : x1 : · · · : xn], with
xi = (xi,v)v ∈ AF , one has

HL ,f(x) =
∏

v∈Val(F )

max(1, |x1,v|v, . . . , |xn,v|v).

Lemma 2.1. Let U be any open subset of X.

(i) For any x ∈ X(AF ), the infinite product defining HL ,f(x) converges to an
element of (0,+∞].

(ii) The resulting function is lower semi-continuous and admits a positive lower
bound on the adelic space X(AF ).

(iii) If f does not vanish on U, then the restriction of HL ,f to U(AF ) is continuous
(for the topology of U(AF )).

(iv) Assume that X = U ∪ Z. Then, for any real number B, the set of points
x ∈ U(AF ) such that HL ,f(x) ≤ B is a compact subset of U(AF ).

Proof. For any place v, let us set cv = max(1, ‖f‖v). One has cv <∞ since X(Fv)
is compact and the function ‖f‖v on X(Fv) is continuous. Moreover, it follows from
the definition of an adelic metric that ‖f‖v = 1 for almost all v, so that cv = 1 for
almost all places v.

Consequently, the infinite series
∑

v∈Val(F ) log ‖fv‖−1 has (almost all of) its
terms non-negative; it converges to a real number or to +∞. This shows that the
infinite product HL ,f(x) converges to an element in (0,+∞]. Letting C = 1/

∏
v cv,

one has HL ,f(x) ≥ C for any x ∈ X(AF ), which proves (i) and the second half
of (ii).

Let V1 be the set of places v ∈ Val(F ) such that cv > 1; one has

logHL ,f(x) = sup
V1⊂V ⊂Val(F )

∑
v∈V

log ‖fv‖−1,

where V runs within the finite subsets of Val(F ) containing V1. This expression
shows that the function x �→ logHL ,f(x) is a supremum of lower semi-continuous
functions, hence is lower semi-continuous on X(AF ), hence the remaining part of
Assertion (ii).

Let us now prove (iii). Let X be a flat projective model of X over oF , let Z

be the Zariski closure of Z and V = X \Z , let D be the Zariski closure of X\U
and let U = X \D .

By definition of an adelic metric, for almost all finite places v ∈ Val(F ), ‖f‖v

is identically equal to 1 on U (ov). By definition of the topology of U(AF ), this
implies that the function HL ,f is locally given by a finite product of continuous
functions; it is therefore continuous.

Let us finally establish (iv). Consider integral models as above; since U contains
V by assumption, then U ⊃ V .



November 15, 2010 14:37 WSPC/S1793-7442 251-CM 00022

Igusa Integrals and Volume Asymptotics in Analytic and Adelic Geometry 367

For any x = (xv)v ∈ X(AF ), one has

‖f‖(xv) = HL ,f(x)−1
∏
w �=v

‖f‖(xv)−1 ≥ C−1HL ,f(x)−1.

If moreover HL ,f(x) ≤ B, then ‖f‖(xv) ≥ (BC)−1. The set of points xv ∈ X(Fv)
satisfying this inequality is a closed subset of the compact space X(Fv), hence
is compact. Moreover, this set is contained in U(Fv) because, by assumption, f

vanishes on X\U . Consequently, this set is a compact subset of U(Fv).
If the cardinality qv of the residue field kv is large enough, so that the v-adic

metric on L is defined by the line bundle O(Z ) at the place v, then − log ‖f‖v(xv)
is a non-negative integer times log qv. The inequality − log ‖f‖v(xv) ≤ log(BC),
then implies that − log ‖f‖v(xv) = 0.

Let EB denote the set of points x ∈ U(AF ) such that HL ,f(x) ≤ B. By what we
proved, there exists a finite set of places V (depending on B) such that EB is the
product of a compact subset of

∏
v∈V U(Fv) and of

∏
v �∈V V (ov). Since V (ov) ⊂

U (ov), we see that EB is relatively compact in U(AF ). By lower semi-continuity,
it is also closed in U(AF ), hence compact.

We observe that the hypotheses in (iii) and (iv) are actually necessary. They hold
in the important case where U = X\Z; then, HL ,f defines a continuous exhaustion
of U(AF ) by compact subsets.

2.4. Convergence factors and Tamagawa measures

on adelic spaces

2.4.1. Volumes and local densities

Let X be a smooth, proper, and geometrically integral algebraic variety over a
number field F . Fix an adelic metric on the canonical line bundle ωX ; by the
results recalled in Sec. 2.1.7, for any place v of F , this induces a measure τX,v on
X(Fv) and its restriction τU,v to U(Fv).

Let U be a Zariski open subset of X and let Z = X\U . Fix a model X of X ,
and let Z be the Zariski closure of Z in X and U = X \Z .

By a well-known formula going back to Weil ([47], see also [41], Corollary 2.15),
the equality

τU,v(U (ov)) = q−dim X
v # U (kv) (2.4)

holds for almost all non-archimedean places v.

2.4.2. Definition of an L-function

Definition 2.2. We define EP(U) to be the following virtual Q[ΓF ]-module:

[H0(UF̄ ,Gm)/F̄ ∗]Q − [H1(UF̄ ,Gm)]Q.
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It is an object of the Grothendieck group of the category of finite dimensional
Q-vector spaces endowed with a continuous action of ΓF , meaning that there is a
finite extension F ′ of F such that the subgroup ΓF ′ acts trivially. Such a virtual
Galois-module (we shall often skip the word “virtual”) has an Artin L-function,
given by an Euler product

L(s,EP(U)) =
∏

v finite

Lv(s,EP(U)),

Lv(s,EP(U)) = det(1 − q−s
v Frv |EP(U)Γ

0
v )−1,

where Frv is a geometric Frobenius element and Γ0
v is an inertia subgroup at the

place v.

Lemma 2.3. For any finite place v of F,Lv(s,EP(U)) is a positive real number.

Proof. We have Lv(s,EP(U)) = q
s rankEP(U)
v /f(qs

v), where the rational function

f(X) = det(X − Frv |EP(U))

is the virtual characteristic polynomial of Frv acting on EP(U), with the obvious
modification for ramified v. Since the action of ΓF on EP(U) factorizes through a
finite quotient, the rational function has only roots of unity for zeroes and poles.

By irreducibility of the cyclotomic polynomials Φn in Q[X ], this implies the
existence of rational integers (an)n≥1, almost all zero, such that

det(X − Frv |EP(U)) =
∏
n≥1

Φn(X)an .

From the inductive definition of the cyclotomic polynomials Φn, namely∏
d|n Φn(X) = Xn − 1, we see that Φn(x) > 0 for any real number x > 1 and

any positive integer n. In particular, f(x) > 0 for any real number x > 1 and
Lv(1,EP(U)) > 0, as claimed.

(To simplify notation, we shall also put Lv = 1 for any archimedean place v.)
More generally, if S is an arbitrary set of places of F , we define

LS(s,EP(U)) =
∏
v �∈S

Lv(s,EP(U)).

This Euler product converges for Re(s) > 1 to a holomorphic function of s in
that domain; by Brauer’s theorem [8], it admits a meromorphic continuation to the
whole complex plane. We denote by

LS
∗ (1,EP(U)) = lim

s→1
LS(s,EP(U))(s− 1)−r, r = ords=1 LS(s,EP(U)),

its “principal value” at s = 1.
From the previous lemma, we deduce the following corollary.

Corollary 2.4. For any finite set of places S of F,LS
∗ (1,EP(U)) is a positive real

number.
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We now show how this L-function furnishes renormalization factors for the local
measures τU,v.

Theorem 2.5. In addition to the notation and assumptions of Sec. 2.4.1, suppose
that

H1(X,OX) = H2(X,OX) = 0.

Then Lv(1,EP(U))τU,v(U (ov)) = 1 + O(q−3/2
v ). In particular, the infinite product∏

v �∈S

Lv(1,EP(U))τU,v(U (ov))

converges absolutely.

Remark 2.6. For a smooth projective variety X and any integer i, the vector-
space H0(X,Ωi

X) defines a birational invariant of X . Let us sketch the proof. For
any birational morphism f : X → X ′, there are open subsets V ⊂ X and V ′ ⊂ X ′

whose complementary subsets have codimension at least 2 such that f is defined on
V and f−1 is defined on V ′. The restriction morphism H0(X,Ωi

X) → H0(V,Ωi
X) is

then injective since V is dense, and surjective by the Hartogs principle; similarly, the
restriction morphism H0(X ′,Ωi

X′) → H0(V ′,Ωi
X′) is an isomorphism. Consequently,

the corresponding regular maps g : V → X ′ and g′ : V ′ → X define morphisms
H0(X ′,Ωi

X′) → H0(X,Ωi
X) and H0(X,Ωi

X) → H0(X ′,Ωi
X′) both compositions of

which equal the identity map, hence are isomorphisms.
When the ground field is the field of complex numbers, Hodge theory identifies

these vector-spaces with the conjugates of the cohomology spaces Hi(X,OX). Con-
sequently, these spaces define birational invariants of smooth complex projective
varieties. Moreover, by the Lefschetz principle, this extends to smooth projective
varieties defined over a field of characteristic 0. In particular, the assumptions of
the theorem are therefore conditions on the variety U and do not depend on its
smooth compactification X .

Proof. Blowing up the subscheme Z and resolving the singularities of the resulting
scheme, we obtain a smooth varietyX ′, with a proper morphism π : X ′ → X , which
is an isomorphism above U , such that Z ′ = π−1(Z) is a divisor.

By the previous remark, the variety X ′ satisfies H1(X ′,OX′) = H2(X ′,OX′) =
0. Let U ′ = π−1(U); since π is an isomorphism, any model (X ′,Z ′) of (X ′, Z ′) will
be such that U ′ = X ′\Z ′ is isomorphic to U , at least over a dense open subset
of Spec oF . In particular, the cardinalities of U ′(kv) and U (kv) will be equal for
almost all places v. In view of Weil’s formula recalled as Eq. (2.4), this implies that
τU ′,v(U ′(ov)) = τU,v(U (ov)) for almost all finite places v of F .

Consequently, assuming that Z is a divisor does not reduce the generality of the
argument which follows.

For almost all places v, one has

τU,v(U (ov)) = q−dim U
v # U (kv).
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Evidently,

# U (kv) = # X (kv) − # Z (kv).

Let 	 be a prime number. By the smooth and proper base change theorems, and
by Poincaré duality, the number of points of X (kv) can be computed, for any finite
place v of F , via the trace of a geometric Frobenius element Frv ∈ Γv on the 	-adic
cohomology of ZF̄ , as soon as X is smooth over the local ring of oF at v and the
residual characteristic at v is not equal to 	. Specifically, for any such finite place
v, one has the equality

q−dim X
v # X (kv) =

2d∑
i=0

q−i/2
v tr(Frv |Hi(XF̄ ,Q�)).

By Deligne’s proof [20] of the Weil conjectures (analogue of the Riemann hypothe-
sis) the eigenvalues of Frv on Hi(XF̄ ,Q�) are algebraic numbers with archimedean
value qi/2. Therefore, the ith term of the sum above is an algebraic number whose
archimedean absolute values are bounded by dim Hi(XF̄ ,Q�)q−i/2. In particu-
lar, the sum of all terms corresponding to i ≥ 3 is an algebraic number whose
archimedean absolute values are O(q−3/2

v ) when v varies through the set of finite
places of F .

The term corresponding to i = 0 is equal to 1 sinceX is geometrically connected.
Moreover, it follows from Peyre’s arguments ([38], proof of Lemma 2.1.1 and

Proposition 2.2.2) that one has

H1(XF̄ ,Q�) = 0

and that the cycle map induces an isomorphism of Q�[ΓF ]-modules

Pic(XF̄ ) ⊗ Q�
∼→H2(XF̄ ,Q�(1)).

Let Π(ZF̄ ) denote the free Z-module with basis the set of irreducible components
of ZF̄ , endowed with its Galois action.

Lemma 2.7. For almost all v, one has the equality

# Z (kv) = nvq
dim Z
v + O(qdim Z−1/2

v ),

where nv = tr(Frv |Π(ZF̄ )) is the number of irreducible components of Z ⊗kv which
are geometrically irreducible.

Proof.a In fact, we prove, for any scheme Z /oF which is flat, of finite type, and
whose generic fiber Z has dimension d, the following equality

# Z (kv) = nvq
d
v + O(qd−1/2

v ),

aThe proof below uses Deligne’s proof of Weil’s conjecture but the result can be deduced from the
estimates of Lang–Weil in [35].
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where nv is the number of fixed points of Frv in the set of d-dimensional irreducible
components of ZF̄ .

First observe that there is a general upper bound

# Z (kv) ≤ Cqd
v ,

for some integer C > 0. When Z is quasi-projective, this follows for example from
Lemma 3.9 in [12], where C can be taken to be the degree of the closure of Z in a
projective compactification; the general case follows from this since Z is assumed
to be of finite type.

Consequently, adding or removing a subscheme of lower dimension gives an
equivalent inequality, so that we may assume that Z is projective and equidimen-
sional. By resolution of singularities, we may also assume that Z is smooth.

Let 	 be a fixed prime number. As above, we can compute #Z (kv) using the
	-adic cohomology of ZF̄ : one has an upper bound

q−d
v # Z (kv) = tr(Frv|Hi(ZF̄ ,Q�)) + O(q−1/2

v ).

Moreover, H0(ZF̄ ,Q�) � QΠ(ZF̄ )
� , where Π(ZF̄ ) denotes the set of connected com-

ponents of ZF̄ , the Frobenius element Frv acting trivially on this ring. Consequently,

tr(Frv |H0(ZF̄ ,Q�)) = tr(Frv |Π(ZF̄ ))

and the lemma follows from this.

Let us return to the proof of Theorem 2.5. By the preceding lemma, we have

q−dim X
v # Z (kv) = q−1

v tr(Frv |Π(ZF̄ )) + O(q−3/2
v ),

hence

q−dim X
v # U (kv) = 1 − 1

qv
tr
(
Frv

∣∣Π(ZF̄ ) ⊗ Q� − H2
ét(XF̄ ,Q�(1))

)
+ O(q−3/2

v ).

Let us show that the trace appearing in the previous formula is equal to
tr(Frv|EP(U)). The order of vanishing/pole along any irreducible component of
ZF̄ defines an exact sequence of abelian sheaves for the étale site of XF̄ :

1 → Gm → i∗Gm
ord−−→ ⊕jα∗Z → 0,

where i : UF̄ → XF̄ is the inclusion and jα : Zα → XF̄ are the inclusions of the
irreducible components of ZF̄ . These sheaves are endowed with an action of ΓF for
which the above exact sequence is equivariant. Taking étale cohomology gives an
exact sequence of ΓF -modules:

0 → H0(XF̄ ,Gm) → H0(UF̄ ,Gm) → ⊕H0(Zα,Z)

→ H1(XF̄ ,Gm) → H1(UF̄ ,Gm).

Moreover, this last map is surjective: it can be identified with the restriction
map Pic(XF̄ ) → Pic(UF̄ ) which is surjective because XF̄ is smooth and UF̄ open
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in XF̄ . The scheme XF̄ is proper, smooth and connected hence H0(XF̄ ,Gm) = F̄ ∗.
Moreover for any α, Zα is connected which implies H0(Zα,Z) = Z, that is
⊕H0(Zα,Z) = Π(ZF̄ ). Finally, one obtains an exact sequence of Z[ΓF ]-modules

0 → H0(UF̄ ,Gm)/F̄ ∗ → Π(ZF̄ ) → Pic(XF̄ ) → Pic(UF̄ ) → 0,

which after tensoring with Q� gives an equality of virtual representations

EP(U) = Π(ZF̄ )Q�
− Pic(XF̄ )Q�

= Π(ZF̄ )Q�
− H2

ét(XF̄ ,Q�(1)). (2.5)

This implies that

q−dim X
v # U (kv) = 1 − 1

qv
tr(Frv |EP(U)) + O(q−3/2

v ).

Since the eigenvalues of Frv on the two Galois modules defining EP(U) are algebraic
numbers whose absolute values are bounded by 1, one has

det(1 − q−1
v Frv |EP(U)) = 1 − 1

qv
tr(Frv |EP(U)) + O(q−2

v ).

Now,

Lv(1,EP(U))q−dim X
v # U (kv) = det(1 − q−1

v Frv |EP(U))−1q−dim X
v # U (kv)

= 1 + O(q−3/2
v ),

and the asserted absolute convergence follows.

Definition 2.8. Let F be a number field; let X be a smooth proper, geometrically
integral variety over F such that H1(X,OX) = H2(X,OX) = 0. Let Z be a Zariski
closed subset in X , and let U = X\Z. The Tamagawa measure on the adelic space
U(AS

F ) is defined as the measure

τS
U = LS

∗ (1,EP(U))−1


∏

v �∈S

Lv(1,EP(U))τU,v


 .

By Theorem 2.5, this infinite product of measures converges; moreover, non-
empty, open and relatively compact, subsets of U(AS

F ) have a positive (finite) τS
U -

measure. In particular, compact subsets of U(AS
F ) have a finite τS

U -measure and τS
U

is a Radon measure on U(AS
F ).

Remark 2.9. In the literature, families (λv) of positive real numbers such that the
product of measures

∏
v(λvτU,v) converges absolutely are called sets of convergence

factors (see, e.g. [47] or [41]). Our theorem can thus be stated as saying that for any
smooth geometrically integral algebraic variety U having a smooth compactification
X satisfying H1(X,OX) = H2(X,OX) = 0, the family (Lv(1,EP(U))) is a set of con-
vergence factors. Let us compare our construction with the previously known cases.

(a) The Picard group of an affine connected algebraic group U is finite; in that case,
EP(U) is therefore the Galois module of characters of U and we recover Weil’s
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definition ([47]). For semi-simple groups, there are no nontrivial characters
and the product of the natural local densities converges absolutely, as is well
known. This is also the case for homogeneous varieties G/H studied by Borovoi
and Rudnick in [7], where G ⊃ H are semi-simple algebraic groups without
nontrivial rational characters.

(b) On the opposite side, integral projective varieties have no non-constant global
functions, so that EP(U) = Pic(UF̄ ) if U is projective. We thus recover Peyre’s
definition of the Tamagawa measure of a projective variety [38].

(c) Salberger [41] has developed a theory of Tamagawa measures on the “universal
torsors” introduced by Colliot-Thélène and Sansuc [18]. A universal torsor is
a principal homogeneous space E over an algebraic variety V whose structure
group is an algebraic torus T dual to the Picard group of V such that the
canonical map Hom(T,Gm) → H1(V,Gm), sending a character χ to the Gm-
torsor χ∗[E] deduced from E by push-out along χ, is an isomorphism. Such
torsors have been successfully applied to the study of rational points on the
variety V (Hasse principle, weak approximation, counting of rational points of
bounded height); see [18, 40, 9, 46].

By a fundamental theorem of Colliot-Thélène and Sansuc,b universal tor-
sors have no non-constant invertible global functions and their Picard group is
trivial (at least up to torsion). It follows that the virtual ΓF -module EP(E) is
trivial. This gives a conceptual explanation for the discovery by Salberger in [41]
that the Tamagawa measures on universal torsors could be defined by an abso-
lutely convergent product of “naive” local measures, without any regularizing
factors.

