World Scientific

Confluentes Mathematici, Vol. 3, No. 3 (2011) 361-385 \\’
www.worldscientific.com

(© World Scientific Publishing Company
DOI: 10.1142/S1793744211000400

A MODIFIED LEAST ACTION PRINCIPLE
ALLOWING MASS CONCENTRATIONS
FOR THE EARLY UNIVERSE
RECONSTRUCTION PROBLEM

YANN BRENIER

CNRS, FR 2800, Université de Nice Sophia,
Parc Valrose, FR06108 Nice, France
brenier@math.unice. fr

Received 20 December 2010

In Memory of Michelle Schatzman

We address the early universe reconstruction (EUR) problem (as considered by Frisch
and coauthors in [26]), and the related Zeldovich approximate model [46]. By substi-
tuting the fully nonlinear Monge-Ampeére equation for the linear Poisson equation to
model gravitation, we introduce a modified mathematical model (“Monge-Ampere gravi-
tation/MAG”), for which the Zeldovich approximation becomes exact. The MAG model
enjoys a least action principle in which we can input mass concentration effects in a
canonical way, based on the theory of gradient flows with convex potentials and some-
what related to the concept of self-dual Lagrangians developed by Ghoussoub [29]. A
fully discrete algorithm is introduced for the EUR problem in one space dimension.

0. Introduction

This paper addresses the early universe reconstruction (EUR) problem discussed
by Frisch and coauthors in [26, 18], following Peebles’ seminal paper [38]. In these
references, gravitation is not modeled according to the full Einstein equations, but
rather to a semi-Newtonian approximation, where classical Newtonian interactions
just take place in an Einstein—de Sitter space, corresponding to a big bang scenario.
In suitable coordinates, the model can be described as follows. Let us denote, for
each gravitating body, its label by a and its position at time ¢ by X (¢,a) € R?. The
density field p is defined by

plt,a) = [ 8z = X(t.0) 01)
and the gravitational potential ¢(t, z) satisfies

p=1+tAp. (0.2)
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The Newton law for each gravitating bodies is just
A (a(t)? 0, X (t,a)) = —tB()* (Vo) (t, X (¢, a)), (0.3)

where « and 3 are time-dependent scaling parameters provided by general relativity
(GR). Following [26, 18] (case of an Einstein—de Sitter universe), we set:

at) = %%, B(t) = t¥1/3)2. (0-4)

In the case of coefficients (0.4), we find
2t
gaftX(u a)+ X (t,a) = —(Vo)(t, X(t,a)). (0.5)

Notice that, in this model, which we call SNS (as semi-Newtonian system), friction
dominates at early times. (In some sense, Newton modified by Einstein returns to
Aristoteles.) Remarkably enough, at ¢ = 0, the density field must be uniformly
equal to 1 (otherwise solutions get unbounded) and the velocity is enslaved by the
gravity potential term. Thus, we can write

t -1
p(0,2) =1, X(0,a)=qa, 00X (0,a)=—Vo(a), Apo= ltilrgl %

(0.6)

So, at time ¢ = 0, the gravitational matter behaves as a continuum, with a definite
(and potential) velocity field. Consistently with the SNS, such a continuum may
keep, at least for a while, a potential velocity field v = v(t, x) = VO(¢, ) such that

0 X (t,a) =v(t, X (t,a)),
for all labels a. Then, Newton’s law (0.3) can be expressed in terms of 6 and ¢ as:

2| VO

8,(a20) + a Ft 1R =0, 9X(ta)=(VO)(L X(ta)). (0.7)

There is no room for a discrete repartition of gravitational matter at this early stage
and only the time evolution is able to progressively produce discrete structures such
as isolated particles (or, more generally, concentrated matter on sheets or filaments),
as the density field p becomes singular with respect to the Lebesgue measure. As a
matter of fact, the SNS (0.1), (0.2), (0.7) may (and usually does) produce collisions
in finite time, as will be seen later on, which generate such concentrations. Another
remarkable feature of the SNS is that, at time ¢ = 0, the only possible initial
condition is the density fluctuation field pj, (or, equivalently, the initial gravitational
potential ¢g) defined by

= Apo(z). (0.8)

This fluctuation field is of paramount importance in the study of the very early
universe [30], which is of great interest in high energy physics and quantum gravity
theory. Since the evolution in time of the model depends only on pf, it is plausible
that one could recover this field from the simple observation of a comparable scalar
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field at our present time, say ¢ = T'. A natural candidate is obviously the present
density field pr = p(t = T,-). This is precisely the early universe reconstruction
(EUR) problem. To solve the EUR, a remarkable fact can be used. The SNS enjoys
a least action principle, with a strictly convex action! (This is a very exceptional
situation, in physics and mechanics, where action principles generally correspond
to saddle points of functionals of indefinite type [22].) More precisely:

Proposition 0.1. Any smooth solution (p,v = V0,¢) of the SNS (0.1), (0.2),
(0.7), on some time interval 0 < to < t < t1, is characterized by the following least
action principle: as p is fized at time t = tg and t = t1, (p, pv) is the unique mini-
mizer (with respect to compactly supported perturbations) of the strictly CONVEX
action

ty
|t [ta@Pott.lott. o + 567 Ve(t.o)f . (0.9)
to
under the linear constraimts
Op+V-(pw)=0, tAp=p—1. (0.10)

