
September 29, 2011 14:13 WSPC/S1793-7442 251-CM S1793744211000436

Confluentes Mathematici, Vol. 3, No. 3 (2011) 495–521
c© World Scientific Publishing Company
DOI: 10.1142/S1793744211000436

STABILITY, CONVERGENCE AND ORDER OF THE
EXTRAPOLATIONS OF THE RESIDUAL SMOOTHING

SCHEME IN ENERGY NORM

MAGALI RIBOT

Laboratoire Dieudonné,
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The Residual Smoothing Scheme is a numerical method which consists in preconditioning
at each time step the method of lines. In this paper, RSS is defined and analyzed in an
abstract linear parabolic case, i.e. for an abstract ordinary differential equation of the
form

du/dt + Au = 0,

with A a self-adjoint non negative operator, and it can be written

(Un+1 − Un)/∆t + τB(Un+1 − Un) + AUn = 0,

where B is a preconditioner of A.
We show that RSS is stable, convergent and of order one in energy norm. We also

prove that its kth Richardson’s extrapolation is stable and of order k.
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1. Introduction

The time integration of parabolic systems of equations is dominated by the dilemma
between explicit methods, subject to the Courant–Friedrichs–Lewy (CFL) condition
and implicit methods which require the use of efficient solvers, and make use of
preconditioners.

Preconditioners are often left for the computer science and implementation side
of scientific computation; for elliptic problems, preconditioners have been actively
studied, the aim being to obtain a better convergence rate for iterative methods.
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In the case of time-dependent problems, most of the literature considers that after
applying the method of lines (i.e. semidiscretization in time), the preconditioning
for time-dependent problems is reduced to preconditioning for space-dependent
problems with a matrix I + ∆tA instead of A, as in Bornemann [3, 4], Mulholland
and Sloan [22], Brown and Woodward [6], Gerace et al. [13] or Dutt et al. [12].

We can find some examples of preconditioners specially proposed to discretize
efficiently time-dependent partial differential equations: in [16], Jin and Chan pro-
pose a circulant preconditioner to discretize second order hyperbolic equations; in
[21], Moore and Dillon compare different preconditioners for parabolic equations
discretized by finite element Galerkin method. Then, in [5], Brill and Pinder use a
red-black lower block triangular preconditioner for the heat equation discretized by
Hermite collocation method. Finally, Mardal, Nilssen and Staff [20, 31] precondition
the Runge–Kutta scheme for the heat equation, thanks to Jacobi and Gauss–Seidel
type methods. However, when a preconditioning is included in the time integration,
the error due to its use is rarely studied in an analytic point of view.

In this paper, we consider that preconditioning is an essential step from the ana-
lytical and numerical points of view, and we give a convergence and error analysis
for a class of time integration schemes. More precisely, let A be a self-adjoint oper-
ator in a Hilbert space; we assume that A is bounded from below and we consider
the problem 


du

dt
+Au = f(t),

u(0) = u0.

(1.1)

Without loss of generality, we may assume that for all u in the domain D(A) of A,
we have

(Au, u) ≥ |u|2. (1.2)

Indeed, if A is bounded from below, there exists C in R such that

(Ax, x) ≥ C|x|2,
we set v = ue−λt in (1.1) and we obtain


dv

dt
+ (A+ λ)v = 0,

v(0) = u0,

that is to say a system analogous to (1.1) with Ã = A+ λ instead of A. We choose
λ such that C + λ ≥ 1 and therefore inequality (1.2) holds for Ã.

Denote by V the closure of D(A) for the pre-Hilbertian norm (Au, u). Assume
that B is a self-adjoint unbounded operator which has the same domain as A and
which satisfies

c−1(Bu, u) ≤ (Au, u) ≤ c(Bu, u) (1.3)

for some strictly positive constant c.
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The residual smoothing scheme has been considered in Averbuch et al. [1] as an
alternative to the backward Euler scheme; it is given by

Un+1 − Un

∆t
+ τB(Un+1 − Un) +AUn = Fn, (1.4)

where τ is a parameter which can be chosen to enforce stability.
In [1], the authors show that the scheme (1.4) is unconditionally stable for τ

large enough if (1.3) holds.
Let us also mention another interesting article by Costa et al. [8], where they

discretize parabolic equations, thanks to a Fourier collocation method improving
the stability of the high frequency component. To do so, they consider an implicit
correction to the eigenvalue shifting technique in order to converge to the appropri-
ate steady state. This correction is very similar to scheme (1.4) and possesses the
same kind of stability properties.

Now, considering scheme (1.4), we define P (t) as

P (t) = 1− t(1 + tτB)−1A. (1.5)

In this paper, we write P (t) more simply under the following form:

P (t) = 1− tβ(t)A,

with

β(t) = (1 + tτB)−1.

Thanks to the definition (1.4) of the residual smoothing scheme, if F vanishes, we
have

Un = (P (∆t))nU0.

Given any choice of integers 1 ≤ n1 < n2 < · · · < nk, the Richardson extrapo-
lation of P (t) is

Pk(t) =
k∑

j=1

�kj (0)P (t/nj)nj

where �kj are the elements of the Lagrange interpolation basis with knots 1/nj.
We observe that once the scheme defined by P is computed, it is very easy to

compute its extrapolations; moreover, if P is of order 1, its Richardson extrapolation
Pk is of order k. Therefore, computing the Richardson extrapolations is an easy way
to obtain high order schemes provided that they are stable.

In this paper, A and B are abstract operators, but we apply our strategy
in [28, 29] to a spectral method preconditioned by a finite elements method.
In [28, 29], we prove that the matrices A and B are equivalent in this particular
case and we calculate the consistency error, using some expansions of ultra-spherical
polynomials proved in [27]. A similar result was proved by Parter [24, 25] using dif-
ferent techniques. The preconditioning of spectral methods by finite differences or
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finite elements method has been widely studied in the literature, theoretically by
Orszag [23] or Haldenwang et al. [14] and numerically, for example, by Canuto and
Quarteroni [7] or Deville and Mund [9, 10]. However, these articles only deal with
elliptic problems.