2.4.3. Assume moreover that Z is the support of a divisor D in X (more generally,
of a Cartier Q-divisor) and that ωX(D) is endowed with an adelic metric; this
induces a natural metric on OX(D). For any place v, the line bundle ωX(D) on
X(Fv) is metrized and this metric gives rise to a measure τ(X,D),v on U(Fv), which
is related to the measure τX,v by the formula

dτ(X,D),v(x) =
1

‖fD‖(x) dτX,v(x),

where fD is the canonical section of OX(D). By definition of an adelic metric, the
metric on OX(D) is induced, for almost all finite places v, by the line bundle OX (D)
on the integral model X , where D is a Cartier divisor with generic fiber D. For
such places v, one has ‖fD‖(x) = 1 for any point x ∈ U (ov), so that the measures
τ(X,D),v and τX,v coincide on U (ov).

bApply [18], Proposition 2.1.1 with K = k̄, the map Ŝ → Pic(Xk̄) being an isomorphism by the
very definition of a universal torsor.
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This shows that the product

τS
(X,D) = LS

∗ (1,EP(U))−1


∏

v �∈S

Lv(1,EP(U))τ(X,D),v




also defines a Radon measure on U(AS
F ). In fact, one has

dτS
(X,D)(x) =

(∏
v

‖fD‖(xv)

)−1

dτS
U (x) = HD(x) dτS

U (x),

and HD(x) is the height of x relative to the metrized line bundle OX(D).

2.4.4. Example: Compactifications of algebraic groups

As in the case of local fields, we briefly explain the case of algebraic groups and
show how our theory of measures interacts with the construction of a Haar measure
on an adelic group. We keep the notation of the previous paragraph, and assume
moreover that U is an algebraic group G over F of which X is an equivariant
compactification. Let us fix an invariant differential form of maximal degree ω on G;
viewed as a meromorphic global section of ωX , it has poles on each component of
X\G (see [13], Lemma 2.4); we therefore write −D for its divisor.

For any place v ∈ Val(F ), viewing ω as a gauge form on G(Fv) defines a Haar
measure |ω|v onG(Fv). For almost all finite places v,G(ov) is a well-defined compact
subgroup of G(Fv). We normalize the Haar measure dgv on G(Fv) by dividing the
measure |ω|v by the quantity #G(kv)q−dim G

v for these places v, and by 1 at other
places. By construction, for almost all v, dgv assigns volume 1 to the compact
open subgroup G(ov), hence the product

∏
v dgv is a well-defined Haar measure

on G(AF ).
By Theorem 2.5 we have the estimate

Lv(1,EP(G))#G(kv)q−dim G
v = 1 + O(q−3/2

v ),

from which we deduce that their infinite product converges absolutely. Conse-
quently,

∏
v Lv(1,EP(G))|ω|v is also a Haar measure on G(AF ).

Now, by the very definition of the adelic measures τ(X,D) and τX on G(AF ),
one has

dτ(X,D)(g) = HD(g) dτX(g)

=
∏
v

‖ω(g)‖v × L∗(1,EP(G))−1
∏
v

(
Lv(1,EP(G))

d|ω|v(g)
‖ω(g)‖v

)

= L∗(1,EP(G))−1
∏
v

(Lv(1,EP(G))d|ω|v(g)).

This shows that, in the particular case of an equivariant compactification of an
algebraic group, our general definition of the measure τ(X,D) on X\|D| gives rise
to a Haar measure on G(AF ).
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2.5. An abstract equidistribution theorem

In some cases, it is possible to count integral (resp. rational) points of bounded
height with respect to almost any normalization of the height, i.e. with respect to
any metrization on a given line bundle. Analogously, we obtain below an asymp-
totic expansion for the volume of height balls for almost any normalization of the
height.

In this subsection, we show how to extract from the obtained asymptotic behav-
ior a measure-theoretic information on the distribution of points of bounded height
or of height balls.

The following proposition is an abstract general version of a result going back
to Peyre ([38], Proposition 3.3).

Proposition 2.10. Let X be a compact topological space, U a subset of X and
H : U → R+ a function. Let ν be a positive measure on X such that for any real
number B, the set {x ∈ U ;H(x) ≤ B} has finite ν-measure.

Let S be a dense subspace of the space C(X) of continuous functions on X,

endowed with the sup. norm. Assume that there exist a function α : R+ → R∗
+ and

a Radon measure µ on X such that for any positive function θ ∈ S,

ν({x ∈ U ;H(x) ≤ θ(x)B}) ∼ α(B)
∫

X

θ(x) dµ(x)

for B → +∞. Then, for B → +∞, the measures

νB =
1

α(B)
1{H(x)≤B}dν(x)

on X converge vaguely to the measure µ. In other words,

(i) for any continuous function f ∈ C(X),

1
α(B)

∫
X

1{H(x)≤B}f(x)dν(x) →
∫

X

f(x) dµ(x), for B → +∞;

(ii) for every open set Ω ⊂ X which is µ-regular,

ν({x ∈ Ω ∩ U ;H(x) ≤ B}) = α(B)µ(Ω) + o(α(B)).

Before entering the proof, let us introduce one more notation. For θ ∈ C(X),
θ > 0, let

N(θ;B) = ν({x ∈ U ;H(x) ≤ θ(x)B}).

For any open subset Ω ⊂ X , let

NΩ(B) = ν({x ∈ Ω ∩ U ;H(x) ≤ B}).
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Proof. First remark that these hypotheses imply that for any λ > 0,
α(λB)/α(B) → λ when B → +∞. Indeed, taking any positive θ ∈ S,

α(λB)
α(B)

=
α(λB)

∫
X
θ(x)dµ(x)

α(B)
∫

X θ(x)dµ(x)
∼ N(θ;λB)

N(θ;B)

∼ N(λθ;B)
N(θ;B)

∼ α(B)
∫

X
λθ(x) dµ(x)

α(B)
∫

X θ(x) dµ(x)
= λ.

Now, it is of course sufficient to prove that NΩ(B)/α(B) → µ(Ω) for any
µ-regular open set Ω ⊂ B. Fix ε > 0. Since Ω ⊂ X is µ-regular, there exist
continuous functions f and g on X such that

f ≤ 1Ω ≤ g

and such that
∫
(g − f)dµ ≤ ε. Since S is dense in C(X), we may also assume that

f and g belong to S and that they are non-negative.
Let fε = ε+ (1 − ε)f , χε = ε+ (1− ε)1Ω and gε = ε+ (1 − ε)g. The inequality

fε ≤ χε ≤ gε implies that

N(fε;B) ≤ N(χε;B) ≤ N(gε;B).

Moreover, by definition,

0 ≤ N(χε;B) −NΩ(B) ≤ NX(εB).

Therefore,

lim inf NΩ(B)α(B)−1 ≥ lim inf N(χε;B)α(B)−1 − lim supNX(εB)α(B)−1

≥ lim inf N(fε;B)α(B)−1 − ε

≥
∫
fεdµ− ε =

∫
f dµ+ O(ε).

Similarly,

lim supNΩ(B)α(B)−1 ≤
∫
g dµ+ O(ε).

When ε→ 0, one thus finds

limNΩ(B)α(B)−1 = µ(Ω),

as claimed.

3. Geometric Igusa Integrals: Preliminaries

3.1. Clemens complexes and variants

In this section, we study analytic properties of certain integrals of Igusa-type
attached to a divisor D in a variety X . This requires the introduction of a sim-
plicial set which encodes the intersections of the various components of D, and
which we call the Clemens complex. Such a simplicial set has been used by Clemens
in [16] in his study of the Picard–Lefschetz transformation (see also [26]).
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3.1.1. Simplicial sets

We recall classical definitions concerning simplicial sets. A partially ordered set,
abridged as poset, is a set endowed with a binary relation ≺ which is transitive
(a ≺ b and b ≺ c implies a ≺ c), antisymmetric (a ≺ b and b ≺ a implies a = b) and
reflexive (a ≺ a). If a ≺ b, we say that a is a face of b; in particular, the transitivity
axiom for a poset means that a face of a face is a face.

There are obvious definitions for morphisms of posets, sub-posets, as well as
actions of groups on posets.

As an example, if A is a set, the set P∗(A ) of non-empty subsets of A , together
with the inclusion relation, is a poset. We shall interpret it geometrically as the
simplex on the set of vertices A and denote it by SA . More generally, a simplicial
complex on a set A is a set of non-empty finite subsets of A , called simplices,
such that any non-empty subset of a simplex is itself a simplex. The dimension of
a simplex is defined as one less its cardinality: points, edges, . . . are simplexes of
dimension 0, 1, . . . . The dimension of a simplicial complex is the supremum of the
dimensions of its faces. The order relation endows a simplicial complex with the
structure of poset. In fact, simplicial complexes are sub-posets of the simplex SA .

Let S be a poset. The dimension of an element s ∈ S, denoted dim(s), is defined
as the supremum of the lengths n of chains s0 ≺ · · · ≺ sn, where the si are distinct
with sn ≺ s. Similarly, the codimension codim(s) of an element s ∈ S is defined
as the supremum of the lengths of such chains with s ≺ s0. Elements of dimension
0, 1, . . . , are called vertices, edges, . . . . The dimension dim(S) of S is the supremum
of all dimensions of all of its elements.

It is important to observe that given a poset S and a sub-poset S′, the dimension
or the codimension of a face of S′ may differ from their dimension or codimension
as a face of S.c

Let S be a poset. Categorically, an action of a group Γ on S is just a morphism
of groups from Γ to the set Aut(S) of automorphisms of S. In other words, it is the
data, for any γ ∈ Γ, of a bijection γ∗ of S such that γ∗s ≺ γ∗s′ is s ≺ s′, subject to
the compatibilities (γγ′)∗ = γ∗γ′∗ for any γ and γ′ ∈ Γ.

Let there be given a poset S and an action of Γ on S. The set SΓ of fixed points
of Γ in S is a sub-poset of S. In the other direction, the set S/Γ of orbits of Γ
in S, can be endowed with the binary relation deduced from ≺ by passing to the
quotient. Namely, for s and s′ in S, with orbits [s] and [s′], we say that [s] ≺ [s′]
if there exists γ ∈ Γ such that s ≺ γ∗s′. (This condition does not depend on the
actual choice of elements s and s′ in their orbits [s] and [s′].)

There are obvious morphisms of posets, SΓ → S and S → SΓ; these morphisms
are the universal morphisms of posets, respectively to S and from S, which commute
with the action of Γ on S.

cThis probably means that the terminology “sub-poset” is inappropriate; sub-posets for which the
dimension notion is compatible are sometimes called ideals . . . .
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As an example, assume that S = SA , the simplex with vertices in a set A .
Actions of a group Γ on SA correspond to actions of Γ on A . The simplicial sets
S Γ and SΓ are respectively the simplices with vertices in the fixed-points A Γ and
the orbits A /Γ.

3.1.2. Incidence complexes

Let X be a (geometrically integral) variety over a perfect field F and let D be
a divisor in X . Fix a separable closure F̄ of F . Let Ā be the set of irreducible
components of DF̄ ; for α ∈ Ā , we denote by Dα the corresponding component
of DF̄ . For any subset A ⊂ Ā , we let DA =

⋂
α∈ADα; in particular, D∅ = XF̄ .

We shall always make the assumption that the divisor DF̄ has simple normal
crossings: all irreducible components Dα of DF̄ are supposed to be smooth and to
meet transversally.d In particular, for any subset A ⊂ Ā such that DA �= ∅, DA is
a smooth subvariety of XF̄ of codimension #A.

The closed subschemes DA, for A ⊂ Ā , are the closed strata of a stratification
(D◦

A)A⊂Ā , where, for any subset A ⊂ Ā , D◦
A is defined by the formula:

D◦
A = DA

∖ ⋃
B�A

DB.

There are in fact several natural posets that enter the picture, encoding in
various ways the combinatorial data of whether or not, for a given subset A of A ,
the intersection DA is empty. The following observation is crucial for our definitions
to make sense:

Proposition 3.1. Let A and A′ be two subsets of Ā such that A′ ⊂ A. For any
irreducible component Z of DA, there is a unique irreducible component Z ′ of DA′

which contains Z.

Proof. If an irreducible component Z were contained in two distinct irreducible
components of DA′ , these two components would meet along Z, which contradicts
the simple normal crossings assumption on DF̄ . Indeed, DA being smooth, its irre-
ducible components must be disjoint.

3.1.3. The geometric Clemens complex

The incidence complex IF̄ (D) defined by D is the sub-poset of P∗(Ā ) consisting
of non-empty subsets A of Ā such that the intersection DA is not empty. More
precisely, we define the geometric Clemens complex CF̄ (D) as the set of all pairs

dThis is equivalent to the weaker condition that D has normal crossings together with the smooth-
ness of the geometric irreducible components of D; the condition that D has strict normal crossings
is however stronger since the smoothness of an irreducible component of D implies that its geo-
metric irreducible components do not meet.
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(A,Z), where A ⊂ Ā is any non-empty subset, and Z is an irreducible component of
the scheme DA, together with the partial order relation defined by (A,Z) ≺ (A′, Z ′)
if A ⊂ A′ and Z ⊃ Z ′. In other words, the set of vertices of CF̄ (D) is Ā , there are
edges corresponding to irreducible component of each intersection Dα ∩Dα′ , etc.

Mapping (A,Z) to A induces a morphism of posets from the geometric Clemens
complex to the incidence complex. In fact, we could have defined CF̄ (D) without
any reference to Ā . Indeed, thanks to the normal crossings condition, given an
irreducible component Z of a scheme DA, we may recover A as the set of α ∈ Ā

such that Dα contains the generic point of Z.
Since X is defined over F , ΓF acts naturally on the set of integral subschemes

of XF̄ . Since F is perfect, an integral subscheme Z of XF̄ is defined over F if and
only if it is a fixed point for this action.

For any γ ∈ ΓF and any α ∈ Ā , observe that γ∗Dα is an irreducible component
of DF̄ , because D is defined over F ; this induces an action of ΓF on Ā , defined
by γ∗Dα = Dγα, for α ∈ Ā and γ ∈ ΓF . Moreover, if Z is an irreducible com-
ponent of an intersection DA, for A ⊂ Ā , then γ∗Z is an irreducible component
of γ∗DA = Dγ∗A. Consequently, we have a natural action of ΓF on the geometric
Clemens complex CF̄ (D), given by γ∗(A,Z) = (γ∗A, γ∗Z) for any element (A,Z)
of CF̄ (D).

The natural morphism of posets CF̄ (D) → IF̄ (D) mapping (A,Z) to A is
ΓF -equivariant.

3.1.4. Rational Clemens complexes

Let us denote by IF (D) and CF (D) the sub-posets of IF̄ (D) and CF̄ (D) consist-
ing of ΓF -fixed faces. These posets correspond to the intersections of the divisors
Dα and to the irreducible components of these intersections which are defined
over the base field F . Alternatively, they can be defined without any reference to
the algebraic closure F̄ by considering irreducible components of the divisor D,
their intersections and the irreducible components of these which are geometrically
irreducible.

More generally, let E be any extension of F , together with an embedding of F̄ in
an algebraic closure Ē. As an example, one may take any extension of F contained
in F̄ . In our study below, F will be a number field and E will be the completion of
F at a place v; the choice of an embedding F̄ ↪→ Ē corresponds to the choice of a
decomposition group at v. Under these conditions, there is a natural morphism of
groups from the Galois group ΓE of Ē/E to ΓF . In particular, the posets CF̄ (D)
and IF̄ (D) are endowed with an action of ΓE .

Let us define the E-rational Clemens complex, CE(D), as the sub-poset of
CF̄ (D) fixed by ΓE . In particular, for any face (A,Z) of CE(D), the subschemes
(DA)Ē and ZĒ are defined over E. We shall denote (DA)E and ZE , or even DA

and Z, the corresponding subschemes of XE. Observe that ZE is geometrically
irreducible.
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Conversely, let A be any non-empty subset of Ā which is ΓE-invariant; then,
(DA)Ē is defined over E and corresponds to some subscheme (DA)E of XE . Let Z
be any irreducible component of (DA)E which is geometrically irreducible. Then,
ZĒ is an irreducible component of (DA)Ē . By EGA IV (4.5.1), the set of irre-
ducible components does not change when one extends the ground field from an
algebraically closed field to any extension; consequently, ZĒ is defined over F̄ and
(A,Z) corresponds to a face of CE(D).

3.1.5. E-analytic Clemens complexes

Let E be any perfect extension of F together with an embedding F̄ ↪→ Ē as above.
We define the E-analytic Clemens complex, denoted C an

E (D), as the sub-poset of
CE(D) whose faces are those faces (A,Z) such that Z(E) �= ∅. (When we write
Z(E), we identify Z with the unique E-subscheme of XE whose extension to Ē

is ZĒ.)
This complex can also be defined as follows. First let A be any non-empty subset

of Ā which is ΓE-invariant and let Z be an irreducible component of DA. While
(DA)Ē is defined over E, for the moment, Z is just a subscheme of XF̄ . However,
we can define Z(E) as the intersection in X(Ē) of X(E) and of Z(Ē); this is indeed
what one would get if ZĒ were defined over E.

Assume that Z(E) �= ∅. Let Z ′ be the smallest subscheme of XE such that
Z ′̄

E
contains Z. It is irreducible: if Z ′ were a union Z ′

1 ∪ Z ′
2, one of them, say

Z ′
1, would be such that (Z ′

1)Ē contains ZĒ , because ZĒ is irreducible. More-
over, Z ′ is contained in (DA)E , since (DA)Ē contains ZĒ. It follows that Z ′

is an irreducible component of (DA)E . By assumption, Z ′(E) �= ∅ hence, by
EGA IV (4.5.17), Z ′ is geometrically connected. Since DA is smooth, so are
(DA)Ē and Z ′̄

E
, this last subscheme being a union of irreducible components of

(DA)Ē . But a connected smooth scheme is irreducible, hence Z ′ is irreducible and
Z ′̄

E
= ZĒ . It follows that ZĒ is defined over E and (A,Z) corresponds to a face of

C an
E (D).

Let us finally observe that the dimension of a face (A,Z) of C an
E (D) is equal

to #(A/ΓE) − 1. Indeed, let n = #(A/ΓE) and consider any sequence A1 ⊂ · · · ⊂
An = A of ΓE-invariants subsets of A. Then, DA1 ⊃ DA2 ⊃ · · · ⊃ DAn and each of
them has a unique irreducible component Zi containing Z. Since Z(E) �= ∅, Zi(E)
is non-empty either, and the (Ai, Zi) define a maximal increasing sequence of faces
of C an

E (D).
This notion will be of interest to us under the supplementary assumption that

E is a locally compact-valued field. Indeed, such fields allow for a theory of analytic
manifolds as well as an implicit function theorem. By the local description of X
that will be explained below, for any face (A,Z) of CE(D), Z(E) is either empty, or
is an E-analytic submanifold of X(E) of codimension #(A) which is Zariski-dense
in Z. However, as a face of C an

E (D), (A,Z) has dimension #(A/ΓE) − 1 and it is
that invariant which will be relevant in our analysis below.
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3.1.6. Example

Below we describe these Clemens complexes in special cases, which are essentially
governed by combinatorial data, namely for toric varieties and equivariant
compactifications of semi-simple groups. We want to make clear that for general
varieties, the three types of Clemens complexes can be very different.

For example, let X be the blow-up of the projective space Pn along a smooth
subvariety V defined over the ground field, let D be the exceptional divisor inX and
let π : X → Pn be the canonical morphism. The map π induces a bijection between
the set of irreducible components of DF̄ and the set of irreducible components of
VF̄ , as well as a bijection between the set of irreducible components of D and the
set of irreducible components of V . Moreover, a component Z of D is geometrically
irreducible if and only if the corresponding component π(Z) of V is; indeed, Z is
isomorphic to the projectivized normal bundle of V in X . This description shows
also that Z(F ) = ∅ if and only if π(Z)(F ) = ∅.

