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This paper introduces an adaptive time splitting technique for the solution of stiff evo-
lutionary PDEs that guarantees an effective error control of the simulation, independent
of the fastest physical time scale for highly unsteady problems. The strategy considers
a second-order Strang method and another lower order embedded splitting scheme that
takes into account potential loss of order due to the stiffness featured by time-space
multi-scale phenomena. The scheme is then built upon a precise numerical analysis of
the method and a complementary numerical procedure, conceived to overcome classical
restrictions of adaptive time stepping schemes based on lower order embedded methods,
whenever asymptotic estimates fail to predict the dynamics of the problem. The perfor-
mance of the method in terms of control of integration errors is evaluated by numerical
simulations of stiff propagating waves coming from nonlinear chemical dynamics models
as well as highly multi-scale nanosecond repetitively pulsed gas discharges, which allow
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to illustrate the method capabilities to consistently describe a broad spectrum of time
scales and different physical scenarios for consecutive discharge/post-discharge phases.

Keywords: Time adaptive integration; error control; operator splitting; reaction-
diffusion; multi-scale reaction waves; multi-scale discharge.
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1. Introduction

Numerical simulations of multi-scale phenomena are commonly used for modeling
purposes in many applications such as combustion, plasma discharges, chemical
vapor deposition or air pollution modeling. In general, all these models raise seve-
ral difficulties created by the high number of unknowns, the wide range of temporal
scales due to large and detailed chemical kinetic mechanisms, as well as steep spatial
gradients associated with localized fronts of high chemical activity. In this context,
faced with the induced stiffness of these time-dependent problems, a high perform-
ing numerical strategy for multidimensional simulations considers a time operator
splitting with dedicated high order time integration methods for reaction and dif-
fusion problems, in order to exploit efficiently the special features of each problem.
Such a numerical strategy for time discretization has been presented in [9] and
extended in [8] with multiresolution techniques for adaptive space discretization.
The main idea is to use a second-order Strang scheme to solve independently reac-
tion and diffusion problems in three successive fractional steps, taking into account
that for multi-scale phenomena better performances are usually expected while
ending the splitting scheme by the part involving the fastest scales, as it has been
proven in [5]. Therefore, based on these theoretical results and on the construc-
tion of the splitting solver, this strategy provides an accurate resolution of such
stiff problems even for splitting time steps much larger than either the fastest time
scales involved in the source terms or the time step restrictions related to spatial
grid discretizations.

Up to our days, fixed splitting time step schemes have been largely used in the
literature [16, 24, 22], and the relevance of our numerical strategy [9, 8] has been
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evaluated in the framework of stiff reaction waves for which a constant splitting
time step is more than reasonable to precisely describe the global coupling of the
split phenomena. However, such a fixed time stepping strategy would surely lead
to major difficulties and limitations for problems describing highly nonstationary
models with very different dynamics such as flame ignition and propagation or
repetitively pulsed plasmas discharges [23], all the more in the framework of large
scale simulations. It is thus essential to be able to dynamically adapt splitting
time steps for the simulation of such multi-scale problems with strongly evolving
dynamics.

In order to guarantee a precise description of the coupled multi-scale phe-
nomenon, this splitting time step adaptation strategy must rely on a local error
estimate, which can be obtained by considering a lower order embedded method.
This is a common practice for ODEs numerical solution [13], which yields very
efficient and eventually high order methods for which time steps can dynamically
adapt according to a given tolerance, to sufficiently small values in order to cope
with the fastest time scales of the problem. However, it is well known that for stiff
problems and larger accuracy tolerances, the order of the methods can degenerate,
yielding non-reliable error estimates and possibly, much larger global errors than
expected by the given tolerance. Such a scenario will all the more be valid in the
framework of the resolution of PDEs where fine grid and large gradients coupled
with stiff source terms lead to especially stiff problems. In particular, our numerical
strategy [9, 8] is built in such a way that the main source of error is the splitting
error, each building block relying on high order adaptive and dedicated numerical
methods; therefore, it is essential not only to construct a reliable splitting error
estimate, but also to guarantee an effective error control within the so claimed
accuracy tolerance.

In this paper, we present a novel strategy to control the local splitting error
with two different splitting schemes, the first one is a second-order Strang technique
whereas the second one considers a shifted Strang formula, built with a e-shift in
time of the classical Strang formula. This second method is embedded because the
first substep is common to both methods to reduce computational cost, and inherits
from the Strang scheme, stability properties and the same numerical behavior in the
context of stiff problems; nevertheless, it is only of order one due to the slightly lack
of symmetry. In the first part of the paper, we conduct a complete error estimate
of this new splitting method in order to characterize the local error estimate that
will be computed out of first and second order splitting resolutions. We define then
a domain of application of the adaptive method in which the local error estimates
guarantee an effective error control of the solution according to the given tolerance.
The key issue is related to the evaluation of a maximum splitting time step, called
the critical splitting time step, as a function of €, for which local error estimates
are valid. A numerical validation of the theoretical estimates is performed in the
framework of traveling reaction waves for a simple PDE, for which the threshold and
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critical time steps can also be theoretically estimated and compared with numerical
results.

However, in order to extend the numerical strategy to more realistic configu-
rations, for which theoretical evaluation of critical time steps is out of reach, we
develop a complementary and general numerical procedure based on numerical esti-
mates, that allows to establish the domain of application of the method by simul-
taneously choosing the appropriate € for a given tolerance. This procedure is tested
in the framework of nonlinear chemical dynamics of Belousov—Zhabotinsky (BZ)
reactions in a very stiff case in both time and space, yielding satisfactory results.
As a consequence, a final numerical strategy is conceived that considers adaptive
splitting time steps and that evaluates simultaneously critical time steps as well as
best-suited e, in order to guarantee error control for a given accuracy tolerance of
the simulation with splitting time steps as large as possible. The relevance of the
proposed strategy is first evaluated for the BZ reaction-diffusion equations, whereas
a more complex problem issued from the simulation of multi-pulsed gas discharges
involving several dynamics with very different typical time scales, constitutes the
second test-case. It is shown that for this second very stiff reaction-diffusion sys-
tem, splitting time steps can cover a range of three orders of magnitude and always
guarantee a proper respect of the prescribed tolerance.

The paper is organized as follows: Sec. 2 describes the adaptive time splitting
strategy; in Sec. 3, we perform the numerical analysis of the proposed method
and identify the limit of validity of the local error estimate which is at the heart
of the adapting procedure. Section 4 is devoted to the validation of the previous
theoretical estimates and to a theoretical/numerical study of the critical splitting
time steps in the context of a 1D reaction-diffusion problem featuring traveling
wave solutions. In Sec. 5, we present the final numerical strategy that includes an
additional numerical procedure to evaluate critical time steps and suitable . The
potential of the method is illustrated for the proposed two test-cases in Sec. 6. We
end in the last part with some concluding remarks.

2. Adaptive Time Splitting Method

Let us first set the general mathematical framework of this work. A class of multi-
scale phenomena can be modeled by general reaction-diffusion systems of type:

(2.1)

Oiu — Oy (D(u)oxu) = f(u), xR t>0,
u(0,x) = ug(x), x € R4, t=0,

where f:R”™ — R™ and u:R x R? — R™, with a tensor of order d x d x m as
diffusion matrix D(u).

