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We prove that a semialgebraically connected affine Nash group over a real closed field
R is Nash isogenous to the semialgebraically connected component of the group H(R)
of R-points of some algebraic group H defined over R. In the case when R = R, this

result was claimed in [5], but a mistake in the proof was recently found, and the new
proof we obtained has the advantage of being valid over an arbitrary real closed field.
We also extend the result to not necessarily connected affine Nash groups over arbitrary
real closed fields.

1. Introduction and Preliminaries

The Nash category lies in between the real algebraic and real analytic categories.
Nash functions are by definition both semialgebraic and analytic. In so far as Nash
manifolds are concerned, the relevant transition functions should be Nash, and one
also requires a finite covering by charts which are open semialgebraic subsets of Rn.
A Nash manifold is said to be affine if it is Nash embeddable in some Rn. If X is
the set of real points of some nonsingular quasiprojective algebraic variety defined
over R, then X is an affine Nash manifold. Conversely the algebraicity theorem (see
Proposition 8.4.6 of [2]) says that any affine Nash manifold is Nash isomorphic to a
connected component of a nonsingular real algebraic variety. There is a considerable
literature on affine Nash manifolds but less on (abstract) Nash manifolds, although
the latter were also considered in the pioneering paper of Artin and Mazur [1] and
later in Shiota’s comprehensive monograph [7].

A Nash group is a Nash manifold with Nash group structure. In [5] we purported
to prove an “equivariant” version of the algebraicity theorem by showing that a
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connected affine Nash group is Nash isogeneous to the connected component of a
real algebraic group. Recently, a mistake was pointed out by Elias Baro. We are
not sure whether the proof in [5] can be salvaged, but we will give here a somewhat
different and more direct proof, which also works over arbitrary real closed fields.
This is done in Sec. 2. In Sec. 3, we give a version for not necessarily connected
(affine) Nash groups: if G is a Nash group whose connected component is affine,
then G is Nash isogenous with a subgroup of finite index in a real algebraic group.
We also carry this out at the level of real closed fields.

We would first like to thank Elias Baro who pointed out the precise mistake in
[5] as well as suggesting that our new proof should work over any real closed field.
In this connection we should also mention M. Otero who had also pointed out some
gaps in the proof in [5] which until recently we thought we could fill easily.

Secondly, thanks to Sun Binyong, for asking us about the generalization to the
case of non-connected affine Nash groups and for his commentary on the proof
described to him by the first author.

We now give some definitions and facts, with [2] as a basic reference. We will
work over an arbitrary real closed field R, a special case being when R = R. If U is
an open semialgebraic subset of Rn then by a Nash function f : U → R we mean
a function which is semialgebraic and infinitely differentiable, in the obvious sense.
When R = R, this amounts to f being (real) analytic and satisfying a polynomial
equation P (x̄, f(x̄)) = 0 on U . The definition of an abstract Nash manifold over R,
of Nash maps between such Nash manifolds, and hence of a Nash group over R is
unproblematic. But there does not seem to be a systematic treatment of “differential
geometric” properties of such abstract Nash manifolds when R is not the reals. So we
will take as our definition of an “affine Nash manifold” that of a d-dimensional Nash
submanifold M of Rn from [2] (Definition 2.9.9). M should be a semialgebraic subset
of Rn with the following property: for every a ∈ M there is an open semialgebraic
neighborhood U of 0 in Rn and open semialgebraic neighborhood V of a in Rn, and
a Nash diffeomorphism φ between U and V such that φ((Rd ×{0})∩U) = M ∩ V .

A Nash function or mapping f from M to R is by definition a semialgebraic
function such that for every φ as above the map f ◦ φ restricted to (Rd × {0})∩U

is Nash (considered as a mapping from a semialgebraic open subset of Rd to R).
Note that in particular the coordinate functions on M are Nash. We deduce easily
the notion of a Nash mapping from M to N where M, N are affine Nash manifolds.

A Nash submanifold M of Rn has a topology induced from Rn and we call
it semialgebraically connected if we cannot write M as the disjoint union of two
nonempty open semialgebraic subsets. In general an affine Nash manifold is the
disjoint union of finitely many definably connected components, each of which is
also an affine Nash manifold.

By an affine Nash group G we mean an affine Nash manifold with a group
structure such that the multiplication and inversion maps, from G × G → G and
G → G respectively are Nash maps. If G is an affine Nash group then G0 denotes the
semialgebraically connected component of the identity, also an affine Nash group.