To give a specific example, take V to be the disjoint union of a geometrically
irreducible smooth curve C1, without rational points, of a geometrically irreducible
smooth curve C2 with rational points and of a smooth irreducible curve C3 with
two geometrically components C′

3 and C′′
3 . Then, C (X,D) consists of four points

corresponding to C1, C2, C
′
2, C

′
3 (there are no intersections), the F -rational Clemens

complex CF (X,D) consists of two points corresponding to C1 and C2, and the F -
analytic Clemens complex C an

F (X,D) consists of the single point corresponding to
C1. We present further examples in Sec. 5.

3.2. Local description of a pair (X, D)

3.2.1. Notation

Let F be a perfect field, F̄ an algebraic closure of F , X a smooth algebraic variety
over F and D ⊂ X a reduced divisor such that DF̄ has strict normal crossings
in XF̄ . Let us recall that this means that DF̄ is the union of irreducible smooth
divisors in XF̄ which meet transversally. In other words, each point of XF̄ has a
neighborhood U , together with an étale map U → An

F̄
such that for each irreducible

component Z of DF̄ ∩ U , Z ∩ U is the preimage of some coordinate hyperplane
in An

F̄
.

Let Ā be the set of irreducible components of DF̄ ; for α ∈ Ā , let Dα denote
the corresponding divisor, so that DF̄ =

∑
α∈A Dα. For α ∈ Ā , we denote by Fα

the field of definition of Dα in F̄ ; its Galois group ΓFα is the stabilizer of Dα in ΓF .
For A ⊂ Ā , we denote by DA the intersection of the divisors Dα, for α ∈ A; by
convention, D∅ = X .

Let α ∈ Ā . The union
⋃

a∈ΓF αDa of the conjugates of Dα is a divisor in XF̄

which is defined over F ; the corresponding divisor of X will be denoted by ∆α.
Similarly, the intersection of the divisors Da, for a ∈ ΓFα, is a smooth subscheme
of XF̄ which is defined over X ; the corresponding subscheme of X will be denoted
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by Eα. If Eα �= ∅, then its codimension rα is equal to [Fα : F ]. Moreover, ∆α(F ) =
Eα(F ).

The choice of another element α′ = γ∗α in the orbit ΓFα does not change ∆α

nor Eα. However, it changes the field Fα to the conjugate Fα′ = γ∗Fα and its
stabilizer ΓFα to the conjugate subgroup ΓFα′ = γΓFαγ

−1. Observe that rα′ = rα.

3.2.2. Local equations for the étale topology

Let us now give local equations of D around each rational point of X . Fix a point
ξ ∈ X(F ) and let α ∈ Ā be such that ξ ∈ Dα (it is a ΓF -invariant subset of Ā ).

When Fα = F , Dα = ∆α×F̄ is defined over F and the choice of a local equation
for Dα defines a smooth map from an open neighborhood Uξ of ξ in X to the affine
line which maps Uξ ∩Dα to {0} ⊂ A1.

To explain the general case, let us introduce other notations. We write AFα

for the Weil restriction of scalars ResFα/F A1 from Fα to F of the affine line. It is
endowed with a canonical morphism A1

Fα
→ (ResFα/F A1) ×F Fα which induces,

for any F -scheme V , a bijection

Hom(V,ResFα/F A1) = Hom(V ×F Fα,A1).

In particular, the F -rational points of AFα are in canonical bijection with Fα.
The F -scheme AFα is an affine space of dimension rα = [Fα : F ]. Let us indeed

choose an F -linear basis (u1, . . . , urα) of Fα. Then, the morphism Arα → AFα given
by (x1, . . . , xrα) �→∑

xiui is an isomorphism. In these coordinates, the norm-form
NFα/F of Fα is a homogeneous polynomial of degree [Fα : F ] which defines a
hypersurface in AFα ; it has a single F -rational point 0.

Moreover, the rα F -linear embeddings of Fα into F̄ induce an isomorphism
Fα ⊗F F̄ � F̄ rα , hence an identification of AFα ×F F̄ with the affine space Arα

F̄
.

Under this identification, the divisor of the norm-form corresponds to the union of
the coordinates hyperplanes.

Lemma 3.2. There is a Zariski open neighborhood Uξ of ξ in X and a smooth map

xα : Uξ → AFα

which maps ∆α ∩ Uξ to the hypersurface of AFα defined by the norm equation
NFα/F (x) = 0, such that there is a diagram

Eα
� � ��

��

∆α
� � ��

��

Uξ ⊂ X

��
{0} � � �� {NFα/F (x) = 0} � � �� AFα.

Proof. Choose an element f in the local ring OXF̄ ,ξ which is a generator of the
ideal of Dα, so that f = 0 is a local equation of Dα. For any γ ∈ ΓF , fγ = 0 is a
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local equation of γ∗Dα. Consequently, fγ/f is a local unit at ξ, for each γ ∈ ΓFα ,
and the map γ �→ fγ/f is a 1-cocycle for the Galois group ΓFα with values in the
local ring O∗

XF̄ ,ξ. By Hilbert’s Theorem 90 for the multiplicative group, this cocycle
is a coboundary (see [37], Proposition 4.9 and Lemma 4.10 for a non-elementary
proof in that context) and there exists a unit u ∈ O∗

XF̄ ,ξ such that fγ/f = uγ/u

for any γ ∈ ΓFα . Consequently, fu−1 is an element of OXF̄ ,ξ, fixed by ΓFα , which
generates the ideal of Dα. In other words, there is a Zariski open neighborhood
V of ξ in X , and a function g ∈ Γ(V ×F Fα,OV ×Fα) such that g = 0 is an
equation of Dα in V ×F Fα. To the morphism V ×F Fα → A1

Fα
corresponds by

the universal property of the Weil restriction of scalars a morphism, still denoted θ,
V → AFα .

Through the canonical identification, over F̄ , of AFα with the affine space Arα

F̄
,

the map g induces an isomorphism from Dα to one of the coordinate hyperplanes,
from ∆α to the union of the coordinate hyperplanes, while ξ maps to 0. At the
level of F -rational points, the diagram (V,∆α) → (AFα , H) corresponds to the
map (V (F ), Dα(F )) → (Fα, 0).

3.2.3. Local charts

Let ξ ∈ X(F ). More generally, let Aξ be the set of α ∈ A such that ξ ∈ Dα.
Let Z be the irreducible component of DAξ

which contains ξ. It is geometrically
irreducible and (Aξ, Z) is a face of C an

F (D). For a sufficiently small neighborhood
V of ξ, there exists, for each α ∈ Aξ, a smooth map xα : V → AFα as in the
previous paragraph. Since the divisors Dα meet transversally, the map (xα) : V →∏

α∈Aξ
AFα is smooth. By choosing additional local coordinates, and shrinking V

if needed, we can extend it to an étale map qξ : Uξ → ∏
α∈Aξ

AFα × Ar, with
r = codimξ(DAξ

, X) = #(Aξ). We will also assume, as we may, that the open
subset Uξ is affine and that Uξ ∩Dα = ∅ if α �∈ Aξ.

Assume moreover that F is a local field. It follows from the preceding discussion
that for each α ∈ A , ∆α(F ) = Eα(F ) is a smooth F -analytic subvariety of X(F ),
either empty, or of codimension rα = [F : Fα]. For any ΓF -invariant subset A of
A , let us denote by ∆A the intersection of all ∆α, for α ∈ A. Then, ∆A(F ) =
EA(F ) is either empty, or a smooth F -analytic subvariety of X(F ) of codimension
rA = #(A).

3.2.4. Partitions of unity

In this section, we assume in addition that F is a local field and we consider the
situation from the analytic point of view. Observe that the maps qξ induce analytic
étale maps Uξ(F ) → ∏

α∈Aξ
Fα × F r. The open sets Uξ(F ) cover X(F ) which is

compact, since X is projective. Consequently, there is a finite partition of unity
(θξ) subordinate to this covering: for any ξ, θξ : X(F ) → R is a smooth function
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whose support is contained in Uξ(F ), the map qξ is one-to-one on that support,∑
ξ∈X(F ) θξ = 1 and only a finite number of θξ are nonzero.

3.2.5. Metrized line bundles, volume forms

Let α ∈ Ā and let us consider the line bundle OX(∆α). It has a canonical section
fα the divisor of which is ∆α. Let us assume that F is a local field. On each
open set Uξ of X , we have constructed a regular map xα : Uξ → AFα . Composed
with the norm AFα → A1, it gives us a regular function N(xα) ∈ Γ(Uξ,OX)
which generates the ideal of ∆α on Uξ. This function therefore induces a trivi-
alization of OX(−∆α)|Uξ

. Consequently, a metric on OX(∆α)|Uξ
takes the form

‖fα‖(x) = |xα|Fαhξ(x) on Uξ(F ), where we view xα as a local coordinate Uξ(F ) →
Fα and |xα|Fα = |NFα/F (xα)|F , and where hξ : Uξ(F ) → R∗

+ is any continuous
function.

Similarly, on such a chart Uξ(F ), we have a measure in the Lebesgue class
defined by dx =

∏
α∈Aξ

dxα × dx1 · · ·dxr . Any measure on X(F ) which belongs to
the Lebesgue class can therefore be expressed in a chart Uξ(F ) as the product of
this measure dx with a positive locally integrable function. Let us also observe that
there are canonical isomorphisms

O(∆α)|Eα � N∆α(X)|Eα � detNEα(X).

These isomorphisms allow us to define residue measures on ∆α(F ) = Eα(F ),
and on their intersections, hence on all faces of the F -analytic Clemens complex
C an

F (D).

3.3. Mellin transformation over local fields

3.3.1. Local zeta functions

Let F be a local field of characteristic zero, with normalized absolute value |·|F .
Define a constant cF as follows:

cF =



µ([−1; 1]) if F = R;
µ(B(0; 1)) if F = C;
(1 − q−1)(log q)−1µ(oF ) if F ⊃ Qp, q = |�F |−1

F .

(3.1)

(In the last formula, �F denotes a generator of the maximal ideal of oF .)
For any locally integrable function ϕ : F → C, we let

MF (ϕ)(s) =
∫

F

ϕ(x)|x|s−1
F dµ(x),

for any complex parameter s such that the integral converges absolutely. We call
it the Mellin transform of ϕ; to shorten the notation and when no confusion can
arise, we will often write ϕ̂ instead of MF (ϕ).
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We write ζF for the Mellin transform MF (ϕ0) of ϕ0, the characteristic function
of the unit ball in F . The integral defining ζF (s) converges if and only if Res(s) > 0,
and one has

ζF (s) = µ([−1, 1])
∫ 1

0

xs−1 dx =
cF

s
for F = R

=
µ(B(0; 1))

π
2π
∫ 1

0

r2s−1 dr =
cF

s
for F = C

=
∞∑

n=0

q−n(s−1)µ(�n
F o∗F ) = µ(oF )

(
1 − 1

q

) ∞∑
n=0

q−ns

= µ(oF )
1 − q−1

1 − q−s
otherwise.

In all cases, the function s �→ ζF (s) is holomorphic on the half-plane defined by
Re(s) > 0 and extends to a meromorphic function on C. It has a simple pole at
s = 0, with residue cF . In the archimedean case, note that s = 0 is the only pole
of ζF . However, in the p-adic case, ζF is (2iπ/ log q)-periodic so that s = 2inπ/ log q
is also a pole for any integer n; this will play a role in the use of Tauberian arguments
later.

3.3.2. Mellin transform of smooth functions

One of our goals in this paper is to establish the meromorphic continuation, together
with growth estimates, for integrals on varieties that are defined locally like Mellin
transforms. To explain our arguments, we begin with the one-dimensional toy
example.

We say that a function ϕ : F → C is smooth if it is either C∞ when F = R or
C, or locally constant otherwise. If a and b are real numbers, we define T>a, resp.
T(a,b), as the set of s ∈ C such that a < Re(s) (resp. a < Re(s) < b).

Lemma 3.3. Let F be a local field of characteristic zero, let ϕ be a measurable,
bounded and compactly supported function on F . Then, the Mellin transform

MF (ϕ)(s) =
∫

F

|x|s−1
F ϕ(x)dx

converges for s ∈ C with Re(s) > 0 and defines a holomorphic function on T>0.
Moreover, for any real numbers a and b such that 0 < a < b, the function MF (ϕ(s))
is bounded in T(a,b).

Assume that ϕ is smooth. Then there exists a holomorphic function ϕ1 on
T>−1/2 such that ϕ1(0) = ϕ(0) and MF (ϕ)(s) = ζF (s)ϕ1(s). Moreover, for any real
numbers a and b such that − 1

2 < a < b, ϕ1 is bounded in T(a,b) if F is ultrametric,
while there is an upper bound

|ϕ1(s)| � 1 + |Im(s)|, s ∈ T(a,b),
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if F is archimedean. In particular, the function

s �→ MF (ϕ)(s) − ϕ(0)ζF (s)

is holomorphic and

lim
s→0

sMF (ϕ)(s) = cFϕ(0).

Proof. The absolute convergence of MF (ϕ)(s) for Re(s) > 0 and its holomorphy
in that domain immediately follow from the absolute convergence of ζF and the
fact that ϕ is bounded and has compact support. So does also its boundedness in
vertical strips T(a,b) for 0 < a < b.

Assume that ϕ is smooth. Let us prove the stated meromorphic continuation.
Again, let ϕ0 denote the characteristic function of the unit ball in F . Replacing
ϕ by ϕ − ϕ(0)ϕ0, it suffices to show that MF (ϕ) is holomorphic on the half-plane
Re(s) > − 1

2 whenever ϕ is a compactly supported function on F which is smooth
in a neighborhood of 0 and satisfies ϕ(0) = 0.

In the real case, one can then write |ϕ|(x) = |x|Fψ(x) for some function ψ

which is continuous at 0. Similarly, in the complex case, one can write |ϕ(z)| =
|z|1/2

F ψ(z). The required holomorphy of MF (ϕ)(s) on the domain T>− 1
2

follows. In
the ultrametric case, ϕ vanishes in a neighborhood of 0 and MF (ϕ) even extends
to a holomorphic function on C.

In all cases, observe that MF (ϕ)(s) is bounded in vertical strips T(α,β), if α and
β are real numbers such that − 1

2 < α < β. Now, the existence of the function ϕ1

and the asserted bound on this function follow from the fact that ζ−1
F is holomorphic

and satisfies this bound in these vertical strips.

3.3.3. Higher-dimensional Mellin transforms

We consider a finite family (Fj)1≤j≤n of local fields. For simplicity, we assume these
to be finite extensions of a single completion of Q. Let us denote by V the space∏
Fj . Adopting the terminology introduced for functions of one variable, we say

that a function on V is smooth if it is either C∞, in the case where the Fj are
archimedean, or locally constant, when the Fj are ultrametric. If α = (α1, . . . , αn)
and β = (β1, . . . , βn) are families of real numbers, we define the sets T>α and T(α,β)

as the open subsets of Cn consisting of those s ∈ Cn such that αj < Re(sj) (resp.
αj < Re(sj) < βj) for j = 1, . . . , n. When all αj are equal to a single one α, and
similarly for the βj , we will also write Tn

>α and Tn
(α,β), or even T>α and T(α,β) when

the dimension n is clear from the context. Let F be the vector space generated
by functions on V × Cn of the form (x; s) �→ u(x)v1(x)s1 · · · vn(x)sn , where u is
smooth, compactly supported on V , and v1, . . . , vn are smooth, positive, and equal
to 1 outside of a compact subset of V . For any function ϕ ∈ F and s ∈ Cn, we let

MV (ϕ)(s) =
∫

V

|x1|s1−1 · · · |xn|sn−1ϕ(x; s)dx1 · · · dxn,

whenever the integral converges.
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Proposition 3.4. The integral MV (ϕ)(s) converges for any s ∈ Cn such that
Re(sj) > 0 for all j, and defines an holomorphic function in T>0. For any positive
real numbers α and β,MV (ϕ) is bounded on Tn

(α,β).
Moreover, there exists a unique holomorphic function ϕ1 on the domain Tn

>−1/2

such that

MV (ϕ)(s) =
n∏

j=1

ζFj (sj)ϕ1(s)

for s ∈ Tn
>0. Let α and β be real numbers such that − 1

2 < α < β. Then, ϕ1 is
bounded on Tn

(α,β) if the Fj are ultrametric, while there exists a real number c such
that

|ϕ1(s)| ≤ c

n∏
j=1

(1 + |sj |), s ∈ T(α,β),

if the Fj are archimedean. Moreover, ϕ1(0) = ϕ(0; 0).

4. Geometric Igusa Integrals and Volume Estimates

4.1. Igusa integrals over local fields

We return to our geometric situation: X is a smooth quasi-projective variety over
a local field F , D is a divisor on X such that DF̄ has simple normal crossings.
We let Ā be the set of irreducible components of DF̄ . For α ∈ Ā , Dα denotes
the corresponding component, while ∆α and Eα are respectively the sum and the
intersection of the conjugates of Dα.

For α ∈ Ā , we denote by fα the canonical section of the line bundle O(∆α).
Endow the line bundles O(∆α), as well as the canonical bundle ωX with smooth
metrics. Let τX the corresponding measure on X . Following the definitions of
Sec. 2.1.12, the analytic variety DA(F ), for any ΓF -invariant subset A ⊂ Ā sup-
ports a natural “residue measure”. To simplify explicit formulas below, we define the
measure τDA as the residue measure multiplied by

∏
α∈A cFα , where the constants

cFα are defined in Eq. (3.1).
The integrals we are interested in take the form

I (Φ; (sα)α∈A ) =
∫

X(F )

∏
α∈A

‖fDα‖(x)sα−1Φ(x) dτX (x),

where Φ is a smooth, compactly supported function onX(F ) and the sα are complex
parameters. Letting Φ vary, it is convenient to view these integrals as distributions
(of order 0) on X(F ).

For any subset A of the F -analytic Clemens complex C an
F (D), define also

IA(Φ; (sα)α�∈A) =
∫

DA(F )

∏
α�∈A

‖fDα‖(x)sα−1Φ(x) dτDA (x).
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Lemma 4.1. The integral I (Φ; (sα)α∈A ) converges for s ∈ TA
>0 and the map

(sα)α∈A �→ I (Φ; (sα)α∈A )

is holomorphic on TA
>0.

Similarly, for any A ⊂ A , the integral IA(Φ; (sα)) converges for s ∈ T
A \A
>0 and

the function s �→ IA(Φ; s) is holomorphic on that domain.

We shall therefore call such integrals “holomorphic distributions on X”.

Proof. For ξ ∈ X(F ), let Aξ be the set of α ∈ A such that ξ ∈ Dα and let

q : Uξ →
∏

α∈Aξ

AFα × Ar

be an étale chart around ξ adapted to D, as in Sec. 3.2.3. Let xα : Uξ → AFα be
the composite of q followed by the projection to AFα , and y : Uξ → Ar be the
composite of q with the projection to Ar.

These maps induce local coordinates in a neighborhood of Uξ, valued in∏
α∈Aξ

Fα × F r in which the measure τ takes the form κ((xα), y)
∏

dxα dy.
By definition of a smooth metric, there is, for any α ∈ A , a smooth non-

vanishing function uα on Uξ(F ) such that ‖fDα‖ = |xα|Fαuα if α ∈ Aξ, and ‖fDα‖ =
uα otherwise.