In [28], we already proved the unconditional stability of the Residual Smoothing
Scheme (1.4) and its extrapolations provided that τ is large enough for the usual
norm. In this paper, we prove the stability in energy norm, defined by |x|A =
(x∗Ax)1/2; let us remark that this norm is finer than the usual norm. This norm is
also convenient since in order to study the energy norm of P (t), we have to study
the operator A−1/2P ∗APA−1/2 which is self-adjoint unlike P .

We therefore define an order relation between two operators to make precise the
equivalence of two operators as in Eq. (1.3). We then prove that if A is dominated
by B and if τ is large enough the Residual Smoothing Scheme is stable, that is
to say that the energy norm of P is bounded by 1. We then extend this result to
Richardson’s extrapolations of P . If furthermore A is equivalent to B, we can prove
the convergence of RSS and of its Richardson’s extrapolations for τ large enough.
To show this result, we use the theory of approximation of continuous semigroups
by discrete semigroups described in Kato [17]. Finally, we show that if A−kBk and
B−kAk are bounded, the scheme defined with the help of Pk is of order k; we use
for that purpose the paper of Dia and Schatzman [11] dealing with the algebraic
point of view on extrapolation.

In [18], Laevsky obtains weaker results under weaker assumptions, using norms
of the form (u + τ∆tAu, u)1/2 or (u + τ∆tBu, u)1/2. In Laevsky’s paper, B does
not have to be positive, only dominated by A (in the sense of quadratic forms)
and moreover he assumes that γ(1 + τ∆tA) ≤ 1 + τ∆tB for some γ > 0 and
∆t ≤ 1. Laevsky’s paper also contains applications to domain decomposition and
to fictitious domains methods, but he does not consider the extrapolations of the
Residual Smoothing Scheme.

Let us explain the organization of the paper: in Sec. 2, we define an order relation
between self-adjoint operators and we study its properties; it enables us to define
an equivalence relation between operators, which we use to say that the operator A
and its preconditioner B are equivalent. In Sec. 3, we define some regularity spaces
related to operators A and B and we give conditions for their equivalence. After
these preliminary results, in Sec. 4, we prove the stability of RSS in energy norm
and we extend the proof of the stability to the extrapolations of RSS in Sec. 5. Then,
in Sec. 6, we study the conditional stability; in Sec. 7, we prove the convergence of
RSS and its extrapolations and eventually in Sec. 8, the orders of these schemes.
Finally, in Sec. 9, a few perspectives are given.

2. An Order on Self-Adjoint Operators

Let us first define in a very precise way the equivalence of two operators and study
the properties of the order relation.
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In this paper, we denote by 1 the identity operator in any vector space. We
recall that every self-adjoint operator T in a Hilbert space possesses a spectral
decomposition

T =
∫

R

λdP (λ),

where dP (λ) is the spectral measure associated to T . We will say that a self-adjoint
operator T is positive semi-definite if for all x ∈ D(T ), x∗Tx ≥ 0. If T is positive
semi-definite, the square root of T is defined by

√
T =

∫
R

√
λdP (λ).

We define as follows a partial order relation between self-adjoint and bounded from
below operators in a Hilbert space H :

T1 ≺ T2 ⇒ D(T2) ⊂ D(T1) and ∀x ∈ D(T2), x∗T1x ≤ x∗T2x. (2.1)

We will also need a less precise order relation, when T2 ≥ 0:

T1 � T2 ⇒ ∃ r ∈ (0,∞) : T1 ≺ rT2. (2.2)

If T2 is positive and no assumption on the sign of the self-adjoint operator T1

is made, definitions (2.1) and (2.2) still make sense; moreover, we may define for
T1 � T2:

[T1 : T2] = sup
T2x �=0

x∗T1x

x∗T2x
. (2.3)

With this definition, we always have for T2 ≥ 0 and T1 � T2

T1 ≺ [T1 : T2]T2.

We define the relations � and � to be the opposite relations to ≺ and �; if T1

and T2 are positive self-adjoint operators in H , the relation T1 ∼ T2 means that
T1 � T2 � T1.

We may relate these equivalence relations to algebraic operations; in particular,
if S is a self-adjoint operator which is bounded from below, it is plain that

T1 ≺ T2 ⇒ T1 + S ≺ T2 + S.

If S is any bounded operator from a Hilbert space H1 to H , and if the domain
of S∗TjS for j = 1, 2 is defined as S−1D(Tj), we also have:

T1 ≺ T2 ⇒ S∗T1S ≺ S∗T2S. (2.4)

The proof is performed through the change of variable x = Sy.
Another important fact is the following:

Lemma 2.1. If T1 and T2 are positive self-adjoint and injective, then

T1 ≺ T2 ⇒ T−1
2 ≺ T−1

1 . (2.5)



September 29, 2011 14:13 WSPC/S1793-7442 251-CM S1793744211000436

500 M. Ribot & M. Schatzman

Proof. This can be deduced from the proof of Theorem VI.2.21 in Kato’s book [17].

Observe that if T1 ≺ T2 then for any powers α ∈ ]0, 1[, Tα
1 ≺ Tα

2 . Indeed a
formula of Balakrishnan in [2] which is given in Yosida’s book [32] gives the repre-
sentation of Tα:

x ∈ D(T ) ⇒ Tαx =
sin(απ)

π

∫ ∞

0

λα−1(λ1 + T )−1Txdλ.

The relation

(λ1 + T )−1T = 1− λ(λ1 + T )−1 (2.6)

is classical; thus, we infer from relation (2.6) and Lemma 2.1 that

(λ1 + T1)−1T1 ≺ (λ1 + T2)−1T2;

therefore, it is plain that Tα
1 ≺ Tα

2 .
However, T1 ≺ T2 does not imply T n

1 ≺ T n
2 for all n in N; a counterexample is,

for instance

T1 =


2ε 0

0
2
ε


, T2 =



ε

1
2

1
2

1
ε


.

The reader will check that for all positive ε, T1 � T2, while for all small enough ε,
it is not true that T 2

1 � T 2
2 . However, if the self-adjoint, positive operators T1 and

T2 commute, and in particular if one of them is scalar, the conclusion is true and
this can be checked simply with the help of the spectral theorem.