February 24, 2012 14:3 WSPC/S1793-7442 251-CM 00045

Affine Nash Groups over Real Closed Fields 579

The notions of a real algebraic variety and affine real algebraic variety over R as
well as regular maps between them are discussed in detail in Sec. 3 of [2]. We will call
these R-algebraic varieties and affine R-algebraic varieties. An R-algebraic group is
an R-algebraic variety with group structure (product, inversion) given by regular
maps. A key difference with the usual algebraic geometry (over an algebraically
closed field) is that projective n-space over R, Pn(R), is (biregularly isomorphic to)
an affine R-algebraic variety (Theorem 3.4.4 of [2]). A consequence is that if X is
a quasiprojective algebraic variety over R (or defined over R) in the usual sense,
then the set X(R) of R-points of X is (naturally) an affine R-algebraic variety. On
the face of it X(R) need not be Zariski dense in X , but replacing X by the Zariski
closure of X(R) in X , we can always assume Zariski-density of X(R). As algebraic
groups are quasiprojective, it follows that if G is an algebraic group defined over R

then G(R) is an affine R-algebraic group, in particular an affine Nash group over R.
If H is an R-algebraic group then H0 as well as finite covers of H , will be

affine Nash groups but not necessarily R-algebraic groups. Likewise over any real
closed field R. So the most one can expect to prove is that an affine Nash group G is
Nash isogenous to a union of semialgebraic connected components of an R-algebraic
group (which is what we prove). Moreover, it suffices to prove that there is a Nash
homomorphism f with finite kernel from G into some R-algebraic group H , because
then f(G) will have finite index in its Zariski closure (an R-algebraic subgroup
of H).

Although the role of model theoretic ideas in this paper is somewhat suppressed,
we just say a few words. A semialgebraic subset X of Rn is the same thing as a
set which is (first order) definable (with parameters) in the structure (R, +, ·, <)
(because of quantifier elimination). By a semialgebraic function f between semial-
gebraic sets we mean simply a function whose graph is semialgebraic, so we make
no continuity assumption. An important fact is that any semialgebraic function
is “piecewise Nash”: if U is an open semialgebraic subset of Rn and f : U → R

is semialgebraic, then there is an open dense semialgebraic subset U ′ of U such
that f |U ′ is Nash. By a semialgebraic group we mean a semialgebraic set with
semialgebraic group operation. Nash groups (affine or otherwise) are semialgebraic
groups and moreover any semialgebraic homomorphism between Nash groups is
Nash. A result in [6] (together with the above-mentioned piecewise Nashness of
semialgebraic functions) implies that any semialgebraic group is semialgebraically
isomorphic (as a group) to a (not necessarily affine) Nash group. However, there
are many semialgebraic groups which are not semialgebraically isomorphic to affine
Nash groups: Fix a > 0 in R then the semialgebraic group with universe the interval
[0, a) and with group operation addition modulo a is a well-known such example.
A rather new kind of example appears in [2.10, 3]. It seems not too unreasonable
at the current time to aim towards a fairly explicit description of all semialgebraic
groups over real closed fields (up to semialgebraic isomorphism), starting from the
R-algebraic groups and iterating some basic constructions.
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We will be making use of the notion of the dimension of a semialgebraic set
X ⊆ Rn. See Sec. 2.8 of [2] or any model theory text such as [4].

Definition 1.1. Let M be an affine Nash manifold. By a Nash subset of M we
mean the common zero set of finitely many Nash functions f : M → R.

So a Nash subset of M is a special case of a semialgebraic subset of M .

An important fact for us will be:

Lemma 1.2. Let M be an affine Nash manifold. Then we have the descending
chain condition on Nash subsets of M : there is no infinite strictly descending
chain X1 ⊃ X2 ⊃ ... of Nash subsets of M .

Proof. This is given by Proposition 8.6.2 of [2] that the common zero set in M of
an ideal I in the ring of Nash functions on M , is the common zero set of finitely
many functions in I.

Remark 1.3. Let M ⊂ Rn be an affine Nash manifold of dimension d. Then the
Zariski closure of M in Rn has dimension d.

2. Algebraicity of Semialgebraically Connected Affine
Nash Groups

Remember that R denotes an arbitrary real closed field.
We prove:

Theorem 2.1. Let G be a semialgebraically connected affine Nash group over R.
Then G is Nash isogenous to the semialgebraic connected component of the identity
of some R-algebraic group H(R). Equivalent there is a Nash homomorphism with
finite kernel of G into some R-algebraic group H(R).

The strategy is as in the purported proof in [5] in the case R = R.