Further, introducing a partition of unity (see Sec. 3.2.4), we see that it suffices
to study integrals of the form∫

Q
Fα×F d

∏
α∈Aξ

|xα|sα−1
Fα

Φ((xα), y)
∏

α∈A

usα−1
α κ((xα), y)

∏
dxα dy,

where Φ is a smooth function with compact support on
∏
Fα×F r. The holomorphy

of such integrals is precisely the object of Proposition 3.4 above.
The case of the integrals IA(Φ; (sα)) is analogous.

By the same arguments, but using the meromorphic continuation of Mellin
transforms and the estimate of their growth in vertical strips, we obtain the follow-
ing result.

Proposition 4.2. The holomorphic function

s �→
∏

α∈A

ζFα(sα)−1I (Φ; (sα))

on TA
>0 extends to a holomorphic function M (Φ; ·) on TA

>−1/2. Moreover, for any
real numbers a and b and for any function Φ, there is a real number c such that

M (Φ; s) ≤ c
∏

α∈A

(1 + |sα|) for any s ∈ TA
(a,b).
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4.1.1. Leading terms

We will need to understand the leading terms at the poles of these integrals after
restricting the parameter (sα) to an affine line in CA . For α ∈ A , let s �→ sα =
−ρα+λαs be an increasing affine function with real coefficients. To shorten notation,
we write I (Φ; s) instead of I (Φ; (sα)), and similarly for the integrals IA. Define

a(λ, ρ) = max
α∈A

ρα

λα

and let A (λ, ρ) denote the set of all α ∈ A where the maximum is obtained, i.e.
such that a(λ, ρ) = ρα/λα. By the preceding lemma, I (Φ; s) = I (Φ, (−ρα +λαs))
converges for Re(s) > a(λ, ρ) and defines a holomorphic function there. Similarly,
letting

aA(λ, ρ) = max
α�∈A

ρα

λα
,

the function s �→ IA(Φ; s) := IA(Φ, (−ρα + λαs)) converges for Re(s) > aA(λ, ρ).
Notice that aA(λ, ρ) ≤ a(λ, ρ) in general, and that the inequality may be strict, e.g.
if A (ρ, λ) ⊆ A.

Let C an
F,(λ,ρ)(D) be the intersection of the Clemens complex C an

F (D) with the
simplicial subset P+(A (λ, ρ)) of P+(A ). In other words, we remove from C an

F (D)
all faces containing a vertex α such that ρα < a(λ, ρ)λα.

Proposition 4.3. With the above notation, there exists a positive real number δ,
and, for any face A of C an

F,(λ,ρ)(D) of maximal dimension, a holomorphic function
JA defined on T>a(λ,ρ)−δ with polynomial growth in vertical strips such that

JA(Φ; a(λ, ρ)) = IA(Φ; (a(λ, ρ)λα − ρα)α�∈A)

and such that

I (Φ; s) =
∑
A

JA(Φ; s)
∏

α∈A

ζFα(s− a(λ, ρ)),

where the sum is restricted to the faces A of C an
F,(λ,ρ)(D) of maximal dimension. In

particular,

lim
s→a(λ,ρ)

I (Φ; s)(s− a(λ, ρ))dim C an
F,(λ,ρ)

=
∑
A

IA(Φ; (a(λ, ρ)λα − ρα)α�∈A)
∏
α∈A

1
λα
.

Proof. As in the proof of Lemma 4.1, we shall use a partition of unity and local
coordinates.

Let ξ ∈ X(F ), let Aξ be the set of α ∈ A such that ξ ∈ Dα. In a neighbor-
hood Ω of ξ, we have local coordinates xα ∈ Fα, for α ∈ Aξ, and other coordinates
(y1, . . . , yr) for some integer r. There exist smooth functions uα on Ω such that
‖fDα‖ = |xα|Fαuα if α ∈ Aξ, and ‖fDα‖ = uα otherwise. We may assume, after
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shrinking Ω, that Dα ∩ Ω = ∅ if α �∈ Aξ; then, uα does not vanish on Ω, for
any α ∈ A . Finally, the restriction to Ω of the measure τX can be written as
κdy1 · · · dyr

∏
α∈Ax

dxα, for some smooth function κ on Ω. Let θξ be a smooth
function with compact support in Ω.

The integral

Iξ(s) =
∫

Ω

∏
α∈A

‖fDα‖(x)sα−1Φ(x)θξ(x) dτX (x)

can be rewritten as

Iξ(s) =
∫

Ω

∏
α∈Aξ

|xα|−ρα+sλα−1
Fα

×
∏

α∈A

usα−1
α (x)Φ(x)θξ(x)κ(x)

∏
α∈Aξ

dxα × dy.

Let a = a(λ, ρ); when s → a, only the variables sα such that ρα = aλα and
α ∈ Aξ contribute a pole. Write A = Aξ ∩ A (λ, ρ) for this subset. Applying the
regularization procedure which led to Proposition 4.2, but only to the variables xα

with α ∈ A, furnishes an expression of the form

Iξ(s) = Jξ(s)
∏
α∈A

ζFα(−ρα + sλα)

for the integral Iξ(s), where Jξ is holomorphic for Re(s) > a(λ, ρ) − δ and has
polynomial growth in vertical strips. Moreover,

lim
s→a

Jξ(s) = lim
s→a

Iξ(s)
∏
α∈A

ζFα(−ρα + sλα)−1

=
∫

Ω∩DA(F )

∏
α∈A

u−ρα+aλα−1
α

∏
α∈Aξ\A

|xα|−ρα+aλα−1
Fα

θξ(x)Φ(x)κ(x)

×
∏

α∈Aξ\A

dxα dy.

By the definition of the residue measure on DA(F ) (Sec. 2.1.12) and its normaliza-
tion used here, one thus has

lim
s→a

Iξ(s)
∏
α∈A

ζFα(−ρα + sλα)−1

=
∏
α∈A

1
cFα

∫
DA(F )

∏
α�∈A

‖fDα‖−ρα+aλα−1θξ(x)Φ(x) dτDA (x)

so that

lim
s→a

(s− a)# AI (θξΦ; s) = IA(θξΦ; (−ρα + aλα))
∏
α∈A

λ−1
α .

Observe that A is a maximal face of C an
F,(λ,ρ), though maybe not one of maximal

dimension.
Now choose the functions θξ so that they form a finite partition of unity, i.e.∑
θξ = 1, and only finitely many θξ are not zero. Then I (Φ; s) =

∑
Iξ(s);
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regrouping the nonzero terms according to the minimal face of the Clemens complex
C an

F,(λ,ρ) to which they correspond furnishes the desired expression for I (Φ; s).
Let b be the dimension of this complex and let C an,max

F,(λ,ρ) be the set of its faces of
dimension b. Granted the previous limits computations, one has

lim
s→a

(s− a)bI (Φ; s) =
∑

ξ

lim
s→a

(s− a)bI (θξΦ; s)

=
∑

A∈C an,max
F,(λ,ρ)

∏
α∈A

λ−1
α IA(Φ; (−ρα + aλα)),

as claimed.

Corollary 4.4. If Φ ≡ 1 or, more generally, if the restriction of Φ to D(F ) is not
identically 0, then the order of the pole of I (Φ; s) at s = a(λ, ρ) is equal to

1 + dimC an
F,(λ,ρ)(D).

4.1.2. The case of good reduction

We recast in this geometric context a formula of J. Denef ([21], Theorem 3.1; see
also Theorem 9.1 and Theorem 11.2 of [13]).

Assume that F is non-archimedean and that our situation comes from a smooth
model X over oF , that the divisors Dα extend to divisors Dα on X whose sum
becomes a relative Cartier divisor with strict normal crossings after base change to
a finite étale extension of oF , and that all metrics are defined by this model. The
residue field of F is denoted by k, its cardinality by q. For α ∈ A , the extension
F ⊂ Fα is unramified by the good reduction hypothesis; we denote by fα its degree;
let oFα be the ring of integers of Fα and mα its maximal ideal.

The Zariski closure of the scheme Eα is a smooth subscheme Eα of X , of relative
codimension dα, such that Eα(oF ) = Dα(oF ). Similarly, the Zariski closure of EA

is a smooth geometrically connected subscheme EA of X of codimension dA and
EA(oF ) = DA(oF ). For any subset A ⊂ A , we let τDA denote the Tamagawa
measure on DA(F ) = EA(F ). Since the extensions F ⊂ Fα are unramified, one also
has Dα(k) = Eα(k) for any α ∈ A , and DA(k) = EA(k) for any A ⊂ A .

Assume also that the function Φ is constant on residue classes; the induced
function on X (k) will still be denoted by Φ.

Proposition 4.5. Under the above conditions, one has

I (Φ; (sα)) =
∑

A⊂A

(q−1µ(oF ))dim X
∏
α∈A

qfα − 1
qfαsα − 1


 ∑

ξ̃∈D◦
A(k)

Φ(ξ̃)


 .

In particular, for Φ = 1, one has

I (1; (sα)) =
∑

A⊂A

(q−1µ(oF ))dim X
∏
α∈A

qfα − 1
qfαsα − 1

#(D◦
A(k)).
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Proof. Let ξ̃ ∈ X (k), let Aξ̃ = {α ∈ A ; ξ̃ ∈ Dα(k)}, so that ξ̃ belongs to the open
stratum D◦

Aξ̃
. By the good reduction hypothesis, we can introduce local (étale)

coordinates xα ∈ mα (for α ∈ Aξ̃) and yβ ∈ m (for β in a set Bξ̃ of cardinality
dimX −∑α∈Aξ̃

fα) on the residue class Ωξ̃ of ξ̃, such that Dα is defined by the
equation xα = 0 on Ωξ̃. Then the local Tamagawa measure identifies with the
measure

∏
α∈Aξ̃

dxα ×∏β∈Bξ̃
dyβ on

∏
α∈Aξ̃

mα ×∏β∈Bξ̃
m.

Recall also (see Sec. 3.3.1) that for any ultrametric local field F , with ring of
integers oF and maximal ideal m, and any complex number s such that Re(s) > 0,
one has

q

∫
m

|x|s−1
F dx =

q − 1
qs − 1

µ(oF ),

where q is the cardinality of the residue field.
These formulas, applied to the fields Fα, and the decomposition of the integral

I as a sum of similar integrals over the residue classes ξ̃ ∈ X (k), give us

I (Φ; (sα)) =
∑

ξ̃∈X (k)

Φ(ξ̃)(q−1µ(oF ))# Bξ̃

∏
α∈Aξ̃

∫
mα

|xα|sα−1
Fα

dxα

= (q−1µ(oF ))dim X
∑

ξ̃∈X (k)

Φ(ξ̃)
∏

α∈Aξ̃

qfα − 1
qfαsα − 1

,

since the residue field of Fα has cardinality qfα and µ(oF ) = µ(oFα). Let us inter-
change the order of summation: one gets

I (Φ; (sα)) = (q−1µ(oF ))dim X
∑

A⊂A

∏
α∈A

qfα − 1
qfαsα − 1

∑
ξ̃∈D◦

A(k)

Φ(ξ̃).

In particular, if Φ is the constant function 1, one has

I (1, (sα)) =
∑

A⊂A

(q−1µ(oF ))dim X
∏
α∈A

qfα − 1
qfαsα − 1

#(D◦
A(k)).

By Weil’s formula (cf. Eq. (2.4)), one then has

τDA(E ◦
A(oF )) =

(
(q−1µ(oF ))dA

)
# E ◦

A(k) =
(
(q−1µ(oF ))dA

)
# D◦

A(k).

Since moreover DA(F ) = EA(F ), the last formula of the proposition can be rewrit-
ten as

I (1, (sα)) =
∑

A⊂A

(q−1µ(oF ))dA

∏
α∈A

qfα − 1
qfαsα − 1

τDA(D◦
A(oF )).
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4.2. Volume asymptotics over local fields

Let X be a smooth projective variety over a local field F . Assume that X is purely
of dimension n.

Let D be an effective divisor in X , denote by A the set of its irreducible com-
ponents, by Dα the component corresponding to some α ∈ A and by dα its multi-
plicity. We have dα > 0 for all α and D =

∑
dαDα.

Let U = X\D, and assume that ωX(D) is equipped with a metrization. Let
τ(X,D) denote the corresponding measure on U(F ) (see Sec. 2.1.8). Endow the line
bundles OX(D) and OX(Dα), for α ∈ A , with metrics, in such a way that the
natural isomorphism OX(D) �⊗OX(Dα)dα is an isometry. For α ∈ A , denote by
fα the canonical section of OX(Dα); denote by fD the canonical section of OX(D).
One has fD =

∏
α∈A fdα

α .
We also endow ωX with the metric which makes the isomorphism ωX(D) �

ωX ⊗ OX(D) an isometry. Letting τX be the Tamagawa measure on X(F ) defined
by the metrized line bundle ωX , we have the following equalities:

dτ(X,D)(x) = ‖fD(x)‖−1 dτX(x) =
∏
α

‖fα(x)‖−dα dτX(x).

Let L be an effective divisor in X whose support contains the support of D;
assume that the corresponding line bundle OX(L) is endowed with a metric. The
norm of its canonical section fL vanishes on L, hence on D. Consequently, for
any positive real number B, the set of all x ∈ X(F ) such ‖fL(x)‖ ≥ 1/B is a
closed subset of X(F ), which is contained in U(F ), hence is compact in U(F ).
Consequently, its volume with respect to the measure τ(X,D),

V (B) =
∫
‖fL(x)‖≥1/B

dτ(X,D)(x), (4.1)

is finite for any B > 0. We are interested in its asymptotic behavior when B → ∞.
Let us introduce the Mellin transform of the function ‖fL‖ with respect to the
measure τ(X,D), namely:

Z(s) =
∫

U(F )

‖fL(x)‖sdτ(X,D)(x). (4.2)

The analytic properties of Z(s) and V (B) strongly depend on the geometry of
the pair (X,D). We will assume throughout that over the algebraic closure F̄ , the
divisor D has strict normal crossings in X ; in that case we will see that the answer
can be stated in terms of the analytic Clemens complex of D. In principle, using
resolution of singularities, we can reduce to this situation, even if it may be difficult
in explicit examples (see [29] for a specific computation related to the asymptotic
behavior of integral points of bounded height established in [22]).

For α ∈ A , let λα be the multiplicity of Dα in L; the divisor ∆ = L−∑λαDα is
effective and all of its irreducible components meet U . We denote by f∆ the canonical
section of the line bundle OX(∆); we endow this line bundle with a metric so that
‖fL‖ = ‖f∆‖∏ ‖fα‖λα .
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Following the conventions of Sec. 2.1.4, the results extend to the case where D
and L are Q-Cartier divisors; in that case, the coefficients λα and dα are rational
numbers.

Let σ = max(dα−1)/λα, the maximum being over all α ∈ A such that Dα(F ) �=
∅. If there is no such α, we let σ = −∞ by convention; this means precisely that
U(F ) is compact. Only the case σ ≥ 0 will really matter. Indeed, as we shall see
below, the condition σ < 0 is equivalent to the fact that U(F ) has finite volume
with respect to τ(X,D).

Let C an
F,(L,D)(D) be the subcomplex of the analytic Clemens complex C an

F (D)
consisting of all non-empty subsets A ⊂ Ā such that EA(F ) �= ∅ and dα = λασ+1
for any α ∈ A.

Let b = dimC an
F,(L,D)(D). For any face A of maximal dimension b of C an

F,(L,D)(D),
let DA =

⋂
α∈ADα be the corresponding stratum of X . The subset DA(F ) carries

a natural measure dτDA and we define

ZA(s) =
∫

DA(F )

‖f∆(x)‖s
∏
α�∈A

‖fα(x)‖sλα−dα dτA(x). (4.3)

Proposition 4.6. Let σ,C an
F,(L,D)(D) and b be defined as above. Then the integral

defining Z(s) converges for Re(s) > σ and defines a holomorphic function in that
domain.

Assume that σ �= −∞. Then there is a positive real number δ such that Z has
a meromorphic continuation to a half-plane Re(s) > σ − δ, with a pole of order
b = dim C an

F,(L,D)(D) at s = σ with leading coefficient

lim
s→σ

(s− σ)bZ(s) =
∑

A∈C an
F,(L,D)(D)

dim A=b

ZA(σ)
∏
α∈A

1
λα

and moderate growth in vertical strips.
When F = R or C, Z has no other pole provided δ is chosen sufficiently small.
When F is ultrametric, there is a positive integer f such that (1− qf(σ−s))bZ(s)

is holomorphic on the half-plane {Re(s) > σ − δ}, again provided δ is sufficiently
small.

Proof. By definition,

Z(s) =
∫

X(F )

‖f∆‖s
∏
α

‖fα(x)‖sλα−dαdτX(x),

an integral of the type studied in Sec. 3. Precisely, using the notations introduced
in Sec. 4.1, we have Z(s) = I (1, (s+ 1; sλα − dα + 1)), where the first parameter
s refers to the divisor ∆, while for each α ∈ A , the parameter sα = sλα − dα

corresponds to the divisor Dα. Similarly,

ZA(s) = IA(1, (s+ 1; sλα − dα + 1)).
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By Lemma 4.1, this integral converges and defines a holomorphic function as long
as Re(s) > 0 and Re(s)λα > dα. This shows the holomorphy of Z(s) for Re(s) > σ.

Assume that σ �= −∞. By Proposition 4.2, the function Z has a meromorphic
continuation to the domain of C defined by the inequalities Re(sα) > − 1

2 and
Re(s) > 0, hence to some domain of the form Re(s) > σ − δ.

In the ultrametric case, the existence of a positive integer f such that (1 −
q(σ−s)f )bZ(s) has no pole on such a half-plane also follows directly from Proposi-
tion 4.2 (one may take for f the l.c.m. of the fα), as well as the growth in vertical
strips.

It remains to prove the asserted behavior at s = σ. By Proposition 4.3,

lim
s→σ

(s− σ)bZ(s) =
∑

A∈A an
L,D

dim A=b

IA(1; (σ + 1;σλα − dα + 1)α�∈A)
∏
α∈A

1
λα

=
∑

A∈A an
L,D

dim A=b

ZA(σ)
∏
α∈A

1
λα
.

Using the Tauberian Theorem A.1 recalled in the Appendix, we obtain the
following estimate for the volume V (B) in the archimedean case.

Theorem 4.7. Assume that F = R or C and that σ ≥ 0. This implies that b ≥ 1.
There exists a polynomial P and a positive real number δ such that

V (B) = BσP (logB) + O(Bσ−δ).

Moreover, if σ > 0, then P has degree b− 1 and leading coefficient

lcoeff(P ) =
1

σ(b − 1)!

∑
A⊂C an

F,(L,D)(D)

dim A=b

ZA(σ)
∏
α∈A

1
λα

;

otherwise, if σ = 0, then P has degree b and its leading coefficient satisfies

lcoeff(P ) =
1
b!

∑
A⊂C an

F,(L,D)(D)

dim A=b

ZA(σ)
∏
α∈A

1
λα
.

Considering integrals of the form

ZΦ(s) =
∫

U(F )

Φ(x)‖fL(x)‖s dτ(X,D)(x),

or applying the abstract equidistribution theorem (Proposition 2.10), we deduce
the following corollary (“equidistribution of height balls”):

Corollary 4.8. Assume that F = R or C and that σ > 0. Then b ≥ 1 and, when
B → +∞, the family of measures

V (B)−11{‖fL(x)‖≥1/B} dτ(X,D)(x)
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converges tightly to the unique probability measure which is proportional to∑
A⊂A an

L,D

dim A=b

‖f∆(x)‖σ
∏
α∈A

1
λα

∏
α�∈A

‖fα(x)‖−1 dτDA(x).