3. Some Preliminary Results

Let us introduce the domains of the powers of A and B; we define, as in [26], Hn
A

for n ∈ Z as

H0
A = H,

Hn
A = A−n/2H = D(An/2), for n ∈ N

∗

and

Hn
A = (H−n

A )∗, for n ∈ Z\N,

where the star stands for the dual space.
The norm over Hn

A is defined by

|u|Hn
A

= |An/2u|0.
The same definitions hold replacing A by B. We will write for simplicity

H0 = H0
A = H0

B .
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We have the following inclusions

· · ·H−n
A ⊃ · · ·H−2

A ⊃ H−1
A ⊃ H0

A = H ⊃ H1
A ⊃ H2

A · · · ⊃ Hn
A · · ·

and

· · ·H−n
B ⊃ · · ·H−2

B ⊃ H−1
B ⊃ H0

B = H ⊃ H1
B ⊃ H2

B · · · ⊃ Hn
B · · ·

and for s > t, Hs
A (respectively Hs

B) is dense in Ht
A (respectively Ht

B).
Indeed, if n is even, n = 2p, for the density of Hn

A in H0, it suffices to consider

x(t) =
p!
tp

∫ p

0

∫ t1

0

· · ·
∫ tp−1

0

e−tpAxdtp · · · dt1

which belongs to D(Ap) and converges to x(0) = x as t tends to zero. Moreover, if
n is odd, Hn

A contains Hn+1
A which is dense in H0 from the previous case.

Moreover, A ∼ B implies the equality H1
A = H1

B and the equivalence of the
norms |A1/2x|0 and |B1/2x|0 over H1

A. Let us give now some conditions for the
isomorphism between Hn

A and Hn
B .

Lemma 3.1. For n ∈ N, the following propositions are equivalent :

(1) B−n/2An/2 and A−n/2Bn/2 are bounded in L(H0),
(2) Hn

A and Hn
B are isomorphic and their norms are equivalent,

(3) H−n
A and H−n

B are isomorphic and their norms are equivalent.

Proof. Observe that a priori A−n/2Bn/2 is defined on Hn
B ; hypothesis (1) states

that this operator is bounded for the operator norm subordinate to the norm of
H0; consequently, it admits a unique extension to all H0.

It is immediate by duality that (2) is equivalent to (3). Let us prove that hypoth-
esis (1) implies (3).

Assume y ∈ H0 and x = A−n/2y ∈ Hn
A ⊂ H0. Since

‖B−n/2An/2‖L(H0) ≤ Cn,

we have

|B−n/2y|0 = |B−n/2An/2x|0 ≤ Cn|x|0 = Cn|A−n/2y|0,
that is to say

|y|H−n
B

≤ Cn|y|H−n
A

;

and thus by density of H0 in H−n
A

H−n
A ⊂ H−n

B .

The opposite inclusion is obtained by exchanging A and B.
To complete the proof, let us prove that hypothesis (3) implies (1): An/2 is an

isomorphism from H0 to H−n
A and Bn/2 is an isomorphism from H0 to H−n

B , thus
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using hypothesis (3),B−n/2An/2 is an isomorphism from H0 to H0 and consequently
the same holds true for A−n/2Bn/2.

Lemma 3.2. If for an integer n, Hn
A is isomorphic to Hn

B, then for all s ∈
{−|n|, . . . , |n|}, Hs

A is isomorphic to Hs
B .

Proof. This is a result of interpolation; see, for example Definition 2.1 and
Remark 2.3 of [19].

Define

β(t) = (1 + tτB)−1 (3.1)

such that P (t) = 1 − tβ(t)A.
Let us prove that it converges strongly to 1 as t tends to zero.

Lemma 3.3. If B−n/2An/2 and A−n/2Bn/2 are bounded in L(H0), then for all
s ∈ {−n, . . . , 0},

β(t) → 1 strongly in Hs
A as t→ 0+.

Proof. Since β(t) ∈ L(Hs
B ,Hs+2

B ) and thanks to Lemma 3.1, we see that β(t) ∈
L(Hs

A,Hs
A).

We know already that β(t) converges strongly in H0 to 1, i.e. for all v ∈
H0, β(t)v → v in H0 and that H0 is dense in Hs

A; to conclude by density it suf-
fices to prove that ‖β(t)‖L(Hs

A) is bounded. This is clearly true, since by virtue of
Lemma 3.2,

‖β(t)‖L(Hs
A) ≤ Cn‖β(t)‖L(Hs

B);

the operator norm of β(t) in L(Hs
B) is equal to its operator norm in L(H0), giving

therefore the conclusion.

4. Stability of RSS

Let us prove the stability of the Residual Smoothing Scheme defined in Eq. (1.4).
We will systematically write a = A1/2 and b = B1/2.
Define the energy norm by

|x|A = (x∗Ax)1/2 .

This norm is the above defined norm over H1
A = D(a). The corresponding operator

norm is

‖L‖2
A = sup

x∈H1
A

x∗L∗ALx
x∗Ax

.
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It is clear that the energy operator norm of L is bounded iff the ordinary operator
norm ‖a−1L∗ALa−1‖ is bounded, where the double norm ‖ ‖ denotes from now
on the operator norm L(H).

We remark that unlike the operator P , the operator a−1P ∗APa−1 is self-adjoint,
which simplifies a lot the proof.

We have the following stability result on (1.4):

Theorem 4.1. Let A and B be positive definite self-adjoint operators in H satis-
fying A � B and let P (t) be defined by (1.5). Then, for τ larger than [A :B]/2, the
energy norm of P (t) is at most equal to 1.

Proof. The energy operator norm of P (t) is

‖P (t)‖A = ‖a−1P (t)∗AP (t)a−1‖1/2

and a straightforward computation gives

a−1P (t)∗AP (t)a−1 = 1− 2taβa+ t2 (aβa)2 . (4.1)

It is convenient to let

Q(t) = a−1P (t)∗AP (t)a−1. (4.2)

It is clear that Q(t) is semi-definite positive. We see that Q(t) ≺ 1 iff

2taβa � t2 (aβa)2

and this will be true if

2 × 1 � taβa. (4.3)

Let us check that for all t > 0 the following inequality holds:

taβa ≺ [A :B]
τ

1. (4.4)

We have indeed the inequalities

tA ≺ [A :B]tB ≺ (1 + tτB)
[A :B]
τ

;

if we apply (2.5), we find that
τ

[A :B]
β ≺ t−1A−1. (4.5)

We multiply (4.5) on the left and on the right by a and we find immediately
that (4.4) holds. Therefore, if

τ ≥ [A :B]/2,

the inequality Q(t) ≺ 1 will be satisfied, proving thus the stability of P (t) in energy
norm.
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5. The General Proof of Stability in Energy Norm
of the Extrapolation of RSS

Let us now extend the result of the previous section to the Richardon’s
extrapolations of RSS; we need before to show some algebraic lemmas.