This result extends to the limit case ty = 0, t; = T, with p given at time
T and p(t = 0,-) = 1. Thus, the reconstruction of the early universe looks easy:
knowing pr we just have to minimize a strictly convex action and we recover the
whole solution of the SNS for ¢ € [0,7]! (Mathematically speaking, this problem
has been addressed by Loeper in [33].) Unfortunately, this reasoning does not take
into account that smooth solutions to the SNS may break down in finite time, due
to the concentration of the density field which may become singular with respect
to the Lebesgue measure. The goal of this paper is to investigate how the action
can be modified so that its minimizers are not necessarily concentration-free. A
similar problem, in the framework of adhesion-fragmentation processes, has been
recently solved by Wolansky [45]. (See also the pioneering work of Shnirelman
[41] for sticky particles and adhesion dynamics.) Our approach is different and
more reminiscent of the recent theory of self-dual Lagrangians by Ghoussoub [29].
Unfortunately, our method does not apply to the desired SNS, but rather to the
modified system obtained by substituting the fully nonlinear Monge-Ampere equa-
tion p = det(I + tD2¢p), for the Poisson equation p = 1 + tAyp. We call this new
model “Monge-Ampere gravitation” (MAG). There is no difference between SNS
and MAG for solutions depending only on one spatial coordinate (i.e. with sheet
structure) and they are formally asymptotically close for ¢ — 0. Of course, changing
the model is not a satisfactory approach, without further justification. Our main
argument is the following remarkable property of the MAG system: it admits as
exact solutions some approximate solutions to the SNS, suggested by Zeldovich [46]
(and (1.11) below). As a secondary justification, let us recall that the SNS is, after
all, itself an approximation of the full Einstein equations and it might be, from
this viewpoint, equally good to use the Monge—-Ampere equation and the Poisson
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equation. (A similar situation occurs in fluid mechanics when comparing the quasi-
geostrophic and the semi-geostrophic approximations of the Euler equations for
ocean and atmosphere dynamics, as discussed in [23]. See also [19].) However, there
will be no attempt in this paper to justify this last statement.

The structure of the paper is as follows: In Sec. 1, we review Zeldovich’ approx-
imation to the SNS. Then, in Sec. 2, we introduce the MAG action and the
corresponding MAG equations.

In Sec. 3, we observe that the potential part of the MAG action has the very spe-
cial property to be a squared distance function. This allows a rewriting of the action
as an exact square and we find as special minimizers all the solutions of the gradi-
ent flow equation associated to the potential, with, among them, all the Zeldovich
solutions. (These special solutions play more or less the same role as “instantons”
in Yang-Mills theory [29].) It turns out that this gradient flow belongs to a very
well-studied class of evolution equations with “maximal monotone operators” [20].
This suggests a somewhat canonical modification of the action.

In Sec. 4, we introduce a fully discrete algorithm for the numerical minimization
of the MAG action.

In Sec. 5, we introduce a numerical scheme for the initial value problem and,
finally, in Sec. 6, we provide numerical results in the very special case of one space
variable.

1. Zeldovich Approximations to the SNS

An amazingly simple approximate formula was proposed for solutions of the SNS
(0.1), (0.2), (0.7) by Zeldovich [46]:

X(t,a) =a—tVyo(a), (1.11)
with

p(0,2) =1, Ao = ) = lim 2D =L
t10 t
This formula turns out to be exact for small time and initial conditions depending
only on one space coordinate (this will be seen below). The Zeldovich approximate
formula predicts mass concentrations in finite time. Indeed, denoting by A the
largest eigenvalue of the Hessian matrix D?@q(a), for all a, we see that, whenever
A > 0, the map a — X(t,a) is no longer invertible at + = A~!. Beyond the
concentration time, there are many possibilities of extending the formula and this
is still a controversial issue from the physical viewpoint. It depends very much on
whether or not we want to prevent interpenetration of particles. If we do so, we
are naturally led to the model of adhesion dynamics, where particles merge after
collisions, which is the most possible dissipative behavior beyond concentrations.
(See [40, 43, 8, 5, 25, 42, 17, 39].) This issue can simply be addressed in terms of
nonlinear hyperbolic PDEs [24]. Indeed, given a Zeldovich solution X defined by
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(1.11), let us introduce the field u(t, z) implicitly defined by:
a—X(ta)
t

as long as a — X(t, a) stays smooth and invertible. Then, we see that u solves the
multidimensional “invisicid Burgers” equation

u(t, X (t,a)) = = Vo (a), (1.12)

Ou+ (u-V)u=0. (1.13)

In one space dimension, if we want a global solution for all times, the monotonicity
condition 0, X (t,a) > 0 exactly corresponds to “Oleinik’s entropy condition” d,u <
1/t, which guarantees both global existence and uniqueness for solutions of the
inviscid Burgers equation (1.13), written in “conservation form”

2
atu+am<%>:o. (1.14)

2. Monge—Ampeére Gravitation
2.1. An abstract framework for Monge—Ampére gravitation

Let H be a (separable) Hilbert space H equipped with its norm denoted || - || and
the corresponding inner product ((-,-)). We first consider the general dynamical
system

EDS

a2
where ¢ — X () is valued in H, Vg denotes the gradient operator in H, and ® is
a given “potential” defined on H. (Observe that we do not follow the usual sign
convention for the potential, for notational convenience.) As is well known, such a
system admits a least action principle, at least at a formal level. Indeed, for a curve
t — X (t) valued in the Hilbert space H, we may define its action between times ¢
and t1, t1 > to by:

1 |ldX
- [ 48
walX1= | 3|

Then, the dynamical equation (2.15) can be seen as the formal optimality equation
obtained by minimizing the action (2.16) as the endpoints X (tp) and X (¢1) are
fixed.
Next, we crucially assume the potential to be of the form:
X —s?.