In the following we will focus on the simplified case of linear diagonal diffusion,
for which the elements of the diffusion matrix are written as D; i, (1) = D 04,4,
for some positive indices i1, 9, i3, so that the diffusion operator reduces to the heat
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operator with some scalar diffusion coefficient D;, for component u;, of u. A scalar
one-dimensional model is considered in order to simplify the presentation, taking
into account that extension into higher dimensions of x or u is straightforward:

Ou—0%u=f(u), x€R, t>0,
A f(u) } 22)

u(0,x) = uo(x), reR, t=0,

where f and ug are smooth functions. We denote by T%uq the solution of (2.2).
Introducing standard decoupling of the diffusion and reaction parts of (2.2), we
denote by X%ug the solution of the diffusion equation:

Oyup — 8§uD =0, z€R, t>0, (2.3)

with initial data up(0,-) = ug(+) after some time ¢; and by Y'tug, the solution of
the reaction part where spatial coordinate x can be considered as a parameter:

owur = flur), xz€R, t>0, (2.4)

with UR(O, ) = UO()
The two Lie approximation formulae of the solution of system (2.2) are then
defined by

LiUO = XthUO, LEUO = YtXtUO, (25)
whereas the two Strang approximation formulae [25, 26] are given by
Stug = X2V X1 20, Stug = Y2 XYY 2. (2.6)

It is well known that Lie formulas (2.5) (respectively Strang formulas (2.6))
are an approximation of order 1 (respectively 2) of the exact solution of (2.2).
Higher order splitting schemes are also possible. Nevertheless, the order conditions
for such composition methods state that either negative time substeps or complex
coefficients or nonconvex combinations are necessary [13]. The formers imply usually
important stability restrictions and more sophisticated numerical implementations.
In the particular case of negative time steps, they are completely undesirable for
PDEs that are ill-posed for negative time progression.

An adaptive time stepping strategy is based on a local error estimate which can
be obtained by using two schemes of different order, in this case St or S%, locally
of order 3, and L{ or L}, locally of order 2. For instance, the Embedded Split-Step
Formulas given in [17] consider S} and L} or S4 and L}, noticing that

Liug = X'Y"2Y2y,,

where Y*/24 is also used to compute Séuo. Nevertheless, in the context of multi-
scale phenomena, order reductions may appear due to short-life transients associ-
ated with the fastest variables when one considers splitting time steps larger than
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the fastest scales. It has been proved in [5] that better performances are expected
while ending the splitting scheme by the part involving the fastest time scales of
the phenomenon. In particular, in the case of linear diagonal diffusion problems,
no order loss is expected for the L and S% schemes when fast scales are present in
the reactive term. Therefore, the embedding procedure must be carefully conceived
taking into consideration these theoretical studies.

We introduce a shifted Strang formula

St g = y/2=ot xty (1/2+e)t,, (2.7)

locally of order 2, due to the lack of symmetry, for € in [—1/2,0) U (0,1/2]. In this
way, a local error estimate is computed based on two solutions for which orders are
guaranteed and a potential loss of order is simultaneous, following

SQAtuo YAt/2XAtYAt/2uO
= , 2.8

SQA‘?U/O Y(l/2—6)AtxAty(1/2+6)Atu0 ( )
for some splitting time step At > 0. Embedding is accomplished as long as ¢ is
different from —1/2, that is S§§u0 different from Liug. On the other hand, if ¢ is
equal to 1/2, SQA,guo is defined as L{ug, which is not suitable for stiff configurations
as it was previously discussed [5]. Therefore, £ should be contained in (—1/2,0) U
(0,1/2). Shifted Sﬁguo is defined in a similar way and depending on the multi-scale

character of the problem, it might be the appropriate choice along with SlAtuo.
Taking into account that

SQAtuo — Sﬁ;uo = SQAtuo — T + TPy — Sﬁéuo,
= O(At?) + O(At?) ~ O(At?), (2.9)
for a given accuracy tolerance 7,
155" uo — Spluol| <7 (2.10)

must be verified in order to accept current computation with At, while new time
step is calculated by

n
AP — g AL , (2.11)
\/Szmuo — S8 uo||

with security factor 0 < v < 1 close to one. This comes from a classical adap-
tive time stepping procedure for stiff ODEs solution, for which more sophisticated
formulas than (2.11) can also be considered, see [14] for example.

The error control of these adaptive methods is fully guaranteed as long as the
orders of both, the main and the embedded integration methods, remains valid. This
is the case for small enough time steps for which asymptotic theoretical estimates
hold, but remains an open problem for larger time steps for which the validity of the




Adaptive Time Splitting Method 419

formers is assumed. This is a key point in this work, because we propose not only a
new splitting strategy with adaptive time steps as described in this section, but we
also aim at applications for which splitting time steps may go beyond the fastest
scales associated with each subproblem in order to obtain important computational
savings. Therefore, a technique that guarantees consistently error control for all
possible separation scales must be pursued, but first of all, a detailed numerical
analysis of the method must be performed. This is the goal of the following part.

3. Numerical Analysis of the Method

In this part, we develop the numerical analysis of the proposed method. It is mainly
based on the theoretical study of the introduced shifted Strang formula (2.7) and
the domain of validity of the local error estimates. However, first of all, we introduce
the Lie formalism which will be used as mathematical tool of analysis.

3.1. The Lie operator formalism

We introduce the Lie operator formalism in order to generalize the exponential of
a linear operator in the context of nonlinear operators. Let X be a Banach space,
Tp > 0 and F, an unbounded nonlinear operator from D(F) C X to X, we consider
the general autonomous equation:

u'(t) = F(u(t)), 0<t<Ty,
(t) = F(u(t)) 0 3.1)
u(0) = uyg, t=0.
The exact solution of this evolutionary equation is (formally) given by
u(t) = Ttug, 0<t < Ty, (3.2)

where T is the semiflow associated with (3.1); in particular we can set F(u) =
O2u + f(u) as in (2.2). The Lie operator Dp associated with F' is then a linear
operator acting on the space of operators defined in X [13, 6]. More precisely, for
any unbounded nonlinear operator G from D(G) C X to X with Fréchet derivative
G’, Dr maps G into a new operator DG, such that for any v in X:

(DpG)(v) = G'(v)F(v). (3.3)
Hence, by induction on n with solution u of (3.1), we obtain

T Glult) = (DRG) (1),

and a formal Taylor expansion yields

+oo p
= (Z —|D$G> ug = (eP7G)ug.  (3.4)
=0 \‘n!

—+o0

Gu(t) =Y g(%G(u(t)))

n=0
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If we now assume that G is the identity operator Id, we obtain
u(t) = Thug = (ePF1d)ug.

Therefore, the Lie operator is indeed a way to write the solution of a nonlinear
equation in terms of a linear but differential operator. Following (3.4), an important
result obtained by Grébner in 1960 [12], considers the composition of two semiflows
T} and T% associated with Fy and F; for any v in X:

TiTsv = (e*PrThHv = (e5Prze!Prild).

3.2. Error analysis

In this section, we conduct the error analysis of the approximation of T* by S _in a
linear framework. Then, we extend these results to a general nonlinear configuration
given by problem (2.2), using the Lie operator formalism. General estimates for
the approximation of T by Si are also drawn. We end in the last part with a
mathematical study that shows the domain of application of the method described
in Sec. 2, for which an effective error control is guaranteed within an accuracy
tolerance. To simplify the notations in what follows, we will denote S% by S* and
S§ . by SL.
Assume that A and B are linear bounded operators and define

Stug = e(/2-AB (1/24)t4,
as an approximation of e(4*5)_ The following theorem gives the expansion in pow-
ers of ¢ of the difference between e*(A+5) and S. We recall the definition of the
brackets between A and B: [A, B] = AB — BA.