In the case of ultrametric local fields, our analysis leads to a good understand-
ing of the Igusa zeta functions but the output of the corresponding Tauberian
theorem, i.e. the discussion leading to Corollaries A.4–A.6 in the Appendix, is less
convenient since one can only obtain an asymptotic expansions for V (qN ), when N
belongs to a fixed congruence class modulo some positive integer f . In fact, when
all irreducible components of D are geometrically irreducible, one may take f = 1
in Proposition 4.6. In that case, Corollary A.5 even leads to a precise asymptotic
expansion in that case.

We leave the detailed statement to the interested reader and we content ourselves
with the following corollary.

Corollary 4.9. Assume that F is ultrametric and that σ ≥ 0. Let b∗ = b if σ = 0,
and b∗ = b− 1 if σ > 0. Then, when the integer N goes to infinity,

0 < lim inf
V (qN )
qNσN b∗ ≤ lim sup

V (qN )
qNσN b∗ <∞.

Proof. Changing metrics modifies the volume forms and the height functions by
a factor which is lower- and upper-bounded; this does not affect the result of the
corollary. Consequently, we may assume that all metrics are smooth and that the
function ‖fL‖ is qZ-valued. The Igusa zeta function Z(s) is then 2iπ/ log q-periodic
and has a meromorphic continuation of the form

∑
A ΦA(s)

∏
α∈A(1− qfαλα(σ−s)),

for some functions ΦA which are holomorphic on an open half-plane containing the
closed half-plane given by {Re(s) ≥ σ}. Let f be any positive integer such that f
is an integral multiple of fαλα, for any α ∈ A ; we see that Z(s)(1 − qf(σ−s))b

extends holomorphically to this open half-plane and it now suffices to apply
Corollary A.4.

4.3. Adelic Igusa integrals

4.3.1. Geometric setup

Let F be a number field, let AF be the ring of adeles of F . More generally, if S is
a finite set of places of F , let AS

F be the restricted product of local fields Fv, for
v �∈ S.

We fix an algebraic closure F̄ of F ; for each place v, we also fix a decomposition
group Γv at v in the Galois group ΓF = Gal(F̄/F ).

Let X̄ be a smooth projective variety over F , let (Dα)α∈A be a family of irre-
ducible divisors in X̄ whose sum ∆ =

∑
α∈A Dα is geometrically a divisor with

strict normal crossings. For α ∈ A , let fDα denote the canonical section of the line
bundle OX̄(Dα) and let Fα be the algebraic closure of F in the function field of Dα.
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Let Ā be the set of irreducible components of the divisor ∆F̄ ; it carries an action
of ΓF , the set of orbits of which, Ā /ΓF , identifies canonically with the set A .

Endow all line bundles OX̄(Dα), as well as the canonical line bundle ωX̄ , with
adelic metrics.

Let B be any subset of A , corresponding to a subset B̄ of Ā which is stable
under the action of ΓF . Let Z =

⋃
α∈B Dα be the union of the corresponding

divisors, D =
⋃

α�∈B Dα the union of the other divisors, and let us define X = X̄\Z
and U = X\D.

The local spaces X(Fv), U(Fv), for any place v of F , and the adelic spaces
X(AF ), U(AF ) are locally compact and carry Tamagawa measures τX,v, τU,v, τX
and τU (see Definition 2.8) which are Radon measures, i.e. finite on compact subsets.
The set of irreducible components Av of the divisor ∆Fv is in natural bijection
with the set of Γv-orbits in Ā . For any such orbit α, we will denote by Dα the
corresponding divisor on XFv .

Our aim here is to establish analytic properties of the adelic integral

I (Φ; (sα)) =
∫

U(AF )

∏
α∈A

∏
v

‖fDα‖sα−1
v Φ(x) dτU ,

when Φ is the restriction to U(AF ) of a smooth function with compact support on
X(AF ).

It will be convenient to view the map α �→ sα as a ΓF -equivariant map from
Ā to C. In other words, for each α ∈ Ā , we let sα = s[α], where [α] ∈ A is the
orbit of α under ΓF . More generally, if β is any subset of such an orbit, we define
sβ = sα, for any α ∈ Ā belonging to β (it does not depend on the choice of α).

4.3.2. Convergence of local integrals

Assume that Φ =
∏

v Φv is a product of smooth functions and define, for any
v ∈ Val(F ),

Iv(Φv; (sα)) =
∫

U(Fv)

∏
α∈A

‖fDα‖sα−1
v Φv(x) Lv(1,EP(U))dτX,v.

When the local integrals Iv converge absolutely, as well as the infinite product∏
v Iv(Φ; (sα)), then the integral I (Φ; (sα)) exists and one has an equality

I (Φ; (sα)) = L∗(1,EP(U))−1
∏
v

Iv(Φv; (sα)).

Let α ∈ A . Let us decompose the ΓF -orbit α as a union of disjoint Γv-orbits
α1, . . . , αr. Then Dα =

∑r
i=1Dαi and fDα =

∏r
i=1 fDαi

. It follows that the integral
Iv can be rewritten as

Iv(Φv; (sα)) =
∫

U(Fv)

∏
α∈Av

‖fDα‖sα−1
v Φv(x) Lv(1,EP(U))dτX,v .
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By Lemma 4.1, Iv(Φv; (sα)) converges absolutely when Re(sα) > 0 for each α ∈ A .
If moreover Φv has compact support in X(Fv), then the conditions Re(sα) > 0 for
α ∈ B are not necessary.

The decomposition α =
⋃
αi corresponds to the decomposition Fα ⊗F Fv =∏r

i=1 Fαi . Observe that the local factor of Dedekind’s zeta function ζFα at v is
given by the formula

ζFα,v(s) =
r∏

i=1

(1 − q−fα,is
v )−1,

where for each i, fα,i = [Fα,i : Fv]. Let ζ∗Fα
(1) be the residue at s = 1 of this zeta

function.

4.3.3. Convergence of an Euler product

To study the convergence of the product, we may ignore a finite set of places.
Let S be a finite set of places containing the archimedean places so that, for all

other places, all metrics are defined by good integral models X , X , U , . . . , over
Spec oF,S . Assume moreover that for any v �∈ S, Φv is the characteristic function of
X (ov).

By Denef’s formula (Proposition 4.5), one has

Iv(Φv; (sα)) =
∑

A⊂Av\Bv

(q−1
v µv(ov))dim X #D◦

A(kv)
∏
α∈A

qfα
v − 1

qfαsα
v − 1

for any place v �∈ S. Combined with the estimate of Theorem 2.5, this relation
implies that

Iv(Φv; (sα))
∏

α∈A \B

ζFα,v(sα)−1 = 1 + O(q−1−ε
v )

provided Re(sα) > 1
2 + ε for each α �∈ B. (See Proposition 9.5 in [13] for a similar

computation.) This asymptotic expansion will imply the desired convergence of the
infinite product.

Proposition 4.10. Assume that Φ is a smooth function with compact support on
X(AF ). Then the integral I (Φ; (sα)) converges for Re(sα) > 1, for each α �∈ B, and
defines a holomorphic function in this domain. This function has a meromorphic
continuation: there is a holomorphic function ϕ defined for Re(sα) > 1

2 if α �∈ B,

such that

I (Φ; (sα)) = ϕ(s)
∏

α�∈B

ζFα(sα).

Moreover, if sα = 1 for α �∈ B, then

ϕ(s) =
∏

α�∈B

ζ∗Fα
(1)−1

∫
X(AF )

Φ(x)
∏

β∈B

∏
v

‖fDβ
‖sβ−1

v dτX(x).
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(Note that, in the last formula, the function under the integration sign has
compact support on X(AF ), while dτX is a Radon measure on that space.)

Proof. The first two parts of the theorem follow from the estimates that we have
just derived and the absolute convergence for Re(s) > 1 of the Euler product
defining the Dedekind zeta function of a number field.

Let s ∈ CA be such that sα = 1 for α �∈ B. One therefore has

Iv(Φv; s) = Lv(1,EP(U))
∫

U(Fv)

∏
β∈B

‖fDβ
‖sβ−1

v Φv(x) dτX,v(x).

Moreover, one has equalities of virtual representations of ΓF (cf. Eq. (2.5)),

EP(U) = EP(X̄) +
∑
α∈A

IndΓF

ΓFα
1,

EP(X) = EP(X̄) +
∑
α∈B

IndΓF

ΓFα
1,

from which it follows that

EP(X) = EP(U) −
∑
α�∈B

IndΓF

ΓFα
1.

In particular, for any finite place v of F ,

Lv(1,EP(X)) = Lv(1,EP(U))
∏

α�∈B

ζFα,v(1)−1

and

L∗(1,EP(X)) = L∗(1,EP(U))
∏

α�∈B

ζ∗Fα
(1)−1.

If S∞ is the set of archimedean places of F , then (recall that sα = 1 for α �∈ B)

ϕ(s) = L∗(1,EP(U))−1
∏

v∈S∞

Iv(Φv; s)
∏

v �∈S∞


Iv(Φv; s)

∏
α�∈B

ζFα,v(1)−1




= L∗(1,EP(U))−1
∏
v

∫
X(Fv)

Φv(x)
∏

β∈B

‖fDβ
‖sβ−1

v Lv(1,EP(X)) dτX,v(x)

= L∗(1,EP(U))−1L∗(1,EP(X))
∫

X(AF )

Φ(x)
∏

β∈B

∏
v

‖fDβ
‖sβ−1

v dτX(x)

=
∏

α�∈B

ζ∗Fα
(1)−1

∫
X(AF )

Φ(x)
∏

β∈B

∏
v

‖fDβ
‖sβ−1

v dτX(x).
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In fact, it is possible to establish a more general theorem. Let S be a finite
set of places of F containing the archimedean places. For any place v ∈ S, let Φv

be a smooth bounded function on X(Fv); let also ΦS be a smooth function with
compact support on X(AS

F ); let Φ be the function ΦS
∏

v∈S Φv on X(AF ).
By the same arguments as above, the integral I (Φ; (sα)) converges provided

Re(sα) > 1 for each α �∈ B and Re(sβ) > 0 for each β ∈ B and defines a holomor-
phic function in that domain.

Proposition 4.11. Let Ω ⊂ CA be the set of (sα) such that Re(sα) > 1
2 for α �∈ B

and Re(sβ) > − 1
2 for β ∈ B. The function I (Φ; (sα)) admits a meromorphic

continuation of the following form. For any place v ∈ S and any face A of maximal
dimension of C an

Fv
(D), there is a holomorphic function ϕA on Ω such that

I (Φ; (sα)) =
∏

α�∈B

ζS
Fα

(sα)
∏
v∈S


 ∑

A∈C an,max
Fv

(D)

ϕA(s)
∏
α∈A

ζFα,v(sα)


 .

Moreover, the functions ϕA have moderate growth in vertical strips in the sense that
for any compact subset K of RA ∩ Ω, there are real numbers c and κ such that

|ϕA(s)| ≤ c
∏

α∈A

(1 + |sα|)κ,

for s ∈ CA such that Re(s) ∈ K.

4.4. Volume asymptotics over the adeles

In this section we derive asymptotic estimates for volumes of height balls in adelic
spaces, similar to those we established above for height balls over local fields.

Let F be a number field, X a smooth projective variety over F , purely of dimen-
sion n. Let D be an effective divisor in X and A its set of irreducible components;
for α ∈ A , let Dα be the corresponding component and dα its multiplicity in D.
We have D =

∑
dαDα. For α ∈ A , let fα be the canonical section of OX(Dα); let

fD denote the canonical section of OX(D). We have fD =
∏

fdα
α .

Let us endow these line bundles with adelic metrics, in such a way that the
isomorphism OX(D) �⊗OX(Dα)dα is an isometry.

Let U = X\D; let us endow ωX and ωX(D) with adelic metrics in such a way
that the isomorphism ωX(D) � ωX⊗OX(D) is an isometry. By the constructions of
Sec. 2, we obtain natural measures τX , τU and τ(X,D) on U(AF ) or X(AF ), related
by the equalities

dτ(X,D)(x) = HD(x)dτU (x),

where, for x ∈ U(AF ), HD(x) =
∏

x ‖fD(x)‖−1
v .

Let L be an effective divisor in X whose support is equal to the support of D;
for α ∈ A , let λα be the multiplicity of Dα in L, so that L =

∑
λαDα. We endow
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the line bundle OX(L) with the natural adelic metric deduced from the metrics of
the line bundles OX(Dα).

The canonical section of OX(L) vanishes on L, hence on D. Let HL denote the
corresponding height function (denoted HOX(L),fL in Sec. 2.3) on the adelic space
U(AF ); recall (Eq. (2.3)) that it is defined by the formula

HL(x) =
∏

v∈Val(F )

‖fL‖(xv)−1, for x = (xv)v.

By Lemma 2.1, HL is bounded from below on U(AF ) and, for any real number B,
the set of all x ∈ U(AF ) such that HL(x) ≤ B is compact in (X\L)(AF ). Let V (B)
denote its volume with respect to the measure τ(X,D):

V (B) =
∫

U(AF )
{HL(x)≤B}

dτ(X,D)(x); (4.4)

it is a positive real number (for B large enough) and we want to understand its
asymptotic behavior when B → ∞. We are also interested in the asymptotic behav-
ior of the probability measures

1
V (B)

1{HL(x)≤B}dτ(X,D)(x).

As in the case of local fields, we introduce a geometric Igusa zeta function, namely

Z(s) =
∫

U(AF )

HL(x)−s dτ(X,D)(x), (4.5)

for any complex number s such that the integral converges absolutely. For any
such s, we thus have

Z(s) =
∫

U(AF )

∏
v

‖fα(xv)‖sλα−dα dτX(x) = I (1; (sλα − dα + 1))

with the notation of Sec. 4.3.
Let σ = maxα∈A (dα/λα) and let AL,D be the set of α ∈ A such that dα = λασ.
Then, the integral defining Z(s) converges for any complex number s such that

Re(s) > σ (Proposition 4.10). Moreover, there exists a positive real number δ
such that the function s �→ Z(s) admits a meromorphic continuation to the half-
plane given by Re(s) > σ − δ. Namely, by Proposition 4.10 again, there exists a
holomorphic function ϕ defined for Re(s) > σ − δ such that

Z(s) = ϕ(s)
∏

α∈AL,D

ζFα(sλα − dα + 1)

and

ϕ(1) =
∏

α∈AL,D

ζ∗Fα
(1)
∫

X(AF )

∏
α�∈AL,D

HDα(x)dα−σλα dτX(x).
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In particular, the function Z has a pole at s = 1 of order #(AL,D) and satisfies:

lim
s→1

(s− 1)#(AL,D)Z(z) = ϕ(1)
∏

α∈A

ζ∗Fα
(1)

λα

=
∏

α∈AL,D

λ−1
α

∫
X(AF )

∏
α�∈AL,D

HDα(x)dα−σλα dτX(x).

Let E denote the Q-divisor σL−D. We have

E = σL−D =
∑
α∈A

(σλα − dα)Dα =
∑

α�∈AL,D

(σλα − dα)Dα.

Consequently,

lim
s→σ

(s− σ)#(AL,D)Z(σ) =
∏

α∈AL,D

λ−1
α

∫
X(AF )

HE(x)−1 dτX(x)

=
∫

X(AF )

dτ(X,E)(x). (4.6)

We summarize the results obtained in the following proposition:

Proposition 4.12. Let σ and AL,D be defined as above. Then the integral defining
Z(s) converges for Re(s) > σ and defines a holomorphic function in that domain.
Moreover, there is a positive real number δ such that Z has a continuation to the
half-plane Re(s) > σ−δ as a meromorphic function with moderate growth in vertical
strips, whose only pole is at s = σ, with order b = #(AL,D) and leading coefficient
given by Eq. (4.6).

Similarly to what we did in the local case, using the Tauberian Theorem A.1 and
the abstract equidistribution theorem (Proposition 2.10), we obtain the following
result.

Theorem 4.13. There exists a monic polynomial P of degree b and a positive real
number δ such that, when B → ∞,

V (B) =

∏
α∈AL,D

λ−1
α

σ(b − 1)!
BσP (logB)

∫
X(AF )

HE(x)−1 dτX(x) + O(Bσ−δ).

Moreover, we have the tight convergence of probability measures

1
V (B)

1{HL(x)≤B}dτ(X,D)(x) → 1∫
X(AF )H

−1
E τX

HE(x)−1 dτX(x).

Remark 4.14. Let S be a finite set of places of F . At least two variants of the
preceding results may be useful in S-integral contexts.

Let AS
F be the ring of adeles “outside S”. For the first variant, we consider

points of U(AS
F ) of bounded height, and their volume with respect to the Tamagawa

measure τS
(X,D) in which the local factors in S. In that context, all infinite products
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of the set Val(F ) of places of F are replaced by the products over the set Val(F )\S
of places which do not belong to S. The modifications to be made to the statement
and proof of Theorem 4.13 are obvious and lead to an asymptotic expansion for the
volumes of height balls in U(AS

F ).
A second variant is also possible which restricts to the subset Ω of U(AF )

consisting of points (xv)v∈Val(F ) which are “integral” at each place v �∈ S. We do
not need to be specific about that condition; for all that matters in our analysis,
we understand that this subset is relatively compact in U(AF ) and has non-empty
interior. A scheme-theoretic definition would ask that we are given a projective and
flat model of X over oF ; then a point (xv) ∈ U(AF ) belongs to Ω if and only if,
for any finite place v �∈ S, the reduction mod v of xv does not belong to D(Fv).
An adelic definition would consider Ω to be defined by a condition of the form∏

v �∈S ‖fL‖v(x) ≤ B0, for some real number B0.
In that case, the analytic study of the adelic zeta function involved is straight-

forward from what has been done in Sec. 4.2. Namely, it decomposes as an infinite
product over all places v ∈ Val(F ) of v-adic zeta functions. The subproduct cor-
responding to places v �∈ S extends holomorphically to the whole complex plane,
while each factor attached to a place v ∈ S is the source of zeros and poles described
by the v-adic analytic Clemens complex as in Proposition 4.6.

Although the procedure should be quite clear to the reader, in any specific
example, a general statement would certainly be too obfuscating to be of any help.
We would like the reader to observe than when all abscissae of convergence at places
in S are equal to a common real number σ, the order of the pole at σ will be the
sum of the orders bv, and the leading coefficient the product of those computed in
Proposition 4.6. Moreover, if S contains archimedean places, the order of the pole
at σ will be strictly greater than the order of the other possible poles on the line
Re(s) = σ. In that case, the Tauberian Theorem A.7 gives a simple asymptotic
formula for the volume of points of bounded height. With the notation of that
Theorem, the qj are powers of prime numbers and the non-Liouville property of the
quotients log qj/ log qj′ follows from Baker’s theorem on linear forms in logarithms,
[1], Theorem 3.1.

We expect that these asymptotic expansions for volumes can serve as a guide to
understand the asymptotic number of S-integral solutions of polynomial equations,
e.g. to a S-integral generalization of the circle method. For two positive results in
that direction, we refer to the papers [14, 15].

5. Examples

5.1. Clemens complexes of toric varieties

Let T be an algebraic torus over a field F . Let M and N denote the groups of
characters and of cocharacters of the torus TF̄ , endowed with the action of the
Galois group Γ = Gal(F̄ /F ) and the natural duality pairing 〈·, ·〉.
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Let X be a smooth proper F -scheme which is an equivariant compactification of
T . By the theory of toric varieties, X corresponds to a fan Σ in the space NR which
is invariant under the action of Γ. By definition, Σ is a set of convex polyhedral
rational cones in NR satisfying the following properties:

• for any cones σ, σ′ in Σ, their intersection is a face of both σ and σ′;
• all faces of each cone in Σ belong to Σ;
• for any γ ∈ ΓF and any cone σ ∈ Σ, γ(σ) ∈ Σ.