D[X] = inf{f, s € S}, (2.17)

= (Vg ®)[X], (2.15)

2 + BLX(t))dt. (2.16)

where S is a given bounded subset of H. Then, when it makes sense, X —Vy®[X] is
just the closest point 7[X] to X in the set S. (Clearly this definition is ambiguous
whenever X has several distinct closest points, which may happen unless S is a
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convex set. In some cases, X may have no closest point in S!) As a consequence,
(2.15) formally means:

d>X
dt?
where 7[X] is the closest point to X on S. With this formulation, we can guess a
large class of explicit solutions. Indeed, let us assume that X (0) = X has a unique

closest point w[Xy] = mp on S. Then the linear (but not convex) combination of X
and 7y given by:

=X —7[X], (2.18)

X(t) =7T0—|-€t(X0—7T0) (219)

solves (2.18) as long as 7y stays the unique projection of X (¢). Intuitively, X (¢) gets
repelled from its initial position in the opposite direction of its closest point on S,
keeping for a while 7 as its closest point on S until a new point in S gets even closer.
Whenever S is a convex set, this repulsion mechanism provides an obvious global
solution. Indeed, all points contained in the infinite segment {mo+r(Xo—mo),r > 0}
admits 7y as their unique closest point on S. In the case of a non-convex set S,
this is not true in general and formula (2.19) is able to provide no more than a
local solution. The situation is very clear in the elementary case when S is the unit
sphere in H. Then, 0 is the unique point where ¢ is not differentiable. We get as
special solution

X(t) =ry (14 (ro — 1)et) Xo,

where Xy # 0 and 9 = || Xo||. We see that, if 7y < 1, then the solution reaches 0
at time T = —log(1 — 1) and its continuation beyond T gets ambiguous.

Miscellaneous mathematical remarks. (1) The potential ® given by (2.17) is

a smooth perturbation of a Lipschitz concave function; indeed:

X2
2

where II is the Lipschitz convex functional defined by:

D[X] I[X], (2.20)

nXj = sup{((X,s)) - @; s € S}. (2.21)

A classical result of convex analysis [4] asserts that, for every Lipschitz convex
function defined on a Hilbert space, the set H where the function is differentiable
is always “fat” in the topological sense of Baire: namely H is dense and contains a
countable intersection of dense open subsets of H [4]. In the particular case of II,
the set of differentiability H is contained in the set of all points X in H for which
there is a unique closest point s = 7[X] on S. Thus, the potential ® defined by
(2.17) is everywhere differentiable on H and its gradient in H is given by:

Vp®[X]=X —7[X], VXeH. (2.22)
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(2) In the case when H is the finite-dimensional Hilbert space R™, for such a poten-
tial (namely a smooth perturbation of a concave Lipschitz function), the dynamical
system (2.15) has a unique global solution for Lebesgue almost every initial condi-
tion (X (0), X’(0)) € R?" and is, therefore, well-posed in the sense of Bouchut and
Ambrosio [9, 1]. To the best of our knowledge, there is no similar theory in infinite
dimension and the well-posedness of (2.15) is then a challenging open. (A somewhat
related attempt is the theory developed by Ambrosio and Gangbo for some infinite
dimensional Hamiltonian systems [2]. See also [19, 27, 28].)

2.2. Monge—Ampére gravitation

Definition. Since the dimension 3 does not matter in the definition of the MAG
model, we consider a smooth bounded closed domain D C R% We assume D to
be of unit Lebesgue measure. The MAG model is defined by choosing for H the
Hilbert space of all Lebesgue square-integrable maps from D to R¢,

H = L*(D,R%), (2.23)

and for S the subset of all Lebesgue measure-preserving maps s of D:

S :{s €H, /Df(s(a))da = /Df(a)da, Vfe C(Rd)}. (2.24)

In addition, with respect to the abstract framework, we input coefficients «, 8 given
by (0.4) and substitute

2

"t + 17262 () DX (t)]dt (2.25)

dX
aQtH—
o 2 *) dt

for (2.16) and get as optimality equations:
d dx
t2ﬂ*2(t)£ (&(t)E) = (Vg®)[X] = X — 7[X]. (2.26)

Using tools of optimal transport theory (see the Appendix), the right-hand side of
this equation can be more concretely written

X(t,a) — w[X(t,)](a) = =tV (t, X (t,a)), (2.27)
where ¢ = ¢(t, z) solves a Monge—Ampere equation
det(I +tD2p(t,z)) = p(t, ), (2.28)

where p is the density field

p(t,z) = /D d(z — X(t,a))da. (2.29)
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Thus, we have obtained the MAG system with

w205 (0% ) = ~(Tat X0, (2.30)

3. A Modified Action Taking into Account Concentrations
3.1. Modified action in the abstract framework

In this section, we go back to the abstract framework of a potential ® defined as
the squared distance to a bounded subset S of a general Hilbert space H, according
to (2.18), (2.20), (2.21). Since potential ® is a squared distance to some subset S
inside H, it solves, at least formally, the stationary Hamilton—Jacobi equation:

Ve

d
2 )

(3.31)

where Vg denotes the gradient operator in H. This suggests to rewrite, at least
formally, the action (2.25) as

* L IVaX ]

1
:/:%H%_VH@[X@)] 2+<<Cii—)t(,VH<I’[X(t)}>)dt
:(I)[X(tl)}—@[X(to)]—i-/t:l%HCZ—);—VHQ[X(L‘)] “a (332)

Under this “self-dual” form (see [29] for a systematic study of “self-dual
Lagrangians”), it is obvious that any solution of

O = (Vh®)X] = X — (VuT[X] (33
is always a minimizer of the action as X (o) and X (¢;) are fixed (just like instantons
in Euclidean Yang-Mills theory, cf. [29]).

As already mentioned, in spite of the rather nice structure (2.20) of ®, as a
quadratic perturbation of a convex Lipschitz function, the corresponding second-
order equation (2.18) is not so well understood. In sharp contrast, the first-order
equation (3.33) is a standard “gradient flow” equation (GF), that can be solved by
classical “maximal monotone operator” theory [20].

In the framework of maximal monotone operator theory, Eq. (3.33) is usually
written as a sub-differential inclusion:

dX
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which is well-posed in H since II is Lipschitz and convex. Here, we use standard
notations of convex analysis, for which 0 denotes the sub-differential of a convex
function [20]:

OL[X] = {Z € H; N[Y] > U[X] + (Z,Y — X)), VY € H}. (3.35)

A remarkable property [20] of each solution X (¢) € H is to be not only a Lipschitz
continuous function of ¢ but also right-differentiable at each ¢ with
dX(t+0
—% +X(t) =d[X(1)], Vt, (3.36)
where d°TI[X], following [3], denotes the element of AII[X] with minimal norm
(which is uniquely defined):

1" TI[X] ]| = min{]s]; s € OTI[X]}. (3.37)

Finally, notice that X (¢) is a locally Lipschitz function of ¢ with values in the
separable Hilbert space H, X (t) is therefore almost everywhere differentiable in ¢
by Rademacher theorem. Since X (¢) is right-differentiable everywhere, we conclude
that:

— T X(1) = dH[X (1), (3.38)

holds true both in the almost everywhere sense and in the sense of distributions.
Our main point is now to introduce a modified action. There are two possible
ways to do it. First, we may introduce the modified potential ®:

B[X] = 51X — dMIX]|? (3.39)

and the corresponding modified action

. b lax |* -
A 1X:/ —H— + (X (H)]dt
(t0,t2][X] 2@ (X ()]
b ldx|]? 1
= — = —|X — d°TI[ X)) dt. A
[ 5|5 + 31 - (3.40)

Alternately, sticking more closely to the self-dual formulation, we may directly
modify the action by setting

2

. "1 ldX
to

It is not clear to us that these modified actions coincide (up to boundary terms).
Nevertheless, we will take the second option, mostly for numerical purposes, because
it leads to simpler algorithms.
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3.2. Modified action for the MAG model

We now consider the MAG model. This means, with respect to the abstract frame-
work, that H and S are now defined by (2.23), (2.24) and (2.30) substitutes
for (2.15).

In order to take into account coefficients («, 3) (given by (0.4)), we first rewrite
the action as:

+t728(1)%| Ve ®[X (1)]|%dt. (3.42)

t1
A= a(t)?

to

dX

dt

As in the homogeneous case a = 3 = 1, we keep in mind that
1
SV RBLX @] = @[X (1)

and look at the cross-term:

J = 1 a(t)t7p(t) ((%,Vmﬁ[X(t)])) dt = / 1 a(t)t’lﬂ(t)%(é[)((t)])dt.

to to

By integration by part, we get

J = a(t)ty Bt)@[X (t1)] + alto)ty ' B(te) R[X (to)]

- —/chJ[X(t)}di(a(t)flﬂ(t))dt

to t

1 d

=5 | IVt O o r 50

A

_ _§/t01t25(t>2||vH<I>[X(t)}27

provided we assume
d

(@OIB() = M), (3.43)

for some constant )\, which is consistent with data (0.4) if we choose A = 1/v/6.
From this calculation of the cross-term J, we deduce that the action A defined by
(3.42) can be written:

ty
A:BT+/

to

2
dt,

o) — ™ BV R PIX (1)

where BT is a boundary term depending only on X (1) and X (to), provided u? +
pA = 1. For data (0.4), we get A = 1/v/6 and p = /2/3. Therefore, all solutions of
the gradient-flow equation

oz(t)% =t BV P[X (1)) (3.44)
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automatically are minimizers of the action (3.42). For data (0.4), this gradient-flow
equation reduces to:

tcil—); = Vyd[X (1) = X(t) — VEII[X (£)]. (3.45)

The gradient-flow equation should be understood in the more precise sense:

L4X(t+0)

