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0. Introduction

The purpose of this paper is to analyze the procedure of renormalization from the
mathematical point of view. Our original motivation came from trying to really
understand the paper [4]. This paper uses the so-called Batalin–Vilkovitski formal-
ism [6, 3]. Its main features include:

(1) given a QFT, one constructs a so-called quantum Batalin–Vilkovitski bracket
on the space of observables. Using this bracket one writes a Master equation
(a.k.a. Maurer–Cartan equation);

(2) every solution to this equation is supposed to produce a deformation of the
QFT.

It is the procedure of constructing such a deformation that is called renormal-
ization in the current paper.

Unfortunately, the treatment in [4] does not lead to a (mathematically) non-
contradictory definition of the Batalin–Vilkovitski bracket or renormalization (due
to divergencies). The goal of this paper is to begin filling this gap up.

Before working with the QFT from [4] (i.e. the Poisson sigma model), it makes
sense to start with simpler theories and to define the Batalin–Vilkovitski bracket
and the renormalization for them. In this paper we do it for the theory of free
boson in R

2n, n > 1. It turns out that the construction generalizes more or less
straightforwardly to the situation in [4], which will be a subject of a subsequent
paper.
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The author hopes that the constructions of this paper will also work in a more
general context.

We deal with QFTs via a DX -module M of observables of the theory (X is the
spacetime) and an OPE-product structure on M . So, we start with a definition of
an OPE-product. To this end one first has to prescribe possible singularities of these
OPEs. We call such a prescription a system (a precise definition is given below).
Given a system, we have a notion of an OPE-algebra over this system.

We then construct an appropriate system for the free scalar boson Euclidean
theory in R

2n, n > 1, in which case the only possible singularities are of the type:
products of squares of Euclidean distances in the denominator. We denote this
system by 〈i〉. The cases R2,R2n+1 require semi-integer powers or logarithms, which
leads to slightly more complicated definitions. For simplicity we only work with R2n,
n > 1 throughout the paper.

We then show that the Batalin–Vilkovitski bracket arises due to a certain
additional structure on the system. We call a system with such a structure pre-
symmetric. The system 〈i〉 has no natural pre-symmetric structure, nevertheless
we construct a differential graded resolution 〈R〉 → 〈i〉 which is pre-symmetric.
Furthermore, any OPE-algebra over 〈i〉 can be lifted to an OPE-algebra over 〈R〉.
The building blocks for the system 〈R〉 are certain spaces of generalized functions.
The lifting procedure can be interpreted as a regularization (i.e. passage from usual
functions with singularities to generalized functions). It seems to be very similar
to the well-known Bogoliubov–Parasyuk–Hepp procedure [11]. There is also some
affinity with the approach in [2].

It is worth to mention that the homotopy theory implies that, upto homotopy,
nothing should depend on the choice of such a lifting. What is not implied by the
homotopy theory is that we can always find an “honest” lifting (as opposed to a lift-
ing upto higher homotopies). Furthermore, we expect that the action of Hopf alge-
bras introduced in [8] (see also [2], where a somewhat similar object appears under
the name of “the group of renormalizations”) should provide us with (“honest”,
not quasi-) isomorphisms between the different liftings, which also looks slightly
different from what we are used to in the homotopy theory.

Next, we treat the renormalization procedure. It turns out that to accomplish
such a procedure, one needs certain additional properties of the system. We call a
system with these additional properies symmetric system. Unfortunately, the system
〈R〉 is only pre-symmetric, and not symmetric. The reason is very simple: the
renormalized OPE have more sophisticated singularities. It turns out, though, that
there is a formal “symmetrization” procedure, which produces a symmetric system
out of a pre-symmetric one. So, starting from 〈R〉, we get a symmetric system
〈Rsymm〉 and construct a renormalized OPE in this system.

Morally, the system 〈Rsymm〉 is given in terms of a D-module whose solutions
are possible singularities of the renormalized OPE. Our last step is to interpret this
D-module as a sub-module in the space of real-analytic functions.

1240002-2



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

A Formalism for the Renormalization Procedure

Our approach has to be compared with the ones in [1] and [8, 9]. Our feeling
is that our approach is less general than the one in [1] (although, I believe, that
they become rather close, if one uses the abstract definition of a system (see 2.3.3);
the approach in [8, 9] studies a concrete renormalization procedure, nevertheless, it
seems that the Connes–Kreimer Hopf algebra is a rather general phenomenon by
means of which one can identify different regularizations (= liftings to 〈R〉) of an
OPE-algebra, as was mentioned above.

I hope that the tools developed in this paper can help complete the project
described in [10] in a mathematically rigorous way. The major thing which is pre-
dicted by physicists (i.e. in [10]) and which is lacking in this paper is a construction
of a homotopy d-algebra structure on the de Rham complex of the D-module of
observables (we only construct a Lie bracket).

The main technical tool that we use in this paper is a D-module structure on the
space of observables. The author started to appreciate this structure in the process
of reading [5].

In the case of the free boson the module of observables equals SymOX
DX/DX∆,

where X is the spacetime and ∆ is the Laplacian. This module is not free, which
prompts using resolutions and homological algebra.

1. Content of the Paper

The paper consists of three parts. In the first part we introduce the notion of
system and the structure of an OPE-algebra over a system. We then discuss a
naive approach to renormalization, the naiveness being in ignoring all complications
stemming from homological algebra. The rest of the paper is devoted to constructing
a homotopically correct (=derived) version of this naive construction. In the second
part we explain the main steps in our construction with all technicalities omitted.
The third part deals with these omitted technicalities.

Part I: Systems, OPE, Naive Renormalization

2. What is an OPE?

Before giving general definition of OPE, we will introduce this notion in the setting
of the theory of free boson. The general notion of an OPE will be obtained via a
straightforward generalization.

2.1. Notations

We are going to consider the Euclidean theory of free boson. Let Y := R
2N be the

spacetime. We will prefer to work with the complexification X = C2N viewed as an
affine algebraic variety over C. Fix a positively-definite quadratic form q :Y → R.
Extend it to X and denote the extension by the same letter: q :X → C.
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For a finite set S, let XS be the algebraic variety which is the product of #S
copies of X . Let DXS be the sheaf of algebras of differential operators on XS . Let
D-shS be the category of DXS -sheaves, i.e. non-quasi-coherent DXS -modules. The
usage of non-quasi-coherent modules is indispensable in the setting of this paper;
on the other hand, since we are not going to use any of subtleties of the theory of
D-modules, DXS sheaves will not cause any discomfort.

2.2. Extension of a D-sheaf from a closed subvariety

The material in this subsection is standard and can be found for example in [5].
Let i :Y → Z be a closed embedding of algebraic variety and let M be a DY -

sheaf. Let Yn be the nth infinitesimal neighborhood of Y in Z. It is well known that
M is a crystal, i.e. it naturally defines an OYn -sheaf; denote it by Nn. Set i∧N :=
liminvnNn; it is a topological DZ -module, the topology is IY -adically complete,
where IY is the ideal of Y . There is a simple explicit formula for i∧M :

i∧Y ∼= i.HomOY (i∗DZ ,M),

where i∗DZ is the quasi-coherent inverse image of DZ viewed as a quasi-coherent
OY -module via the left multiplication; i. is the sheaf-theoretic extension by zero;
the DZ -action on i∧Y is via the right action on i∗DZ .

One can prove an analogue of Kashiwara’s theorem in this setting: the functor
i∧ is an equivalence of the following categories: the first category is the category
of DY -sheaves; the second category is the category of DZ -sheaves which are sheaf-
theoretically supported on Y and are IY -complete, the morphisms are continuous
morphisms. One of the corollaries is the existence of natural maps i∧(M)⊗OZ N →
i∧(M⊗OY i

∗N): Kashiwara’s theorem implies that the right-hand side is the IY -adic
completion of the left-hand side.

If i, k are consecutive embeddings, then i∧k∧ ∼= (ik)∧.

2.2.1. All our closed embeddings are going to be the embeddings of a generalized
diagonal into some XS. It is convenient to describe them as surjections p :T → S.
Each such a surjection produces a closed embedding ip :XS → XT in the obvious
way.

2.2.2. Another feature of the D-modules theory that will be used in this paper is
the existence of exterior product functors

�a∈A :
∏
a∈A

D-shSa → D-shS ,

where Sa, a ∈ A is a finite family of finite sets and S = �a∈ASa.
The functor i∧ is related with the exterior product in the following way. Let

pa :Ta → Sa be a family of projections. Let T = �a∈ATa; S = �a∈ASa; p :T → S;
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p = �a∈Apa. We then have a natural transformation

�a∈A
∏
a∈A

i∧a → i∧�a∈A

both functors act from
∏D-shSa to D-shT .

2.3. Construction of functors which are necessary

to define an OPE

Let us now take into account a specific feature of our problem: the presence of the
quadratic form q which describes the locus of singularities of the corellators. Let
S be a finite set and s �= t be elements in S. Let qst :XS → C be the function
q(Xs −Xt), where Xs are the coordinates of a point on the sth component of XS

(Xt are the coordinates on the tth copy of X). Let Dst be the divisor of zeros of
qst. Denote by ZS := XS\(∪stDST ). Let jS :ZS → XS be an open embedding. Set
BS := jS∗OZS . BS is a DXS -module.

For a projection p :T → S set Bp := �s∈SBp−1s; Bp is a DXT -module. Set
ip : CS → CT ,

ip(M) = i∧(M) ⊗O
XT

BT . (1)

List the properties of these functors. First of all they interact with the exterior
products in the same way as i∧p . The behavior under compositions is different.
Let

R
q−→ T

p−→ S

be consecutive surjections. We then have a natural transformation

aspq : ipq → ipiq,

which is not an isomorphism. Let us construct aspq. We need an auxiliary module
Bp,q = jp,q∗OZp,q , where jp,q :Zp,q → XR is an open subvariety defined by

Zs,t = XR

∖
 ⋃
q(s) �=q(t)

Dst

.

It is clear that Bpq ∼= Bp,q ⊗ Bq and that i∗pBp,q ∼= Bp. Here i∗q is the inverse image
for OXS -coherent sheaves.

Define asp,q as the composition

i∧pq(M) ⊗ Bpq ∼= i∧q i
∧
p (M) ⊗ Bp,q ⊗ Bq → i∧q (i∧p (M) ⊗ i∗qBp,q) ⊗ Bq ∼= iqip(M).
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2.3.1. Co-associativity

The maps asp,q have a co-associativity property. Let

U
r−→ R

q−→ T
p−→ S

be a sequence of finite sets and their surjections. We then have two transformations
from ipqr → iriqip:
the first one is given by

ipqrasr,pq �� iripq
Id×asq,p �� iriqip

and the second one is given by

ipqr
asrq,p �� iqrip

asr,q×Id �� iriqip.

The co-associativity property says that these two transformations coincide.

2.3.2. The maps aspq interact with the exterior products in the following way. Let

Ra
qa−→ Ta

pa−→ Sa (2)

be a family of finite sets and their surjections. Let Ma ∈ CSa , a ∈ A be arbitrary
objects. Let

R
q−→ T

p−→ S

be the disjoint union of (2) over A. Let

M = �a∈AMa ∈ CS .

Then the following diagram is commutative.

�a∈AipaqaMa

��

�� �a∈Aiqa ipaMa �� iq �a∈A ipaMa �� iqipM

ipqM

������������������������������������������������

(3)

2.3.3. Abstract definition

We abstract the properties of the functors ip. Assume that for every surjection
p :S → T of finite sets we are given functors p :D-shT → D-shS such that

(1) If p is a bijection, then p is the equivalence of categories induced by p;
(2) p interact with the exterior products in the same way as ip; If all pa are bijec-

tions, then the corresponding transformation is the natural one.
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(3) Let

R
q→ T

p→ S

be a sequence of surjections. We then have transformations

aspq : pq → qp.

This transformation is an isomorphism if at least one of p, q is a bijection. If
both p, q are bijections, then the map aspq is the natural isomorphism of the
corresponding equivalences.

(4) The maps aspq satisfy the co-associativity property as in (2.3.1).
(5) The maps aspq interact with the exterior product in the same way as in (2.3.2).

If all these properties are the case we say that we have a system.
The functors ip and their transformations form a system which we

denote by 〈i〉.

2.3.4. Morphisms of systems

Let 〈〉, 〈k〉 be systems. A morphism of systems F : 〈〉 → 〈k〉 is a collection of
transformations Fp : p → kp which commute with all elements of the structure of
system.

2.4. Definition of OPE

With these functors and their properties at hand we are ready to define an OPE-
algebra.

First of all, we need to fix a DX -module M such that its sections are observables
of our theory. In the case of free boson, we set M = SOXN , where N = DX/DX ·∆.

As we know from physics, an OPE is a prescription of maps

opeS :M�S → iπS (M),

where πS :S → {1} is the projection onto a one-element set. These maps should be
equivariant with respect to bijections S → S′ of finite sets.