Theorem 3.1. Assume that A and B are linear bounded operators, for t and e
small enough, the following asymptotic holds

3
et(A+B)u0 - S;UO = _th[A’ B]UO + ;_4([‘4’ [A’ B]] + 2[B’ [A’ B”)UO

+O(t?) + O(th).
Proof. The proof is straightforward by using the Taylor formula with integral
remainder for a linear bounded operator A:

e =Td+tA+-— + — L AtesAds. |

t2A2 343 /t (t—s)3
2 6 o 6

We extend now the previous theorem to our nonlinear framework given by (2.2).
In order to do this, we introduce the spaces C*°(R) of functions of class C*° on R,
and Cp°(R) of functions of class C*° on R and bounded over R. We consider also
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the Schwartz space S(R) defined by

S(®) = {g € O (R)

sup [v*10;2g(v)| < oo forallintegers al,ag}
veER

and we define the space S1(R), made out of functions v belonging to Cp°(R) such
that v" belongs to S(R). Let us consider now Eq. (2.2) and give the expansion in
powers of ¢ of the difference between T* and S!, given by (2.7).

Theorem 3.2. Assume that ug belongs to S1(R) and that f belongs to C*°(R). For
t and € small enough, the following asymptotic holds

b 2
TtU() — S;’LLO = —€t2f”(U0) (%)

3 . 2
(7 (0) " (0) + F (10) /) () (%)

3 dup\* uo\ > 9%u
G (Ge) - 50w (G G

Oz Oz

— %f”@@(%) +O®Et?) + O@th). (3.5)

Proof. We introduce the two Lie operators Da and Dy associated with 92 and f
and write

Ttuo . S;uo _ (et(DA+Df)Id)uO o (e(l/2+s)thetDAe(l/Q—e)thId)uo'

With Theorem 3.1 we can deduce that

t?’
T'ug — Stug = —et*([Dy, Dalld)ug + ﬁ([Df, [D¢, DAJJId)ug

t3
+ 5 ([Da, [Dy, DallId)ug + O(et?) + O(t*). (3.6)
We are not interested in giving the exact form of the terms O(et?) and O(t*), but
these terms can be computed following the same technique developed in [6]. For
the term in O(t?), we have by definition and with (3.3),

([Df, DA]Id)’U,O = (Df(DAId) — DA(DfId))um

2u
= (DAId) (uo) f (ug) — (DfId)/(UO)%’
= %(f(uo)) - f/(“‘))%'
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The last term is by definition the Lie bracket between 92 and f, a simple compu-
tation shows that

o2 , 92 , 9 2 / o2 / 52
gigo) ~ ' (w) G = f <w><%) 1 (w0) G = I (o) g
2
:f//(u())(%) .
Furthermore,
2
([Dy, [Dy, Dalld) (o) = (' (uo) f" (uo) + f (o) ¥ (wo)) (%)
and
(4) Auo\* 3) Ao\ 2 82uo
(1D (D5, Dalldun = 1) (G2 = a7a) (52 ) 5
2 2
_Qf//(u0)<8a;20> .

All the terms are now computed and this concludes the proof of Theorem 3.2. 0O

For € = 0, the next corollary follows directly.

Corollary 3.1. Assume that ug belongs to S1(R) and that [ belongs to C*°(R).
For t small enough, the following asymptotic holds

TtU() — Stug = i
24

¢3 oug\* up\ > 0%u
_ 2 r@ R0 1 3 gro 0
12f (u0)< ox ) 3 f (u0)< ox ) Ox?

(f' ()" (o) + £ (u0) /) (w0)) (%)

2
- (G) + o, 3.7)
From (3.5) and (3.7), we can see that
Stug — Stug = et ' (uo) (%)2 + O(et?) (3.8)
and thus,
T'ug — Stug = T'ug — S*ug + S'ug — Stug . (3.9)
o(t?) O(et?)

Therefore, we are sure that the real local error of the method, T%ug — Stug, will be
bounded by the local error estimate, err = S*ug — Stug, when for a given ¢,

Tug — Stug =~ O(%) (3.10)
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is verified into (3.9); that is, when the embedded method is really of lower order as it
was assumed in (2.9). This will always be verified for small enough time steps ¢, for
which Ttug — Stug ~ O(t3) < err ~ O(et?) is guaranteed. Nevertheless, for larger
time steps, err will fail to properly predict Tug — Stug since we will eventually
have T'ug — Stug ~ O(t3) > err ~ O(et?). When this happens, (3.10) is no longer
true and the previous estimates show that we will rather have Tug — Stug ~ O(t3),
and assumption (2.9) will no longer hold.

In order to overcome this difficulty, we must therefore estimate a critical time
step t* > 0 such that for all ¢ in [0,¢*], (3.10) is guaranteed for a given e. This will
imply that Strang local error, T ug —S*ug, will indeed be bounded by the local error
estimate, err, and that an effective error control will be achieved for err smaller
than a given accuracy tolerance 7. Finally, a suitable choice of € can also be made
since t* is related to e following (3.9).

A natural strategy to predict this critical t* will rely on the previous theoretical
estimates and on a more precise knowledge of the structure of the solutions of the
PDEs; this is for instance illustrated in the next part in the context of traveling
wave solutions.

4. Application to Reaction Traveling Waves

In this part, we will confront the previous theoretical study to a simple reaction
diffusion problem that admits self-similar traveling wave solutions such as the KPP
equation [18]. The main advantages of considering this kind of problems are that
analytic solutions exist and that the featured stiffness can be tuned using a space-
time scaling. Therefore, it provides a first numerical validation of the numerical
estimates of the method and an evaluation of its domain of application; and on
the other hand, a detailed study can be conducted on the impact of the stiffness
featured by propagating fronts with steep spatial gradients.

In what follows, we recast previous estimates in the context of these reaction
traveling waves, to then deduce an estimate of the time step ¢* that defines the
limit of application of the method for which local error estimates yield effective
error control. We end with a numerical validation of the theoretical results in the
context of the resolution of KPP model.

4.1. Numerical estimates

We are interested in the propagation of self-similar waves modeled by parabolic
PDEs of type:

Ou—D2u=kf(u), z€R, t>0, (4.1)
u(0,2) = uo(x), reR, t=0, .

with solution u(z,t) = ug(z — ct), where ¢ is the steady speed of the wavefront, and
D and k stand respectively for diffusion and reaction coefficients.
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Considering Theorem 3.2 we obtain the following estimate for system (4.1).

Corollary 4.1. Assume that ug belongs to Si(R) and that f belongs to C*(R).
For t and £ small enough, the following asymptotic holds

2
Ttu() — S;UO = —é‘kiDthH(Uo) (%)

2 3 i
k ﬁt (f/(uo)f//(uo) + f(uo)f(?))(uo)) (%)
- Y Oug) " _ kD% (3) duo \? 9%ug
T T 19 i (m)(%) N Tf 3) (ug) <%> —
2
_ %%Sf//(uo) (%) + O(z—:t?’) + O(t4), 42)

Proof. The proof follows directly from demonstration of Theorem 3.2, using (3.6)
and considering that

[Diy, Dpa] = kD[Dy, D],
[[Drs, Dpal, Dpa) = kD?[[Dy, DA], Dal,
([Dks, Dpal, Dig) = k*D[[Dy, Dal, Dy,
where Dpa and Dy are the Lie operators associated with Dag and kf. O
On the other hand, if we now consider system (4.1) with ¥ =1 and D = 1, the

following corollary establishes t* > 0 such that for all ¢ in [0, ¢*] (3.10) is guaranteed
for a given e.

Corollary 4.2. Assume that ug belongs to S1(R) and that f belongs to C*(R).
For a given € small enough, define

M —‘f”(u )<%>2 (13)
1= )\ 5z .
L2
and
a0 £ ) + £ (10) £ o) (%)2 /Do) (@)4
2 24 dr 12\ oz
P (uo) (%) 0%uo  f"(uo) <a2uO)2 | 4
3 Ox Ox? 6 Ox? Lo
define t* by

t*Mg = €M1. (45)
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For all t such that 0 <t < t*,
HTtuo — S;’U,QHLz =~ 0(t2).