Step I, which does not make use of affineness, is to find a (connected) algebraic group
H over R and a local Nash isomorphism between G and H(R). By a local Nash
isomorphism between G and H(R) we mean some Nash diffeomorphism f between
open semialgebraic neighborhoods of the identity, U , V of G, H(R) respectively,
such that for any g, h ∈ U , if g · h ∈ U , then f(g · h) = f(g) · f(h).

This is precisely Theorem A from [5] the proof of which goes through for an
arbitrary real closed field. Model theory, in the guise of the first author’s group
configuration techniques, played a role in the proof. The referee has requested a
few more details, so we give a brief guide to the proof here, but still referring the
reader to [5] for appropriate notions from model theory. First there is no harm in
assuming R to be a saturated real closed field (for a suitable uncountable cardinal),
as long as one keeps track of parameters over which data are defined. Let K = R(i)
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be an algebraically closed field. Let k < R be a finitely generated field over which
G is definable (as a semialgebraic group). Now G has a certain dimension as a
semialgebraic (or Nash) group, which we suppose to be n. We will call a point a of
G generic over k if tr.deg(k(a)/k)) = n. Likewise we can talk about points a, b of
G being generic, independent over k. Also for a field F , F alg denotes the algebraic
closure of F .

Then Proposition 3.1 of [5] says:

(*): There is a group H , “connected” and definable over k in the algebraically closed
field (K, +, ·), and points a, b, c ∈ G and a′, b′, c′ ∈ H(R), such that

(i) ab = c in G and a′b′ = c′ in H ,
(ii) k(a)alg = k(a′)alg, k(b)alg = k(b′)alg, and k(c)alg = k(c′)alg,
(iii) a and b are generic independent points of G over k.
(iv) a′ and b′ are generic independent points of H over k.

Some clarifications: The group H , being definable over k in the algebraically closed
field K and connected (no definable subgroup of finite index) is definably (over k)
isomorphic to a connected algebraic group, via a version of Weil’s theorem, so can
already be assumed to be such. The condition (iv) says that a′, b′ are generic inde-
pendent points of H over k in the sense of algebraic geometry. The other conditions
force that H has dimension n too as an algebraic group. A key point of course is
that the points a′, b′ are R-rational points of H . The proof of 3.1 in [5] is a version
of the “group configuration theorem” but taking care of “rationality” issues.

Next comes 4.8 of [5] for R instead of R:

(**): There are open k-definable neighborhoods U , V and W in G of a, b, c respec-
tively, and U ′, V ′, and W ′ in H(R) of a′, b′, c′ respectively, and k-definable Nash
homeomorphisms f : U → U ′, g : V → V ′, h : W → W ′, such that

(i) f(a) = a′, g(b) = b′, h(c) = c′,
(ii) for all x ∈ U , y ∈ V , xy ∈ W and f(x)g(y) = h(xy),
(iii) for all x, z ∈ U , x−1c ∈ V and zx−1c ∈ W .

Again we give a small commentary: As a and a′ are interdefinable over k, there
are k-definable open neighborhoods U , U ′ of a, a′ in G, H(R) respectively and a
k-definable (i.e. semialgebraic over k) homeomorphism f between U and U ′ taking
a to a′. As semialgebraic functions are “piecewise Nash” and a, a′ are generic in
G, H(R) respectively, we may assume f is Nash. Likewise for b, b′ and c, c′. The rest
is as in the proof of 4.8 of [5].

Finally, as in 4.9 of [5] we conclude (with notation as in (**)) that:

(***): Let χ : U−1 · a → (U ′)−1 · a′ be defined by χ(x−1a) = f(x)−1a′. Then χ

is a local (Nash) isomorphism between open semialgebraic neighborhoods of the
identity of G and H(R).
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This concludes the sketch of Step I.

Step II replaces the “proof of Theorem B” in Sec. 4 of [5] which made use of
universal covers of real Lie groups, but had a mistake (proof of the CLAIM on
p. 240, in which we implicitly assumed that the image of a discrete subgroup under
a continuous homomorphism of Lie groups is also discrete).

Let f be the local Nash isomorphism between G and H(R) given by Step I. Note
that G×H(R) is an affine Nash group (in particular an affine Nash manifold). By
Lemma 1.2 we have the DCC on Nash subsets of G × H(R), so in particular any
subset Y of G × H(R) has a “Nash closure”: smallest Nash subset of G × H(R)
containing Y . For each open semialgebraic neighborhood U of the identity of G

contained in dom(f), let AU ⊂ G×H(R) be the graph of the restriction of f to U ,
and let BU ⊂ G × H(R) be the Nash closure of AU .