TR X (t) — d°TI[X (t)], (3.46)

which takes concentration into account, globally in time. In some sense, formulation
(3.46) not only allows concentrations but guarantees the largest possible dissipation
of kinetic energy during the concentration process (which is of course questionable
from the physical viewpoint.) Accordingly, we suggest, for the MAG model, the
following modified action:

t1
A:/ 12
to

3.3. Zeldovich solutions

2

L +dTI[X]|| dt. (3.47)

dt

Special solutions of (3.45) can be obtained, thanks to the concept of “rearrange-
ments with convex potential” as follows. By definition, the MAG model relies on the
set S of all Lebesgue measure-preserving maps (2.24). This set contains the identity
map Id as an obvious element. The set K C H of all points X which admits Id as
a closest point on S plays a crucial role. It can be characterized (cf. Appendix on
optimal transportation theory), as the convex cone of all maps X € H with a convex
potential, which means that there is a convex function 7 defined on R and valued
in ]—o00, +00] which is almost everywhere differentiable on D with Vi (a) = X(a),
a.e. on D. It turns out that any map X € H has a unique rearrangement X* in K,
which means

/Dd(x—Xﬁ(a))da:/Dé(x—X(a))da

(cf. the Appendix).

Therefore, special solutions of (3.45) can be obtained, by looking for solutions
X (t) valued in the convex cone K of all maps with convex potential. Indeed, for
such solutions, we have:

VX (@) =X{) - Vyll[X(t)] =X(t) —7[X(@)] =X(t)—Id
and (3.45) reduces to the linear ODE

dx
t—r =X —1d (3.48)
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as long as X (¢) belongs to K, i.e. X(t,a) = Vi(t,a), with ¥ (¢, a) convex in a. This
leads to the explicit formula:

X(t,a) = Vi(t,a) =a+ (w(to,) ):a—l—%(X(tma)—a), (3.49)

as long as 9 stays convex in a. This exactly coincides with Zeldovich formula (1.11)
discussed in the Introduction. Remarkably enough, for Monge—Ampere gravitation,
Zeldovich approximation (1.11) is just exact!

3.4. Modified action in one space dimension

Let us focus on the one space dimension case when: D = [-1/2,1/2]. Then, the
modified potential ® can be explicitly computed in the case of a piecewise smooth
map Y valued in K. Indeed, in one space dimension, maps in K, with convex
potential are just increasing maps. So, there is a finite number of plateaux [a;, b;]
on which Y is constant with values Y; and outside of which Y is a piecewise smooth
strictly increasing function.

Notice that the corresponding image-measure p(dz) defined by

p(da:)z/D(s(x—Ya da

has a singular part ps given by:

ps(da) = (b; — a;)d(z — ;).
J
Then d°TI[Y] (the element of the sub-differential AI1[Y] with minimal L? norm)
coincides with the identity map outside of the plateaux and takes value (a; +b;)/2
inside [a;, b;].
After elementary calculations, we find

1Y — dTY)P = [V - 2((Y,1d)) + [P — Z/ ( “J*b) da

1
= |y —1d||* - T > (b —a;)’.
J

Here we very clearly see the discrepancy between the original potential & and the
modified potential ®:

~ 1

Y] = @[Y] - ﬂzj:(bj —a;)®. (3.50)
Remark 1. Specialists of nonlinear hyperbolic conservation laws will recognize
in the second term of this expression the very expression of the so-called “entropy

production” term for the inviscid Burgers equation (1.14), written in material
coordinates [7, 24].
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3.5. FEulerian version of the gradient flow equation

The gradient flow equation (3.44) has a Eulerian version. Indeed, the corresponding
measures (p, pv), defined by

ot ) = /D Sz — X(t,a))da, pu(t,z) = /D 0. X (1, a)0(x — X (1 a))da, (3.51)

are (formal) solutions of the following system of PDE:
Op—V - (pVp) =0, p=det(I+tD>p). (3.52)

This model can be seen as a fully nonlinear counterpart of various models popular
in biology (chemotaxis) or astronomy, involving the Poisson equation — or other
linear equations involving a singular Green function — rather than the Monge—
Ampere equation. A common feature of all these models is their ability at describing
concentration phenomena [32, 31, 36, 21].

4. A Discrete Action for the MAG Model
4.1. A time-discrete scheme for the gradient flow equation

In view of numerical calculations, our first step is to get a time-discrete version of

the modified action. Instead of directly getting a discrete version of (3.47), it seems

wiser to us to start from a time-discrete version of the gradient flow equation (3.45).
A natural candidate is:

where X, is an approximation of X (¢) at the nth time-step T;,, for n = 0,..., N,
To = to, Ty = t1, with 0,, = M 1] 0. (In the special case to = 0, it is natural
to set Xo = Id and to prov1de "X, as the initial condition.) In formula (4.53),
is a small perturbation added to the discrete solution so that, for every n, X, is a
point of differentiability of II. Thus, V zII[X,] is well-defined and is also the closest
point 7[X,,] to X,, in S. Indeed, as a smooth perturbation of a Lipschitz concave
function on H, II is differentiable on a “fat” dense subset H of H (i.e. containing
a countable intersection of dense open sets). Thus, we may choose a perturbation
term 17,,, arbitrarily small, so that X, falls in the “good” set H where VyII is
well-defined. By doing so, we do not generate a big error. Indeed, we keep control
on the cumulated error, thanks to the following stability estimate for two distinct
solutions X,,, X,, of (4.53) (where we neglect the perturbation terms 7, 7, for
notational simplicity),

1 X1 = Xnga |2 < (14 60)%[1 X0 — Xal|? + cob, (4.54)
where ¢ is the squared diameter of S. [Indeed, we get from (4.53)

||Xn+1 - Xn+1H2
=(1460,) X0 — Xoll? = 2(1 + 0,)0, (X, — X, VEII[X,] — VEII[X,]))

+ 0517 [Xn] = 7 X1
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and observe that the second term on the right-hand side is less than zero since IT
is convex, and the third one is dominated by cy62.]