In a general case, if evaluation of the derivatives of ug and f is feasible, it is
then possible to predict the domain of application of the method, [0,¢*], for a given
€ based on the previous result. In the particular case of traveling wave solutions
for (4.1), diffusion and reaction coefficients, D and k, might be seen as scaling
coefficients in time and space. A dimensionless analysis of a traveling wave, as
shown in [11], can then be conducted considering a dimensionless time 7 and a
dimensionless space r with

r=kt and r=(k/D)"?x.
This analysis allows one to find a steady velocity of the wavefront,
¢ =z < (DE)Y?, (4.6)
whereas the sharpness of the wave profile is measured by

uﬂi'max B8 (k/D)l/2 (47)

Therefore, condition Dk = 1 implies constant velocity for all & = 1/D but
greater k (or smaller D) implies higher spatial gradients, and thus, stiffer
configurations.

This study gives complementary information on the solution of (4.1) and
in particular, when condition Dk = 1 is satisfied, it allows to deduce from
Corollary 4.2:

kt*Mz = é‘Ml, (48)

with My and My given by (4.3) and (4.4). Therefore, stiffer configurations given
by the presence of steeper spatial gradients will restrain the application domain
of the method, according to (4.8). Nevertheless, for larger gradients, smaller time
steps are also required for a given level of accuracy and hence, we can expect a
simultaneous reduction of both critical and accurate splitting time steps.

4.2. Numerical illustration: KPP equation

Let us recall the Kolmogorov—Petrovskii-Piskunov model. In their original paper
[18], these authors introduced a model describing the propagation of a virus and
the first rigorous analysis of a stable traveling wave solution of a nonlinear reaction-
diffusion equation [11]. The equation is the following:

Ou — D O*u = ku?(1 — u), (4.9)

with homogeneous Neumann boundary conditions. We consider a 1D discretization
with 5001 points on a [—70, 70] region for which we have negligible spatial discretiza-
tion errors with respect to the ones coming from the numerical time integration.



426 S. Descombes et al.

The description of the dimensionless model and the structure of the exact solu-
tion can be found in [11] where the dimensionless analysis shows that in the case
of D =1 and k = 1, the velocity of the self-similar traveling wave is ¢ = 1/v/2
and the maximal gradient value reaches 1/v/32. The key point of this illustration
is that the velocity of the traveling wave is proportional to (k D)'/2, whereas the
maximal gradient is proportional to (k/D)/2. Hence, we consider the case kD = 1
for which one may obtain steeper gradients for the same speed of propagation.

Throughout this paper, exact solution T%uy will be approximated by the reso-
lution of the coupled reaction-diffusion problem performed by the Radaub method
[15] with fine tolerances, Nradaus = 10710, This solution will be referred as the ref-
erence or quasi-ezact solution. Strang approximations S‘ug and Stuy will be com-
puted with a splitting technique recently introduced [8, 9], which considers Radaub
[15] to solve locally point by point the reaction term; and the ROCK4 method
(1] for the diffusion problem. Radaub [15] is a fifth-order implicit Runge-Kutta
method exhibiting A- and L-stability properties to efficiently solve stiff systems of
ODEs, whereas ROCK4 [1] is formally a fourth-order stabilized explicit Runge—
Kutta method with extended stability domain along the negative real axis, well
suited to numerically treat mildly stiff elliptic operators. Both methods implement
adaptive time stepping techniques to guarantee computations within a prescribed
accuracy tolerance. In order to properly discriminate the previously estimated split-
ting errors from those coming from temporal integration of the substeps, we consider
also fine tolerances, NRadaus = MTROCK4 = 1010,

Figures 1 and 2 show L? errors between Tug, S'ug and Stug solutions for k = 1,
k = 10 and k = 100 respectively, and several . Notice that estimates (3.5), (3.7)
and (3.8) for all three errors in (3.9) are verified and in particular, for At larger than
critical At*, the estimated error err = ||S?tug — S2tug ||z is no longer predicting
the real local error given by Tug — Stug.

With these results, we can also compare real At*, obtained when |T%%uy —
SA%g |2 = ||SAtug — S2ug||z2 in the numerical tests, with theoretically esti-
mated At* following (4.8). Table 1 summarizes these results where computation of
estimated At* in (4.8) is given by the computation of M; and M, with Maple©
according to (4.3) and (4.4). A really good agreement can be observed even though
theoretical results underestimate the real values. The loss of order depicted by the
numerical results, is due to the influence of spatial gradients in the solution, as
it was proven in [3]. This explains the error of the predicted critical At* in (4.8)
whenever one gets close to the order loss region.

Numerical results show also that ||S2fug — S2%ug||z2 o & according to (3.8)
and consequently, At* o ¢; therefore, the working region or domain of application
of the method, At < At*, depends directly on the choice of € as it can be seen
in Table 1. Finally, in the context of traveling waves, these numerical experiments
show that At* oc k=1 oc 1/||0ug/0z||s according to Table 1; hence, application
domains are reduced for stiffer configurations but numerical results show also that
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Fig. 1. KPP equation with k = 1. Local L? errors for several splitting time steps At and & = 0.05
(top left), 0.005 (top right) and 0.0005 (bottom left). Bottom right: critical splitting time steps
At* obtained when | T%%ug — S2tug| 2 ~ [|S?tug — S2%ug|| 2 in the numerical tests.

smaller time steps are required for the same level of accuracy. These conclusions
are easily extrapolated to more general self-similar propagating waves.

5. Construction of the Numerical Strategy

We have presented in Sec. 2, a time adaptive numerical scheme fully based on the-
oretical error estimates developed in Sec. 3. We have also studied the necessary
general conditions in order to guarantee an effective error control based on local
error estimates. In particular, this has been shown in the case of reaction traveling
waves in Sec. 4, for which theoretical studies give us some insight into the PDE
solution. Nevertheless, this is not always possible and it is usually difficult to carry
out such kind of analysis for more realistic models. Therefore, based on the theoret-
ical analysis and previous illustrations on the influence of the various parameters
of the scheme, a general numerical procedure that completes the adaptive scheme
defined in Sec. 2, is introduced in the following.

In a first part, we will settle the theoretical framework and the numerical pro-
cedure needed to estimate t*, and to define the appropriate €. This will be illus-
trated by numerical tests performed on a more complex model of time-space stiff
propagating waves. These theoretical and numerical studies will allow to define, at
the end, a final numerical strategy.



428 S. Descombes et al.

Ty - $~u, -
102 L T— 44 /
10% Ty - Sy + - /
+
= 10°
g o
S .8 §
o 10 e
-10 -
10 AT
10712 £=0.05
107
10%  10*  10° 102 107 10° 10"
At
10°
, 7, - 2,
10 s ’"()'Sslua """""
10 Tup- Sy +
,ﬁ"i
5 10° <
£ 7
S 108 2
.
1010 foe
10712 ©=0.05
107
0% 10* 10° 102 107 10° 10’
At
Fig. 2.

Ty 5
2 0£=0A0g rrrrrrrrrr
10 £=0.005
. £=0.0005
10°
5 10° .
5 . s A=0.2803
& 10
-
10710
o . =0
1 A'=0.001193
10
0% 10f 10% 102 10" 10 10
At
0
10 TA’UO-_SA'u . —
-2 £=0.0!
10 €0.005 - -
. €=0.0008 e
10°
-6
5 10 e
£ . s - Ar'=0.04332
10°
N_I ’ ¢
10710 A£.20.00212:
o LS
w0 | 4r=0.0001923
10°
0% 10% 10° 102 0" 10® 10
At

KPP equation with k = 10 (top) and k = 100 (bottom). Local L? errors for several

splitting time steps At and € = 0.05 (left). Right: critical splitting time steps At* obtained when
(IT2%ug — S2%ug||z2 = ||SAtug — S2%ug||z2 in the numerical tests.