By Lemma 1.2 again B = ∩UBU is a finite subintersection, and so of the form
BU0 for fixed U0 which we may assume to be symmetric (i.e. U0 = U−1

0 ).

Lemma 2.2. dim(B) = d = dim(G) = dim(H(R)).

Proof. Note that for each U the dimension of AU is d, and hence by 1.3 the
dimension of the Zariski closure of AU is d. As AU ⊂ BU ⊆ Zariski closure of AU ,
it follows that dim(BU ) = d.

Lemma 2.3. B is a subgroup of G × H(R).

Proof. Let U1 ⊆ U0 be a symmetric semialgebraic open neighborhood of the iden-
tity in G such that U1 · U1 ⊆ U0. We now work in the group G × H(R).

Claim 1. For any a ∈ AU1 , and x ∈ B, a · x ∈ B.

Proof. Note that Xa = {x ∈ G×H(R) : a · x ∈ B} is a Nash subset of G×H(R)
(as B is a Nash subset and the group operation is Nash). But if x ∈ AU1 then
a · x ∈ AU0 ⊂ BU0 = B. Hence Xa contains AU1 . But BU1 = BU0 = B, so Xa

contains B as required.

Using Claim 1 we obtain in a similar fashion:

Claim 2. For any a ∈ B and x ∈ B, x · a ∈ B.

Likewise we see that B is closed under inversion. Hence the lemma is proved.

So B is a semialgebraic subgroup of G × H(R) of dimension d (= dim(G) =
dim(H(R))). It follows that B0 is a semialgebraic subgroup of G×H(R)0 of dimen-
sion d, projecting onto each factor. The “kernel” of B0, {g ∈ G : (g, e) ∈ B0} and
“cokernel” of B0, {h ∈ H(R)0 : (e, h) ∈ B0} are clearly finite, normal (so central)
subgroups of G, H(R)0 respectively. (For example if π2 : B0 → H(R)0 is projection
onto the second coordinate, then ker(π2) is a (finite) normal subgroup of B0, from
which we easily deduce that {g ∈ G : (g, e) ∈ B0} is a (finite) normal subgroup of
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G.) In any case let C denote the cokernel. As we may assume H(R)0 to be Zariski
dense in the connected algebraic group H , C is also a finite central subgroup of H .
Then H/C is a connected algebraic group defined over R, and we have a semialge-
braic isomorphism between (H/C)(R)0 and H(R)0/C. So the isogeny from G onto
H(R)0/C can be identified with a (Nash) isogeny from G onto the (semialgebraic)
connected component of (H/C)(R). The proof of 2.1 is complete.

3. The Non-Connected Case

This section is devoted to a proof of:

Proposition 3.1. Let G be an arbitrary (not necessarily semialgebraically con-
nected ) affine Nash group over R. Then there is a Nash homomorphism with finite
kernel from G into some R-algebraic group H(R).

Let G0 be the semialgebraically connected component of G. All we will use is
that G0 is affine Nash. Note that we are free to replace G by G/N for any finite
normal subgroup N . Hence by Theorem 2.1 we may assume that G0 = H1(R)0

where H1 is a connected algebraic group defined over R. For g ∈ G, let αg : G0 →
G0 be conjugation by g. The basic idea is to extend each αg to an R-rational
automorphism βg of H1, at the expense of replacing H1 by an isogenous algebraic
group defined over R. It will then be easy to construct the required algebraic group
H (whose connected component is H1).

We go through various steps. First we may and will assume that R is of car-
dinality continuum, by passing to an elementary extension or substructure of R.
Hence R(i) is an algebraically closed field of cardinality the continuum, which we
can assume to be the field C of complex numbers. We identify the algebraic group
H1 with its group of complex points H1(C). Let π : H̃1 → H1 be the universal cover
of H1, a simply connected complex Lie group (see 2.6.1 of [8] for example), and Γ
the kernel of π, a central discrete subgroup. For g ∈ G, let Kg be the Zariski closure
in H1 ×H1 of the graph of αg. As the graph of αg is a semialgebraically connected
semialgebraic subgroup of G0 × G0, Kg will be a connected algebraic subgroup of
H1×H1 whose dimension as a complex algebraic variety coincides with the semial-
gebraic dimension of the graph of αg (which equals the semialgebraic dimension of
G0 and thus the complex dimension of H1). In particular, Kg < H1 ×H1 will have
finite-to-one projections on each coordinate and with both “kernel” and “cokernel”
being central. Let K̃g be the universal cover of Kg, also a complex Lie group.