As a matter of fact, this stability estimate is also essentially sufficient to prove
the convergence of the scheme as 6,, | 0 to the continuous model (3.46), for the
uniform convergence in time with respect to the strong topology of H. (See [14, 15]
for examples of similar results for various nonlinear hyperbolic conservation laws.)
Notice that concentration phenomena, which are present at the continuous level,
are correctly taken into account by the time-discrete scheme, in spite of the fact
that the discrete scheme never involves the computation of d°II, which is a big
advantage in practice!

4.2. A time-discrete action for the MAG model

From the time-discrete scheme (4.53) for the gradient-flow equation, we define a
time discrete version of modified action (3.47) just by setting:

N-1
Z ol Xn1 — Xn — (Xn — W[Xn])onHQa (4.55)
n=0

/
with r,, = L. Nevertheless, in view of the EUR problem, it is more reasonable

Tn+17Tn
to minimize the time-discrete action (4.55) when the data are not Xy and Xy but

rather the corresponding probability measures py and pxn defined by:

po(dx) = /Dé(x — Xo(a))da, pn(dz)= /D(S(x — Xn(a))da.

So there is a big loss of information (since the same probability measure can be
generated by a continuum of maps). This problem can be addressed in terms of
rearrangements with convex potentials. As a matter of fact, fixing py and py is
equivalent to fixing the rearrangements with convex potentials Xg and X f\,, rather
than Xy and X themselves. It is very fortunate that, one can rewrite the discrete
scheme (4.53) as a self-consistent scheme for the rearrangement Y,, = X} with
convex potential. Indeed, let us assume, for simplicity, that, at each n, the solu-
tion of the scheme X,, has a polar factorization X, =Y, o s, (cf. the Appendix),
where Y,, = X! € K is the unique rearrangement with convex potential of X,
and s, = w[X,] € S is the closest point in S to X,. Then, we can rewrite
(4.53) as:

Yoi1 0841 = (Y, + (Y, —1d)0,,) o sp.

But, this implies that Y,,41 is the unique rearrangement of Y, + (Y,, —Id)0,, with a
convex potential. In other words, we have a well-defined self-consistent scheme for
Y, € K, namely:

Yn+1 = (Yn + (Yn - Id)en)ﬁ (456)
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Accordingly, the minimization of the time-discrete MAG action can be seen, in
“polar coordinates” (Y,,,s,) € K x S, as the minimization of

N-1
Z ol Yng1 0 spg1 — (Yo + (Yo — Id)6y) o SnHza (4.57)
n=0
3/2
with r, = T A8 Yy and Yy are fixed in K.

Following “optimal transport” theory, we may introduce on H the quadratic
Monge-Kantorovich (MK2) (or “Wasserstein”) distance,
dyr2(X, X) =inf{||Xos— X o3|, s,5€ 5}, (4.58)

which is nothing but the quotient distance in H with respect to the action of the
semi-group S. Then the minimization of the time-discrete MAG action is just the
minimization in Y,, € K of

N-1
> v darre (Yogn, Yo + (Yo — 1d)0,)%, (4.59)
n=0

with r,, = %7 as Yy and Yy are fixed in K.

(Equivalently, we could work on the so-called “Wasserstein” or “MK2” space
as, for instance, in [37, 3, 2].)

4.3. The fully discrete least action principle

Let us now introduce a fully discrete scheme, for which not only the time vari-
able but also the space variable is discrete. The domain is divided into L disjoints
subdomains D; of Lebesgue measure 1/L, for i = 1,..., L, with barycenter a; and
vanishing diameter as L — oo. In our abstract framework, it is enough to sub-
stitute for the spatial domain D, the discrete set {a;,i = 1,...,L}. Accordingly,
H can be seen as the Euclidean space (R?)” of all finite sequences of L points in
R {X = (X; € R%);—1 1} with the natural Euclidean norm || - || induced by R9.
Meanwhile the set S can be viewed as the set of all permutations s of the L first
integers and K is the corresponding cone of all sequences Y; such that

D Vi (ai —ag,) >0,

for all permutations s. In one space dimension, K is just the convex cone of all
increasing sequences of L real numbers.

The time-discrete MAG action (4.57) makes sense at the fully discrete level
without modification. In this discrete setting, S is a group (which is untrue at the
continuous level) and each s can be inverted in S. Thanks to the group property of

S and the invariance of || - || with respect to S, the minimization problem can be
further reduced to the minimization of

N-1

S rallYair — (Yo + (Yo —1d)6,) 0 o1 1%, (4.60)

n=0
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inY, € K, o0, €5, as Yy and Yy are fixed in K (just by setting 0,41 =
S$n 08,41 €9).