Table 1.

KPP equation. Comparison between real At

*
real’

obtained when ||T%%ug — S2tugl| 2 ~ ||S®tug — S2tugl|y2
in the numerical tests, and theoretically estimated At}

following (4.8).

e=0.05 e =0.005 e = 0.0005
k=1 At 2.783 0.1274 1.17 x 1072
Atr, 1.107 0.1107 1.11 x 1072
k=10  Atr, 0.2803 1.29x 1072 1.19x 1073
Atr 0.1107 1.11 x 1072 1.11 x 1073
k=100 Atrf, 4.33x1072 212x107% 1.92x10~*
Aty  1.11x1072  1.11x 1073  1.11x 1074

5.1. Numerical procedure to estimate critical t* and e

Let us consider general system (2.2), based on theoretical estimates (3.7) and (3.8),
we can write

SAtUQ — TAtUQ = C(]At3,
where Cy = C1(ug) + O(At*), and

SA% g — S?tuo = eC.At?,

(5.1)

(5.2)
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where C. = Oy (ug) + O(e, At?); the dependence of C. on ¢ is only given in the
higher order terms and it is thus neglected.

For a given ¢, in the same spirit as Corollary 4.2, we search for a critical At*
such that

||SAtu0 - TAtuoH S ||SAtu0 - SEAt’U,QH (53)

for all At < At*. According to (5.1) and (5.2), we have then the following
estimate:

eC,
AtF = —=. 5.4
= (5.9
For a given ¢, this gives an upper bound for the time steps for which the local error
estimate, err = ||S%tug — S2tug ||, is properly estimating the real Strang local error,

|58y — TAug||, following (5.3).

In particular, when At — At*, we have that err ~ ||S?tug — T?%uyl|, and the
local error estimate is predicting more accurately the real error of integration. The
critical time step, At*, is directly related to ¢ through (5.4) as we have already
shown in the previous numerical results in Sec. 4.2. Therefore, a suitable ¢ will
define a critical At* such that the estimated splitting time steps At for a given
tolerance 1 will be close enough to critical At*, in order to avoid an excessive
overestimation of the Strang local error and thus, larger time steps can be chosen
for a given accuracy tolerance 7.

In order to compute At* for a given €, we must first estimate Cp in (5.4),
since C is computed out of the local error estimate, err, for known At and ¢ in
(5.2). Estimating Cy amounts to directly estimate Strang local error through (5.1)
and thus, the accuracy of the simulation might be controlled in this way without
relying on a local error estimate as proposed in the embedded method strategy
in Sec. 2. Nevertheless, as we will see in the following, in order to estimate Cj
and the Strang local error, we must define new local estimators and a numerical
procedure that becomes rapidly very expensive if we want to implement such error
control technique. Therefore, we must rely on a local error estimate given by a less
expensive strategy for which the computation of Cy is only performed from time to
time to guarantee the validity of local error estimates.

The next lemma will be useful to define the numerical procedure to estimate Cj.

Lemma 5.1. Let us consider system (2.2) and assume a local Lipschitz condition

for f:
1/ (u) = f) < AlJu =] (5.5)
For a finite At the following holds
175 g — T4 || < wllug — o), (5.6)

with w = 1+ kAt for small enough At.



430 S. Descombes et al.

Proof. Using Duhamel’s formula for (2.2) yields

t
Thug — Thg = €% (ug — vo) + / 9% (f(Toug) — f(T%v0))ds. (5.7)
0

Taking norms and applying recursively (5.7),
t
1T uo — Twol| < |luog — vol + )\/ I T%ug — T?vol| ds,
0

< eMlug — v, (5.8)

proves (5.6) for ¢t = At finite. m|

If we define a local estimator, e; = S48ty — SP1A1(S18%4), such that a; =
b1 + c1, we obtain that

SblAt(SclAtuo) _ TalAtuo — SblAt(SclAtuo) _ TblAt(SclAtuo)
+Tb1At(SclAtu0) _ TblAt (TclAtuo)
= Cgerary, b AL?
_|_Tb1At(SclAtu0) _ TblAt(TclAtuO), (59)

where Cge,at,, = Cy (Se18%ug) + O(At*). Therefore, assuming that Cgeraty, = Cy
and considering Lemma 5.1, it follows from the difference between (5.1) at ai At
and (5.9):

ler — (a} = B3)CoAL|| < w|[ T3 ug — 53 g,
< wChE AL3. (5.10)

Hence, defining a second local estimator, e = S%28tyy — SP28t(§28%4) such
that as = ba + c2, we obtain a second expression similar to (5.10) with e and
(a2, ba, c2), and we can estimate Cj and w. In particular, we notice that b, should
be close to by in order to better approximate w into (5.6) and (5.10), and that ¢;
and c should also be small enough to guarantee Cge,at,,, = Cp and Cgezar,,, = Co.
On the other hand, to optimize the required number of extra computations from
a practical point of view, we can use the estimator es to compute estimator e; by
setting as = ¢1, and we can also fix a; = 1 so we can use S“®tuq for the time
integration of the problem. In this way, the extra computations needed to compute
local estimators e; and e will be given by S¢8tuyg, SP2At(§e2Aty) §e1Aty, and
SbiAt(§eiAty ) within a time step At. Then, we will be able to compute w and Co,
by solving two expressions of type (5.10). The next numerical example illustrates
the validity of this numerical procedure.

5.2. Numerical example of evaluation of critical t*: BZ equation

We are concerned with the numerical approximation of a model of the Belousov—
Zhabotinski reaction, a catalyzed oxidation of an organic species by acid bromated
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ion (for more details and illustrations, see [10]). We thus consider the model intro-
duced in [11] and coming from the classic work of Field, Koros and Noyes (FKN)
(1972), which takes into account three species: HBrOo (hypobromous acid), bromide
ions Br~ and cerium(IV). Denoting by a = [Ce(IV)], b = [HBrO,] and ¢ = [Br|,
we obtain a very stiff system of three partial differential equations:

0ia — D,0%a = —(—qa — ab + fc),

1
I
1

~ (qa—ab-+ b(1 ~ 1)), (5.11)

O,b — Dyd2b —
dic — D.O%*c =b—c,

with diffusion coefficients D,, Dy and D., and some real positive parameters f,
small ¢, and small €, u, such that p < e.

The dynamical system associated with this system models reactive excitable
media with a large time scale spectrum (see [11] for more details). Moreover, the
spatial configuration with addition of diffusion generates propagating wavefronts
with steep spatial gradients. Hence, this model presents all the difficulties associ-
ated with a stiff time-space multi-scale configuration. The advantages of applying
a splitting strategy to these models have already been studied and presented in [4].

We consider the 1D application of problem (5.11) with homogeneous Neumann
boundary conditions in a space region of [0, 80] with a spatial discretization of 4001
points, good enough to prevent important spatial discretization errors, and the
following parameters, taken from [11]: € = 1072, 4 = 107°, f =3 and ¢ = 2 x 1074,
with diffusion coefficients D, = 1, D, = 1 and D. = 0.6. Reference solution and
Strang approximations are defined in the same way as in the KPP application with
the same tolerances for the time integration solvers.