Let us formulate the conditions. It is convenient to define maps opep for an
arbitrary surjection p :S → T ,

opep :M�S → ip(M�T )

as the composition:

M�S �t∈T opep−1t−−−−−−−−→ �t∈T iπp−1t
(M) → ip(M�T ).

Now let R
q→ T

p→ S be a sequence of surjections of finite sets. We can define
two maps

M�R → iqipM�S .
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The first one is induced by the map asq,p:

M�R opepq−−−→ ipqM�S asq,p−−−→ iqipM�S;

the second one is defined by:

M�R
opeq−−−→ iq(MT )

opep−−−→ iqip(M�S).

The axiom is that

Axiom 2.1. These two maps should coincide.

3. Additional Features

It turns out that the procedure of renormalization depends on an additional struc-
ture possessed by the system ip, which we are going to introduce. The importance
of this structure is not restricted to the renormalization. The author believes that
this structure also plays a key role in formulation of the quasiclassical correspon-
dence principle and in the connection between the Hamiltonian and Lagrangian
formalism. Thus, let us describe this structure.

3.1. Preparation

3.1.1. The system l

Let lie1 be the operad which describes Lie algebras with the bracket of degree 1.
Let L(S) := lie1(S)∗ be the linear dual, here S is a finite set. Let p :S → T be a
map of finite sets. Set

L(p) := ⊗t∈TL(p−1t).

We then have maps L(p1)⊗L(p2) → L(p1 � p2) and L(rq) → L(r)⊗L(q), where
pi :Si → Ti; r :T → R; q :S → T are maps of finite sets.

Now let p :S → T be a surjection. Set lp :D-shXT → D-shXS ; lp = (ip∗) ⊗ L(p),
where ip :XS → XT is an embedding determined by p and ip∗ is the correspondent
D-module theoretic direct image. We then have natural maps

lp1(M1) � lp2(M2) → lp1�p2(M1 �M2)

and l(rq) → l(q)l(r), where pi :Si → Ti; r :T → R; q :S → T are maps of finite sets
and Mi ∈ DXSi . These maps are induced by the correspondent maps for L.

Thus, the functors l possess the structure which is similar to the one on i. One
sees that all the properties for i stated in 2.3.3 remain true upon substituting l for i.
In other words, l form a system which we denote by 〈l〉.
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An OPE-algebra structure over the system 〈l〉 on a DX -module M is equivalent
to a *-Lie structure on M [−1] as defined in [5]. Let us recall the definition.

3.1.2. Definition of *-Lie algebra structure

A *-Lie stucture on a DX -moduleM is given by an antisymmetric map b :M�M →
i∗M , where i :X → X ×X is the diagonal embedding. The bracket b is supposed
to satisfy an analogue of Jacobi identity.

3.1.3. Quasi-isomorphisms of systems

Let 〈i〉, 〈〉 be systems and let F : 〈i〉 → 〈〉 be a morphism of systems. F is a quasi-
isomorphism if for every free DXS -module M the induced map p(M) → ip(M) is
a quasi-isomorphism for every surjection p :T → S.

3.1.4. Definition of additional structure I

The most important part of our additional structure can then be described as a
choice of quasi-isomorphisms 〈R〉 ∼→ 〈i〉, 〈l〉 ∼→ 〈m〉 and a map of systems 〈R〉 → 〈m〉:

〈i〉 〈l〉

��
〈R〉

��

�� 〈m〉
There is even more structure on 〈R〉 which we shall use. This part is of some

importance, but not of principal importance, and will be discussed later (see
Sec. 4.1.3).

In the rest of Part I we ignore homotopy-theoretical complications and assume
that we have a map systems 〈i〉 → 〈l〉 (this helps to explain the ideas in a simper
way). A precise exposition will be given in the subsequent parts of the paper. Let
us now discuss a motivation for the introduced additional structure.

3.2. Physical meaning

Physical meaning of the introduced additional structure can be seen from examining
the case when p :S → pt, where S = {1, 2} is a two-element set. As a part of our
structure, we have a map

ip → ip∗ ⊗ L(S).

But L(S) = k[1], therefore, we simply get a map

ip → ip∗. (4)

Recall that

ip(M) = i∧(M) ⊗O
XS

BS
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and one can show that

ip∗(M) = i∧(M) ⊗O
XS

ip∗OX .

Assume for simplicity that the map (4) is induced in a natural way by a degree
+1 map

B2 → ip∗OX (5)

(we keep in mind the above identifications).
Such a map specifies an extension CS fitting into exact sequence:

0 → ip∗OX → CS → BS .
The meaning of CS becomes clear, if we come back to the real (versus complex)

picture. The global sections of BS produce functions on the real part Y S with sin-
gularities on the diagonal. A global section of CS then has a meaning of distribution
on Y 2, whose restriction onto the complement Y 2\Y is a function from BS. If we
take the space C′ of all such distributions, we shall get a slightly larger extensions
as the kernel C′ → BS consists of all distributions supported on the diagonal, which
is larger than ip∗OX . Nevertheless, it turns out that the space of global sections of
CS can be defined as a subspace of C′ (see 10.1).

Set IS :DX → DXS to be

IS(M) = i∧(M) ⊗O
XS

CS .
For good M (say flat as OX -modules), we have an exact sequence

0 → ip∗(M) → Ip(M) → ip(M) → 0.

Now let M be an OPE -algebra over 〈i〉. In particular, we have a map

M�S → ip(M).

We may now interpret the composition

M�S → ip(M) → ip∗(M)

of this map with the map (4). Assume that M is a complex of free DX modules
(bounded from above). Then we can lift the OPE-map to a map

µ :M�S → Ip(M)

with a nonzero differential and the desired composition is equal to dµ. The proce-
dure of lifting from ip to Ip is nothing else but the regularization of divergences.
The map µ has the meaning of the commutative product in the Batalin–Vilkovitski
formalism. Its differential then has a meaning of the Shouten bracket in the same
formalism. This simple physical argument suggests that the map dµ should be a
*-Lie bracket of degree +1.
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3.3. Geometrical meaning

We will hint at the geometric meaning of the additional structure on 〈i〉. Since our
intention is just to give a motivation, the arguments will not be rigorous.

Recall that the functors i have been constructed using the DXS -modules BS ,
which are defined as sheaves of functions on certain affine varieties ZS. Therefore,
the de Rham complex of BS computes the cohomology of ZS shifted by dimZS =
2ns, where 2n = dimC X and s = #S. Let B′

S := iπpS
(OX) = i∧πpS

(OX) ⊗ BS ,
where πpS :S → pt is the map onto a point. The de Rham complex of B′

S computes
the cohomology of the intersection of ZS with a very small neighborhood of the
diagonal X ⊂ XS .

On the other hand, ZS contains as its real part the space ZrS := Y S\(∪s�=t∆st),
where ∆st is the corresponding diagonal. Thus we have a map from the de Rham
cohomology of B′

S to the cohomology of the intersection of ZrS with a very small
neighborhood of the diagonal Y ⊂ Y S in Y S which can be easily seen to be the same
as the cohomology of ZrS . It is well known that H(2n−1)(s−1)(ZrS) ∼= L(S)[1 − s],
where 2n = dimY and s = #S. The shift on the right-hand side is made in such a
way that both sides have degree zero.

Let us slightly change our point of view. Instead of taking the full de Rham
complex, let us pick a point σ ∈ S and let pσ :XS → X be the projection onto the
correponding component. Let pσ∗(B′

S) be the fiber-wise de Rham complex shifted
by the dimension of the fiber (in this case H0pσ∗ is the usual D-module theoretic
direct image).

We see that the induced map ZS → X is a trivial fibration whose fiber FS is
homotopy equivalent to ZS and dimFS = dimZS − 2n. Let V be a small neighbor-
hood of X ⊂ XS , then

Hi(pσ∗(B′
S)) ∼= OX ⊗H2n(s−1)+i(ZS ∩ V )

and we have a through map

H1−s(pσ∗(BS)) ∼= OX ⊗H(2n−1)(s−1)(ZS ∩ V )

→ H(2n−1)(s−1)(ZrS ∩ V ) ⊗OX → L(s)[1 − s] ⊗OX .

Since H>1−s(pσ∗(BS)) = 0, we have an induced map

pσ∗(B′
S) → OX ⊗ L(S).

It is well known that this map induces a map B′
S → i∗OX ⊗L(S) in the derived

category of DXS -sheaves. Thus, the top cohomology of the configuration spaces
can be interpreted as maps B′

S → i∗OX ⊗ L(S). These maps can be extended to
maps ip(M) → lp(M) in the derived category of DXT -sheaves on XT for every free
DXS -module M .

Of course, this argument is insufficient for constructing a map of systems
(as opposed to a collection of maps of functors ip → lp).
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4. Renormalization. “Naive” Version

Here we will sketch a scheme for renormalization ignoring homotopy-theoretical
problems. Although this naive scheme is of purely heuristic value, the correct renor-
malization scheme is in the same relation to the naive one as derived functors are
to usual ones.

So, we shall simply assume that we are given a map 〈i〉 → 〈l〉.
We start with defining the main ingredients.

4.1. *-Lie structure on M [−1]

Thus, we have a morphism of systems 〈i〉 → 〈l〉. Assume that M is an OPE algebra
over i. Then it is also an OPE algebra over l, i.e. M [−1] is a *-Lie algebra. Let
π :X → pt be the projection and denote by π∗M the direct image of M ;

π∗M := ωX ⊗DX M.

We know that g := π∗M [−1] is then a DGLA and this DGLA acts onM . Therefore,
for every surjection of finite non-empty sets p :S → T we have a g-action on

hom(M�S , ip(M�T )).

A very important question for us is whether the elements opep are g-invariant. It
turns out that in general the answer is no. We are going to impose an extra axiom
which would guarantee this property.

4.1.1. Extra axiom which ensures the g-invariance of opep

Let p :S → T be a surjection of finite sets as above. Pick an arbitrary element t ∈ T ;
add one more element σ to S and let pt :S �{σ} → T be a map which extends p
in such a way that pt(σ) = t. (This extra element is needed to take into account
the g-action.) Let I :S → S �{σ} be the inclusion and let P :XS�{σ} → XS be the
natural projection corresponding to I. Let P∗ be the corresponding direct image.
We are going to define several maps P∗ipt → ip[1] as follows. Let s ∈ S be such that
p(s) = t. Let Ps :S �σ → S be the map which is identity on S and Psσ = s. Then
pt = pPs. We then have the following composition:

P∗ipt → P∗iPs ip → P∗lPs ip.

Note that

lPs
∼= iPs∗ ⊗s′∈S L(P−1

s s′) ∼= iPs∗[1].

Thus, we can continue our composition:

P∗lPs ip → P∗(iPs∗[1])ip → ip[1],
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where we used the natural map

P∗iPs∗ → IdXS .

Let

As :P∗ipt → ip[1]

be the resulting composition.
There is one more way to decompose pt. Let Q := p� Id :S � {σ} → T �{σ}.

Let R :T �{σ} → T be the identity on T and let R(σ) = t. Then again pt = RQ.
Therefore, we have a composition:

P∗ipt → P∗iQiR.

Let PT :XT�{vs} → XT be the natural projection. It is not hard to see that we
have an isomorphism

P∗iQ → iPPT∗.

Thus, we continue as follows:

P∗iQiR → ipPT∗iR → ipPT∗lR ∼= ipPT∗iR∗ → ip[1].

Denote the composition of these maps by

Bt :P∗ipt → ip[1].

Let Ct = Bt −
∑
s∈S,p(s)=tAs. Let us show that the maps Ct determine the action

of g on asp. Let X ∈ g. Let L(X) := X.opep; L : g → hom(M�S , ip(M�T )).

Claim 4.1. L is equal to the following composition:

g
⊕t∈T aspt−−−−−−→ ⊕t∈Tg ⊗ hom(M�S�{σ}, ipt(M

�T ))

→ ⊕t∈Tg ⊗ hom(P∗MS�{σ}, P∗ipt(M
�T ))

∼= ⊕t∈T g[1] ⊗ hom(g[1] ⊗M�S, P∗ipt(M
�T ))

→ ⊕t∈T hom(M�S [1], P∗ipt(M
�T )) ⊕Ct−−−→ hom(M�S[1], ip(M�T )[1]).

Therefore, if Ct = 0 for all t, then L = 0.

Proof. Straightforward.

4.1.2. Call a system 〈i〉 endowed with a map 〈i〉 → 〈l〉 invariant if all Ct = 0.
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4.1.3. Another axiom

It turns out that to construct a good theory one has to introduce a one more natural
axiom on 〈i〉. The importance of this axiom can be fully appreciated only when one
passes to a more precise consideration.

Let us describe this axiom. Let A = {1, 2} be a two-element set. Let q :A→ pt.
Let p :S → T be a surjection. Let i : pt → A be the inclusion in which a unique
element pt goes to 1. For an arbitrary injection j :U → V let pj :XV → XU be the
corresponding projection and pi :D-shU → D-shV be the corresponding D-module-
theoretic direct image.