5.1. A preliminary inequality

Given k distinct strictly positive integers 1 ≤ n1 < n2 < · · · < nj < · · · < nk,
we define the coefficients of Richardson’s extrapolation as follows: let �kj be the
Lagrange basis relative to the nodes 1/nj, 1 ≤ j ≤ k:

�kj (t) =
∏

{i:i�=j}

t− 1/ni

(1/nj) − (1/ni)
. (5.1)

Some well-known choices for these nodes are

• the harmonic sequence nj = j,
• the Romberg sequence nj = 2j ,
• the Bulirsch sequence

1, 2, 3, 4, 6, 8, 12, 16, . . . , 2j,
3
2
2j, 2j+1,

3
2
2j+1, . . . .

By interpolation of 1, t, . . . , tk−1, we have the equalities:

k∑
j=1

�kj (t) = 1,

∀ p = 1, . . . , k − 1,
k∑

j=1

�kj (t)
1
np

j

= tp,

(5.2)

from which we infer taking t = 0

∀ p = 0, . . . , k − 1,
k∑

j=1

�kj (0)
np

j

= δ0p. (5.3)

The following function

φk(s, t) =
k∑

j=1

�kj (t)
1 + s/nj

will play an essential role in our analysis; φk(s, ·) interpolates the function fs : t �→
1/(1 + st) at the points 1/nj, 1 ≤ j ≤ k.

Lemma 5.1. The function s �→ φk(s, 0) is strictly positive over R
+.

Proof. For any function g, denote by g[x1, . . . , xn] the divided difference of the
function g at the knots x1, . . . , xn.
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We use Newton’s form of interpolation:

φk(s, t) = fs(1/n1) + fs[1/n1, 1/n2](t− 1/n1) + · · ·
+ fs[1/n1, 1/n2, . . . , 1/nk](t− 1/n1)(t− 1/n2) · · · (t− 1/nk−1).

In particular,

φk(s, 0) = fs(1/n1) − fs[1/n1, 1/n2]
n1

+
fs[1/n1, 1/n2, 1/n3]

n1n2
+ · · ·

+
(−1)k−1fs[1/n1, 1/n2, . . . , 1/nk]

n1n2 · · ·nk−1
. (5.4)

If Sj is the simplex

Sj = {x ∈ (R+)j :x1 + · · · + xj ≤ 1},
the divided differences are given by the integral representation

fs[a1, . . . , aj+1] =
∫

Sj

f (j)
s (a1 + t1(a2 − a1) + · · · + tj(aj+1 − aj)). (5.5)

But in our case,

f (j)
s (t) =

j!(−s)j

(1 + st)j+1
. (5.6)

The term (−1)j−1fs[1/n1, . . . , 1/nj] involves f (j−1)
s in the integral representation;

it is therefore positive, and the lemma is proved.

We need another algebraic fact:

Lemma 5.2. For all k = 1, 2, . . . the following identity holds:
k∑

j=1

nj�
k
j (0) =

k∑
j=1

nj . (5.7)

Proof. Write

Tk =
k∑

j=1

nj�
k
j (0).

We infer from formula (5.1) that �kj (0) is given as

�kj (0) = (−nj)k−1
∏

{i:1≤i≤k,i�=j}

1
ni − nj

. (5.8)

Therefore, we have the relation

Tk − Tk−1 = nk�
k
k(0) +

k−1∑
j=1

Aj
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with

Aj = (−nj)k−1


nj

∏
{i:1≤i≤k, i�=j}

1
ni − nj

+
∏

{i:1≤i≤k−1, i�=j}

1
ni − nj


.

We remark that the factor of (−nj)k−1 in Aj contains k − 2 common factors;
therefore, it is equal to(

nj

nk − nj
+ 1
) ∏

{i:1≤i≤k−1, i�=j}

1
ni − nj

,

and therefore

Aj = (−nj)k−1nk

∏
{i:1≤i≤k, i�=j}

1
ni − nj

and with the help of (5.8),

Aj = nk�
k
j (0);

therefore,

Tk − Tk−1 = nk

k∑
j=1

�kj (0)

which concludes the proof, thanks to (5.3).

Lemma 5.1 says that the function ψk(s) = φk(s, 0) is non-negative on R
+;

Lemma 5.2 enables us to find an equivalent of ψk at infinity:

ψk(s) ∼
k∑

j=1

nj�
k
j (0)
s

=

∑k
j=1 nj

s
,

and therefore, the following corollary holds:

Corollary 5.1. There exist ck > 0 and Ck > 0 such that for all s > 0:

ck
1 + s/nk

≤
k∑

j=1

�kj (0)
1 + s/nj

≤ Ck

1 + s/nk
. (5.9)

5.2. Proof of the stability of the extrapolation

We introduce the notation

βj(t) = β(t/nj).

The purpose of this section is to show that the extrapolation of RSS is uncon-
ditionally stable in energy norm for large enough values of τ .
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Theorem 5.1. Let A and B be positive definite self-adjoint operators in H satis-
fying A � B. For all k ∈ N and for any choice of integers 1 ≤ n1 < n2 < · · · < nk,

there exists τ0 > 0 such that for all τ ≥ τ0 the following estimate holds :

∀ t > 0, ‖Pk(t)‖A ≤ 1.

Proof. We expand P (t/nj)nj according to the binomial formula. Therefore, if
(
n
p

)
is set equal to zero for p < 0 or p > n, we have

Pk(t) =
k∑

j=1

�kj (0)
nk∑
i=0

(−1)i

(
nj

i

)(
t

nj
βjA

)i

.