First of all, we validate theoretical order estimates (3.5), (3.7) and (3.8) and
verify relation (3.9). Figure 3 shows L? errors between T ug, S*ug and Stug solutions
for several € and the real At* such that ||[T%ug — S%ug| z2 ~ ||S?tug — S2%uo| 2,
obtained after treating the numerical results. Maximum L? error considers the
maximum value between normalized local errors for a, b and ¢ variables; in these
numerical tests, it corresponds usually to variable b.

Let us now define the two sets (a1,b1,c¢1) and (a9, ba, c2), and compute local
estimators e; and es in order to obtain Cy according to (5.10) with At = Aty =
1075; that is a time step for which there is no order loss yet, as seen in Fig. 3. As
it was previously detailed, we consider a; = 1 and as = ¢; to avoid some extra
computations. Furthermore, by should be close to b1, and ¢; and ¢y small enough.
Setting by larger than 1/2 would yield more different by since ¢; = ag. On the
other hand, for b; smaller than 1/2 we can even set bo = by but in this case ¢;
will be larger than 1/2. Therefore, we reach a compromise by setting b1 = 1/2 that
yields ¢; = as = 1/2, so we can choose for instance by = 2/5 close to by, and thus,
co = 1/10.
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Fig. 3. BZ equation. Maximum local L? errors for several splitting time steps At and € = 0.05
(top left), 0.005 (top right) and 0.0005 (bottom left). Bottom right: critical splitting time steps
At* obtained when | T%ug — S2tug| 2 ~ [|SAtug — S2%ug| 2 in the numerical tests.

With the local error estimate, err = [|S%%ug — S2%ug|| 12, for the various time
steps and several £ shown in Fig. 3, Fig. 4 presents the estimated critical At*
calculated with (5.4) from the estimated Cy(Aty) and err. These critical time steps,
At*, estimated with (5.4) are in good agreement with numerically measured At* in
Fig. 3, and depend on the value of €. Hence, the domain of application or working
region of the method, At < At*, might be settled depending on the desired level
of accuracy by means of an appropriate choice of €. For instance, if we consider
the case e = 0.05 in Fig. 3, for At = 107°, the local error estimate is given by
err ~ 1071° whereas the real Strang local error is ~ 1072, This overestimation of
the local error will certainly imply an underestimation in the required size of the
time steps for a given tolerance. Therefore, for a given tolerance 7 a more suitable
configuration should consider an € such that At ~ At* in order to reduce excessive
overestimations of local errors.

In the illustration shown in Fig. 4, Cy was estimated in the third order region of
the method and therefore, all values are well approximated as long as At remains
in this region. In particular, critical At* will be progressively underestimated for
larger € and consequently, it will impose smaller time steps for a given tolerance;
this is already the case for e = 0.05, for which A¢* is in the transition zone towards
the lower order region. Even though the computation of Cy with small time steps
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predicted Strang error calculated with Cg estimated at Atg = 10~° and locally at several splitting
time steps At.

will be less expensive, a much more accurate procedure considers current time step
as shown in Fig. 4. In particular, by estimating locally Cj, we are estimating real
Strang error and thus, At < At* guarantees prescribed accuracy even if asymptotic
order estimates are no longer verified. This allows one to properly extend the domain
of application over the whole range of possible time steps for a given accuracy; an
extremely important issue for real applications for which splitting time steps may
go far beyond asymptotic behavior including the potential order reduction region
associated with the stiffness of the problem.

5.3. Numerical strategy

Previous studies conducted in Secs. 5.1 and 5.2 allow one to properly complete the
adaptive splitting strategy introduced in Sec. 2. In this section, we conduct the final
description of the numerical strategy.

Let us consider general problem (2.1) for u € R™, for which we use S% in (2.6) as
resolution scheme. Depending on the problem, the adaptive method will be applied
considering time evolution of [ < m variables: u € R!. Let us denote Q; the set of
indices of these variables. In order to consider only | < m variables, the formers
must be decoupled of the remaining m — [ variables in the reactive term f(@) in
(2.1). To simplify the presentation, we will only consider € € (0, emax); Emax < 1/2.

We set the accuracy tolerance 7, an initial time step At° and initial &o, and
perform the time integration of (2.1) with the Strang scheme S% and the embedded
shifted one S5 . given by (2.7). We compute local error estimate err and new time
step A"V according to (2.11). If err is smaller than ), current time step solution
is accepted and simulation time evolves; otherwise, current solution is rejected and
the time integration is recomputed with A¢"V. In particular, it is better to choose
rather small At° to avoid initial rejections.

In order to guarantee an effective error control, we define the working region
At < At* by estimating the corresponding At* for current . This is done for the
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first time step AtY and then periodically after N accepted time steps depending on
the problem, based on the numerical procedure introduced in Sec. 5.1. Computation
of critical At* is also performed with 1, and a rather large initial ¢( is suitable to
initially guarantee At < At*.

We define then a suitable working region At € [At*, yAt*] with 0 < f < v < 1,
for which splitting time steps are close to At*. A new ¢ is then computed if At is
much lower than At* (At < SAt*) in order to avoid unnecessary small time steps;
or if At is very close or possibly larger than At* (At > yAt*) with v close to one, in
order to increase upper bound of the domain of application. This guarantees that e
is dynamically computed and properly adapted to the dynamics of the phenomenon.

Finally, the numerical resolution strategy can be summarized as follows, where
U € R™*" stands for the spatial discretization of u over n points, U := (ul/"F)
such that j € [1,m] and k € [1,n].

e Input parameters. Define accuracy tolerance 1), time domain of study [to, 77, initial
time step At°, initial g, and period of computation of At*: N

o Initialization. Set iteration counter i = 0 and t = tg, U = Uy, At = A,
€ = 9. We define a flag estimate initialized as .false.. Throughout the whole
computation, we need to store U, an array of size m X n.

e Time evolution. If t <T

(1) Only if & = [+ ] or estimate is .true.:
Computation of critical At* I: For the sets (a1,b1,c¢1) and (a9, ba, co) with

a1 = 1 and ay = ¢1, we compute successively:
— Uy = 82241Uy, where Uy is built out of U, Ug = (uU))cq,;

— U1 = S22y
R 5 SclAtﬁ

(G:) =)
— o = maxjeq, 8§ — @0
o 3 :SblAtU 2;

— estimate is set to .true..

These operations need to store U; and Us, two arrays of size I X n.
(2) Time integration over At: We compute successively:

— for each k € [1,n], uleh) = YA/2y (),

— for each k € [l,n], g K = = YEAt Ile\’:/)|j€QL;

— U, = X2'U,, with U, = *(Upew, U1);

— for each k € [1,n], u (' M = y(/2-e)at ("k);
— for each k € [1,n], ul(lew) YRty (o)

137 )”

— err = max;eq, Hufm& -

We need to store Upew, an array of size m x n.
(3) Ouly if estimate is .true.:
Computation of critical At* II: We compute successively:
e = maxjeq @t — ad"|;
— () using (5.10) with e; and eo;
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— estimate At* out of (5.4) and set At* = (At* with security factor 0 <
¢ <1 close to one;

— estimate is set to .false..

— If At ¢ [BAt",vAt*] with 0 < § < 7 < 1: estimate is set to .true..

(4) Only if estimate is .true. and ¢ > 0:
Computation of e: According to (5.4) with err, Cy and At* = At:

— & =min{fe, epax } with 6 > 1 as security factor;
— computation of At* with new ¢;
— estimate is set to .false..

(5) Computation At**V: According to (2.11) with security factor 0 < v < 1 close
to one.

— If At > At*: set err = n+C with C' > 1. Used to potentially reject initial
At = At°.

— If AtV > At* and € # epax: estimate is set to .true..

— At = min{ A"V, At*}.

— Iferr<mt=t+At,i=i+1, At = min{A¢,T — t} and U = Upew-.