We then construct two maps

pIdS�iip�q → ip�Idpt .

The first map is as follows:

MI : pIdS�iip�q → pIdS�iiIdS�qip�Idpt

→ pIdS�iδIdS�qip�Idpt
∼= ip�Idpt

and the second one is:

MII : pIdS�iip�q → pIdS�iip�Idpt iIdS�q

→ pIdS�iip�IdptδIdS�q ∼= ip�Idpt

→ ip�IdptpIdS�iδIdS�q,

where we have used a natural isomorphism

pIdS�iip�Idpt
∼= ip�IdptpIdS�i.

Call a system 〈i〉 endowed with a map 〈i〉 → 〈l〉 to be pre-symmetric if MI = MII

for all p.
Finally, call a system symmetric, if it is both pre-symmetric and invariant.

4.1.4. What is the situation with the system 〈R〉 that we are going to construct?
It turns out, that upto homotopies, it is pre-symmetric, but not symmetric. Pre-
symmetricity is the additional structure on 〈R〉 which was mentioned in (3.1.4).

The above reasoning suggests that renormalization is only possible in symmetric
(or, at least, invariant systems). Therefore, a procedure of “fixing” 〈R〉 (which we
call “symmetrization”) is needed to perform a renormalization. We shall discuss
a naive version of such a symmetrization after a more detailed explanation how
renormalization goes on in a symmetric system.

4.2. Renormalization in a symmetric system

As was mentioned, the system 〈R〉 that we will construct in the example of free
boson is not symmetric. Nevertheless, to appreciate the importance of symmetricity,
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we will explain in the next section that were 〈R〉 symmetric, the renormalization
of any OPE-algebra over 〈R〉 could be defined in a very simple fashion.

Let M be an OPE-algebra in a symmetric system 〈i〉. Then, by virtue of the map
i → l, M is also an OPE-algebra in l, i.e. M [−1] is a *-Lie algebra. Let πp :X → pt
be the projection onto a point. Then πp∗M [1] is a DGLA. Let λ be a formal variable
(the “interaction constant”). Pick a Maurer–Cartan element

S ∈ λ(πp∗M [−1])[[λ]]1 = λπp∗M [[λ]]; dS + 1/2[S,S] = 0.

This equation is called quantum Master equation. Using S we can perturb the
differential on M ; let M ′ := (M [[λ]], d + [S, ·]) be the corresponding differential
graded DX[[λ]]-module.

The renormalization is the procedure of constructing a C[[λ]]-linear OPE struc-
ture over 〈i〉 on M ′. In our setting this procedure is trivial. Indeed, since M ′ =
M [[λ]] as graded objects; the OPE structure on M gives rise to the maps

ope′p : (M ′)�C[[λ]]S → ip((M ′)�C[[λ]]T ).

The l-invariance of i and Claim 4.1 imply that these maps are compatible with the
differential on M ′. Thus, ope′p do define the renormalized OPE on M ′.

4.3. An idea how to fix non-invariance of 〈i〉: Symmetrization

Let us try to define a system isymm endowed with a map 〈i〉 → 〈isymm〉 such that
in isymm all Ct = 0. Then our OPE-algebra M in 〈i〉 determines an OPE-algebra
in 〈isymm〉 and the renormalization of this algebra goes the way as was described
above.

The obvious way to define 〈isymm〉 is to simply put

isymm
p := ip/Span〈ImCt〉t∈T .

One checks that the structure of system on i is naturally transferred onto isymm
p .

4.4. Summary

Let us first summarize what we have done.
We start with a system 〈i〉 which is quasi-isomorphic to the original system

〈i〉 and is endowed with a map 〈i〉 → 〈l〉. We then construct a symmetric system
〈isymm〉 which fits into the diagram 〈i〉 → 〈isymm〉 → 〈l〉. Thereafter, having an OPE
algebra M over i, we observe that πp∗M [−1] is a DGLA and we pick a Maurer–
Cartan element S ∈ λπp∗M [[λ]][1]. We then define the DX[[λ]]-module M ′ and
define an OPE structure on M ′ over isymm.

What has to be done for this scheme to really work?

Problem 1. We need to construct i with the specified properties.
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Problem 2. We have an OPE algebra M over 〈i〉 and a quasi-isomorphism 〈R〉 →
〈i〉. We need to lift M to an OPE algebra over 〈R〉.

Problem 3. The passage from 〈R〉 to 〈Rsymm〉 is not stable under quasi-
isomorphism of systems. Thus we need to develop a derived version of the map
〈R〉 
→ 〈Rsymm〉.

Problem 4. After all, we get a renormalized OPE-algebra in an abstract system
〈Rsymm〉. To give a physical meaning to this system, we have to find a construction
which transforms this OPE-algebra into OPE-products in terms of series of real-
analytic functions on Y S .

4.5. Plan for the future exposition

The rest of the paper is devoted to solving these problems. As this involves a lot
of technicalities, we shall first retell the content of the paper omitting them. Then
the detailed exposition, with proofs, will follow.

First, we shall formulate the list of properties that the system 〈R〉, to be con-
structed, should possess. These properties form a homotopical variant of the def-
inition of the structure of pre-symmetric system. Every system possessing these
properties will be called pre-symmetric (this should not lead to confusion with the
naive definition of pre-symmetricity).

Secondly, we shall show how the renormalization can be carried over for
OPE-algebras over a pre-symmetric system 〈R〉 (including a construction for
symmetrization of 〈R〉 and a construction of the renormalized OPE-algebra over
the symmetrized system). These steps constitute a homotopically correct version
of the above outlined naive approach. Thereafter, we construct a pre-symmetric
system 〈R〉 which is a resolution of the system 〈i〉.

To renormalize an OPE-algebra over 〈i〉 one has to be able to lift it to an OPE-
algebra over 〈R〉 so that the lifting be compatible with the quasi-isomorphism of
systems 〈R〉 → 〈i〉. This happens to be a variant of the celebrated Bogoliubov–
Parasyuk theorem, saying that such a lifting is always possible. An analogous
theorem can be shown by a homotopy-theoretical nonsense, using the quasi-
isomorphicity of the map 〈R〉 → 〈i〉; but for this to work one has to replace the
stucture of OPE-algebra upto higher homotopies. Let us stress that Bogoliubov–
Parasyuk theorem produces a lifting of usual OPE-algebras, which is a stronger
statement. Homotopical approach, on the other hand, provides for a homotopical
equivalence of two different liftings. These homotopy-theoretic questions will be
discussed in a subsequent paper.

Finally, we solve Problem 4.
The exposition will be organized in such a way that the most difficult techni-

cal moments will be omitted at the “first reading”, which is Part II, and will be
discussed at the “second reading” (i.e. the concluding Part III).
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Part II: Exposition Without Technicalities

We shall pass from a naive approach to the realistic one, in which the naive def-
initions sketched above will be replaced with appropriate homotopically correct
versions.

Our plan is as follows. In the following section we give a homotopically correct
definition of pre-symmetric system.

Next we show how, having an OPE-algebra in a pre-symmetric system, one can
renormalize it.

Next we have to show these definitions work in the example of free scalar boson.
The major part of the required work is done in Part III, in this part we only sketch
the main steps which are:

(1) We have to construct a pre-symmetric system 〈R〉 which maps quasi-
isomorphically to the system 〈i〉;

(2) We have to show that every OPE-algebra over 〈i〉 lifts to an OPE-algebra
over 〈R〉.

Having done this we can apply the symmetrization and renormalization
procedures.

(3) And finally, we need to be able to interpret the renormalized OPE in the sym-
metrized system in terms of expansions whose coefficients are real-analytic func-
tions on Y n without diagonals.

So, let us follow our plan.

5. Pre-Symmetric Systems

In this section we shall give a homotopy version of the notion of pre-symmetric
system (see 4.1.3 for naive version).

The plan is as follows. We shall give two slightly different (and slightly non-
equivalent) definitions of a homotopy analog of a pre-symmetric system. Any
pre-symmetric system in the sense of the first definition will naturally produce
a pre-symmetric system in the sense of the second definition. The first definition is
given in terms of functors Rp, δp, in the second definition we replace the functors
δp with functors of direct image with respect to all projections XS → XT . We will
see that the second definition looks more natural. Moreover, the second definition
encloses all the structures needed for symmetrization and renormalization. So, we
consider the second definition as a more basic one. On the other hand, to define a
pre-symmetric system in the example of free boson, we shall use the first definition.

We start with formulation of the first definition. First of all, we need to provide
for a homotopy-theoretical analog of a map 〈i〉 → 〈l〉. This will be achieved via
replacement of 〈l〉 with a quasi-isomorphic system 〈l〉 ∼→ 〈m〉. We shall give the
definition of such an 〈m〉. A part of a structure of pre-symmetric system on a system
〈R〉 will then be a map 〈R〉 → 〈m〉. As was mentioned in 4.1.3, to be pre-symmetric,
the system 〈R〉 should have additional properties. We will give their homotopical
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versions. This will accomplish the first definition of a pre-symmetric system. Finally,
we formulate the second definition (which is essentially a paraphrasing of the first
definition in terms of direct image functors with respect to projections), it will
then follow automatically that every pre-symmetric system in the sense of the first
definition gives rise to a pre-symmetric system in the sense of the second definition.

5.1. A homotopy version of the map 〈i〉 → 〈l〉
As was explained above, the first step we need to do is to endow the system 〈i〉
with a map of systems 〈i〉 → 〈l〉. We shall do it in a homotopical sense, i.e. we shall
construct systems 〈R〉 and 〈m〉 fitting into the following commutative diagram:

〈i〉 〈l〉
∼
��

〈R〉
∼
��

�� 〈m〉

The vertical arrows should be quasi-isomorphisms.
Let us first define the system 〈m〉.

5.1.1. The system 〈m〉
Let us define the complex mp centered in strictly negative degrees by setting

m−n
p = ⊕δp1δp2 · · · δpn , (6)

where the direct sum is taken over all diagrams

S
p1−→ S/e1

p2−→ S/e2
p3−→ · · · pn−1−−−→ S/en−1

pn−→ T, (7)

where ω > e1 > e2 > · · · > en > e, where e is the equivalence relation induced
by p and pi are natural projections. The differential is given by the alternated sum
d = D1 −D2 + · · · + (−1)nDn−1, where

Di : δp1δp2 · · · δpn → δp1δp2 · · · δpi−1δpi+1piδpi+2 · · · δpn

is induced by the isomorphism

δpiδpi+1 → δpi+1pi .

The maps asq,r : mrq → mqmr are defined in the following natural way. Let p =
rq. Let f be the equivalence relation on S determined by q and e be the equivalence
relation determined by p so that f > e. One can assume that S

q→ S/f
r→ S/e.

The map asq,r restricted to

δp1δp2 · · · δpn
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as in (6), (7), vanish unless there exists a k such that ek = f , in which case it
isomorphically maps this term into

(δp1δp2 · · · δpk
)(δpk+1 · · · δpn).

The factorization maps

fact : �a∈A mpa(Ma) → mp(�aMa)

are given by a “shuffle product”. Here is the construction.
Fix direct summands of mpa :

δp1aδp2a · · · δpnaa ,

where pia :Sia → Si+1a, and define the restriction of the factorization map onto
them.

Define a shuffle as a sequence

α := (a1, a2, . . . , aN ),

where
– ak ∈ A;
– ak enters into the sequence a1, a2, . . . , aN exactly nk times.
Given such a shuffle, let αk(a) be the number of times a enters into the subse-

quence a1, a2, . . . , ak.
Let

Sαk :=
⊔
a∈A

Sαk(a)a.

Define the map

pαk :Sαk → Sαk+1

as

pαk(a)a

⊔
a′ �=a

IdSαk(a′)a′ .

We then have a natural map

fact(α) : �a∈A δp1aδp2a · · · δpnaa(Ma)
∼→ δpα

1
δpα

2
· · · δpα

N
(�a∈AMa) → mp(�aMa).

Set the restriction of the map fact onto

�a∈Aδp1aδp2a · · · δpnaa(Ma)

to be equal to ∑
α

(−1)sign(α)fact(α),

where sign(α) is the sign of the shuffle.

1240002-19



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

Denote by

lmp : mp → δp[1]

the natural projection.
Then a map of systems 〈R〉 → 〈m〉 is uniquely determined by the knowledge of

compositions

lp :Rp → mp → lp. (8)

In the sequel we will work with these maps rather than with the system 〈m〉.

5.1.2. A quasi-isomorphism 〈l〉 → 〈m〉
As a part of our program, we have to define a quasi-isomorphism 〈l〉 → 〈m〉. As it
will not be used in the future, we shall give a very brief description.

It is not hard to see that the cohomology of any complex mp is concentrated in
its lowest degree (i.e. #T − #S, where p :S → T ); and it is not hard to see that
this cohomology is isomorphic to lp, whence the maps lp → mp. The axioms for a
map of systems can be easily checked.