Assume for the moment that T is split, meaning that Γ acts trivially on M . To
each cone σ of Σ corresponds a T -stable affine open subset Xσ = SpecF [σ∨ ∩M ]
in X , where σ∨ is the cone in MR dual to σ. The variety X is glued from these
affine charts Xσ, along the natural open immersions Xσ → Xτ , for any two cones
σ and τ in Σ such that τ ⊃ σ. The zero-dimensional cone {0} corresponds to T ; in
particular, each Xσ contains T and carries a compatible action of T .

Let t denote the dimension of T and let σ be a cone of maximal dimension of Σ.
By the theory of toric varieties, the smoothness assumption on X implies that there
exists a basis of N which generates σ as a cone. Consequently, the torus embedding
(T,Xσ) is isomorphic to (Gt

m,A
t). The irreducible components of Xσ ⊂ T then

correspond to the hyperplane coordinates in At. In particular, Xσ\T is a divisor
with strict normal crossings, all of whose components of Xσ\T meet at the origin.
This shows that a set of components of X\T has a nontrivial intersection whenever
the corresponding rays belong to a common cone in Σ. The converse holds since
each point of X admits a T -invariant affine neighborhood, hence of the form Xσ.

In particular, what precedes holds over F̄ and implies the following description
of the geometric Clemens complex C (X,D) of (X,D). There is a bijection between
the set of orbits of TF̄ in XF̄ and the set Σ. The irreducible components of DF̄

are in bijection with the set of one-dimensional cones (rays) of Σ and a set of
components has a nontrivial intersection if and only if the corresponding rays belong
to a common cone in Σ. The cone {0} belongs to Σ and corresponds to the open
orbit T . Consequently, the Clemens complex C (X,D) is equal to the set Σ\{{0}},
partially ordered by inclusion, with the obvious action of the Galois group ΓF .

If T is split, then ΓF acts trivially on C (X,D), hence CF (X,D) = C (X,D). We
have also observed in that case that the various strata of X even had F -rational
points. In other words, the F -analytic Clemens complex C an

F (X,D) is also equal to
C (X,D).

Let us now treat the general case by proving that C an
F (X,D) = CF (X,D). By

definition, the F -rational Clemens complex CF (X,D) is the subcomplex of C (X,D)
consisting of ΓF -invariant faces; in other words, it corresponds to ΓF -invariant cones
of positive dimension. We need to prove that for any such cone σ, the closure of
the corresponding orbit Oσ in X , which is defined over F , has an F -rational point.
For each ray r of σ, let nr be the generator of N ∩ r; the group ΓF acts on the
set of these nr, and their sum n is fixed by ΓF . It corresponds to a cocharacter
cn : Gm → T whose limit at 0 is an F -rational point and this point belongs to Oσ.
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In fact, it even belongs to Oσ because the point n belongs to the relative interior
of the cone σ.

Lemma 5.1. Let T0 be the maximal F -split torus in T ; the group N0 of cocharacters
of T0 is equal to the subspace of N fixed by ΓF . Let X0 be the Zariski closure of
T0 in X. It is a smooth equivariant compactification of T0 and its fan Σ0 in (N0)R
has as cones the intersections σ∩ (N0)R, for all cones σ ∈ ΣΓF which are invariant
under ΓF .

Proof. It suffices to prove the desired result in each affine chart of X . Consider a
cone σ ∈ Σ and let Xσ = Spec F̄ [M ∩ σ∨] be the corresponding affine open subset
of XF̄ . A vector in M0 ∩ σ, being fixed under the action of ΓF , belongs to all of
the cones γ(σ), for γ ∈ ΓF , hence belongs to their intersection τ which, by the
definition of a fan, is a cone in Σ, obviously ΓF -invariant. As a consequence, the
closure of T0 in Xσ is contained in the toric open subvariety Xτ .

We can thus assume that σ is a ΓF -invariant cone, and we may moreover assume
that it is of maximal dimension. Since X is smooth, there is a basis (e1, . . . , ed) of N
and an integer s ∈ {1, . . . , d} such that σ is generated by S = {e1, . . . , es}. We can
also assume that es+1, . . . , er belong to M0 and generate a complement to the
(saturated) subgroup generated by M0 ∩ σ. Over F̄ , this identifies T with Gd

m and
Xσ with As × Gd−s

m . Moreover, ΓF acts by permutations on S. This implies that
M0 ∩ σ is generated by the vectors

∑
i∈O ei, where O runs over the set S/ΓF of

ΓF -orbits in S. Consequently, T0∩Xσ is the set of elements (x1, . . . , xd) in Gd
m such

that xi is constant on each orbit O, and xi = 1 for i > s. Its closure is the set of
such elements (x1, . . . , xd) ∈ Ar × Gd−r

m satisfying the same relations. This shows
that the closure of T0 in Xσ is an isomorphic to the toric embedding of Gdim M0

m in
A#(S/ΓF ) × Gdim M0−#(S/ΓF )

m .

Corollary 5.2. By associating to a T0-orbit in X0 the corresponding T -orbit in
X, we obtain a bijection between the Clemens complex of (X0, X0\T0) and the
F -analytic Clemens complex of (X,X\T ).

5.2. Clemens complexes of wonderful compactifications

Let G be a connected reductive group over a field F . Let T0 denote a maximal split
torus of G and T a maximal torus of G containing T0.

Let X be a smooth proper F -scheme which is a biequivariant compactification
of G. We denote by Y and Y0 the closures of the tori T and T0 in X ; these are
toric varieties defined over F . We assume that over a separable closure F̄ of F ,
the divisor D = X\G has strict normal crossings. Observe that this assumption is
satisfied if X is a wonderful compactification of G.

Proposition 5.3. With this notation, one has: X(F ) = G(F )Y (F )G(F ) and
Y (F ) = T (F )Y0(F ); in particular, X(F ) = G(F )Y0(F )G(F ).
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Proof. Let us first prove that X(F ) = G(F )Y (F )G(F ). It suffices to prove that
X(F ) is contained in the latter set. We use the arguments of [10], Lemma 6.1.4. Let
x0 ∈ X(F ); since X is assumed to be smooth, we can choose an arc x ∈ X(F [[t]])
such that x(0) = x0 and x is not contained in X\G. We interpret x as a F ((t))-point
of G; by the Cartan decomposition ([11], Proposition 4.4.3. The fact that the group
G(F [[t]]) is good follows from the property that the F ((t))-algebraic group GF ((t))

is split over an unramified extension, namely F̄ ((t)), and descent properties of the
building)

G(F ((t))) = G(F [[t]])T (F ((t)))G(F [[t]]),

we may write x = g1yg2, where g1, g2 ∈ G(F [[t]]) and y ∈ T (F ((t))). Writing y =
g−1
1 xg−1

2 , we see that y ∈ Y (F [[t]]). Specializing at t = 0, we now obtain x0 =
g1(0)y(0)g2(0), as required.

Let us now prove the second equality, namely Y (F ) = T (F )Y0(F ). Again, it
suffices to prove that Y (F ) is contained in T (F )Y0(F ). Let x0 ∈ Y (F ); as above,
there is an arc x ∈ X(F [[t]]) ∩ G(F ((t))) such that x(0) = x0. Using the Cartan
decomposition, we may replace x by an arc of the form y = g−1

1 xg2, with g1, g2 ∈
G(F [[t]]) satisfying y ∈ X(F [[t]]) ∩ T (F ((t))). Moreover, we may also assume that
g1(0) = g2(0) is the neutral element of G(F ). In particular, y ∈ Y (F [[t]]) and
y(0) = x0.

Let S denote the anisotropic torus T/T0 and π : T → S the quotient map. One
has π(y) ∈ S(F ((t))). Since S is anisotropic, one has S(F [[t]]) = S(F ((t))) (Lemma 5.4
below), hence π(y) ∈ S(F [[t]]). Looking at the exact sequence of tori

1 → T0 → T → S → 1

and applying Hilbert’s Theorem 90 over the discrete valuation ring F [[t]], it follows
that there exists z ∈ T (F [[t]]) such that π(z) = π(y), hence z−1y ∈ T0(F ((t))).
Moreover, z−1y ∈ Y (F [[t]]). Specializing t to 0, we see that z(0)−1y(0) ∈ Y0(F ),
that is y(0) = x0 ∈ T (F )Y0(F ), as claimed.

The last equality follows immediately.

The following lemma is well known; we include a proof for the convenience of
the reader.

Lemma 5.4. Let S be an anisotropic torus over a field F . Then, S(F ((t))) =
S(F [[t]]).

Proof. Let F ′ be a finite extension of F which splits S; then, for any F -algebra
E, S(E) is the set of morphisms from X∗(S) to E ⊗F F ′ which commute with the
actions of ΓF ′/F on both sides. It follows that a point P in S(F ((t))) corresponds
to a ΓF -equivariant group morphisms ϕ from X∗(S) to F ′((t))∗.

By composing ϕ with the order map F ′((t))∗ → Z, we obtain a ΓF ′/F -invariant
morphism ord ◦ϕ : X∗(S) → Z, which is necessarily 0 since S is anisotropic. Con-
sequently, ϕ(c) = 0 for any c ∈ X∗(S), which means that ϕ(c) ∈ F ′[[t]]∗. In
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other words, ϕ is a ΓF ′/F -equivariant morphism from X∗(S) to F ′[[t]]∗, and the
corresponding point P belongs to S(F ′[[t]]).

Our goal now is to describe the various Clemens complexes attached to the pair
(X,D). Let W = NG(T )/T and W0 = NG(T0)/ZG(T0) be the Weyl groups of G
relative to the tori T and T0.

Since the Weyl group W acts on G via the conjugation by an element of G,
this extends to an action on X . This action induces the trivial action on C (X,D).
Indeed, the groupG being connected, each irreducible component ofDF̄ is preserved
by the actions of GF̄ .

Proposition 5.5. Over F̄ , the open strata of the stratification of XF̄ deduced from
DF̄ are exactly the orbits of (G×G)F̄ in XF̄ . Moreover, associating to an orbit its
closure defines a ΓF -equivariant bijection from G(F̄ )\X(F̄ )/G(F̄ ) to C (X,D).

Proof. We may assume that the field F is separably closed. We then have T = T0.
By Proposition 5.3, the map

Y (F )/T (F ) → G(F )\X(F )/G(F )

which associates to the T (F )-orbit of a point x in Y (F ) the orbit G(F )xG(F ) in
X(F ) is surjective. By the theory of toric varieties, T (F ) has only finitely many
orbits in Y (F ). Consequently, G×Gopp has only finitely many orbits in X .

Let Z be an element of C (X,D), viewed as an irreducible closed subvariety of
D. It is smooth, and possesses a G ×Gopp-action. The group G ×Gopp acts on Z

with only finitely many orbits; necessarily, one of these orbits, say Z0, is open in Z.
Since Z is irreducible, it follows that Z = Z0, and Z is the closure of a G ×Gopp-
orbit. By Theorem 2.1 of [33], there exists an open affine subset X0 of X such that
Z0 is the unique closed orbit of G×Gopp in GX0G.

Let us show that Z\Z0 is contained in X\GX0G or, equivalently, that Z ∩
GX0G = Z0. Indeed, let O be any orbit in Z distinct from Z0; we need to prove
that O ∩GX0G = ∅. Let us denote by Ō the closure of O in X ; since Z0 is open in
Z, Ō has empty interior in Z, hence is an irreducible subset of X whose dimension
satisfies dim Ō < dimZ. However, any action of an algebraic group on an algebraic
variety has a closed orbit; in particular Ō ∩ GX0G contains a closed orbit, which
implies that Ō∩GX0G ⊃ Z0, and this contradicts the assumption dim Ō < dimZ0.

Since X0 is open in X , it contains at least one point of G, hence GX0G con-
tains G. Consequently, X\GX0G is contained in X\G. Since GX0G is an G×Gopp-
invariant open subset ofX , each irreducible component of Z\Z0 is contained in some
irreducible component of X\GX0G which does not meet Z0.

Consequently, the orbit Z0 is an open stratum of the stratification defined by
the boundary divisor D.

Conversely, let O be an orbit of G × Gopp in X and let Z be the stratum of
minimal dimension in C (X,D) which contains O. By the preceding argument, Z is
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the closure of an orbit Z0 whose complement Z\Z0 is a union of lower dimensional
strata. By the minimality assumption on Z, Z0 = O, which proves that O is an
open stratum.

The rest of the proposition follows at once.

The group of characters M0 of T0 is the group of coinvariants of Γ in M (it is
a quotient of M), and its group of cocharacters N0 is the group of invariants of Γ
in N (a subgroup of N). Let t0 = dimT0. Let Σ0 denote the fan of N0 induced by
Σ; it is simplicial albeit not obviously smooth in general. This fan defines a toric
variety X0 which in fact is isomorphic to the Zariski closure of T0 in X .

5.3. Volume estimates for compactifications of

semi-simple groups

5.3.1. Introduction

Let G be a semisimple algebraic group of adjoint type over a field F of character-
istic 0. Let ι : G → GL(V ) be a faithful algebraic representation of G in a finite
dimensional F -vector space V . The natural map

GL(V ) → End(V )\{0} → PEnd(V )

induces a map ῑ : G→ PEnd(V ). Let Xι be the Zariski closure of its image; it is a
bi-equivariant compactification of G. Let ∂Xι be the complement to G in Xι.

When ι is irreducible with regular highest weight, Xι is the wonderful compact-
ification defined by De Concini and Procesi in [19], Sec. 3.4. In that case, Xι is
smooth and ∂Xι is a divisor with strict normal crossings.

When F is a local field, we endow the vector space End(V ) with a norm ‖·‖.
When F is a number field, let us choose, for any place v of F , a v-adic norm on
End(V ) ⊗ Fv, so that there is an oF -lattice in End(V ) inducing these norms for
almost all finite places. As it was explained in Secs. 2.1.6 and 2.2.4, such choices
give rise to a metric on the line bundle O(1) on the projective space PEnd(V ) (resp.
an adelic metric) when F is a number field.

We claim that the line bundle O(1) on Xι has a nonzero global section sι which
is invariant under G. Such a section sι is unique up to multiplication by a scalar,
since the quotient of two of them is a G-invariant rational function on Xι. (See also
[19], 1.7, p. 9, proposition.)

To prove the existence, let us first observe that the line in End(V ) generated by
idV is G-invariant. By semi-simplicity of G, there exists a linear form 	ι on End(V )
which is invariant under G and maps idV to 1. Let sι be the restriction to G of the
global section of O(1) over PEnd(V ) defined by 	ι. Now, we have

‖sι‖(ῑ(g)) =
|	ι(g)|
‖ι(g)‖ =

|	gι (e)|
‖ι(g))‖ = ‖ι(g)‖−1,
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for any g ∈ G(F ) when F is a local field, and similar equalities at all places of F
in the number field case.

Consequently, for F = R or C, the results of Sec. 4.2 imply, as a particular
case, an asymptotic formula for the volume of sets of g ∈ G(F ) with ‖ι(g)‖ ≤ B,
when B → ∞, as well as similar (but weaker) estimates when F is a p-adic field.
Similarly, when F is a number field, the volume estimates established in Sec. 4.4
imply estimates for the volume of adelic sets in G(AF ) consisting of adelic points
of bounded height.

In the case of local fields, it requires further computations for making these
estimates explicit, in terms of the representation ι. In particular, we will need to
describe the analytic Clemens complex of ∂Xι.

5.3.2. The wonderful compactification of De Concini and Procesi

For simplicity, we assume for the moment that G is split. We fix a maximal torus
T of G which is split, as well as a Borel subgroup B of G containing T . We identify
the groups of characters X∗(T ) and X∗(B), as well as the groups of cocharacters
X∗(T ) and X∗(B); we also let a = X∗(T ) ⊗Z R and a∗ = X∗(T ) ⊗Z R.

Let Φ (resp. Φ+), be the set of roots of G (resp. of positive roots in X∗(T )); let
β denote the sum of all positive roots. Let ∆ ⊂ Φ+ be the set of simple roots; they
form a basis of the real cone in a∗ generated by positive roots, hence we may write
β =

∑
α∈∆mαα for some positive integers mα.

Let ι : G → GL(V ) be a representation as above; we assume here that ι is
irreducible and that its highest weight λ is regular, i.e. can be written as λ =∑

α∈∆ dαα, for some positive integers dα. In that case, as recalled above, Xι is the
“wonderful compactification of G” defined by De Concini and Procesi. The variety
Xι does not depend on the actual choice of ι, but the projective embedding does.

The irreducible components of Xι\G are naturally indexed by the set ∆; we will
write Dα for the divisor corresponding to a simple root α. Let D =

∑
Dα. The

Clemens complex C (∂Xι) is simplicial, and coincides with the F -analytic Clemens
complex C an

F (∂Xι) since G is assumed to be split.
The line bundles O(Dα) form a basis of Pic(Xι), as well as generators of the

cone of effective divisors (which is therefore simplicial). The restriction of OP(1) to
X corresponds precisely to λ, and there is a canonical isomorphism

OPEnd(V )(1)|Xι � O

(∑
α∈∆

dαDα

)
.

According to [19], the anticanonical line bundle of Xι is given by

K−1
Xι

� O

(∑
α∈∆

(mα + 1)Dα

)
.

Let C ⊂ a∗ be the convex hull of the characters of T appearing in the represen-
tation ι. This is also the convex hull of the images of the highest weight λ under the
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action of the Weyl group. This is a convex and compact polytope which contains 0
in its interior by [36], Lemma 2.1.

Lemma 5.6. Let σ = maxα∈∆(mα/dα), let t be the number of elements α ∈ ∆
where equality holds. Then σ is the smallest positive real number such that β/σ ∈ C

and t is the maximal codimension of a face of C containing β/σ.

Proof. For any simple root α, let α∨ be the corresponding coroot, so that the
simple reflexion sα associated to α is given by sα(x) = x − 2〈α∨, x〉α, for x ∈ a∗.
We have 〈α∨, α〉 = 1 while 〈α∨, α′〉 = 0 for any other simple root α′.

Within the Weyl chamber of λ, the polytope C is bounded by the affine hyper-
planes orthogonal to the simple roots α and passing through λ. Consequently, a
point x in this chamber belongs to C if and only if 〈α∨, x〉 ≤ 〈α∨, λ〉. Moreover,
such a point x belongs to the boundary of C if and only if equality is achieved for
some simple root α; then, the number of such α is the maximal codimension of a
face of C containing x. For x = β/σ =

∑
α∈∆(mα/σ)α, we find

〈α∨, x− λ〉 =
mα

σ
− λα,

hence the lemma.

Consequently, our geometric estimates (Theorem 4.7) imply the following result
of Maucourant [36] under the assumption that G is split and V has a unique highest
weight.

Corollary 5.7. Define σ = maxα∈∆(mα/dα) and let t be the number of α ∈ ∆
where the equality holds.

Assume that F = R or C. When B → ∞, the volume V (B) of all g ∈ G(F )
such that ‖ι(g)‖ ≤ B satisfies an asymptotic formula of the form:

V (B) ∼ cBσ(logB)t−1.

According to our theorem, the positive constant c can be written as a product
of the combinatorial factor

1
σ(t − 1)!

∏
α∈A

1
λα

and an explicit integral on the stratum of Xι(F ) defined by A, with respect to its
normalized residue measure τDA .