In this strategy, reaction is always integrated point by point if the reactive term
is modeled by a system of ODEs without spatial coupling. This integration can
be performed completely in parallel [9, 7]. On the other hand, for linear diffusion
problems, another alternative considers a variable by variable resolution, for each
jE [17 m} U

ud) = xA9, (5.12)

that can also be performed in parallel [9].

Depending on the problem, either the computation of critical At* (steps (1),
(3) and (4)), or the computation of £ (step (4)) can be potentially removed if one
considers large enough ¢y and fine enough 7. Finally, the whole strategy with all
steps needs to store at worst two arrays of size [ X n and other two of size m x n,
beyond memory requirements of diffusion and reaction solvers.

6. Final Numerical Evaluation of the Method

In this last section, we evaluate the performance of the method in terms of accu-
racy of the simulation, and show that an effective control of the simulation error is
performed in the context of two different problems. First, we will consider a prop-
agating wave featuring time-space multi-scale character. Then, the potential of the
method is fully exploited for a more complex configuration of repetitive gas dis-
charges generated by high frequency pulsed applied electric fields followed by long
time scale relaxation, for which a precise description of discharge and post-discharge
phases is achieved.
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6.1. BZ equation revisited

Coming back to BZ model, we perform a time integration of (5.11) with several
accuracy tolerances 7). First of all, we consider the numerical strategy detailed
in Sec. 5.3 without taking into account steps (1), (3) and (4), that is without
computation of neither critical At* nor €. We set At® = 10~7 and g = 0.05 in
all cases, with ¢ € [0,2]. In this example, a rather small initial splitting time step
is chosen to avoid initial rejections even though this initial rejection phase usually
does not take many steps as it will be shown in the next example. On the other
hand, we have chosen an intermediary value for e in order to clearly distinguish
the different behaviors of the strategy in terms of prediction of the local errors
depending on the proposed tolerance.

Figure 5 shows time evolution of accepted splitting time steps At. In this case,
BZ equation models a propagating self-similar wave, so splitting time step stabilizes
once the overall phenomenon is solved within the prescribed tolerance 7. Local error
estimates err are also shown, which naturally verify prescribed accuracy, since we
impose time steps for which err is limited by n through (2.11).

Table 2 summarizes global L? errors between splitting and reference solutions
at the end of the time domain of study, ¢ = 2. For a fine enough 7 and consequently,
small enough time steps, a precise error control is achieved by the local error control
strategy as we could have expected from previous results in Fig. 3 for € = 0.05. Nev-
ertheless, for n = 10~* we can see rather high global errors even if this configuration
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Fig. 5. BZ equation. Time evolution of accepted splitting time steps At (left) and local L2 error
estimates err = ||Stug — S2%ugl| 2 (right), for several tolerances n and & = 0.05.

Table 2. BZ equation. L2 errors at final time ¢ = 2 for a,
b, ¢ variables and several tolerances 7).

n L? error a L? error b L? error ¢

10— 7.97 x 1073 1.07 x 10—2 4.72 x 1073
10-6 1.71 x 106 1.83 x 106 7.98 x 10~7
10—8 1.45 x 108 1.54 x 108 6.78 x 10~9
10-10 1.74 x 1010 1.75 x 1010 1.08 x 1010
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considers naturally less time integration steps and thus, less accumulation of local
approximation errors. If we take a look at Fig. 3, we note that for ¢ = 0.05 and local
errors of about 107, the local error estimate, err, is not predicting properly real
Strang errors, as it was previously discussed, since At > At*. Therefore, a strategy
that introduces a more precise description of errors for a larger range of time steps
must be considered, whenever the required accuracy casts the method away from
its asymptotic behavior. This is an under covered difficulty of any time adaptive
technique based on a lower order embedded method, and to our knowledge, an open
problem that has not been studied much, and that this work tries to overcome.

Let us now consider the entire strategy with all steps for several tolerances with
At? = 5x 1077 and g9 = 0.05. In the following illustrations we have considered the
following parameters: emax = 0.999; a1 =1, b1 = ¢1 =as = 1/2, by =2/5 and ¢o =
1/10 for intermediary time steps evaluations; ¢ = 0.9 as security factor of critical
At* estimate; § = 0.1 and v = 0.95 to define the working region At € [SAt*, yAt*];
0 = 10 as security factor of € estimate; C' = 10 to potentially reject initial time step
At%; and v = 0.9 as security factor of A"V estimate. All local estimators, err, e;
and es, are computed with normalized L? norms.

Considering the propagating phenomenon, we set N = 10, but we estimate At*
only twice for i = 0 and ¢ = N. Figure 6 shows time evolution of splitting time
steps; there are different scenarios depending on the required accuracy. In all cases
for £ = 0.05, we estimate initially At* ~ 1.4 x 10~%. For = 10~4, this limitation
implies smaller time steps than what is required for the prescribed tolerance. Thus,
At increases until At"*Y > At* and a new ¢ is estimated: ¢ ~ 0.43. No substantial
changes are made when i = N, since At € [BAt*, yAt*] for the current 7.

For n = 1079, we keep initial At* and ¢ since At € [BAt*, yAt*] as we can
see in Fig. 3. Finally, for n = 107% and = 1071°, At < BAt* and thus, € is
recomputed, giving respectively € ~ 0.016 and 0.0016. In particular, we consider
larger splitting time steps for which Strang local errors are better predicted. Table 3
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Fig. 6. BZ equation. Time evolution of accepted splitting time steps At (left) and local L2 error
estimates err = ||[S®tug — S2%ugl| 2 (right), for several tolerances 7, considering critical At* and
computation of €.
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Table 3. BZ equation. L? errors at final time t = 2
for a, b, ¢ variables and several tolerances 7, consid-
ering critical At* and computation of e.

n L? error a L2 error b L2 error ¢

10— 6.85 x 107°>  9.04 x 107°  4.06 x 10—°
10-6 1.71 x 1076 1.83x 1076 798 x 10~ 7
108 453 x 1078  4.84x1078 212x 108
10710 448 x 1079 477 x 1079 2.15x 107Y

shows that error control in this time guaranteed for all values of tolerance 7, and
thus, for a larger range of time steps. Compared with previous results in Table 2, we
correct completely the errors in the prediction of local error estimates, which yields
more accurate resolutions for the largest tolerances; whereas slightly less accurate
results are obtained for the smallest tolerances since larger splitting time steps are
considered.

6.2. Simulation of multi-pulsed gas discharges

In this section, we consider a simplified model of plasma discharges at atmospheric
pressure for which we analyze the performance of the proposed numerical strategy
in a configuration of nanosecond repetitively pulsed discharges. This kind of phe-
nomenon is studied for plasma assisted combustion or flow control, for which the
enhancement of the gas flow chemistry or momentum transfer during typical time
scales of the flow of 107%—1073s, is due to consecutive discharges generated by
high frequency (in the kHz range) sinusoidal or pulsed applied voltages [23]. As a
consequence, during the post-discharge phases of the order of tens of microseconds,
not only time scales are very different from those during discharges of a few tens of
nanoseconds, but a complete different physics is taking place. Then, to the rapid
multi-scale configuration during discharges, we have to add other rather slower
multi-scale phenomena in the post-discharge, such as recombination of charged
species, heavy-species chemistry, diffusion, gas heating and convection. Therefore,
it is very challenging to efficiently simulate this kind of highly multi-scale prob-
lems and to accurately describe the physics of the plasma/flow interaction between
consecutive discharge/post-discharge phases.