5.1.3. First definition of pre-symmetric system

As a part of the structure of a pre-symmetric system (in the sense of the first
definition) we should include maps (8) which provide for a homotopy-theoretical
substitute for a map of systems 〈i〉 → 〈l〉. To complete the definition we should add
a structure which is a homotopical analog of properties 4.1.3. After we formulate
this structure, we will formulate the axioms which should be satisfied by the ele-
ments of the structure. This will complete the first definition of a pre-symmetric
structure.

We shall start with the most natural piece of structure. Let φ :S → T and
g :A→ B be surjections. Then we should have a natural map

δIdS�φRφ�IdB → Rφ�IdAδIdT �g. (9)

Such a natural map also exists if one replaces 〈R〉 with 〈i〉.
Indeed:

δIdS�φiφ�IdB (M) ∼= i∧φ�g(M) ⊗O
XS�A

(Bφ � ig∗OXB ),

whereas

iφ�IdAδIdT �g(M) ∼= Bφ�IdA ⊗O
XS�A

i∧φ�IdA
((OXT � ig∗OXB )

⊗O
XT�A

i∧IdT �g(M))

1240002-20



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

A Formalism for the Renormalization Procedure

and we see that the right-hand side in (9) is the completion of the left-hand side,
whence the desired map.

The corresponding map for R is constructed following the same principles.
The next piece of structure is more subtle and is given by a family of maps

Rφ�g → Rφ�IdAδIdT �g,

where φ :S → T and g :A → B are arbitrary surjections. The comparison of this
additional structure with the naive structure will be given after we list the axioms
satisfied by lp and s(φ, g). A pre-symmetric structure in the sense of the first def-
inition is then a collection of maps lp and s(φ, g) satisfying the axioms formulated
below.

5.2. Axioms of the pre-symmetric system (in the sense

of the first definition)

5.2.1. Properties of the maps lp

The properties of 〈lp〉 we are going to simply express the fact that the collection of
maps lp should define a map of systems 〈R〉 → 〈m〉.
Property 1. If p is a bijection, then lp = 0.

Property 2. Let fi :Si → Ti be nontrivial surjections. Then the composition

Rf1 (M1) � Rf2(M2) → Rf1�f2(M1 �M2)
lf1�lf2−−−−−→ δf1�f2(M1 �M2)

is zero.
If f1 is a bijection, then the above composition equals

Rf1(M1) � Rf2 (M2)
a�lf2−−−−→ δf1(M1) � δf2(M2) → δf1�f2(M1 �M2),

where we used the isomorphism a :Rf1 → δf1 for a bijective f1.

Property 3. Define the differential dlp.
Let p :S → T and let e be the equivalence relation on S determined by e. Let e1

be a strictly finer nontrivial equivalence relation. Set p1 :S → S/e1, p2 :S/e1 → T

to be the natural projections so that p = p2p1. Set

l(e1) :Rp → Rp1Rp2

lp1 ,lp2−−−−→ δp1δp2
∼= δp.

We then have

dlp +
∑
e1

l(e1) = 0,

where the sum is taken over all nontrivial equivalence relations on S which are
strictly finer than e.
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5.2.2. Properties of maps s(φ, g)

Property 1. The following diagram is commutative:

Rφ�g�h
s(φ�g,h)

�����������������
s(φ,g�h) �� Rφ�g�IdδId�Id�h

s(φ,g)

��
Rφ�Id�IdδId�g�h

Property 2. Assume that φ is not bijective. Then the composition

Rφ�g
s(φ,g)−−−−→ Rφ�IdδId�g

lφ�Id−−−→ δφ�IdδId�g

equals

Rφ�g
lφ�g−−−→ δφ�g.

If φ is bijective and g is not, then the above composition vanishes.
If both φ and g are bijections, then the above composition equals the natural

identification of the right and left-hand sides.

Property 3. Let g = g2g1, where g1, g2 are surjections. Introduce a map

K(φ1, φ2, g1, g2) :Rφ2φ1�g2g1 → Rφ1�g1Rφ2�g2
s(φ1,g1),s(φ2,g2)−−−−−−−−−−−→ Rφ1�IdδId�g1Rφ2�IdδId�g2

(9)−−→ Rφ1�IdRφ2�IdδId�g2g1 .

The property then says: The map

Rφ2φ1�g
s(φ2φ1,g)−−−−−−→ Rφ2φ1�IdδId�g → Rφ1�IdRφ2�IdδId�g

is equal to ∑
g2g1=g

K(φ1, φ2, g1, g2),

where the sum is taken over all diagrams

A
g1−→ A/e1

g2−→ B, (10)

where e1 is an arbitrary equivalence relation on A such that g passes through A/e,
and g1, g2 are the natural surjections.

Property 4. The following diagram is commutative:
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Property 5. Denote

s(g1, φ, g2) :Rφ�g → RId�g1Rφ�g2
lId�g1−−−−→ δId�g1Rφ�IdδId�g2

(9)−−→ Rφ�IdδId�g;

s(φ, g1, g2) :Rφ�g → Rφ�g1RId�g2
lId�g2−−−−→ Rφ�IdδId�g1δId�g2 → Rφ�IdδId�g.

The property asserts that

ds(φ, g) =
∑

g=g2g1

(s(g1, φ, g2) − s(φ, g1, g2)),

where the sum is taken over the same set as in (10).

5.2.3. Comment on the meaning of s(φ, g)

To see this meaning consider a special g :A→ pt, where A = {1, 2}, and φ :S → T

is a surjection. Calculate the differential ds(φ, g).
It is equal to the difference A−B of two maps, where

A :Rφ�g → Rφ�IdRId�g
lId�g−−−→ Rφ�IdδId�g

and

B :Rφ�g → RId�gRφ�Id → δId�gRφ�Id → Rφ�IdδId�g.

Thus, the maps s(φ, g) provide for the difference A−B to be homotopy equiv-
alent to zero (upto higher homotopies).

Let j :S � {1} → S � {1, 2} be the obvious inclusion. Composing A − B with
pj , we see that pjA = MI , pjB = MII as in Sec. 4.1.3. Thus the maps s(f, g) are
responsible for a homotopy analog of pre-symmetricity of 〈R〉.

In the next subsection the above described structure will be reformulated in
terms of functors of direct image with respect to projections. This will constitute a
basis for further exposition.

5.3. Reformulation in terms of direct images with respect to

projections: Second definition of a pre-symmetric system

Recall that the main ingredient in the renormalization procedure is an element of
p∗M , where p :X → pt is a projection. Thus we have to incorporate into our picture
direct images with respect to projections. Let i :S → T be an injection. It induces
a projection pi :XT → XS. Let pi :D-shXT → D-shXS be the corresponding D-
module theoretic direct image. We want to incorporate it into our picture and to
describe the maps which can be defined on superpositions of various Rp and pi.
These maps will be derived from the maps lp and s(f, g). Note that the direct
images with respect to injections are not applied, they are only used to produce
maps between different iterations of Rp and pi.

Thus, we shall now describe these maps and their properties.
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5.3.1. The map we shall describe here is somewhat similar to (9).
Let q :S → T be an surjection and U be a finite set. Consider the following

commutative diagram

S � U p �� �� T � U

S
q �� ����

i

��

T
��

j

��

(11)

where p = q � Id, and i, j are the natural injections. Then we have an
isomorphism

piRp → Rqpj . (12)

One can see that such an isomorphism is naturally defined, if we replace R
with i.

5.3.2. Using the maps lp :Rp → δp, we can do the following.
Consider a commutative triangle

S
p �� �� T

R
��
i

��

��

j
���������

in which i, j are injections and p is a proper surjection. We then have a degree
+1 map

L(i, p) : piRp → pj

given by

piRp → piδp ∼= pj.

5.3.3. Let us now “translate” s(f, g) into our new language. Consider a commu-
tative square

R
p �� �� T

S
q �� ����

i

��

P
��

j

��
(13)

in which i, j are injections and p, q are proper surjections. Let T1 = T \T2 be the
subset of all t ∈ T such that p−1t ∩ i(S) consists of ≥2 elements.

Call such a square suitable if the following is satisfied:
p−1(T1) ⊂ i(S), i.e.

#(p−1t ∩ i(S)) ≥ 2 ⇒ p−1(t) ⊂ i(S).
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We then have a degree zero map

A(i, p, j, q) : piRp → Rqpj .

Construction: Decompose T = T 1�T 2, where T 1 consists of all t ∈ T such that
p−1t ⊂ i(S) (so that T1 ⊂ T 1). Set

Rn = p−1T n, Sn = i−1Rn,

etc., so that our suitable square splits into a disjoint sum of two squares:

Rn
pn

�� �� T n

S
n qn

�� ����
in

��

P
n�

�

jn

��

where n = 1, 2. It follows from the definitions that i1, q2 are bijections so that we
may assume S1 = R1, S2 = P 2, i1 = Id, q2 = Id.

So, we have the following diagram:

S1 �R2
p1�p2�� �� T 1 � T 2

S1 � S2
q1�Id�� ����

Id�i2
��

P 1 � S2
��

j1�j2
��

(14)

The desired map is then defined as follows:

pi1�i2Rp1�p2 → pId�i2Rp1�IdδId�p2 → Rp1�IdpId�i2δId�p2

→ Rp1�IdpId�p2i2 = Rqpj.

5.3.4. Properties

The above defined maps have the following properties, easily derived from the ones
of the maps lp, s(φ, g). We shall now list them.

(1) Let

R
p �� �� T

S
��

i

��

q �� �� P
��

j

��

be a suitable square and q = q2q1, where q1, q2 are surjections.
Define the set X(q1, q2) of isomorphism classes of commutative diagrams

R
p1 �� �� U

p2 �� �� T

S
��
i

��

q1 �� ����

j

��

V
��

j′

��

q2 �� �� P
��

j

��
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We will refer to such a diagram as (p1, p2, j
′). Both squares in every such a diagram

are automatically suitable. Therefore, every element x := (p1, p2, j
′) ∈ X(q1, q2)

determines a map

mx : piRp → piRp1Rp2 → Rq1pj′Rp2 → Rq1Rq2pj.

Then the composition

piRp → Rqpj → Rq1Rq2pj

equals ∑
x∈X(q1,q2)

mx

(2) Consider the following commutative diagram

R
p �� T

S1

i2

��

q �� P1

j2

��

S

i1

��

r �� P

j1

��

in which both small squares are suitable. Then the large square is also suitable and
the following maps coincide:

pi2i1Rp → Rrpj2j1

and

pi2i1Rp → pi1pi2Rp → pi1Rqpj2 → Rrpj1pj2 → Rrpj2j1 .

(3) Consider the following commutative diagram:

R
p �� �� T

S
q �� ����

i

��

P
��

j

��

Q
��
k

��

��

l

���������

where the upper square is suitable. Then the following maps coincide:

pikRp → pkpiRp → pkRqpj → pqkpj = pl

and

pikRp → ppik = pl.
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(4) Let

R
p �� �� T

S
q �� ����

i

��

X
��

j

��

and

R1
p1 �� �� T1

S1

q1 �� ��
��

i1

��

X1

��

j1

��

be suitable squares and let s :S → S1, r :R → R1, t :T → T1, x :X → X1 be
bijections fitting the two squares into a commutative cube. Then the mapA(i, p, j, q)
can be expressed in terms of A(i1, p1, j1, q1) in the following natural way:

piRp
∼= pspi1pr−1prRp1pt−1

1

∼= pspi1Rp1pt−1
1

A(i1,p1,j1,q1)−−−−−−−−−→ psRq1pj1pt−1
1

∼= psRq1px−1pxpj1pt−1
1
Rqpj.

(5) Let (ik, pk, jk, qk), k ∈ K be a collection of suitable squares. Let ik :Sk → Rk;
let Mk be a collection of DXSk -sheaves. Let i = �k∈K ik, p = �k∈Kpk, j = �k∈Kjk,
q = �k∈Kqk, and M = �k∈KMk. Then the square i, p, j, q is also suitable and the
following compositions coincide:

�k∈KpikRpk
(Mk) → �k∈KRqk

pjk(Mk) → Rqpj(M)

and

�k∈KpikRpk
(Mk) → piRp(M) → Rqpj(M).

(6) Let ik :Sk → Rk, k ∈ K be injections and pk :Rk → Tk, k ∈ K be surjections
such that jk := pkik are injections. Let Mk be DXTk -modules. Let i, j, p,M be
disjoint unions of the respective objects.

Assume that at least two of the maps pk are proper surjections. Then the
composition

�k∈KpikRpk
(Mk) → piRp(�kMk) → pj(M)

vanishes.
If only one of the surjections pk is proper, say pκ, κ ∈ K, then the above

composition equals

�k∈KpikRpk
(Mk) = piκRpκ(Mκ) �k∈K\{κ} pikRpk

(Mk)

L(iκ,pκ)−−−−−→ pjκ(Mκ) �k∈K\{κ} pikRpk
(Mk) → �k∈Kpjk(Mk) → pj(M).