Lemma 3.2. (i) K̃g naturally identifies with the graph of an automorphism α̃g of
H̃1, which lifts αg.
(ii) α̃g(Γ) ∩ Γ has finite index in each of α̃g(Γ) and Γ.
(iii) When g ∈ G0, α̃g acts trivially on Z(H̃1), in particular acts trivially on α̃h(Γ)
for all h ∈ G.
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Proof. (i) The coordinate projections p1, p2 : Kg → H1 lift to (analytic) iso-
morphisms p′1, p

′
2 between K̃g and H̃1, whereby K̃g is the graph of an analytic

automorphism of H̃1.
(ii) By considering α̃g−1 it suffices to prove that for each g,
(*) α̃g(Γ) ∩ Γ has finite index in α̃g(Γ).
Now Kg ⊂ H1 × H1 has finite cokernel enumerated by d say. Let d

′
be a lifting of

the tuple d to a tuple in H̃1. Let a ∈ Γ. Then α̃g(a) ∈ Γ · d
′
. Hence α̃g(Γ) meets

only finitely many translates of Γ in H̃1, yielding (*).
(iii) If g ∈ G0, then αg is already a rational map, so the Zariski closure Kg of its
graph is still conjugation by g in H1. It is easy to see that α̃g is then conjugation
in H̃1 by some (any) lift g̃ of g, hence acts trivially on Z(H̃1).

Corollary 3.3. Let Γ′ be the subgroup of H̃1 generated by the set of α̃g(Γ) for
g ∈ G. Then Γ is a subgroup of Γ′ of finite index.

Proof. Clearly Γ ⊂ Γ′, as by Lemma 3.2(iii) α̃g(Γ) = Γ for g ∈ G0. Also by 3.2(iii)
again, α̃g(Γ) depends only on the coset of g modulo G0. So, as G0 has finite index
in G, {α̃g(Γ) : g ∈ G} is finite, so by Lemma 3.2(ii), Γ has finite index in Γ′.

By the corollary N = Γ′/Γ is a finite (central) subgroup of H1, and the quotient
of H1 by N is a connected algebraic group H2, say (which also equals H̃1/Γ′). Let
τ : H1 → H2 be the canonical surjective homomorphism.

Lemma 3.4. (i) For each g ∈ G, the automorphism α̃g of H̃1 induces an automor-
phism βg of H2 = H̃1/Γ′.
(ii) For any g ∈ G, βg is a rational automorphism of the algebraic group H2 and
(βg ◦ τ)|G0 = (τ ◦ αg)|G0.

Proof. (i) is clear as Γ′ is invariant under each α̃g.
(ii) The graph of βg is clearly the image of Kg under the projection τ×τ : H1×H1 →
H2 × H2, hence βg is a rational automorphism of H . The second part follows as
Kg|(G0 × G0) is the graph of αg.

We now use the βg’s to build a (complex) algebraic group H whose connected
component is H2. Let g1, . . . , gn be representatives of the cosets of G0 in G. Let
gi · gj = hij · gr where r = r(i, j) and hij ∈ G0. Note that the group (G, ·) is
isomorphic to the set G0 ×{g1, . . . , gn} equipped with the group operation (h, gi) ∗
(h′, gj) = (h · (αgi(h

′)) · hij , gr(i,j)), via the map taking h · gi to (h, gi). Let us now
define the group H to be the set H2 × {g1, . . . , gn} with group operation (h, gi) ∗
(h′, gj) = (h · (βgi(h′)) · τ(hij), gr(i,j)). Note that H is definable with parameters
in (C, +, ·), hence is definably isomorphic to a complex algebraic group (whose
connected component is clearly H2).

Let us now map G to H by the map f(h · gi) = (τ(h), gi), and we note that this
is a homomorphism with finite (central) kernel (contained in G0).
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At this point we can conclude the proof of Proposition 3.1 in two possible ways.

(A): We have already said that H can be identified with a complex algebraic group.
Identifying C with R × R, we identify H with an R-algebraic group, and we
note that f is semialgebraic (hence Nash)

(B): Alternatively we can analyze H2 and the construction of H to see that H

is actually a (complex) algebraic group defined over R and that the homo-
morphism f : G → H is also defined over R, whereby f : G → H(R) is
the required semialgebraic (in fact Nash) homomorphism with finite central
kernel.

The proof of Proposition 3.1 is complete.
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