General model to study gas discharge dynamics is based on the following drift-
diffusion equations for electrons and ions, coupled with Poisson’s equation [2, 20]:

Oine — Ox - Ne Ve — Ox - (De OxNe) = Net|Ve| — NeN|Ve| + NeTipfep + Ny,
Onp + Ox - npVy — Ox - (Dp Oxnp) = Ne|Ve| — NeNpBep + MnmpBup, (6.1)

8tnn - 8x *NMn'Vn — 8x : (Dn 8xnn) = 71677|Ve| - nnnpﬁnp — Nn7,

€0 8}2(‘/ = —qe(np — N — Ne), (6.2)
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where x € R?, n; is the density of species i (e: electrons, p: positive ions, n: negative
ions), V' is the electric potential, v; = ;E (E being the electric field) is the drift
velocity. D; and p;, are diffusion coefficient and absolute value of mobility of charged
species 14, g. is the absolute value of electron charge, and ¢¢ is permittivity of free
space. « is the impact ionization coefficient, n stands for electron attachment on
neutral molecules, 3., and 3, accounts respectively for electron-positive ion and
negative-positive ion recombination, and ~ is the detachment coefficient. Electric
field E and potential V' are related by

E = —0,V. (6.3)

Nevertheless, in this paper, we will consider a simplified reaction-diffusion 1D
model based on (6.1):

Oine — D 02ne = nealve| — nen|vel + nenpBep,
Onp — D 021y = nea|ve| — nenpBep + MnnipPap, (6.4)

Onn — D 021y = nen|ve| — nunp Bup-

Asin (6.1), all the coefficients of the model are functions of the local reduced electric
field E/Ngas, where E is the electric field magnitude and Ng,s is the air neutral
density. Transport parameters and reaction rates for air are taken from [21], with
attachment coefficients taken from [19].

In this numerical illustration, we consider an air gap of 0.5 cm where we have a
high initial distribution of electrons and ions over the region [0,0.01] cm. A constant
electric field of ~ 40kV /cm is then applied over this region during 10 ns with a pulse
period of 1 us. All parameters in (6.4) are computed with the imposed field without
solving neither (6.2) nor (6.3). Finally, we consider a constant diffusion coefficient:
D = 50 cm? /s and a spatial discretization of 1001 points. Figure 7 shows the spatial
distribution of electron density just before and after each pulse. Globally, there are
at least two completely different physical configurations given either by high reactive

1013 1016
1012
1011
1010
& 10°
5 1
= 107

10™

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
x[em] x [em]

Fig. 7. Repetitive gas discharge model. Spatial distribution of electron density before (left) and
after (right) each pulse, starting from initial distribution (left) and for a duration of ten pulses.
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activity whenever the electric field is applied, or rather by the propagative nature
of the post-discharge phase.
Considering the adaptive strategy described in Sec. 5.3 with At® = 10~

o = 0.05 and the same parameters used for the previous BZ simulation, com-
putation is initialized with a time step included in the pulse duration. Figure 8
shows the corresponding splitting time steps for a tolerance of n = 1073, Splitting
time step features a periodic behavior and succeed to consistently adapt itself to
the discharge/post-discharge phenomena. This yields high varying time steps going
from ~10719 to ~10~7. Therefore, after each post-discharge phase, since the new
time step is computed based on the previous one according to (2.11), this new time
step will surely skip the next pulse. In order to avoid this, each time we get into
a new period, we initialize time step with the length of the pulse: At = 10ns; this
time step is obviously rejected as seen in Fig. 8, as well as the next ones, until we
are able to retrieve the right dynamics of the phenomenon for the required accuracy
tolerance. No other intervention is needed neither for modeling parameters nor for
numerical solvers in order to automatically adapt time step to describe the several
time scales of the phenomenon within a prescribed accuracy.
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Fig. 8. Repetitive gas discharge model. Time evolution of accepted and rejected splitting time
steps, and imposed electric field for ¢t € [0,10] us (top left), during pulse ¢t € [5,5.01] us (top
right) and post-discharge t € [5.01,6] us (bottom left). Bottom right: global L? errors at the end
of the pulse (¢t = 5.01 us) and the post-discharge phase (t = 6 us) with and without At* and e
computation.
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For this application, we compute critical At* and possibly ¢, for N = 10 and
N =100 in each period in order to perform these computations at least once during
the discharge and post-discharge regimes. For example, for ¢ € [5, 6] us as in Fig. 8,
€ = Emax With At* &~ 4.3x 107 during the pulse, and € ~ 0.26 with At* ~ 1.6x10~7
for the rest of the period. Similar values are found for the other periods. Notice that
after each pulse, At* is automatically updated because At increases and then At
gets equal to At*. In particular, the important difference between At* for each
region, comes naturally from the completely different modeling parameters and
hence, physics description of each regime.

An effective error control is achieved for each part of the phenomenon, as we can
deduce from the global error between splitting and reference solutions at the end of
the pulse (¢ = 5.01 us) and at the end of the post-discharge phase (t = 6 us). If we
compare these results with the ones obtained without estimating neither A¢* nor
€ with ¢ = gg = 0.05, we can draw the same conclusions as in the BZ application.
For less accurate resolutions with high tolerances, the proposed strategy corrects
the error in the local error estimates made with e = g9 = 0.05; in particular, for
n = 1073 there is a ratio of about 10 between both solutions. For higher tolerances,
n > 1072, both methods yield a time step equal to the pulse duration, At = 10ns.
On the other hand, for the smallest tolerances, slightly more accurate solutions are
obtained with a fixed € = ¢¢ because smaller splitting time steps are used.

7. Conclusions

The present work proposes a new resolution strategy for stiff evolutionary PDEs
based on an efficient splitting scheme previously developed [9, 8] that considers
high order dedicated integration methods for each subproblem in order to properly
solve the fastest time scales associated with each one of them, and in such a way
that the main source of error is led by the operator splitting error. Then, to control
the error of the resolution, it relies on an adaptive splitting time technique that
allows to discriminate the global time scales related to the coupled phenomenon,
given a required level of accuracy of computations. Compared with a standard
procedure for which accuracy is guaranteed by considering time steps of the order
of the fastest scale, the error control featured by our method implies an effective
accurate resolution for problems modeling various physical scenarios, independent
of the fastest physical time scale, and an important improvement of computational
efficiency whenever highly unsteady phenomena is simulated. In particular, we have
successfully applied the proposed strategy to a simplified model of plasma discharges
that nevertheless exhibits a broad time scale spectrum coming from the modeling
equations and also important and discontinuous variation of parameters in time
and in space that notably increase the numerical complexity of the problem.

A numerical analysis of the method has been developed in order to settle a solid
mathematical background, and a complementary numerical procedure was con-
ceived in order to overcome classical restrictions of adaptive time stepping schemes
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whenever asymptotic estimates fail to predict the dynamics of the problem. A both
mathematical and numerical detailed study of the method has thus led to a fully
complete adaptive time stepping strategy that guarantees an effective control of
the errors of integration for a large range of time steps; a key issue for problems for
which splitting time steps can go beyond the fastest physical scales of the problem.
The contribution of this paper is then mainly given by a dedicated adaptive time
splitting method for stiff PDEs, and by a complete study of the behavior of time
stepping schemes based on lower order embedded methods, for the whole set of
potential time steps. In this paper we have always considered fine enough spatial
discretizations in order to perform an evaluation of the theoretical estimates intro-
duced for the proposed time integration scheme. For higher dimensional problems,
fine spatial discretization becomes a critical issue in terms of computational costs
and a technique of local grid refinement might be a good solution to guarantee the
theoretical behavior of the splitting schemes (see, for instance, [8]). Nevertheless, a
mathematical study on the splitting errors with discretized operators will certainly
be an useful tool to yet improve the performance of these techniques. This and
other related theoretical aspects are particular topics of our current research.
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