(7) The diagram (11) is suitable, and the corresponding map A(i, p, j, q) is the
isomorphism (12).
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5.3.5. Differentials

The differential of the map L(i, p) is computed as follows. Consider the set of all
equivalence classes of decompositions p = p2p1, where p1, p2 are surjections and p1i

is injection. We then have a map

l(p1, p2) : piRp → piRp1Rp2 → pp1iRp2 → pp2p1i = ppi.

We then have

dL(i, p) +
∑

(p1,p2)

l(p1, p2) = 0.

(2) Let

Q :R
p �� �� T

S
q �� ����

i

��

P
��

j

��

be a suitable square. Define two sets L(Q) and R(Q) as follows. The set L(Q) is
the set of all isomorphism classes of diagrams:

R
p1 �� �� R1

p2 �� �� T

S
q �� ����

i

��

��

i1

����������
P
��

j

��

such that p = p1p2. It is clear that the internal commutative square in this diagram
is also suitable.

Define the set R(Q) as the set of isomorphisms classes of diagrams

R
p1 �� �� R1

p2 �� �� T

S
q �� ����

i

��

P
��

j

��

��
j1

		��������

where p = p1p2. The internal square in such a diagram is always suitable as well.
Every element l := (p1, p2, i1) ∈ L(Q) determines a map

fl : piRp → piRp1Rp2 → pi1Rp2 → Rqpj .

Every element r = (p1, p2, j1) ∈ R(Q) determines a map

gr : piRp → piRp1Rp2 → Rqpj1Rp2 → Rqpj .

We then have

dA(i, p, j, q) =
∑

l∈L(Q)

fl −
∑

r∈R(Q)

gr = 0.

This completes the list of properties.
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5.3.6. Second definition of a pre-symmetric system

Call a system 〈R〉 endowed with the above specified maps having the above prop-
erties a pre-symmetric system (in the sense of the second definition). As we will
mainly use pre-symmetric systems in the sense of the second definition, we shall
simply refer to them as pre-symmetric.

6. Renormalization in Pre-Symmetric Systems

We are going to describe the renormalization procedure for algebras over pre-
symmetric systems. The plan is as follows.

First of all given an algebra M over a pre-symmetric system, we show that the
direct image p∗M has an L∞-structure, (here p :X → pt). Next we have to show
how, given a solution to the Master equation, one can deform the algebra M . As
in the naive approach, we see that to be able to renormalize, one needs an extra
structure on our system, and we define this structure (it is called symmetric). Next,
we show how the renormalization goes in symmetric systems, and finally, we discuss
a procedure by means of which, given a pre-symmetric system one can produce a
symmetric system (we call this procedure symmetrization). So, the renormalization
of an algebra over a pre-symmetric system includes:

(1) symmetrization of the system so that we get an OPE-algebra over a symmetric
system;

(2) renormalization in the symmetric system.

6.0.1. An L∞-structure on p∗M [1], where M is an OPE-algebra over 〈R〉
Let M be an OPE-algebra over 〈R〉. We are going to introduce an L∞ structure
on p∗M , where p :X → pt is the projection Let S be a finite set and iS : ∅ → S be
an embedding. Let pS := piS . It is clear that ppt = p∗ and that

pS(M�S) ∼= (p∗M)⊗S .

Finally, set pS :S → pt.
Define a degree +1 map

CS : (p∗M)⊗S → p∗M

as the composition:

(p∗M)⊗S ∼= pS(M�S)
opeS−−−→ pS ipS (M)

L(iS ,pS)−−−−−→ piptM
∼= p∗M.

Claim 6.1. The maps CS endow p∗M [1] with an L∞-structure.

Proof. The key ingredient in the proof is

Lemma 6.2. Let q :S → T be a surjection such that one can decompose S =
S1 � S2, T = T1 � T2, q = q1 � q2, where qi :Si → Ti, i = 1, 2 are both non-bijective
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surjections. Then the composition

pS(M�S) → pS iq(M�T ) → pT (M�T )

vanishes.

Proof. Let A = {1, 2}. Then the above composition equals:

pS(M�S) ∼= piS1�iS2
(M�S1 �M�S2) → piS1�iS2

(iq1 (M
T1) � iq2(M

T2))

→ pSiq(M�T1 �M�T2) → pT (M�T ).

Here iS1 : ∅ → S1, i2 : ∅ → S2.
The composition of the last two arrows vanishes by Property 6 in the previous

subsection.

The Claim now follows directly from the formula of the differential of
L(i, p).

6.0.2. Action of the DGLA p∗M [1] on M

Define the maps

AS : (p∗M)⊗S ⊗M →M

as follows. Let S0 = S � pt. Let k : pt → S0 be the natural embedding. Let
pS0 :S0 → pt.

We then set

AS : (p∗M)⊗S ⊗M ∼= pk(M�S0)
opeS0−−−−→ pkipS0

(M)
L(k,pS0)−−−−−→M.

It is not hard to see that the collection of maps AS determines an L∞-action of
p∗M [1] on M .

6.1. Symmetric systems

Pre-symmetric systems do not fit for renormalization. The reason is more or less the
same as in the naive approach, but let us reformulate it in terms of direct images
with respect to projections.

Let p :S → pt and pick an element s ∈ S.
Let S′ := S � {s}. Let t ∈ S′. Define pt :S → S′ as follows:

pt(r) = r

if r �= s;

pt(s) = t.
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Let ps :S → {a, s}, where a is an abstract element, a �= s, by setting

ps(t) = a

if t �= s; ps(s) = s.
Let q :S′ → pt and r : {a, s} → pt. Let i :S′ → S, j : {s} → {a, s} be natural

embeddings.
We then have several maps

piRp → Rq.

(a) Let t ∈ S′. Set

Lt : piRp → piRptRq → Rq;

Set

R : piRp → piRpsRr → RqpjRr → Rq.

Then luck of symmetricity manifests itself in the fact that the difference

R−
∑
t∈S′

Lt

is not homotopic to 0.
We thus need to add extra homotopies which would take care about it. It turns

out that this can be accomplished in a very symple way:

Call a system 〈R〉 symmetric if the maps A(i, p, j, q) are defined for all commu-
tative squares

R
p �� �� T

S
��
i

��

q �� �� P
��

j

��

where p, q are both non-bijective surjections (not necessarily suitable). The proper-
ties remain the same as for pre-symmetric system except that we drop the suitability
condition everywhere.

We shall demonstrate how the renormalization goes in symmetric systems.
Let now D ∈ λp∗M0[[λ]] be a MC element. For a finite set T set

DT := D�T ∈ pTλ
|T |M�T [[λ]].

Let i :R → S be an injection. Let T = S\i(R). We then have a map

M�R → piλ
|T |M�S[[λ]]

defined by:

M�R ⊗DT−−−→M�R ⊗ pTλ
|T |M�T [[λ]] ∼= piλ

|T |M�S[[λ]].
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6.1.1. Let i :S → R be an injection and q :R→ T be a surjection such that p := qi

is a surjection.
We then have a map

ope(q, i) :M�S → piM
�R → piRqM

�T → RpM
�T .

Set

operp =
∑

ope(q, i), (15)

where the sum is taken over all isomorphism classes of decompositions p = qi. Let
M r := M [[λ]], dD, where dD is the differential twisted by D. Then (M ′, oper) is the
renormalized OPE-algebra.

Note that the sum (15) is infinite but it converges in the λ-adic topology.

6.2. Symmetrization

Finally, we need a method on how, given a pre-symmetric system, one gets a sym-
metric system.

The idea is as follows. Let f :S → T be a map of finite sets. Construct a category
Bpresymm(f) whose objects are compositions piRp1Rp2 · · ·Rpn , where i is injective,
pk are surjective, all the maps are composable and

pnpn−1 · · · p1i = f.

The morphisms are all possible morphisms one can get using the axioms of pre-
symmetric system. Given a pre-symmetric system 〈R〉 and a DXT -sheaf N , the
application

piRp1Rp2 · · ·Rpn 
→ piRp1Rp2 · · ·RpnN

produces a functor

rf (N) :Bpresymm(f) → D-shXT .

Let Bsymm(f) be the same thing, but we use axioms of a symmetric system. We
then have a tautological functor R :Bpresymm(f) → Bsymm(f). One can construct
a bifunctor

B :Bop
presymm(f) × Bsymm(f) → complexes,

where B(X,Y ) = homBsymm(f)(X,Y ).
Set

rfsymm(N) :Bsymm(f) → complexes
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to be

rf (N) ⊗Bpresymm(f) B.

Remark. Let R−1 be a functor from:

the category of functors Bsymm(f) → complexes
to
the category of functors Bpresymm(f) → complexes

which is the pre-composition with R. One can show that R−1 has a left adjoint R!

and that rfsymm(N) = R!r
f (N).

We can now construct a system 〈Rsymm〉 which is a symmetrization of R by
setting Rsymm

p (N) = rp(N)(Rp). We have to say that the introduction of a struc-
ture of system on the collection of functors 〈Rsymm

p 〉 is not at all a consequence of
a general nonsense. It turns out that in order to define such a structure one has to
use certain specific features of the categories Bpresymm,Bsymm.

We also have a natural map 〈R〉 → 〈Rsymm〉. Therefore, given an OPE-algebra
over 〈R〉, we can transform it into an OPE-algebra over 〈Rsymm〉 and then renor-
malize it.

We shall now give a more explicit construction of 〈Rsymm〉. In fact, the resulting
system 〈Rsymm〉 is isomorphic to the above described one. This follows from a more
detailed study of the categories Bpresymm,Bsymm which id done in 18.4.

7. Explicit Construction of 〈Rsymm〉
7.1. Main objects

7.1.1. Groupoid C′
f

Let f :S → T be a surjection. Define a groupoid C′
f whose objects are diagrams

S
i �� U

p �� T,

where i is injective, p is surjective, and pi = f . Isomorphisms are morphisms of
these diagrams inducing identities on S, T .

7.1.2. Groupoid Cf

Let (i, p) ∈ Cf . Call p i-super-surjective if for every t ∈ T , the pre-image p−1t

either:

contains at least two elements from i(S)
or
consists of one element from i(S).

Let Cf be the full sub-groupoid of C′
f consisting of all pairs (i, p), where p is

i-super-surjective.
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7.1.3. Functors M(i, p), Mf

For an object (i, p) in Cf , set M(i, p) := piRp. It is clear that M(, ) is a functor from
Cf to the category of functors from the category of DXT -sheaves to the category
of DXS -sheaves. Set

Mf := limdirCf
M(i, p).

Denote by I(i, p) :M(i, p) → Mf the natural map. It is clear that I(i, p) passes
through M(i, p)AutCf

(i,p). Furthermore, we have an isomorphism

⊕M(i, p)AutCf
(i,p) → Mf , (16)

where the sum is taken over an arbitrary set of representatives of isomorphism
classes of Cf .

7.2. Differential

The symmetrized resolution Rsymm
f is given by the functor Mf as in (16), on which

a new differential is introduced. This differential is of the form d + L + R, where
d is the differential on Mf , and degree +1 endomorphisms L,R :Mf → Mf shall
be defined below.

7.2.1. Map L :Mf → Mf

7.2.2. Set EL(i, p)

Let

S
i �� U

p �� T

be an object in Cf . Define a finite set EL(i, p) whose elements are equivalence
relations e on U such that

(1) p passes through U/e;
(2) the composition

S
i �� U �� U/e

is injective.

Let πe :U → U/e be the natural projection, let pe :U/e→ T be the map induced
by p, and ie = πei.

It turns out that (ie, πe) ∈ Cf . Indeed, π−1
e (t) is the quotient of p−1t by e and

elements of i(S) are e-non-equivalent, which implies the super-surjectivity.

7.2.3. The map L

Define a map Le :M(i, p) → M(ie, pe) as follows:

piRp → piRπeRpe

L(i,πe)−−−−→ pieRpe .
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Define a map L(i, p) :M(i, p) → Mf by setting

L(i, p) =
∑

e∈EL(i,p)

I(ie, pe)Le.

It is easy to see that the collection of maps L(i, p) descends to a map
L :Mf → Mf .

7.3. Map R : Mf → Mf

7.3.1. Set ER(i, p)

Let

S
i �� U

p �� T

be an object in Cf . Define a finite set ER(i, p) whose elements are equivalence
relations e on U such that

(1) p passes through U/e;
(2) The restriction of e on S coincides with the equivalence relation on S determined

by f .

Let πe :U → U/e. Let Te := Im(πei) and V := Ve := π−1
e Te and W := We :=

U\Ue. Let eV (respectively eW ) be the restriction of e on V (respectively W ).
It is clear that

(1) i(S) ⊂ V ;
(2) The map pV/eV :V/eV → T induced by p is bijective.