If we define

p0(t) = 1, (5.10a)

p1(t) =
k∑

j=1

�kj (0)βjA, (5.10b)

and for all i = 2, . . . , nk

pi(t) =
∑

{j:1≤j≤k,nj≥i}

(
nj

i

)
�kj (0)

(βjA)i

ni
j

, (5.10c)

the expression of Pk can be rewritten

Pk(t) =
nk∑
i=0

(−t)ipi(t). (5.11)

The energy norm of the operator Pk is equal to∥∥∥∥∥a−1
nk∑
i=0

(−t)ipi(t)∗A
nk∑
l=0

(−t)lpl(t)a−1

∥∥∥∥∥ ;

the operator inside the norm symbol can be rewritten as

1 − 2
k∑

j=1

t�kj (0)aβja+
∑

i+l≥2

(−t)i+la−1pi(t)∗Apl(t)a−1.

As in the proof of Theorem 4.1, this operator is semi-definite positive. Therefore,
the stability in energy norm will hold if

0 ≺ 2
k∑

j=1

t�kj (0)aβja−
∑

i+l≥2

(−t)i+la−1pi(t)∗Apl(t)a−1.

We can deduce from Eq. (5.9) that

ckaβka ≺
k∑

j=1

�kj (0)aβja ≺ Ckaβka.
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Therefore, it suffices to find values of τ for which

2tckaβka �
∑

i+l≥2

(−t)i+la−1pi(t)∗Apl(t)a−1. (5.12)

Condition (5.12) holds if

2ck × 1 � −
∑

i+l≥2

(−t)i+l−1β
−1/2
k A−1pi(t)∗Apl(t)A−1β

−1/2
k . (5.13)

Therefore, we have to estimate the operator norm of Liljr given by

Liljr = CiljrMiljr

with

Ciljr =
�kj (0)�kr(0)
ni

jn
l
r

(
nj

i

)(
nr

l

)
,

Miljr = (−t)i+l−1β
−1/2
k A−1(Aβj)iA(βrA)lA−1β

−1/2
k .

The terms Miljr can be rewritten for min(i, l) ≥ 1

Miljr = (−t)i+l−1β
−1/2
k β

1/2
j (β1/2

j Aβ
1/2
j )i−1β

1/2
j Aβ

1/2
r (β1/2

r Aβ
1/2
r )l−1

× β
1/2
r β

−1/2
k .

We infer from the obvious inequality

tτA ≺ [A :B](1 + tτB)

that

tτβ1/2Aβ1/2 ≺ [A :B]1.

Therefore, we have the estimate

β
1/2
j Aβ

1/2
j ≺ [A :B]nj

τt
1; (5.14)

on the other hand, by the spectral theorem,

‖β−1/2
k β

1/2
j ‖ ≤ 1. (5.15)

We deduce from the inequality

‖β1/2
j Aβ1/2

r ‖ ≤ ‖β1/2
j Aβ

1/2
j ‖1/2‖β1/2

r Aβ1/2
r ‖1/2

the following estimate

‖β1/2
j Aβ1/2

r ‖ ≤ [A :B]√njnr

τt
. (5.16)

We put together the estimates (5.14), (5.15) and (5.16) and we find that

‖Miljr‖ ≤
(

[A :B]
τ

)i+l−1

n
i−1/2
j nl−1/2

r
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and therefore that

‖Liljr‖ ≤
(

[A :B]
τ

)i+l−1

n
i−1/2
j nl−1/2

r |Ciljr |.

If i vanishes, the expression for Miljr is even simpler:

M0l0r = (−t)l−1β
−1/2
k (βrA)lA−1β

−1/2
k ,

and the norm of L0l0r can be estimated by

‖L0l0r‖ ≤
(

[A :B]
τ

)l−1

nl−1
r |C0l0r |.

Let us write

νil =
∑

{j:nj≥i}
{r:nr≥l}

n
i−1/2
j nl−1/2

r |Ciljr | and ν0l = νl0 =
∑

{r:nr≥l}
nl−1

r |C0l0r |.

There is a finite number of terms to estimate, and therefore, a sufficient condition
for (5.12) to hold is

2ck ≥
∑

0≤i≤k
0≤l≤k
i+l≥2

νil

(
[A :B]
τ

)i+l−1

.

It is clear that for large enough values of τ , (5.12) is satisfied, which completes the
proof of the theorem.

6. Conditional Stability

If the operator A is bounded and in particular in the finite dimension case, we
may be interested by conditional stability results. We start with an improvement
of Theorem 4.1.

Lemma 6.1. Let A and B be self-adjoint positive definite operators such that A �
B and A is bounded. Then for all τ > 0, ‖P (t)‖A ≤ 1 if

t‖A‖
(

1 − 2τ
[A :B]

)
≤ 2. (6.1)

Proof. As in (4.3), it suffices to find a condition under which

taβa ≺ 2 × 1;

using Lemma 2.1 and Eq. (2.4), it is realized provided that

tA ≺ 2(1 + tτB). (6.2)

Observe that

A ≺ [A :B]B,
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and therefore (6.2) will hold provided that

tA ≺ 2(1 + tτ [A :B]−1A)

which is true if

t(1 − 2τ [A :B]−1)A ≺ 2 × 1

and the conclusion is clear.

Relation (6.1) is typical of a conditional stability condition, since it could have
been obtained for the fully explicit scheme, corresponding to τ = 0,

un+1 = un − tAun,

where the stability condition reads

‖1− tA‖ ≤ 1;

this inequality is satisfied under condition (6.1).
Let us prove now the conditional stability for the Richardson’s extrapolation

of RSS.

Lemma 6.2. Under the assumption of Lemma 6.1, for all sequence of distinct
positive integers n1 < n2 < · · · < nk, if A and B are positive semi-definite operators,
A is bounded and A � B, there exists εk > 0 such that

t‖A‖
(

1 − τεk

nk[A :B]

)
≤ εk

implies ‖Pk(t)‖A ≤ 1.

Proof. As in the proof of Theorem 5.1, and with the same notations, it suffices to
prove, using (5.13), ∑

0≤i≤k
0≤l≤k
i+l≥2

∑
{j:nj≥i}
{r:nr≥l}

|Ciljr |‖Miljr‖ ≤ 2ck.