In the p-adic case, Corollary 4.9 similarly implies the following result:

Corollary 5.8. Keep the same notation, assuming that F is a p-adic field. Then,
when B → ∞,

0 < lim inf
V (B)

Bσ(logB)t−1
≤ lim sup

V (B)
Bσ(logB)t−1

< +∞.
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5.3.3. The case of a general representations (split group)

We now explain how to treat non-irreducible representations, still assuming that
the group G is split.

By Proposition 6.2.5 of [10], there is a diagram of equivariant compactifications

X̃
π

����
��

��
��

���
��

��
��

�

Xι Xw

where Xw is the wonderful compactification previously studied and X̃ is smooth.
Since the boundary divisor of a smooth toric variety is a divisor with strict normal
crossings, it then follows from [10], Proposition 6.2.3, that the boundary ∂X̃ of X̃ is
a divisor with strict normal crossings in X̃. Moreover, the proof of this proposition
and the local description of toroidal G-embeddings in loc. cit., Sec. 6.2, show that
X̃ is obtained from Xw by a sequence of T -equivariant blow-ups. Therefore, the
boundary ∂X̃ consists of the strict transforms D̃α of the divisors Dα, indexed by
the simple roots, and of the exceptional divisors Ei (for i in some finite index
set I). These divisors form a basis of the effective cone in the Picard group. The
anticanonical line bundle of X̃ decomposes as a sum∑

α∈A

(mα + 1)Dα +
∑
i∈I

Ei.

Let L̃ be the line bundle π∗O(1) on X̃ ; let us write it as L̃ =
∑
λ̃αDα +

∑
λ̃iEi

in the above basis. Since we can compute volumes on X̃ , our estimates imply that
V (B) has an asymptotic expansion of the form given in Corollary 5.7, σ being
given by

σ = max
(

max
α∈A

mα

λ̃α

,max
i∈I

0
λ̃i

)
= max

α∈A

mα

λ̃α

,

and t is again the number of indices α ∈ A where equality holds.
Observe that the definition of σ precisely means that the line bundle σπ∗L −

(KX̃ +∂X̃) belongs to the boundary of the effective cone of X̃; the integer t is then
the codimension of the face of minimal dimension containing that line bundle. These
properties can be checked on restriction to the toric variety Ỹ given by the closure
of T in X̃ ; indeed the restriction map Pic(X̃) → Pic(Ỹ ) is an isomorphism onto the
part of Pic(Ỹ ) invariant under the Weyl group, and similarly for the effective cone.
To determine σ, it now suffices to test for the positivity of the piecewise linear (pl)
function on the vector space a∗ associated to this divisor.

The above formula for the anticanonical line bundle of X̃ implies that the pl

function for KX̃ + ∂X̃ is that of KXw + ∂Xw.
On the other hand, the theory of heights on toric varieties relates the pl function

corresponding to a divisor to the normalized local height function (see [4]). The
formula is as follows. Let D be an effective T -invariant divisor, the corresponding
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T -linearized line bundle has a canonical T -invariant nonzero global section sD.
For t ∈ T (F ), let 	(t) be the linear form on a defined by χ �→ log|χ(t)|; dually,
one has 	(t)(χ) = 〈χ, log(t)〉. Then, the norm of sD with respect to the canonical
normalization is given by

log ‖sD(t)‖−1 = ϕD(	(t)).

If the local height function is not normalized, the previous equality only holds up
to the addition of a bounded term.

In our case, let Φ be the set of weights of T in the representation ι. Then, for
t ∈ T (F ),

‖ι(t)‖ ≈ max
χ∈Φ

|χ(t)|,

hence

log ‖sι(t)‖−1 = log ‖ι(t)‖ = max
χ∈Φ

log|χ(t)| + O(1).

In other words, the line bundle π∗L corresponds to the pl function ϕι =
maxχ∈Φ〈χ, ·〉 on a∗.

As explained above, σ is the least positive real number such that the pl function
sϕι is greater than the pl function ϕβ associated to K−1

Xw
(−∂X). Since the Weyl

group acts trivially on the Picard group of X̃ , these pl functions are invariant under
the action of the Weyl group and it is sufficient to test the inequality on the positive
Weyl chamber C in a.

Let (�α) denote the basis of a∗ dual to the basis (α) — up to the usual iden-
tification of a with its dual given by the Killing form of G, this is the basis of
fundamental weights. One has C =

∑
α R+�α.

Recall also that β is the sum of the fundamental weights of G, hence belongs
to the positive Weyl chamber in a∗. It follows that wβ ≥ β for any element w in
the Weyl group W (Bourbaki, LIE VI, §1, Proposition 18, p. 158). It follows that
〈wβ,�α〉 ≤ 〈β,�α〉 for any w ∈W . Consequently,

ϕβ(y) = max〈wβ, y〉 = 〈β, y〉

for any y ∈ C. Moreover, if y =
∑
yα�α ∈ a, then

〈β, y〉 =
〈∑

mαα,
∑

yα�α

〉
=
∑

mαyα.

Let Λ be the set of dominant weights of ι with respect to C. For any λ ∈ Λ,
let us write λ =

∑
λαα, for some non-negative λα ∈ Z. Consequently, for any

y =
∑
yα�α ∈ C, with yα ≥ 0 for all α, one has

ϕι(y) = max
χ∈Φ

〈χ, y〉 = max
λ∈Λ

〈λ, y〉 = max
λ∈Λ

(∑
α

λαyα

)
.
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The condition that sϕι(y) ≥ ϕβ on C therefore means that smaxλ∈Λ λα ≥ mα for
any α ∈ Φ. In other words, σ = max(mα/λ̃α), where we have set λ̃α = maxλ∈Λ λα.
Moreover, t is the number of simple roots α such that λ̃ασ = mα.

As in [36], let C be the convex hull of Φ in a∗; it is a compact polytope whose
dual C ∗ is defined by the inequality ϕι(·) ≤ 1 in a∗. Let s be a positive real number.
By definition, β/s belongs to C if and only if 〈β/s, y〉 ≤ 1 for any y ∈ a∗ such that
ϕι(a) ≤ 1. This is precisely equivalent to the fact that sϕι − 〈β, ·〉 is non-negative
on a∗.

Let y ∈ a∗ and let w ∈ W be such that wy ∈ C. Since ϕι is invariant under W ,

sϕι(y) − 〈β, y〉 = sϕι(wy) − 〈w−1β,wy〉 ≤ sϕι(wy) − 〈β,wy〉,
with equality if and only if w = e. We have thus shown that β/s ∈ C if and only
if the pl function sϕι − ϕβ is non-negative. In other words, σ is the least positive
real number such that β/σ belongs to C , as claimed by Maucourant in [36].

Let F be the face of C containing β/σ. It is also explained in [36] that the dual
face of F is contained in the positive Weyl chamber C (Lemma 2.3) and is given
by

F ∗ = {y ∈ C ∗; 〈β, y〉 = σ}.
If again we decompose y as

∑
yα�α, it follows that F ∗ identifies as the set of

non-negative (yα) such that ϕι(y) ≤ 1 and 〈β, y〉 = σ. The first condition gives us∑
λ̃αyα ≤ 1 and the second is equivalent to

∑
mαyα = σ. This implies

∑
yα = 1

and yα = 0 if σ �= mα/λ̃α. Consequently, codimF = dimF ∗ = t, showing the
agreement of our general theorem with the result obtained by Maucourant in [36],
under the assumption that G is split.

5.3.4. The general case

We now treat the general case of a possibly non-split group. Let T be a maximal
split torus in G, so that its Lie algebra aR is a Cartan subalgebra of Lie(G). We have
already explained how the F -analytic Clemens complex of X is related to the toric
variety Y given by the closure of T in X . As a consequence, all positivity conditions
and dimensions of faces which intervene in our geometric result rely only on the
divisors which are “detected” by Y , hence are expressed in terms of pl functions
in a∗. The previous analysis now applies verbatim and allow us again to recover
Maucourant’s theorem.

5.3.5. Adelic volumes

Let us now assume that F is a number field. Theorem 4.13 describes the analytic
behavior of the volume — with respect to the Haar measure — of adelic points in
G(AF ) of height ≤ B, when B → ∞. This allows to recover Theorem 4.13 in [27].
In fact, that theorem itself is proved as a corollary of the analytic behavior of the
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associated Mellin transform which had been previously shown in [45], Theorem 7.1.
Similarly, this analytic behavior is a particular case of our Proposition 4.12.

5.4. Relation with the output of the circle method

Let X be a non-singular, geometrically irreducible, closed subvariety of an affine
space V of dimension n over a number field F . When F = Q, W = An and X is
defined as the proper intersection of r hypersurfaces defined. Let n be a positive
integer and let f1, . . . , fr ∈ Z[X1, . . . , Xn] be polynomials with integer coefficients.

The circle method eventually furnishes an estimate, when the real number B
grows to ∞, of the number N(X,B) of solutions x ∈ Zn of the system X given by
f1(x) = · · · = fr(x) = 0 whose “height” ‖x‖ is bounded by B. A set of conditions
under which the circle method applies is given by [6]; it suffices that the hypersur-
faces {fi = 0} meet properly and define a non-singular codimension r subvariety of
An, and that n is very large in comparison to the degrees of the fi.

Let us assume that X = V (f1, . . . , fr) is smooth and has codimension r. By the
circle method, an approximation for N(B) is given by a product of “local densities”:
for any prime number p, let

µp(X) = lim
k→∞

#X(Z/pkZ)
pk dim X

;

for the infinite prime, let

µ∞(X,B) = lim
ε→0

ε−r vol{x ∈ Rn; ‖x‖ ≤ B, |fi(x)| < ε/2},

where vol refers to the Euclidean volume in Rn. In some cases, one can indeed
prove that N(X,B) ∼ µ∞(X,B)

∏
p<∞ µp(X) when B → ∞.

As already observed by [7] (Sec. 1.8) we first want to recall that the right-
hand side V (X,B) of this asymptotic expansion is really a volume. Under the
transversality assumption we have made on the hypersurfaces defined by the fi,
there exists a differential form ω̃ on a neighborhood of X in An such that

ω̃ ∧ df1 ∧ · · · ∧ dfr = dx1 ∧ · · · ∧ dxn.

The restriction of ω̃ to X is a well-defined gauge form ω on X and

µ∞(X,B) =
∫

X(R)
‖x‖≤B

d|ω|∞(x), µp(X) =
∫

X(Zp)

|ω|p (p prime).

Let us write [t : x] for the homogeneous coordinates of a point in Pn(K), so
that t ∈ K and x = (x1, . . . , xn) ∈ Kn. One then defines a metric on O(1) by the
formula

‖sF ‖([t : x]) =
|F (t, x)|

max(|t|, ‖x‖)deg F
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for any point [t : x] ∈ Pn(R) and any homogeneous polynomial F in R[t, x], sF

being the section of O(degF ) attached to F . Let f0 be the section corresponding to
F = t; for B ≥ 1, the condition ‖x‖ ≤ B can thus be translated to ‖f0‖([1 : x]) ≥
1/B.

First assume that the Zariski closure of X in Pn is smooth; let D be the divisor
V(f0) in X . Letting d =

∑
deg(fi), the divisor of ω is equal to d − n − 1. In that

case, the measure |ω| coincides with the measure τ(X̄,(n+1−d)D on X(R), so that
µ∞(X,B) is an integral of the form studied in this paper, namely

µ∞(X,B) = τ(X,(n+1−d)D)(‖f0‖ ≥ 1/B).

Assume n > d. Then, when B converges to infinity, Theorem 4.7 implies that
µ∞(X,B) ≈ Bn−d(logB)b−1, where b is the dimension of the Clemens complex of
the divisor D(R), that is the maximal number of components of D(R) that have a
common intersection point. (When n = d, a similar result holds except that b − 1
has to be replaced by b.)

The paper [22] showed that this asymptotic does not hold for the specific exam-
ple of a generic SL(2)-orbit of degree d binary forms. For example, when d = 3, this
amounts to counting points on a hypersurface of degree 4 in P4 and the expected
exponent 0 = 4−4 is replaced by 2/3. This discrepancy is explained by [29]: observ-
ing that (X̄,D) is not smooth in that case, they computed a log-desingularization
of (X̄,D) on which the behavior of the integral µ∞(X,B) can be predicted.

In the general case, let us thus consider a projective smooth compactification Ȳ
of X together with a projective, generically finite, morphism π : Ȳ → X̄ such that,
over Q̄, the complementary divisor E to X in Ȳ has strict normal crossings. Let
Eα be the irreducible components of E. It is customary to assume that π induces
an isomorphism over X , but this is not necessary in the following analysis; it is in
fact sufficient to assume that the degree of π is constant on the complement to a
null set.

Let us set η = π∗ω; then, the divisor of η has the form div(η) = −∑ ραEα =
−E′, so that

µ∞(X,B) =
∫

Ȳ (R)
‖π∗f0‖≥1/B

|η| = τ(Ȳ ,E′)({‖π∗f0‖ ≥ 1/B}).

Write also π∗D =
∑
λαEα. According to Theorem 4.7, µ∞(X,B) ≈ Ba(logB)b−1

where now, a = max(ρα − 1)/λα, the minimum being restricted to those α such
that Eα(R) �= ∅; the integer b is the dimension of the subcomplex of the analytic
Clemens complex consisting of those Eα achieving this minimum. (When a = 0,
b− 1 is replaced by b.)

Let us give the specific example of an SL(2)-orbit in the affine space of binary
forms of degree d, as treated in [29]. That paper constructs a pair (Ȳ , E) with an
action of Sn such that E = E1+E2 has two irreducible components, the divisors E1

and E2 (denoted A[n−1] and A[n] in that paper) forming a basis of the Sn-invariant
part of Pic(Ȳ ). Moreover, K−1

Ȳ
= E1 + 2E2. They compute the inverse image of



November 15, 2010 14:37 WSPC/S1793-7442 251-CM 00022

416 A. Chambert-Loir & Y. Tschinkel

O(1) and obtain n−2
2 E1 + n

2E2 (loc cit., Lemma 3.3). Consequently, (ρ1−1)/λ1 = 0
and (ρ2−1)/λ2 = 2/n. Finally, a = 2/n and b = 1, implying that µ∞(X,B) ≈ B2/n.

Let us return to the general case, and assume that KX̄ is Q-Cartier. Then, the
log-discrepancies (εα) are defined by the formula

KȲ (E) = π∗(K̄X̄(D)) +
∑

εαEα,

so that 1 − ρα = (d− n)λα + εα for any α. Then,

a = n− d+ min
α

−εα

λα
,

where, again, the minimum is restricted to those α such that Eα(R) �= ∅. When
(X̄,D) has log-canonical singularities, εα ≥ 0 for each α and one obtains again
a ≤ n − d since the log-discrepancy corresponding to the strict transform of the
components of D is 0.

However, in the case treated by [29], ε1 = 0 and ε2 = −1, leading to the opposite
inequality a = 2

n > 0.

5.5. Matrices with given characteristic polynomial

5.5.1. Let VP be the Z-scheme of matrices in the affine 4-space whose characteristic
polynomial is X2 + 1, and let BT be the Euclidean ball of radius T in R4. Shah
gives in [44] the following asymptotic expansion:

#(VP (Z) ∩BT ) ∼ Tζ∗K(1)
π1/2

Γ(3/2)
π

Γ(2/2)ζ(2)
= Tζ∗K(1)

2π
ζ(2)

= CX2+1 T,

where ζ∗Q(i) is the leading term at 1 of Dedekind’s zeta function relative to the
number field Q(i).

A matrix in VP has the form
(

x z
y −x

)
with x2 + yz + 1 = 0. Let X denote the

subvariety of P3 defined by X2 + Y Z + T 2 = 0. It is smooth of dimension 2 over
Z[1/2]. The scheme VP is exactly the open subset U ⊂ X defined by T �= 0. The
divisor at infinity D = X\U is defined by T = 0; it is smooth as well (still over
Z[1/2]).

5.5.2. Let p be an odd prime number. One has #U(Fp) = p2 + (−1
p )p. Indeed,

z �= 0 gives p(p − 1) points. If z = 0, y may be arbitrary and x has to be ±√−1,
hence 2p points if −1 is a square and 0 else. Finally,

volU(Zp) = p−2#U(Fp) = 1 +
(−1
p

)
1
p
.
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For p = 2, we split U(Z2) into two parts:

• y odd, so that z = −(x2 + 1)/y. This has measure 1/2.
• y = 2y′ even, which implies that y′ and x = 2x′ + 1 odd, so that

z = −(x2 + 1)/y = −(1 + 2x′ + 2(x′)2)/y′.

This has measure 1/4. Indeed, it parametrizes as


x = 1 + 2u,

y =
2

1 + 2v
,

z = (1 + 2u+ 2u2)(1 + 2v) = 1 + 2u+ 2v + 2u2(1 + 2v) + 4uv,

with (u, v) ∈ (Z2)2. The differential of this map is given by the matrix
 2 0

0 −4(1 + 2v)−2

2 + 4u(1 + 3v) 2 + (4u2 + 4u)


 = 2


 1 0

0 −2(1 + 2v)−2

1 + 2u(1 + 3v) 1 + 2u(1 + u)




and is twice a 2 × 3 matrix with coefficients in Z2, of which one of the 2 × 2 is
invertible. Therefore, the measure of its image is |2|22 = 1/4.

Finally, volU(Z2) = 1/2 + 1/4 = 3/4.

5.5.3. The virtual character EP(U) is −[χ], for χ = (−1/·) the quadratic character
corresponding to Q(i). We will prove this in general below, however, this can be
seen directly as follows.

First, U is a hypersurface of the affine 3-space, so it has no non-constant invert-
ible function. Let us now study its Picard group. Over Q(i), X is the hypersurface
of P3 defined by the equation (x+it)(−x+it) = yz, so is isomorphic to P1×P1, the
two factors being interchanged by the complex conjugation. Consequently, Pic(XF̄ ),
being generated by these two lines, is the Galois module 1 ⊕ [χ]. The result then
follows from the fact that Pic(XF̄ ) maps surjectively to Pic(UF̄ ), its kernel being
the submodule generated by the class of the hyperplane of equation t = 0 in P3.

The L-function of EP(U) has local factors Lp(EP(U), s) = 1 − (−1
p

)
p−s. The

product L(EP(U), s) of all Lp for p > 2 is exactly L(χ, s)−1. At s = 1, it has neither
a pole, nor a zero.

5.5.4. One has

volU(Z2)
∏
p>2

volU(Zp)Lp(1) =
3
4

∏
p>2

(1 − p−2) =
6
π2

= ζ(2)−1.

As L(χ, s)ζ(s) = ζQ(i)(s), one has L(χ, 1) = ζ∗Q(i)(1) and the normalized volume of
U(Af ) is equal to

ζ∗Q(i)(1)
1
ζ(2)

.
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5.5.5. Now we have to compute the volume of the divisor at infinity. Due to the
way matrices are counted in [44] (one wants 2x2 + y2 + z2 ≤ T 2) the natural metric
on the tautological bundle of P3 is given by the formula

‖sP ‖(x : y : z : t) =
P (x, y, z, t)

max(2|x|2 + |y|2 + |z|2, |t|2)deg P/2
,

where P is a homogeneous polynomial in four variables and sP the corresponding
section of O(degP ).