So, we have a diagram:

S
� � ie �� V

πe|V �� ��

pe




V/eV

∼
pV/eV

�� T

W
πe|W �� �� W/eW

pW/eW

����������������

Elements of ER(i, p) can be equivalently defined as collections (W, eW ), where
W ⊂ U , W ∩ i(S) = ∅, and eW is an equivalence relation on W such that p|W
passes through eW . Indeed, let V := U\W and let eV be induced on V by p|V . Set
e := eV � eW . This establishes a 1-1 correspondence between different descriptions
of ER(i, p).

Let us check that (ie, pe) ∈ Cf . Indeed, for every t ∈ T , p−1
e t = p−1t ∩ V . Since

V ⊃ i(S), we have: if p−1t ∩ i(S) has at least two elements, then so does p−1
e t;

otherwise p−1t consists of exactly one element from i(S) and p−1
e t = p−1t.
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We will now define a map Re :M(i, p) → M(ie, pe). To this end we shall consider
a diagram:

S
� � ie ��
� �

i

��
V

� � I ��

πe|V
����

pe 

 



U

πe
����

p

����

V/e
� � J ��

∼
pV/eV

���
���

��
��

U/e

r
����
T

We then observe that the square (I, πe, J, πe|V ) is clearly suitable. We can there-
fore define Re :M(i, p) →M(ie, pe) via the following chain of maps:

Re : piRp
∼= piepIRrpe → piepIRpeRr → pieRπe|V pJRr

→ pieRπe|V ppV/eV
∼= pieRpe .

We then define

R =
∑

e∈R(i,p)

I(ie, pe)Re.

7.3.2. Definition of the differential

We define the differential on 〈Rsymm〉 as a sum d+ L+R.

7.4. Asymptotic decomposition maps

asf1,f2 : Rsymm
f2f1

→ Rsymm
f1

Rsymm
f2

Suppose we have a chain of surjections

S
f1 �� �� R

f2 �� �� T,

so that f = f2f1.
Let

S
� � i �� U

p �� �� T

be in Cf . The map I(i, p) :M(i, p) → Mf determines a similar map I(i, p) →
Rsymm
f . In order to construct the map asf,g we will first define maps

as(i, p, f, g) :M(i, p) → Mf1Mf2 .
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Define the set E(i, p, f1, f2) whose elements are equivalence relations e on U

such that

(1) p passes through U/e
(2) The restriction e|S coincides with the equivalence relation on S determined

by f1.

Let Ve ⊂ U be the set of all elements which are equivalent (with respect to e)
to elements of S. Let We = U\Ve. Let ie :S → Ve; pe :Ve → Ve/e, je :Ve/e→ U/e,
qe :U/e → T be the map induced by p. We then have the following commutative
diagram:

S
� � ie ��
� �

i




Ve

� � I ��

pe

����

U

π
����

p

����

Ve/e
� � je �� U/e

qe

����
T

It is easy to check that the square (I, π, je, pe) is suitable. This allows us to define
a map

as(i, p, e) :M(i, p) → M(ie, pe)M(je, qe)

as follows:

M(i, p) ∼= piRp → piepIRqeπ → piepIRπRqe

→ pieRpepjeRqe = M(ie, pe)M(je, qe).

Let

as(i, p, f1, f2) :M(i, p) → Mf1Mf2

be given by the formula:

as(i, p, f1, f2) =
∑

e∈E(i,p,f1,f2)

I(je,qe)I(ie,pe)as(i, p, e).

This completes the definition of the map asf1,f2 .

7.5. Factorization maps

Let fa :Sa → Ta, a ∈ A be a family of surjections.
Let (ia, pa) ∈ Cfa , a ∈ A, be a family of objects. Let i = �a∈Aia, p = �a∈Apa,

f = �a∈Afa.
Let Ma ∈ D-shXT a . Let M := �a∈AMa.
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We then have a natural map

�apiaRpa(Ma) → piRp(M),

induced by the factorization maps for 〈R〉. These maps give rise to the factorization
maps in 〈Rsymm〉.

7.6. Maps L(i, f) : piRsymm
f → pj

Let

R
f �� �� T

S
��

i

��

��

j
���������

be a commutative diagram. The map L(i, p) : piRsymm
f → pj is then defined via

maps

piM(k, p) ∼= pkiRp
L(ki,p)−−−−→ pj,

where pk = f .

7.7. The maps A(i, p, j, q) : piRsymm
p → Rsymm

q pj

Let

R
f �� �� T

S
��
i

��

q �� �� P
��

j

��

be a commutative diagram. The maps

A(i, f, j, q) : piRsymm
f → Rsymm

q pj

are defined as follows.
Let (k, p) ∈ Cf . Let u = ki. One can show that there exists a unique, upto an

isomorphism decomposition u = u2u1 into a product of two injections such that in
the diagram

R
p �� �� T

S1

��

u2

��

q1 �� �� P
��

j

��

S
��

u1

��
q

�� ����������
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uniquely, upto an isomorphism, constructed, given a decomposition u = u2u1, the
square

(u2, p, j, q1)

is suitable, and in the pair

(u1, q1),

the map q1 is super-surjective.
The map A(i, f, j, q) goes as follows:

piM(k, p) ∼= pkiRp
∼= pu1pu2Rp

A(u2,p,j,q1)−−−−−−−−→ pu1Rq1pj
∼= M(u1, q1)pj .

8. Constructing the System 〈R〉 with the Above
Explained Properties

8.1. Step 1. Spaces of generalized functions CS

Our motivation comes from the construction in 3.2. In the case when p :S → pt,
where S has two elements, this construction suggests that one can replace ip with
a complex 0 → ip∗ → Ip → 0, where we put Ip in degree 0. Denote this complex
by Rp. On the one hand, we have a map Rp → ip, so that the induced map
Rp(M) → ip(M) is a quasi-isomorphism for good M ’s; on the other hand we have
a map Rp → ip∗OX of degree +1. Thus, Rp has all the desired properties.

Let us try to expand this construction to an arbitrary case. It is natural to start
with constructing certain spaces of generalized functions CS on XS so that each
CS is a sub-DXS submodule of the space of complex-valued generalized functions
on Y S with compact support. In pursuit of making CS as small as possible we
construct CS in such a way that they are holonomic DXS -modules; their structure
is as follows. Let D be a generalized diagonal in XS and let CS,[D] be the maximal
submodule supported on D. This defines a filtration on CS whose terms are labeled
by the ordered set of generalized diagonals in XS. The associated graded term

CS,[D]/spanE�DCS,[E]
∼= iD∗BD,

where BD is the DD-module of all meromorphic functions with singularities along
hyper-surfaces q(Xi −Xj) = 0, where Xi|D �= Xj |D.

Construction of such CS is done by means of certain analytical considerations.
Some of them a very similar to standard methods of regularization of divergent
integrals. The detailed exposition is in Secs. 10.2–11.

8.2. Step 2. Functors Ip and their properties

Next we construct the functors Ip out of CS in the same way as ip was constructed
out of BS : let p :S → T be a surjection of finite sets; set

Cp := �t∈TCp−1t.
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Define Ip :DXT → DXS by

Ip(M) = i∧p (M) ⊗O
XS

Cp.
We then have natural maps Ip → ip. We then ask ourselves whether Ip form a

system. The answer is no. It probably could be yes if CS would be a bit larger sub-
space of generalized functions, because we have a technique of asymptotic decom-
position of generalized functions due to Bernstein (unpublished). But there are
examples in which we see that already for the set S = {1, 2, 3} consisting of three
elements there are functions f ∈ CS , whose asymptotic decomposition near the
diagonal X1 = X2 requires introduction of such functions as log(X1 − X3). For
example, let Y = Re4 and take

f(X1, X2, X3) =
1

|X1 −X3|2|X2 −X3|2 .

This is a locally L1-function, therefore, it determines a generalized function.
Let us investigate its asymptotic as X1 approaches X2. According to Bernstein, we
should consider the following expression:

u(λ) =
∫
g(X1, X1 + (X1 −X2)/λ,X3)

|X1 −X3|2|X2 −X3|2 d4X1d4X2d4X3,

where g is a compactly supported smooth function and λ is a small positive param-
eter. Our goal is to find an asymptotic for a(λ). Let x = X1, a = X2 − X1,
b = X3 −X1. Let G(x, a, b) := g(x, x+ a, x+ b). We then have

u(λ) =
∫
G(x, a/λ, b)
|b|2|b+ a|2 d

4bd4ad4x.

One can show that

u(λ) = C

∫
G(x, a/λ, 0) ln(|a|2)d4ad4x+ v(λ),

where v(λ) is bounded as λ→ +0, and C is a constant.
This means that

v(λ) =
∫
g(X1, X1 + (X1 −X2)/λ,X3)

×
{

1
|X1 −X3|2|X2 −X3|2 − C ln(|X1 −X2|2)δ(X1 −X3)

}

× d4X1d4X2d4X3

is bounded as λ → +0. This demonstrates that, at least, we have to include
ln(|X1 −X2|2) into our picture to get an asymptotic decomposition of

1
|X1 −X3|2|X2 −X3|2 .
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The geometrical meaning of this phenomenon is that the cohomology of the
complex variety which is the complement in C4×C4 to the set of complex zeroes of
|Z1−Z2|2 = 0 differs from the cohomology of the real part, which is R4×R4 minus
the diagonal. We need to add functions which would kill the de-Rham cocycles
which are nontrivial on the complexification but become trivial upon restriction to
the real part.

Nevertheless, we have maps

Ipq → Iqip (17)

for all surjections p, q.
For certain p, q we also have maps

Ipq → IqIp. (18)

Namely, this happens if

q = q1 � Id :S1 � S2 → R1 � S2

and

p = Id � p1 :R1 � S2 → R1 � T2,

or if p, q can be brought to this form via conjugations by bijections. This circum-
stance will play an important role in the future steps, but now let us concentrate
only on the maps Ipq → Iqip. They have associativity properties similar to those
of i and they nicely behave with respect to �. They are compatible with the corre-
sponding maps ipq → iqip.

There is an additional feature stemming from the fact that the submodule
CS,∆ ⊂ CS , where ∆ ⊂ XS is a generalized diagonal, is isomorphic to i∆∗C∆.

Let p be a surjection. Denote δp := ip∗. We then have a natural map

δpIq → Iqp, (19)

whenever surjections p, q are composable. These maps behave nicely with respect
to the other parts of the structure.

8.2.1. Iterations of functors I and i

We will work with all possible functors of the form

j1p1 j
2
p2 · · · jnpn

,

where pi :Si → Si+1 are surjections and jsps
is either ips or Ips . Fix a surjec-

tion p :S → T and consider the class Zebrap of all such compositions with
pnpn−1 · · · p1 = p (in particular, S1 = S, Sn+1 = T ). The asymptotic decomposition
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maps (17) and their compositions produce maps between objects of Zebrap (warn-
ing: we exclude the maps (18)). For example, we can construct a map Iqrp → Ipiriq
as a composition:

Iqrp → Ipiqr → Ipiriq.

We can also take another composition:

Iqrp → Irpiq → Ipiriq.

The associativity property implies that these compositions are equal.
On the other hand, there is no way to construct a map Iqrp → ipIqir.
Thus, Zebrap is naturally a category. Furthermore, it turns out that, because

of the associativity properties, there is at most one arrow between different arrows,
i.e. Zebrap is equivalent to a poset which will be denoted by Zebra(p). Let us
describe it. First of all, each isomorphism class in Zebrap does not even form a
set because of the indeterminacy in the choice of intermediate sets Si. This can be
easily resolved by demanding each Si to be S/ei, where ei is an equivalence relation
on S. More precisely, let e be the equivalence relation on S determined by p :S → T ,
T being identified with S/e. Let Eqe be the poset of all equivalence relations on
S which are finer than e. Let us write e1 > e2 if e1 is finer than e2. Denote by ω
the trivial (the finest) equivalence relation on S. An element of Zebra(p) is then
a pair F, {js}, where F = (ω = e1 > · · · en+1 = e) is a proper flag of equivalence
relations and {js}ns=1 is a sequence of symbols i or I. It is convenient to visualize
an object of zebra as a subdivision of a large segment into n small subsegments;
the equivalence relations are associated with the nodes (es is associated with the
sth node from the left) and js determines one of two colors of the small segment
between the sth and the (s+ 1)th node.

To such data we associate the functor

[F, {js}] = j1p1 j
2
p2 · · · jnpn

,

where pi :S/ei → S/ei+1 is the natural projection. Let us describe the order (we
assume that an arrow X → Y exists iff X ≤ Y ). We say that X < Y if

(1) the flag of Y is a refinement of the flag of X . Thus, each small segment of the
flag of X is then subdivided into even smaller segments (call them microscopic)
of the flag of Y .

(2) If a small segment of the flag of X is colored into the color “i”, then all its
microscopic subsegments are also colored into “i”. If a small segment is colored
into “I”, then the color of its leftmost microscopic segment may be arbitrary,
but the colors of its remaining microscopic segments must by “i”. The detailed
exposition can be found in Sec. 14.
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8.3. Step 3. OPE-algebras over the collection

of functors Ip. The functors Pp

Albeit the functors Ip do not form a system, it is still possible to make a meaningful
definition of an OPE-algebra over a collection of functors Ip, which we will now do.