We observe that (
1 +

tτ‖A‖
[A :B]

)
A ≺ ‖A‖(1 + tτB)

and therefore

A ≺ ‖A‖
1 + tτ‖A‖[A :B]−1

(1 + tτB)

which implies immediately

β1/2Aβ1/2 ≺ ‖A‖
1 + tτ‖A‖[A :B]−1

1.
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Therefore, we have now the estimates

‖Miljr‖ ≤
(

t‖A‖
1 + tτ‖A‖n−1

j [A :B]−1

)i−1/2(
t‖A‖

1 + tτ‖A‖n−1
r [A :B]−1

)l−1/2

and

‖M0l0r‖ ≤
(

t‖A‖
1 + tτ‖A‖n−1

r [A :B]−1

)l−1

.

We write

νi,l =
∑

{j:nj≥i}
{r:nr≥l}

|Ciljr | and νl,0 = ν0,l =
∑

{r:nr≥l}
|C0l0r |.

Therefore it suffices to have the estimate

∑
i+l≥2

νil

(
t‖A‖

1 + tτ‖A‖n−1
k [A :B]−1

)i+l−1

≤ 2ck.

The polynomial ∑
i+l≥2

νilx
i+l−1

vanishes at 0; if we denote by εk the smallest positive real for which it takes the
value 2ck, we see that ‖Pk(t)‖A is at most equal to 1 provided that

t‖A‖ ≤ εk

(
1 +

tτ‖A‖
nk[A :B]

)
.

7. Convergence of RSS in Energy Norm and General Proof
of the Convergence of the Extrapolation of RSS

We first prove the convergence of the residual smoothing scheme:

Theorem 7.1. Assume A ∼ B. Then for τ ≥ [A :B]/2, P (tn)n converges strongly
to e−tA in energy norm, as n tends to +∞, tn tends to 0 and ntn tends to t.

Proof. We use Theorem IX.3.6 of Kato [17] which describes the theory of approx-
imation of continuous semigroups by discrete semigroups.

Define indeed

An =
1
tn

(1 − P (tn)).

Theorem 4.1 implies that

Uk
n = (1 − tnAn)k = P (tn)k
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is norm bounded by 1 for all integers k and n. Therefore, it suffices to find a complex
number ζ such that

(An + ζ)−1 s−→ (A+ ζ)−1 in H1
A

to conclude the proof of the theorem.
We choose ζ = 1 and we prove first that for f ∈ H1

A = H1
B, it is possible to find

a solution u(t) of (
1 +

1 − P (t)
t

)
u(t) = f.

By definition,

1 +
1− P (t)

t
= 1 + β(t)A,

and therefore it suffices to find a solution of

u(t) + (tτB +A)u(t) = f + tτBf. (7.1)

Thanks to our assumptions on f , A and B, f + tτBf belongs to H−1
A = H−1

B ,
and Lax–Milgram’s lemma gives a unique solution of (7.1); moreover, this solution
belongs to H1

A.
We may rewrite (7.1) as

(1 + tτB +A)(u(t) − f) = −Af. (7.2)

If we multiply scalarly (7.2) by u(t) − f , we obtain the estimate

|u(t) − f |2 + |u(t) − f |2A ≤ |f |A|u(t) − f |A
which implies immediately

|u(t)|A ≤ 2|f |A.
For any sequence tn decreasing toward 0, we select a subsequence, still denoted by
tn, such that

u(tn) ⇀ u0 weakly in H1
A.

Clearly, tnτBu(tn) tends to zero weakly in H−1
A and tnτBf tends to zero strongly

in H−1
A . Therefore, in the limit, we must have

u0 +Au0 = f (7.3)

since Au(tn) converges to Au0 weakly in H−1
A .

Lax–Milgram’s lemma shows that there exists a unique u0 satisfying (7.3). In
order to show the strong convergence of u(tn) to u0 in H1

A, we multiply (7.1) by
u(tn)∗, getting thus the identity

|u(tn)|2 + tnτu(tn)∗Bu(tn) + u(tn)∗Au(tn) = u(tn)∗f + tnτu(tn)∗Bf. (7.4)
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On the one hand, we infer from (7.4)

lim
n→+∞|u(tn)|2 + u(tn)∗Au(tn) ≤ lim

n→+∞u(tn)∗f + tnτu(tn)∗Bf

≤ u∗0f = |u0|2 + u∗0Au0.

On the other hand, general theorems imply

lim
n→+∞

|u(tn)|2 + u(tn)∗Au(tn) ≥ |u0|2 + u∗0Au0.

Therefore,

lim
n→+∞|u(tn)|2 + u(tn)∗Au(tn) = |u0|2 + u∗0Au0,

proving the desired strong convergence.
Moreover, since the sequence tn was arbitrary and u0 is unique we have the

stronger result

lim
t→0

|u(t) − u0|A = 0.

We will prove now the convergence of the extrapolation Pk of RSS.

Theorem 7.2. If A ∼ B, for all k ∈ N, for any choice of integers 1 ≤ n1 < n2 <

· · · < nk, there exists τ0 > 0 such that for all τ ≥ τ0, Pk(tn)n converges strongly to
e−tA in energy norm, as n tends to +∞, tn tends to 0 and ntn tends to t.

Proof. As in Theorem 7.1, we will use Theorem IX.3.6 of [17]. Theorem 5.1 yields
that {‖Pk(tn)‖A}n is bounded uniformly by 1 and we have to prove that for all f
in H1

A, (
1 +

1− Pk(t)
t

)−1

f
s−−−→

t→0
(1 +A)−1f.

We show first that for f ∈ H1
A, we can find a solution u(t) of(

1 +
1 − Pk(t)

t

)
u(t) = f. (7.5)

Using Eq. (5.11), we find that

1 +
1 − Pk(t)

t
= 1 +

nk∑
i=1

(−t)i−1pi(t)

and therefore after applying A to Eq. (7.5), we can rewrite this equation as

Au(t) +Ap1(t)u(t) +
nk∑
i=2

(−t)i−1Api(t)u(t) = Af. (7.6)

In order to apply Lax–Milgram’s lemma, let us show first that there exists τ0 > 0
such that for all τ ≥ τ0, for all t > 0,

Ap1(t) +
nk∑
i=2

(−t)i−1Api(t) � 0, (7.7)
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that is to say, using Eq. (5.10) and multiplying Eq. (7.7) on the left and on the
right by A−1, that, for τ large enough,

k∑
j=1

�kj (0)βj � −
nk∑
i=2

(−t)i−1
∑

{j:nj≥i}

(
nj

i

)
�kj (0)
ni

j

β
1/2
j (β1/2

j Aβ
1/2
j )i−1β

1/2
j .