To solve this minimization problem, a crude strategy is to use Gauss—Seidel
type iterations. We denote by (Y,*, %) the approximation of (Y,,,0,) at iteration
k and time step n. Let us fix k and n. To get the updated values o+ and Y,F+1,
we inductively suppose that we already know (Y707 ) for all m if j < k and for
all m < n if j = k + 1. Then, we perform the following two steps:

(i) First step: we get s = o%*1 by solving the combinatorial optimization problem

inf [V, — (V3 + (V) = 1d)fn) o s]. (4.61)

This step is particularly simple in one space dimension and just amounts to
sorting in increasing order the finite sequence (Y,F + (Y,F —1d)6,,);,i = 1,..., L.
It is much more challenging in higher dimensions. The best known optimization
methods need O(L?) elementary operations, which is not satisfactory (see a
related discussion in [18]).

(ii) Second step: we get Y = Y,**! by minimizing in Y € K:

Tn||Yf+1 - (Y + (Y - Id)en) © 0’2+1H2 =+ Tn—lHY
- (ij_ll(l +0p-1) = On—11d) o UfL+1H2?
where the first term can also be written
rall Yo (on) ™ = (Y + (Y = 1d)6,)1%,
using the inverse permutation (0%, ;)~! and the invariance of || - || with respect

to permutations. After reorganizing squares, we see that Y is just the least-
square projection H — K of:

Tn(L+0,)W 4+ r, 12
(14 6,)2 + 11

W= Yf+1 © (Uykzﬂ)_l +0,1d, Z= (erjll + (Yfiﬁl —1d)fp—1) o Uﬁ“-

V:

So, we have obtained an effective algorithm. It is particularly simple in one space
dimension (and much more challenging in higher dimensions!). Let us observe that,
in one space dimension, computing the least-square projection Y = Px[V] is differ-
ent from sorting the sequence V in increasing order. However, still in one space
dimension, this projection can be approximately computed after a sequence of
sorting steps, according to the asymptotic formula (which is a by-product of the
“transport-collapse method” [11]):

#
1
PK[V]:A}@OOVA%, V%:(V%ﬁMV), VM =0, m=1,...,M.

(4.62)

In practice, we already get a good accuracy for moderate values of M (say M = 10).
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5. Solution of the Initial Value Problem

In order to validate the reconstruction scheme, we would like to solve the initial
value problem (IVP) consistently with the modified least action problem, and get a
discrete scheme for the IVP. Ideally, such a scheme should be derived directly from
the modified discrete least action principle. Unfortunately, we have not been able
to do so, and we are just going to suggest a simple scheme for the IVP which seems,
in practice, consistent with the modified action, at least in one space dimension.

5.1. A time-discrete scheme for the IVP

Our suggestion to get a time-discrete solution of the IVP is to alternate the solution
of the linear ODE

d, _ 272
@ @OV) =767 —1d),

Y

(5.63)

with coefficients (o, ) given by (0.4), on each time interval [T},,7T,+1] and the
rearrangement of the result at time step T}, 11:

Yo =Y(Tu)h, Vi = V(Topa).
Using a plain explicit discretization of (5.63), we get:
Yisr = (Yo + (Tog1 — To) Vo),
(Typi1) V1 = &(T) Vi + T2 8%(T0) (Tp1 — Tn) (Vs — 1d).

The convergence analysis of this time-discrete scheme can be done in two different
ways.

(5.64)

5.2. The multidimensional case

In the multidimensional case, our strategy for the convergence analysis of scheme
(5.64) is inspired by our recent work [16], where a similar scheme is analyzed. We
essentially use the fact that all maps with convex potential are of locally bounded
variations, which provides enough compactness with respect to space variables.
Time compactness is, as usual, directly obtained from the evolution scheme. We
notice that V' can be easily integrated out from Y by ODE (5.63).

Theorem 5.1. For every fized initial condition (Yy,Vp) € K x H, the approzimate
solution (Y,,) admits at least a limit t — Y (t) € K wvalued in C°([to, +oo], H) as
the time step goes to zero. This limit satisfies:

V(t,a)a®(t) = Vo(a)a?(to) +/ 7 23%(1)(Y (1,a) — a)dr,
fo (5.65)

d
& | syt = [ (V) - Vit o,

for all C function f on R (with |V f| growing at most linearly at infinity).
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Notice that, since Y is valued in K, the knowledge of “observables”
Jp f(Y(t,a))da for all test-functions f is enough to determine Y'(t) which makes
formulation (5.65) self-consistent. (However, this does not guarantee uniqueness of
solutions to the IVP.) So, we have a proposal to solve the IVP, and a corresponding
discrete scheme, but we are not able to prove that formulation (5.65) is actually
consistent with our modified least action principle.

5.3. The one-dimensional case

In the special case of one space variable, we get a much more precise information,
following the analysis developed in [14] for similar problems (see also [15]):

Theorem 5.2. For every fived initial condition (Yo, Vo) € K x H, as the time
step goes to zero, the approxzimate solution (Y, ) converges to the unique solution
t — Y(t) € K, valued in C°([to,+oo, H), of the mized integral-sub-differential
system:

—9,Y +V €90[Y],

. (5.66)
V(t,a)a?(t) = Vo(a)a?(to) —|—/ T726%(1)(Y (1, a) — a)dr,

to
where OY] = 0 whenever Y =Y (t,a) is monotonically increasing in a and O[Y] =
+00 otherwise.