Let M be a DX -module. An OPE-structure over a collection of Ip is a collection
of maps

opepS
:M�S → IpS (M),

where pS :S → pt, with certain properties. To formulate them, we first form maps

opep :M�S → Ip(M�T )

for an arbitrary surjection p :S → T , in the same way as it was done in the definition
of an OPE-algebra over a system.

The natural maps Ip → ip give rise to maps

opei
p :M�S → ip(M�T ).

Let p = pnpn−1 · · · p1, where pi :Si → Si+1 and j1, j2, . . . , jn be as above. We
can construct maps

M�S → j1p1 · · · jnpn
M�T

as follows:

M�S
opej1

p1 �� j1p1M
�S2

opej2
p2 �� j1p1 j

2
p2M

�S3 · · · .

Thus for every object X ∈ Zebrap, we have a map

opeX :M�S → X(M�T ).

Let u :X → Y be an arrow in Zebrap. We then have a composition

opeX ◦ u(M�T ) :M�S → Y (M�T ).

We demand that this composition be equal to opeY . If this is the case, then we say
that the maps opepS

define an OPE-algebra structure on M over the collection I.
We can now do the following. Set

Pp(M) = liminvX∈ZebrapX(M�T ).

Then the above axiom implies that the maps opeX produce a map

opeP
p :M�S → Pp(M�T ).
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It is not hard to see that the functors Pp form a system. Indeed: let p = rs.
Then PsPr can be realized as an inverse limit of X(M�T ) over a full subcategory
(= subset with an induced order) of Zebra(p) formed by all Xs whose flags contain
the equivalence relation on S determined by r, whence a map

Pp → PsPr.

8.3.1. Example

Let S = {1, 2, 3} and p :S → pt. We have the following equivalence relations on S:

(a) the finest one ω;
(b) the relations eij , i �= j, i, j ∈ {1, 2, 3}, in which i ∼ j, and the remaining

element is only equivalent to itself;
(c) the coarsest relation α in which all elements are equivalent.

Let Sij := S/eij . Let pij :S → S/eij and qij :S/eij → pt. Then Pp is the inverse
limit of the following diagram:
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This diagram is co-final to the sub-diagram:

Ip12 iq12 Ip12Iq121
��

Ip

��									
��

��















Ip23 iq23 Ip23Iq232

��

Ip13 iq13 Ip13 iq133
��

(20)

We see that Pp is an extension of Ip by the kernels of the arrows 1, 2, 3, which
are Ipij iqij∗, where i �= j, i, j = 1, 2, 3.

8.3.2. The features of functoriality of the collection of functors Pp are inherited
from those of the collection δp, ip, Ip. The most important ones are the following
ones:

(1) the structure of system on the collection of functors Pp;
(2) maps PpδqPr → Prqp, where p, q, r are surjections and q is not a bijection.

Let us sketch the definition. First of all, such a map is uniquely defined by
prescribing all compositions

fX : PpδqPr → Prqp → X,

where X runs through the set of all elements in Zebra(p).
Let R := rqp; R :S → T ; let Q = qp. Let e (respectively eq, respectively ep) be

the equivalence relation determined by R (respectively Q, respectively p). It follows
that

ω ≥ ep > eq ≥ e,

where ω is the trivial equivalence relation on S. Without loss of generality, we
may assume that p :S → S/ep, q :S/ep → S/eq, r :S/eq → S/e are the natural
projections.

Now let X be given by a flag

(ω = f1 > f2 > · · · fn+1 = e)

and a coloring j1, j2, . . . , jn.
The map fX is then specified by the following conditions:

(1) fX = 0 unless there exists a k such that fk = ep > eq ≥ fk+1 and jk = Ik.
(2) Assume that such a k exists. Let ρ :S/fk+1 → T be the natural projection.

Let σ :S/eq → S/fk+1 so that r = ρσ and σq :S/fk → S/fk+1 is the natural
projection. Define elements Xr ∈ Zebra(r) and Xπ ∈ Zebra(π) as follows:

Xr is given by the flag ω > f1 > · · · > fk = er, and the coloring
(j1, j2, . . . , jk−1);
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Xp is given by the flag

ωS/fk
≥ fk+1/fk > fk+2/fk > · · · > e/fk,

of equivalence relations on S/fk. It follows that X decomposes as X =
XpIσqXρ.

The map fX then goes as follows:

PpδqPr → PpδqPσPρ → XpδqIσXρ → XpIσqXρ = X.

8.3.3. Example

Let us come back to our example S = {1, 2, 3} and p :S → pt. We know that Pp is
the inverse limit of the diagram (20). Let us describe the map

δp12Pq12 → Pq.

First of all, Pq12 → Iq12 is an isomorphism.
We then have maps

δp12Iq12 → Ip12Iq12
and

δp12Iq12 → Iq.
The diagram

δp12Iq12 ��

��

Ip12Iq12

��
Ip �� Ip12 iq12

turns out to be commutative (this is hidden behind the words “these maps behave
well with respect to the other elements of the structure” after (19)). Furthermore,
the compositions

δp12Iq12 → Iq → Ip23 iq23 , Ip13 iq13
as well as

δp12Iq12 → Ip12Iq12 → ip12Iq12
all vanish, whence the desired map δp12Pq12 → Pp.

Consider now the map Pp12δq12 → Pp. Again, we have an isomorphism

Pp12 → Ip12 .
We also have a map

Ip12δq12 → Ip12Iq12 ,
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the composition

Ip12δq12 → Ip12Iq12 → Ip12 iq12
being zero. Furthermore, the sequence

0 → Ip12δq12 → Ip12Iq12 → Ip12 iq12 → 0

is exact. Therefore, the map

Ip12δq12 → Pp

realizes an embedding of the kernel of the arrow 1 in (20) into Pp.
Describe the map δp → Pp. It is given by the inclusion δp → Ip; since the

composition of this map with every arrow coming out of Ip vanishes, this is a
well-defined map. This map can also be described as a composition:

δp ∼= δp12δq12 → δp12Iq12 → Pp.

Finally, the map

δp12δq12 → Pp

is given by

δp12δq12 → Ip12Iq12
and is different from the previous one!

The maps that we considered fit into a commutative diagram

This diagram specifies a map from the direct limit of its three lowest floors to
Pp. It turns out that this map is an inclusion whose cokernel is isomorphic to ip
via the natural map Pp → Ip → ip.

This implies that Pp has a three-term filtration (the two lowest floors are com-
bined) whose successive quotients are

(1) δp ⊕i<j δpijδqij ;

1240002-47



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

(2) ⊕i<jδpij iqij ⊕ ipij δqij

(3) ip.

8.3.4. Filtration on P

The filtration on functors Ip define a filtration on Pp. See Secs. 15.1–15.2.3 for its
description. Its successive quotients are direct sums of the terms of the form

ip1δq1 ip2δq2 · · · δqn ipn+1

with fixed n. Here pn+1qnpn · · · q1p1 = p; all p’s and q’s are surjective and all q’s
are not bijective.

8.4. Resolution R
We are now ready to define the desired resolution. The starting point is the maps
Pp → ip, which are surjections. Our goal is to kill the kernel, which turns out to
be spanned by the images of all maps

PaδbPc → Pp,

where cba = p.
Thus, it makes sense to assign

R0
p := Pp

and

R−1
p := ⊕PaδbPc,

where the direct sum is taken over all sequences

S
c−→ S/e1

b−→ S/e2
a−→ T,

where e1 > e2 > e are equivalence relations on S, e is determined by p, and a, b, c are
natural projections. The differential is given by the above described maps PcδbPa.

The nth term R−n
p is given by the direct sum of the terms

Pp1δq1Pp2δq2 · · · δqnPpn+1 ,

where the sum is taken over all diagrams of the form

S
p1−→ S/e1

q1−→ S/f1
p2−→ S/e2

q2−→ S/f2
p3−→ · · · qn−→ S/fn

pn+1−−−→ T,

where

e1 > f1 ≥ e2 > f2 ≥ · · · > fn ≥ e,
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and pi, qj are all natural projections. The differential d :R−n
p → R−n+1

p is given by
the alternated sum of maps induced by

(a) PpiδqiPpi+1 → Ppi+1qipi and
(b) δqiPpi+1δqi+1 → δqi+1pi+1q1 , which are nonzero iff pi+1 = Id, in which case they

are natural isomorphisms.

One then has to check that d2 = 0 and to define on Rp a structure of system.
For all this we refer the reader to Sec. 15.5.

8.4.1. Example

Let S = {1, 2, 3}. Then the complex Rp is depicted as follows:

where all the arrows are the natural maps; the arrows marked with — are taken
with the negative sign. Let us check that d2 = 0. It suffices to check that

d2|δp12δq12
: δp12δq12 → Pp

is zero. This reduces to checking that the compositions

Ad2|δp12δq12
: δp12δq12 → Pp

A−→ Ip;

Bijd
2|δp12δq12

: δp12δq12 → Pp
Bij−−→ IpijIqij

do all vanish. Let us so do.
Ad2. We have: A42 = A63; A51 = 0. Hence Ad2 = A42 −A63 +A51 = 0.
Bijd

2. If {i, j} �= {1, 2}, then all three maps

Bij42 = Bij63 = Bij51 = 0.

Consider now the remaining case B12d
2. We then have: B1242 = B1251 and

B1263 = 0, which implies that B12d
2 = 0.

8.5. The system 〈m〉 and the map 〈R〉 → 〈m〉
Recall that the whole purpose of constructing 〈R〉 was to establish a link between
the systems 〈i〉 and 〈l〉. Unfortunately, there is no direct map 〈R〉 → 〈l〉.
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Instead, we shall construct a map m : 〈R〉→〈m〉 satisfying the properties described
in Sec. 5.1.

Define a map mp :Rp → mp by the following conditions.

(1) mp vanishes on all terms

Rp1δq1Rp2δq2 · · · δqnRpn+1

where at least on pi �= Id. Otherwise, mp is the identical embedding onto the
term

δq1δq2 · · · δqn

of mp.
Denote by

lp :Rp → mp → δp[1]

the natural composition.

8.6. The additional structure induced by the maps (17)

Recall that the collection of maps 〈Ip〉 has a functoriality (17) which we have never
used. It turns out that this additional functoriality yields an additional structure
on the system 〈R〉.

To obtain this additional structure one has to first understand the additional
structure on the system 〈P〉 produced by these functors. Consider some examples.

Let A = {1, 2} be a two-element set and let g :A → pt. Let f :S → T be a
surjection. Let

f � g :S �A→ T � pt

be a disjoint union.
We may define two maps

n1, n2 : Pf�g → If�IdAIIdT �g.

The map n1 is just the natural projection onto a member of Zebraf�g. The map
n2 is the composition

Pf�g → If�g → If�IdAIIdT �g,

where we first apply the natural projection and then the map (17).
It follows that the compositions of n1, n2 with the map

λ : If�IdAIIdT �g → If�IdA iIdT �g
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do coincide, therefore the difference n2 − n1 determines a map to the kernel of λ,
i.e. a map

ξ(f, g) : Pf�g → If�IdAδIdT �g.

This is only true because of the special form of g.
For a general g :A→ B the kernel of λ is spanned by the images of all maps

If�IdAδu1Iu2 → If�IdAIIdT �g,

where u1, u2 are surjections, u1 is not a bijection, and

u2u1 = IdT � g.

So that the structure of n1 − n2 becomes more complicated.
Nevertheless, one can define maps

ξ(f, g) : Pf�g → If�IdAδIdT �g

for an arbitrary g by means of the following inductive process. Let |g| = |A| − |B|.
Since g is a surjection, |g| ≥ 0. If g is a bijection, we then have a natural isomorphism

Pf�g → Pf�IdAδIdT �g,

because IdT � g is a bijection.
Set ξ(f, g) to be the composition of this isomorphism with the natural map

Pf�IdAδIdT �g → If�IdAδIdT �g.

Let us now assume that ξ(f, g) is defined for all g with |g| < N . Define it for all
g with |g| = N . Let e be an equivalence relation on A induced by g. Let ωS > ε ≥ e,
let hε :A→ A/ε and kε :S/ε→ B so that kεhε = g.

Define a map

C(ε) : Pf�g → Pf�kεPIdT �IdA/ε
→ If�IdAδIdT �kεIIdT �IdA/ε

→ If�IdAIIdT �g,

set

ξ′(f, g) := −
∑
ε

C(ε).

If ξ′(f, g) passes through If�IdAδIdT �g, it determines a map

Pf�g → If�IdAδIdT�g,

which we assign to be ξ(f, g). It can be checked that if this rule was obeyed when
ξ(f, g) was defined for all g with |g| < N , then C′(f, g) passes through If�IdAδIdT�g
and gives rise to the map ξ(f, g).
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On the next step the maps ξ(f, g) are lifted to maps

c(f, g) : Pf�g → Pf�IdδId�g,

which in turn produce maps

s(f, g) :Rf�g → Rf�IdδId�g

with a nonzero differential, which is described in (17.10).