The divisor D has equations s1 = X2 +Y Z+T 2 = 0 and s2 = T = 0 in P3. We
will compute its volume using affine coordinates (y, z, t) for P3 and x for D. Affine
equations of D corresponding to the two previous sections are 1 + yz + t2 = 0 and
t = 0. One has

d(1 + yz + t2) ∧ dz ∧ dt = zdy ∧ dz ∧ dt,

and by definition,

‖dy ∧ dz ∧ dt‖ = max(2 + y2 + z2, t2)2.

Consequently, on D, one obtains the following equalities

lim
‖s1‖

|1 + yz + t2| =
1

max(2 + y2 + z2, t2)
=

1
2 + y2 + z2

(since t = 0 on D) and

lim
‖s2‖
|t| =

1
max(2 + y2 + z2, t2)1/2

=
1

(2 + y2 + z2)1/2
.

Finally,

‖dz‖ = ‖zdy ∧ dz ∧ dt‖ lim
‖s1‖

|1 + yz + t2| lim
‖s2‖
|t|

= |z|max(2 + y2 + z2, t2)1/2 = |z|(2 + (1/z)2 + z2)1/2

= (1 + 2z2 + z4)1/2 = 1 + z2,

so that the canonical measure on D(R) is given by |dz|/(1 + z2). Hence,
volD(R) = π.

5.5.6. Finally, we obtain that Shah’s constant CX2+1 satisfies

CX2+1 = 2 volD(R) volU(Af ),

compatibly with Theorem 4.7.
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Appendix A. Tauberian Theorems

Let (X,µ) be a measured space and f a positive measurable function on X . Define

Z(s) =
∫

X

f(x)−s dµ(x) and V (B) = µ({f(x) ≤ B}).

One has

Z(s) =
∫ +∞

0

B−s dV (B).

Theorem A.1. Let a be a real number; we assume that Z(s) converges for Re(s) >
a and extends to a meromorphic function A.1 in the neighborhood of the closed half-
plane Re(s) ≥ a− δ, for some positive real number δ.

If a < 0, then V (B) has the limit Z(0) when B → ∞.
Furthermore, assume that:

(1) Z has a pole of order b at s = a and no other pole in the half-plane Re(s) ≥ a−δ.
(2) Z has moderate growth in vertical strips, i.e. there exists a positive real number

κ such that for any τ ∈ R,

|Z(a− δ + iτ)| � (1 + |τ |)κ.

Then, there exist a monic polynomial P, a real number Θ and a positive real number
ε such that, when B → ∞,

V (B) =

{
ΘBaP (logB) + O(Ba−ε) if a ≥ 0;

Z(0) + ΘBaP (logB) + O(Ba−ε) if a < 0.

Moreover, if a �= 0, then

deg(P ) = b− 1 and Θa(b− 1)! = lim
s→a

(s− a)bZ(s)

while

deg(P ) = b and Θb! = lim
s→a

(s− a)bZ(s)

if a = 0.

For any integer k ≥ 0, let us define

Vk(B) =
1
k!

∫
f(x)≤B

(
log

B

f(x)

)k

dµ(x) =
1
k!

∫
X

(
log+ B

f(x)

)k

dµ(x),

where log+(u) = max(0, log u) for any positive real number u.



November 15, 2010 14:37 WSPC/S1793-7442 251-CM 00022

420 A. Chambert-Loir & Y. Tschinkel

Lemma A.2. Let k be an integer such that k > κ. Then there exist polynomials P
and Q with real coefficients, a real number δ > 0 such that

Vk(B) = BaP (logB) +Q(logB) + O(Ba−δ).

Moreover, the polynomials P and Q satisfy

P (T ) =




1
ak+1(b− 1)!

ΘT b−1 + · · · if a �= 0,

0 if a = 0;
(A.1)

Q(T ) =




0 if a > 0;

1
(b+ k)!

ΘT b+k + · · · if a = 0;

1
k!
Z(0)T k + . . . if a < 0.

(A.2)

Proof. We begin with the classical integral∫
σ+iR

λs ds
sk+1

=
2iπ
k!

(log+(λ))k,

where σ and λ are positive real numbers. For σ > max(0, a), this implies that

Vk(B) =
1
k!

∫
X

log+(B/f(x))k dµ(x)

=
∫

X

1
2iπ

∫
σ+iR

(B/f(x))s ds
sk+1

dµ(x)

=
1

2iπ

∫
σ+iR

BsZ(s)
ds
sk+1

,

where the written integrals converge absolutely. We now move the contour of inte-
gration to the left of the pole s = a, the estimates for Z(s) in vertical strips allowing
us to apply the residue theorem. Only s = a and s = 0 may give a pole within the
two vertical lines Re(s) = σ and Re(s) = a− δ and we obtain

Vk(B) =
∑

u∈{0,a}
a−δ<u<σ

Ress=u

(
BsZ(s)
sk+1

)
+

1
2iπ

∫
a−δ+iR

BsZ(s)
ds
sk+1

.

If a > 0 and a− δ > 0, or if a < 0, one checks that there exists a polynomial P
of degree b− 1 and of leading coefficient Θ/ak+1(b− 1)! such that

Ress=a

(
BsZ(s)
sk+1

)
= BaP (logB).

In the case a > 0, moreover we set Q = 0.
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If a = 0, let us set P = 0. There exists a polynomial Q of degree b + k and of
leading coefficient Θ/(b+ k)! such that

Ress=0

(
BsZ(s)
sk+1

)
= Q(logB).

Finally, if a < 0, one verifies that there exists a polynomial Q of degree k and
of leading coefficient Z(0)/k! such that

Ress=0

(
BsZ(s)
sk+1

)
= Q(logB).

This implies the lemma.

Lemma A.3. Assume that there are polynomials P and Q, and a positive real
number δ, such that

Vk(B) = BaP (logB) +Q(logB) + O(Ba−δ),

where we moreover assume that P = 0 if a = 0 and Q = 0 if a > 0. Then for any
positive real number δ′ such that δ′ < δ/2, one has the asymptotic expansion

Vk−1(B) = Ba(aP (logB) + P ′(logB)) +Q′(logB) + O(Ba−δ′
).

Proof. For any u ∈ (−1, 1), one has

Vk(B(1 + u)) − Vk(B) = Ba(P (log(B(1 + u))) − P (logB))

+Q(log(B(1 + u))) −Q(logB) + O(Ba−δ)

= BaP (logB)((1 + u)a − 1)

+Ba(1 + u)a(P (logB + log(1 + u)) − P (logB))

+ (Q(logB + log(1 + u)) −Q(logB)) + O(Ba−δ)

= BaP (logB)(au+ O(u2)) +BaP ′(logB)u

+BaO(logB)deg P−2u2

+Q′(logB)u+ O((logB)deg Q−2u2) + O(Ba−δ).

Let ε be a positive real number; if u = ±B−ε, we obtain

Vk(B(1 + u)) − Vk(B)
log(1 + u)

= Ba(aP (logB) + P ′(logB)) + Õ(Ba−ε)

+Q′(logB) + Õ(B−ε) + O
(
Ba−δ+ε),
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where the Õ notation indicates unspecified powers of logB. If δ′ < δ/2, we may
choose ε such that δ′ < ε < δ/2 and then,

Vk(B(1 + u)) − Vk(B)
log(1 + u)

= Ba(aP (logB) + P ′(logB))

+Q′(logB) + O(Ba−δ′
). (A.3)

On the other hand, for any real number u such that 0 < u < 1, and any positive
real number A, one has

log(A(1 − u))k − log(A)k

log(1 − u)
≤ k log(A)k−1 ≤ log(A(1 + u))k − log(A)k

log(1 + u)
,

which implies the inequality

Vk(B(1 − u)) − Vk(B)
log(1 − u)

≤ Vk−1(B) ≤ Vk(B(1 + u)) − Vk(B)
log(1 + u)

. (A.4)

Substituting in the estimates of Eq. (A.3), we deduce the asymptotic expansion

Vk−1(B) = Ba(aP (logB) + P ′(logB)) +Q′(logB) + O(Ba−δ′
), (A.5)

as claimed.

Proof. (Proof of Theorem A.1) We can now prove our Tauberian theorem. Let k
be any integer such that k > κ. Lemma A.2 implies an asymptotic expansion for
Vk(B); let P,Q, δ be as in this lemma. Applying successively k times Lemma A.3,
we obtain the existence of an asymptotic expansion for V (B) of the form

V (B) = BaDk
aP (logB) +Dk

0Q(logB) + O(Ba−δ′
),

for some positive real number δ′ (any positive real number δ′ such that δ′ < δ/2k

is suitable), where we have denoted by Da and D0 the differential operators P �→
aP + P ′ and P �→ P ′.

For a �= 0, the operatorDa does not change the degree but multiplies the leading
coefficient by a. Consequently,

Dk
aP (T ) =




1
a(b− 1)!

Θb−1 + · · · if a �= 0,

0 if a = 0.

Similarly, the operator D decreases the degree by 1 and multiplies the leading
coefficient by the degree. It follows that

Dk
0Q(T ) =



Z(0) if a < 0;
1
b!

ΘT b + · · · if a = 0;

0 if a > 0.

Theorem A.1 now follows easily.
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In ultrametric contexts, the function f usually takes values of the form qn, with
n ∈ Z, where q is a real number such that q > 1. In that case, the function Z is
(2iπ)/ log q-periodic, its poles form arithmetic progressions of common difference
2iπ/ log q, and Theorem A.1 does not apply.

Let q be a real number with q > 1 and assume that f(x) ∈ qZ for any x ∈ X .
Let a be a non-negative real number; let us assume that Z(s) converges for

Re(s) > a and extends to a meromorphic function in the neighborhood of the
closed half-plane Re(s) ≥ a− δ, for some positive real number δ.

Suppose furthermore that the poles of Z belong to finitely many arithmetic
progressions of the form aj + 1

log q2iπZ, where a1, . . . , at ∈ C are complex numbers
of real part a, not two of them being congruent mod 2iπ/ log q; let bj = ords=aj Z(s)
and let cj = lims→aj (s− aj)bjZ(s).

Let us make the change of variable u = q−s and set Z(s) = Φ(u). The function
Φ is defined by

Φ(u) =
∑
n∈Z

Znu
n, where Zn = µ({f(x) = qn});

it is defined for 0 < |u| < q−a and is holomorphic in that domain; moreover, it
extends to a meromorphic function on the domain 0 < |u| < qδ−a, with poles at
q−aj (for 1 ≤ j ≤ t) such that

lim
u→q−aj

(1 − qaju)bj Φ(u) = lim
s→aj

(1 − qaj−s)bjZ(s) = (log q)bj cj .

Consequently, there are polynomials pj of degree bj and leading coefficient
(log q)bj cj such that

Z(u) −
t∑

j=1

pj(u)
(1 − qaju)bj

is holomorphic in the domain defined by 0 < |u| < qδ−a. Therefore, the Cauchy
formula implies an asymptotic expansion of the form

Zn =
t∑

j=1

Pj(n)qajn + O(q(a−δ′)n),

where δ′ is any positive real number such that 0 < δ′ < δ and, for 1 ≤ j ≤ t, Pj is
a polynomial of degree bj − 1 and of leading coefficient cj(log q)bj/(bj − 1)!.

Since the Laurent series defining Φ has non-negative coefficients, the inequality
|Z(u)| ≤ Z(|u|) holds for any u ∈ C such that 0 < |u| < q−a. In particular, we see,
as is well known, that Φ has a pole on its circle of convergence. This means that,
unless t = 0, we can assume that a1 = a and that bj ≤ b1 for all j.

We are not interested in the sequence (Zn) itself, but rather on the sums
V (qn) =

∑
m≤n Zn, when n → ∞. (Their convergence follows from the fact that

Φ(u) converges for arbitrary small nonzero complex numbers u.)
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We begin by observing that for any integer j, there exists a polynomial Qj

such that

Pj(m) = Qj(m) − q−ajQj(m− 1)

for any m ∈ Z. Moreover, if qaj �= 1, then there is only one polynomial satisfying
these relations, its degree satisfies deg(Qj) = deg(Pj) while its leading coefficient
is equal to lcoeff(Pj)/(1 − q−aj ); however, if qaj = 1, then deg(Qj) = deg(Pj) + 1
and lcoeff(Qj) = lcoeff(Pj)/(deg(Pj) + 1).

Let us now separate the discussion according to the value of a.

Case a < 0. Then, V (qn) has the limit Φ(1) when n→ +∞, and

V (qn) = Φ(1) −
∑
m>n

Zn = Φ(1) −
t∑

j=1

∑
m>n

qajmPj(m) + O(q(a−δ′)n),

provided that δ′ < δ is chosen so that a < a+ δ′ < 0. Since∑
m>n

qajmPj(m) =
∑
m>n

(qajmQj(m) − qaj(m−1)Qj(m− 1)) = −qajnQj(n),

we obtain that

V (qn) = Φ(1) +
t∑

j=1

qajnQj(n) + O(q(a−δ′)n). (A.6)

Case a > 0. In this case, we have

V (qn) =
t∑

j=1

∑
m≤n

(qajmQj(m) − qaj(m−1)Qj(m− 1)) + O(qa−δ′n),

so that

V (qn) =
t∑

j=1

qajnQj(n) + O(qa−δ′
n). (A.7)

Moreover, deg(Qj) = bj for all j.

Case a = 0. Then V (qn) also satisfies the asymptotic expansion (A.7). However,
degQ1 = b1 + 1 and degQj ≤ bj ≤ b1 for j �= 1, and we obtain

lim
n→∞V (qn)n−b1−1 lcoeff(Q1) =

1
b1 + 1

lcoeff(P1) = c1
(log q)b1

b1 + 1
. (A.8)

Corollary A.4. Let us retain the previous hypotheses, assuming moreover that
a > 0. Then, we have the following weak asymptotic behavior :

0 < lim inf V (qn)q−ann−b1 ≤ lim supV (qn)q−ann−b1 <∞.

Corollary A.5. Let us assume that for some positive integers b and d, the function
Z(s)(1 − q(a−s)d)b has a holomorphic expansion in some neighborhood of the half-
plane {Re(s) ≥ a − δ}. Then, where n is restricted to belong to any arithmetic
progression mod. d, the sequence (V (qn)q−na log(qn)−b) has a limit.
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Proof. The assumptions allow us to set t = d and aj = a+2iπ(j− 1)/d log(q), for
1 ≤ j ≤ d, and bj = b. Let us fix m ∈ N and let us write n = m+ kd, where k ∈ N
goes to infinity. For n ∈ N, we may write

V (qn)q−na log(qn)−b
d∑

j=1

q(aj−a)n Qj(n)
(n log q)b

+ O(q−δ′n).

The asserted convergences follow from the fact the observation that for any j,
q(aj−a)n is a dth root of unity. More precisely, we find

lim
n→∞

n≡n0 (mod d)

V (qn)q−na log(qn)−b =
1

(b− 1)!

d∑
j=1

exp(2iπ(j − 1)/d)
cj

1 − q−aj
,

where

cj = lim
s→aj

(s− aj)bZ(s).

The following corollary has been inspired by the recent paper [17] by Cluckers,
Comte and Loeser.

Corollary A.6. Let V ∗(qn) be the Cesáro mean of V (qn), namely

V ∗(qn) =
1

n+ 1

n∑
m=0

V (qm).

If a > 0, then V ∗ satisfies

lim
n→∞V ∗(qn)q−ann−b1 = c1

(log q)b1

1 − q−a
.

If a < 0, then

lim
n→∞(V ∗(qn) − Z(0))q−ann−b1 = c1

(log q)b1

1 − q−a
.

Proof. This follows from the main result and the fact that for any complex number
z ∈ C such that |z| = 1 but z �= 1, the sequence (zn) Cesáro-converges to 0.

We conclude this Appendix by a Tauberian result which is useful in S-integral
contexts.

Theorem A.7. Let a be a real number; we assume that Z(s) converges to a holo-
morphic function for Re(s) > a. Let us furthermore assume that it has a meromor-
phic continuation of the following form: there exists a positive integer b ≥ 1 and
a finite family (qj , bj)j∈J where qj is a real number such that qj > 1 and bj is an
integer satisfying 1 ≤ bj ≤ b − 1 such that, setting b0 = b −∑j∈J bj, the function
Z0 defined by

Z0(s) = Z(s)
(

s− a

s− a+ 1

)b0 ∏
j∈J

(1 − qs−a
j )bj
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extends to a holomorphic function with moderate growth in vertical strips, i.e. there
exists a positive real number κ such that for any τ ∈ R,

|Z(a− δ + iτ)| � (1 + |τ |)κ.

Assume also that for any two j, j′ ∈ J, log qj/ log qj′ is not a Liouville number.
Then, there exist a monic polynomial P, a real number Θ and a positive real

number ε such that, when B → ∞,

V (B) =

{
ΘBaP (logB) + O(Ba(logB)max(bj)) if a ≥ 0;

Z(0) + ΘBaP (logB) + O(Ba(logB)max(bj)) if a < 0.

Moreover, if a �= 0, then

deg(P ) = b− 1 and Θa(b− 1)! = lim
s→a

(s− a)bZ(s)

while

deg(P ) = b and Θb! = lim
s→a

(s− a)bZ(s)

if a = 0.

Proof. For any integer k ≥ 0, let us define

Vk(B) =
1
k!

∫
f(x)≤B

(
log

B

f(x)

)k

dµ(x) =
1
k!

∫
X

(
log+ B

f(x)

)k

dµ(x),

where log+(u) = max(0, log u) for any positive real number u.
As in Theorem A.1, we begin by proving an asymptotic expansion for Vk(B),

where k is an integer satisfying k > κ. As above, we have

Vk(B) =
1

2iπ

∫
σ+iR

BsZ(s)
ds
sk+1

,

for σ > a, and we will move the line of integration to the left of s = a, the novelty
being the presence of infinitely many poles on the line Re(s) = a, namely at any
complex number of the form αj,m = a + 2imπ/ log qj , for some j ∈ J and some
integer m ∈ Z.

Let Fk be the holomorphic function given by Fk(s) = BsZ(s)/sk+1. Let µ be
any common irrationality measure for the real numbers log qj/ log qj′ , namely a real
number such that for any two integers m and m′ such that m log qj +m′ log qj′ �= 0,
we have

|m log qj +m′ log qj′ | ≥ max(|m|, |m′|)−µ.

A straightforward computation based on Leibniz and Cauchy formulae shows
the existence of a positive real number c such that for any j ∈ J and any nonzero
m ∈ Z,

|Ress=αj,m Fk(s)| ≤ c(1 + |Imαj,m|)κ−k−1−µβBa(logB)max(bj),
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where β =
∑

j∈J bj . Moreover, as in the proof of Lemma A.2, there exists a poly-
nomial P of degree deg(P ) = b − 1 with leading coefficient Θ/ak+1(b − 1)! such
that

Ress=a Fk(s) = BaP (logB).

We choose k such that k > κ + µβ. Since b > max(bj), these upper bounds imply
that the sum of residues of Fk at all poles of real part a is dominated by the residue
at a = 0 and satisfies the following estimate∑

Re(s)=a

ResFk(s) = BaP (logB).

If a > 0, we set Q = 0; if a ≤ 0, there exist a polynomial Q of degree b + k and
leading coefficient Θ/(b+ k)! such that

Ress=0 Fk(s) = Q(logB).

We may then continue as in the proof of Lemma A.2 and conclude that

Vk(B) = BaP (logB) +Q(logB) + O(Ba(logB)β).

An application of Lemma A.3 similar to that of Theorem A.1 then implies
Theorem A.7.
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315–331.

10. M. Brion and S. Kumar, Frobenius Splitting Methods in Geometry and Representation
Theory, Progress in Mathematics, Vol. 231 (Birkhäuser, 2005).
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