Since, from Eq. (5.9),

k∑
j=1

�kj (0)βj � ckβk,

it suffices to show that for τ large enough,

ck × 1 � −
nk∑
i=2

(−t)i−1
∑

{j:nj≥i}

(
nj

i

)
�kj (0)
ni

j

β
−1/2
k β

1/2
j (β1/2

j Aβ
1/2
j )i−1β

1/2
j β

−1/2
k .

(7.8)

Let us write

µi =
∑

{j:nj≥i}

(
nj

i

) |�kj (0)|
nj

,

which is positive and

Q(x) =
nk∑
i=2

µix
i−1,

which is strictly increasing on R
+ with Q(0) = 0. Using estimates (5.14) and (5.15),

Eq. (7.8) and therefore Eq. (7.7) are satisfied if

ck ≥
nk∑
i=2

µi

(
[A :B]
τ

)i−1

= Q

(
[A :B]
τ

)
,

which is true if τ ≥ [A :B]/εk, where εk is the positive real such that Q(εk) = ck.
Therefore we have proved Eq. (7.7) for τ large enough and Lax–Milgram’s lemma

yields the existence and the uniqueness of a solution u(t) of (7.6), which belongs
to H1

A.
We multiply now Eq. (7.6) by u(t) and we obtain

u(t)∗Au(t) + u(t)∗Ap1(t)u(t) +
nk∑
i=2

(−t)i−1u(t)∗Api(t)u(t) = u(t)∗Af. (7.9)

Using Eq. (7.7), we find that

u(t)∗Au(t) ≤ u(t)∗Af

and therefore that

|u(t)|A ≤ |f |A. (7.10)



September 29, 2011 14:13 WSPC/S1793-7442 251-CM S1793744211000436

Stability, Convergence and Order of RSS in Energy Norm 515

Thus, for any subsequence tn, decreasing toward 0, we extract a subsequence, still
denoted by tn, such that

u(tn) ⇀ u0 weakly in H1
A. (7.11)

We pass to the limit in equation

u(tn) + p1(tn)u(tn) +
nk∑
i=2

(−tn)i−1pi(tn)u(tn) = f. (7.12)

Since

p1(tn)u(tn) =
k∑

j=1

�kj (0)βjAu(tn)

and Au(tn) ⇀ Au0 weakly in H−1
A , we deduce from Lemma 3.3 that

p1(tn)u(tn) ⇀
k∑

j=1

�kj (0)Au0 = Au0 weakly in H−1
A . (7.13)

Moreover, since for all j, 1 ≤ j ≤ k,

‖βj‖L(H−1
B ,H1

B) ≤ 1, (7.14)

there exists C > 0 such that

|βjAu(tn)|A ≤ C|u(tn)|A (7.15)

and therefore the term pi(tn)u(tn) is bounded by C|f |A in H1
A, where C is a positive

constant. Thus, the following limit holds true:

(−tn)i−1pi(tn)u(tn) → 0 strongly in H1
A. (7.16)

Thus, from limits (7.11), (7.13) and (7.16), Eq. (7.12) yields

u0 +Au0 = f.

To conclude, as in the proof of Theorem 7.1, that u(t) converges strongly to u0

in H1
A, we have to prove that

|u(tn)|2 + u(tn)∗Au(tn) → |u0|2 + u∗0Au0. (7.17)

We deduce from Eq. (7.12) multiplied on the left by u(tn)∗ that

|u(tn)|2 + u(tn)∗Au(tn) = u(tn)∗Au(tn) − u(tn)∗p1(tn)u(tn)

−
nk∑
i=2

(−tn)i−1u(tn)∗pi(tn)u(tn) + u(tn)∗f. (7.18)

The last term on the right-hand side of (7.18) converges:

u(tn)∗f → u∗0f = |u0|2 + u∗0Au0. (7.19)



September 29, 2011 14:13 WSPC/S1793-7442 251-CM S1793744211000436

516 M. Ribot & M. Schatzman

Now let us prove that the sum of the other terms of the right-hand side of (7.18) con-
verges to zero. For that purpose, we first prove that u(tn)∗pi(tn)u(tn) is bounded.
We remark that, thanks to hypothesis (1.2),

|u(tn)∗pi(tn)u(tn)| ≤ |u(tn)||pi(tn)u(tn)| ≤ |u(tn)|A|pi(tn)u(tn)|A;

the H1
A norm of pi(tn)u(tn) is bounded by C|f |A from Eq. (7.15), as explained

above, and |u(tn)|A is bounded by |f |A thanks to Eq. (7.10). Therefore,

(−tn)i−1u(tn)∗pi(tn)u(tn) → 0. (7.20)

Now let us compute A − p1(t) in order to factorize it by t. Hence, a simple
computation leads to

1 −
k∑

j=1

�kj (0)βj

=
k∏

i=1

βi


 k∏

l=1

(
1 +

tτ

nl
B

)
−

k∑
j=1

�kj (0)
∏

{l:1≤l≤k,l �=j}

(
1 +

tτ

nl
B

)

=
k∏

i=1

βi


1−

k∑
j=1

�kj (0)1 + tS(B)


,

where S is a polynomial of degree k, with coefficients depending continuously on t.
Therefore, using Eq. (5.2), we find that

A− p1(t) = t
k∏

i=1

βiS(B)A.

Thus, we can estimate for l, 1 ≤ l ≤ k the term u(tn)∗
∏

i βiB
lAu(tn) as follows:∣∣∣∣∣u(tn)∗

k∏
i=1

βiB
lAu(tn)

∣∣∣∣∣ ≤
∣∣∣∣∣Bl

k∏
i=1

βiu(tn)

∣∣∣∣∣
A

|u(tn)|A;

using the fact that |βjBu(tn)|A is bounded by C|u(tn)|A by Eq. (7.14) and using
Eq. (7.10), we conclude that

u(tn)∗
k∏

i=1

βiS(B)Au(tn)

is bounded and therefore that the term

u(tn)∗Au(tn) − u(tn)∗p1(tn)u(tn) = tnu(tn)∗
k∏

i=1

βiS(B)Au(tn)

converges to 0. Using the two other limits (7.19) and (7.20), we can conclude
that (7.17) holds true and that u(t) converges strongly to u0 in H1

A; the proof
of Theorem 7.2 is complete.
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8. Order of the Residual Smoothing Scheme
and of Its Extrapolations

In the following, we will denote by C(|u|Hn
A
) a constant depending only on |u|Hn

A

and by C(|u|Hn
A
, τ) a constant depending on |u|Hn

A
and τ .