System (5.66) is well-posed in the L? sense and can be shown (as in [14]) to be the
limit (in the sense of maximal monotone operator theory) as € | 0 of the perturbed
System

—0Y +V = —e0a(log(0.Y)),  O(a®(t)V) =t2F(t)(Y — 1d), (5.67)
which, in Eulerian variables (2.29), reduces to:
d¢p + 0z (pv) = 0,
0 (®(t)pv) + 0 (a?(t)pv?) = —t =1 B%(t) pOuip + €Dprv, (5.68)
p=1+1t0;p,
and is just a pressure-less Navier—Stokes—Poisson system with vanishing viscosity
(as in [10, 42]). As mentioned above, an interesting open question is to show that this

approach (vanishing viscosity (5.68), subdifferential formulation (5.66) or scheme
(5.64)) is actually consistent with the modified least action principle!

6. Numerical Simulations in One Space Dimension

Our data are

to=1/2, t1=5/2, N=60, L=51, a=—-1+(2i—1)/L, i=1,...,L,
Yo = Xoﬁ, (Xo0)i = a;w;,

where w; is a random number uniformly distributed between 1 and 2. Thus, Yj
looks like a devil’s staircase.
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Concerning the final data Yy € K, either:
(Case 1) the associate probability py is the barycenter of four Dirac’s measures:

0z +0.7)4+40(x—0.2)+30(x—0.9)+d(x—1.1)
9

pn(dx) =

or (Case 2) Yy is the solution at time ¢; of the initial value problem generated by
the discrete gradient flow equation starting from Yy = XOﬁ at time .

In our plots, we draw the trajectories of the 51 particles during the 60 time steps
of the time interval (the vertical axis corresponding to time and the horizontal one
to space).

Case 1. We first plot the reconstructed solution (Fig. 1). Then, with the recon-
structed initial velocity, we solve the initial value problem for the MAG equations
with scheme (5.64) and plot the result (Fig. 2). We observe a nearly perfect match
between Figs. 1 and 2.

Case 2. We first solve the IVP for the gradient flow equation with scheme (5.64)
(Fig. 3). Then, we reconstruct the solution from the initial and final data of the
gradient flow solution (Fig. 4). (Here we observe some limited discrepancy.) Finally,
with the reconstructed initial velocity we solve the initial value problem for the
MAG equations (Fig. 5), again with scheme (5.64) and get a nearly perfect match.

2.5 T

1.5

0.5 '
-1.5 -1

1.5

Fig. 1. Case 1/reconstruction.
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Case 1/initial value problem (IVP) after reconstruction.
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0.5 5
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Fig. 3.
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Case 2/gradient flow solution, IVP before reconstruction.
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Fig. 4. Case 2/gradient flow solution, reconstruction.
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Fig. 5.
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Case 2/gradient flow solution, IVP after reconstruction.
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7. Discussion

We have revisited the early universe reconstruction problem and suggested a mod-
ification of classical Newton gravitation by what we called Monge-Ampere gravi-
tation. The main drawback of our approach is the lack of physical justification for
such a modification. The main mathematical advantage is the obtention of a modi-
fied least action principle in which we can easily include mass concentration effects
in an almost canonical way, using ideas from gradient flow theory. In addition, the
well-known Zeldovich approximate solutions turn out to be exact solutions of the
modified model, which provides an indirect validation of the model as a reasonable
approximation for the early universe reconstruction (EUR) problem. According to
these ideas, an algorithm has been designed in the 1D case. Our plan for the future
includes: (i) analysis of the initial value problem, consistently with the modified least
action principle; (ii) design of an efficient multidimensional algorithm; (iii) study of
the relative accuracy of the Newton and Monge—Ampere gravitation models with
respect to general relativity.
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Appendix
A.1. Some useful results from optimal transport theory

The set S defined by (2.24) has a semigroup structure for the composition rule and
has the identity map Id as neutral element. It is, in some sense, in duality with its
“polar cone” K C H:

K={Y eH:;(Y,lJd—s)) >0, Vs S}. (A.69)

Let us recall a few basic results of optimal transport theory [12, 13, 44] concerning
S and K. First, the set K can be characterized as the closed convex cone of all
maps Y with a convex potential, which means that there is a convex function
defined on R? and valued in ]—o0, +00] which is almost everywhere differentiable
on D with Vi (z) =Y (x), a.e. on D.

Next, every map admits a unique rearrangement in K. More precisely:

Theorem A.1. ([12]) Every X € H admits a unique “rearrangement” X* in K,
which means:

[ sxt@yda= [ x(@nde, vieC®Y, suplf@l+a?) < +oc.
D D T

In addition, X — X* is continuous in H (for the strong topology).
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Moreover, there is a “polar factorization” of the Hilbert space H by S and K.
More precisely:

Theorem A.2. ([12]) Let X € H be a nondegenerate map, in the sense that the
measure p(dz) = [, 0(x— X (a))da has no singular part with respect to the Lebesgue
measure.

Then X admits a unique “polar factorization”

X=Yos, YeK, seb. (A.70)

In addition, the second factor s is characterized as the unique closest point w[X] to
X in S and can be written

m[X]=Vio X, (A.71)

where V1) is the unique map T :R? — D with convex Lipschitz potential such that
the Lebesgue measure restricted to D is the image of p by T':

F(T(a))p(de) = / f(a)da, V[ e CRY). (A72)
R4 D

Let us finally observe as in [12, 13] that (A.72) can be seen as a “weak formula-
tion” (not in the sense of distributions!) of the Monge-Ampere problem on R? with
range condition:

p=det(D2y), (Ve)(R?) = D. (A.73)
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