Let us prove that the residual smoothing scheme is of order one in time:

Theorem 8.1. Suppose that H2
B and H2

A are isomorphic. There exists t0 > 0 such
that for all u ∈ H5

A, for all τ larger than [A :B]/2 and for all T > 0, there exists
C(|u|H5

A
, T, τ) such that for all t ∈ (0, t0] and for all n such that nt ≤ T,

|P (t)nu− e−ntAu|A ≤ C(|u|H5
A
, T, τ)t.

Proof. Let u ∈ H5
A,

|e−tAu− u+ tAu|A ≤ Ct2|A2u|A = Ct2|A5/2u|. (8.1)

We also have the following equality:

β(t) = 1− tτβ(t)B;

thus P (t)u can be expressed as follows:

P (t)u = u− tβ(t)Au = u− tAu+ t2τβ(t)BAu. (8.2)

Equations (8.1) and (8.2) lead to the following estimate:

|P (t)u− e−tAu|A ≤ Ct2(|A2u|A + τ |BAu|A) (8.3)

and as H2
B and H2

A are isomorphic,

≤ Ct2τ |A2u|A.
Let us now consider n iteration steps. Using the triangle inequality, we obtain

|P (t)nu− e−ntAu|A ≤
n−1∑
j=0

|P (t)n−j−1(P (t) − e−tA)e−jtAu|A

using Theorem 4.1 and estimate (8.3),

≤
n−1∑
j=0

Cτt2|A2e−jtAu|A

≤ Cτnt2|u|H5
A

≤ CTtτ |u|H5
A

and the proof is complete.

Now let us prove that the extrapolation Pk of P is of order k in time.
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Theorem 8.2. Suppose that H2k+2
B and H2k+2

A are isomorphic. There exist p ∈ N,

τ0 > 0 and t0 > 0 such that for all u ∈ Hp
A, for all τ ≥ τ0 and for all T > 0, there

exists C(|u|Hp
A
, T, τ) such that for all t ∈ (0, t0] and for all n such that nt ≤ T,

|Pk(t)nu− e−ntAu|A ≤ C(|u|Hp
A
, T, τ)tk.

Proof. We will use Theorem 3.1 of [11]. A is an operator with bounded inverse
and Y = ∩k∈ZD(Ak) is dense in H0. As in [11], we will denote by Zk the set of
operators L such that Y ⊂ D(L), L :Y → Y and

for all m ∈ Z, |L|m,k = sup
u∈Y \{0}

|Am−kLu|0
|Amu|0 <∞.

Z = ∪k∈ZZk is a subalgebra of the algebra of linear operators from Y to itself. We
can remark that for all k ∈ N, Ak ∈ Zk ⊂ Z.

A is also the generator of a strongly continuous semigroup exp(−tA) which
satisfies the following estimate:

for all m ∈ Z,

∣∣∣∣∣∣exp(−tA) −
k∑

j=0

(−tA)j

j!

∣∣∣∣∣∣
m,k+1

= O(tk+1). (8.4)

The formula

β(t) =
k∑

l=0

(−tτ)lBl + (−tτ)k+1β(t)Bk+1

enables us to develop P (t)u as follows:

P (t)u = u+
k+1∑
l=1

(−t)lτ l−1Bl−1Au+ (−t)k+2τk+1β(t)Bk+1Au. (8.5)

Let us define

fl = (−1)lτ l−1Bl−1A and εk+1(t) = (−1)k+2τk+1tβ(t)Bk+1A.

Then,

P (t) = 1 +
k+1∑
l=1

tlfl + tk+1εk+1(t).

We can remark that f1 = −A as required.
As H2k+2

B and H2k+2
A are isomorphic, fl ∈ Zl and εk+1(t) ∈ Zk+2. We also have

for all m ∈ Z, lim
t→0

|εk+1(t)|m,k+2 = 0.

Finally, thanks to estimate (8.4) and Eq. (8.5), we obtain

for all m ∈ Z, t−2|P (t) − exp(−tA)|m,2 = C(|u|H4
A
).



September 29, 2011 14:13 WSPC/S1793-7442 251-CM S1793744211000436

Stability, Convergence and Order of RSS in Energy Norm 519

Finally, we can adapt the proof of Theorem 3.1 of [11] and we find that there exists
i large enough such that, for all m ∈ Z,

t−(k+1)

∣∣∣∣∣∣
k∑

j=1

�kj (0)P (t/nj)nj − exp(−tA)

∣∣∣∣∣∣
m,i

= O(1).

And in particular, for m = i+ 1, we obtain, using Eq. (1.2), that∣∣∣∣∣∣

 k∑

j=1

�kj (0)P (t/nj)nj − exp(−tA)


 u

∣∣∣∣∣∣
A

≤ Ctk+1|u|H2i+2
A

.

For n time steps, the end of the proof is similar to Theorem 8.1.

9. Conclusion

As a conclusion, we have proved stability, convergence and order properties for the
extrapolations of the Residual Smoothing Scheme. This scheme has already been
applied to domain decomposition method and fictitious domain method in [18] and
to image processing in [1]. We also applied it and analyzed it for some spectral
discretizations of Laplacian preconditioned by finite elements methods [28]. Finite
volume methods or Discontinuous Galerkin methods may also be considered in
the future as accurate preconditioners of spectral discretizations for more complex
problems.

From a theoretical and practical point of view, another interesting perspective
would be the proof of stability, convergence and order of preconditioned Runge–
Kutta schemes as those presented in [30]. This would be an important generalization
of this article, especially with a focus on the preconditioning of nonlinear problems
by linear operators, getting inspired by Newton’s method for example.
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