8.6.1. Thus, we described a construction of a pre-symmetric (upto homotopies)
system 〈R〉.

9. Realization of the System 〈Rsymm〉 in the Spaces
of Real-Analytic Functions

Our answer to the renormalization problem l is given in terms of a system 〈Rsymm〉.
To be able to get a physically meaningful answer we need an OPE expansion
in terms of series of real-analytic functions on the Y S minus all generalized
diagonals.

The nicest possible way to do it includes constructing a system which is explicitly
linked to the spaces of real-analytic functions on Y S minus all generalized diagonals
and constructing a map from 〈Rsymm〉 to this system. Unfortunately, we do not
know how to realize this project. The problem is that arbitrary real-analytic func-
tions do not have a good asymptotic expansion in a neighborhood of generalized
diagonals, therefore, we cannot form a system based on such spaces.

Let us describe a palliative measure we take instead.
First of all, we shall work with spaces of global sections rather than with sheaves.

So, whenever we use a notation for a sheaf, it will actually mean the space of global
sections. If our sheaf is a DXS -module, then its space of global sections is a module
over the space of global sections of DXS . Whenever we say “a DXS -module”, we
actually mean “a module over the space of global sections of DXS ”.

Let Y ⊂ Y S be the main diagonal. We pick a vector field which contracts
everything to Y and take analytic functions on Y S minus the complement to all
generalized diagonals which are generalized eigenvalues of this field.

Denote this space spanned by such functions by A◦
S . This space has a grading

given by the generalized eigenvalue. Let A◦≥N
S be the span of all elements whose

generalized eigenvalue is ≥ N .
Then the spaces A◦≤N

S := A◦
S/A◦≥N

S do not depend on a choice of particular
vector field.

Let p :S → T be a projection. We define a functor A◦
p from the category of

DXT -modules to the category of DXS -modules by the formula

A◦
p(M) = liminvN i∧p (M) ⊗O

XS
A◦≤N

S .
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These functors do not form a system. Nevertheless, given a ∈ A◦
p(M), b ∈

A◦
p1A◦

p2(M), where p = p2p1, one can say whether b is an asymptotic decompo-
sition of a or not. The problem is that not every a has such a decomposition.

We define a functor

Γ◦◦(p1, p2) ⊂ A◦
p ⊕A◦

p1A◦
p2

so that Γ◦◦(p1, p2)(M) consists of all pairs (a, b) such that b is an asymptotic decom-
position of a. In other words, instead of a map A◦

p → A◦
p1A◦

p2 we have a “corre-
spondence” given by Γ◦◦(p1, p2).

Next, we construct maps
∫
p :Rsymm

p → A◦
p. We then show that these maps

are compatible with the correspondences Γ◦◦(p1, p2) as follows:
Let ∫

p1,p2

:Rsymm
p → Rsymm

p1 Rsymm
p2

R
p1

⊗ R
p2−−−−−−→ A◦

p1A◦
p2 .

We then show that∫
p

⊕
∫
p1,p2

:Rsymm
p → A◦

p ⊕A◦
p1A◦

p2

passes through Γ◦◦(p1, p2).
This construction provides us with an OPE product on M in terms of series of

real-analytic functions on Y S .
The construction of the maps

∫
p resembles the construction of the maps of

Sec. 8.6, which is based on the maps (17). The construction of
∫
p is based on the

existence of asymptotic decompositions of generalized functions from CS near gen-
eralized diagonals. Namely, let pS :S → pt, and let pS = p2p1 be a decomposition.
We construct maps

CS → Ap1Ip2 ,

where Ap1 is constructed in the same way as A◦
p1 but generalized functions which

are non-singular on the complement to generalized diagonals and are generalized
eigenvectors of the vector field which shrinks everything to the main diagonal, are
used.

Part III: Technicalities

In the concluding part of the paper we give constructions and proof required for
everything in the previous part to work. This includes

(1) constructing the system 〈R〉 and endowing it with a pre-symmetric structure;
(2) Bogoliubov–Parasyuk lifting theorem;

1240002-53



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

(3) more details on the symmetrization procedure and on the renormalization in
symmetric systems. To this end we need to develop certain machinery (“pseudo-
tensor bodies”);

(4) real-analytic interpretation of the symmetric system that we obtain from 〈R〉.

10. Constructing the System 〈R〉
10.0.1. Let Y = RN , where N is a fixed natural even number. We fix the coordi-
nates x1, x2, . . . , xN on Y . For x ∈ Y we set q(x) =

∑N
i=1(x

i)2. Also we take the
standard orientation on Y .

10.0.2. Let S be a finite set. Let Y S be the space of functions S → Y . Let [n] =
{1, 2, . . . , n}, then Y [n] ∼= Y n. Since Z is even-dimensional, the orientation on Y

produces canonically an orientation on Y S . Thus, Y S will be assumed to have an
orientation.

Let e be an equivalence relation on S. Denote by ∆e ⊂ Y S the corresponding
generalized diagonal consisting of points y :S → Y such that s ∼e t⇒ y(s) = y(t).

Let f :S → T be a map of finite sets. We have an induced map f# :Y T → Y S .
Let pe :S → S/e. Then ∆e = Impe. If f is surjective, then f identifies ∆e with
Y S/e. We will use this identification.

For two equivalence relations e1 and e2 on a finite set S we write e1 ≤ e2
iff s ∼e2 t ⇒ s ∼e1 t. We have e1 ≤ e2 iff ∆e1 ⊆ ∆e2 . Denote by α the least
equivalence relation (i.e. every two points are equivalent) and by ω the greatest
equivalence relation (i.e. every two distinct points are not equivalent). Let s, t ∈ S

be distinct elements.
Let T ⊂ S. Denote by eT the equivalence relation in which two distinct elements

are equivalent iff both of them are in T . For example, ω = e∅; α = eS. Set ∆T :=
∆eT ; ∆st := ∆{s;t}.

10.0.3. Denote

US = Y S −
⋃
e�=ω

∆e.

Obviously, a point y :S → Y is in US iff the map y is injective.

10.0.4. Let s, t ∈ S be distinct elements. Denote by qst :Y S → R the function
defined according to the rule

qst(y) = q(y(s) − y(t)), (21)

where y :S → Y is a point in Y S and q is the standard quadratic form on Y . Of
course, the set of zeros of qst(y) is ∆st.
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10.0.5. Denote by BS the space of functions US → C which can be expressed as
a ratio P (Y )/Q(Y ), where P is an arbitrary polynomial and Q is a product of
non-negative integer powers of qst for arbitrary s, t.

10.0.6. As usual, we denote by DY S the space of compactly supported top forms
on Y and by D′

Y S the space of distributions on DY S . Any smooth function on Y S

will be regarded as a distribution in the usual way (recall that the orientation on
Y produces a canonical orientation on Y S).

10.1. Quasi-polynomial distributions

We have a diagonal action of the group RN on Y S by translations. This induces an
action of the abelianN -dimensional Lie algebra tN on DY S ; D′

Y S . Call a distribution
f quasi-polynomial if there exists anM such that tMf = 0. Let PY S be the subspace
of all quasi-polynomial distributions.

We have natural continuous maps

TS1S2 : D′
Y S1 ⊗ D′

Y S2 → D′
Y S1�S2

which induce maps:

TS1S2 :PY S1 ⊗ PY S2 → PY S1�S2 . (22)

10.2. Definition of subspaces CS ∈ PY S

We define these subspaces recursively.

(1) If S is empty or has only one element, we set CS := PY S .
(2) Suppose, we have already defined CS ⊂ PY S for all S with at most m elements.

For an S with m + 1 elements, we say that a quasi-polynomial distribution f

on Y S is in CS iff for any partition S = S1 �S2, there exists an integer M such
that 

 ∏
s1∈S1;s2∈S2

qMs1s2


 f ∈ TS1S2(CS1 ⊗ CS2), (23)

where TS1S2 is as in (22) and qs1s2 is as in (21).

10.3. Example

Let S = {1, 2}. We will also use the symbol [2] for {1, 2}. For y : [2] → Y we write
y1 := y(1) and y2 := y(2). Then f ∈ CS iff f is quasi-polynomial and there exists
an M such that q(y1 − y2)Mf = P (y1, y2), where P is a polynomial.
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Define a map π :CS → BS by πf = P/qM . It is clear that this map is well-
defined and that Kerπ consists of all functions f ∈ CS supported on the diagonal.
Denote CS,∆ := Kerπ. We are going to describe this space.

Let s = (y, y) be a point on the diagonal. Then on any relatively compact
neighborhood U of s, any distribution supported on the diagonal is of the form

f =
∑
µ

fµ(y1)δµ(y2 − y1), (24)

where the sum is taken over a finite set of multi-indices µ and fµ are distributions
on Y .

Suppose that f ∈ CS,∆. Then f is quasi-polynomial, tM
′
f = 0 for some M ′.

Therefore, tM
′
fµ = 0 for all µ meaning that each fµ is a polynomial of degree less

than M ′. This immediately implies that (24) is true everywhere for some polyno-
mials fµ. Conversely, if all fµ are polynomials, then f ∈ CS,∆.

The map π defines an injection CS/CS,∆ → BS . Let us show that this is in fact
a bijection. This means that for any integer M > 0 and any polynomial P (y1, y2)
there exists a distribution F such that Fq(y1 − y2)M = P . It is sufficient to do it
for P = 1. Let us construct such an F .

10.3.1. To this end, take an fdy1dy2 ∈ DY S , where dy is the standard volume
form on Y = RN and consider the expression

Z(s, f) =
∫
Y 2
f(y1, y2)q(y1 − y2)sdy1dy2.

Claim 10.1. This integral uniformly converges on any strip Re s > K, where
K > −N/2.

Proof. To show it, change the variables y = y1, z = y2− y1, and g(y, z) = f(y, y+
z). Then

Z(s, f) =
∫
Y 2
g(y, z)q(z)sdydz.

Let SN−1 ⊂ Y be the unit sphere q(y) = 1. Let α :R+ × SN−1 → Y be the
map: α(r, n) = rn. Let dn be the measure on Sn−1 determined by q. Then

Z(s, f) =
∫ ∞

0

r2s+N−1hf (r)dr,

where

hf(r) =
∫
Y×SN−1

g(y, rn)dydn.

Whence the statement.
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10.3.2. Since Z(s, f) is (up to a shift) the Mellin transform of hf , we know that
Z(s, f) has a meromorphic continuation to the whole complex plane, the poles can
only occur at s = −(N + k)/2, k = 0, 1, 2, . . . and are of at most first order. Denote

UM (f) = ress=−M
Z(s, f)
s+M

.

Claim 10.2. UM is a distribution.

Proof. Set s′ = 2s + N − 1; M ′ = −2M + N − 1 (M ′ corresponds to s = M).
Integration by parts yields:

Z(s, f) =
(−1)P

(s′ + 1)(s′ + 2) · · · (s′ + P )

∫ ∞

0

(
dP

drP
hf (r)

)
rs

′+Pdr,

whenever s′ + P > 0 and s′ �= −1,−2, . . . ,−P + 1. Choose P large enough so that
M ′ + P > 1. Set

l(s′, r) =
(−1)P

(s′ + 1)(s′ + 2) · · · (s′ + P )
rs

′+P

and

λ(r) = ress′=M ′ l(s′, r) = r(M ′ + P )CM ′,P ,

where CM ′,P is a constant. Thus,

UM ′(f) = CM ′,P

∫ ∞

0

rM
′+P dP

drP
hf (r)dr.

It is clear that the function hf is smooth and rapidly decreasing as r → ∞. Fur-
thermore, f 
→ hf is a continuous map from DY S to the space of rapidly decreasing
infinitely differentiable functions on [0,∞], in which the topology is given by the
family of seminorms

‖h‖K,L = max
r
rL|h(K)(r)|.

Since the map f 
→ hf is continuous, so is UM , whence the statement.

Claim 10.3. (1) qM (Y1 − Y2)UM = 1
(2) t.UM = 0. (for t see Sec. 10.1).

Proof. (1)

UM (qM (Y1 − Y2)f) = ress=−M
Z(s, qMf)
s+M

= ress=−M
Z(s+M, f)
s+M

= ress=0
Z(s, f)
s

= Z(0, f) =
∫
fdy1dy2.

(2) Obvious.

1240002-57



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

Corollary 10.4. UM ∈ CS ; π(UM ) = 1/qM . Therefore, π is surjective.

Thus, we have an exact sequence:

0 → CS,∆ → CS → BS → 0. (25)

We see that this is an extension of DS-modules. From our description of CS,∆,
it follows that CS,∆ = i∗O∆, where i :D → Y 2 is the diagonal embedding. One
can show that this extension does not split. One can construct a similar extension
when N is odd, in which case it splits; the reason is that the Green function for the
Laplace operator requires extraction a square root.

11. Study of CS

11.1. Action of differential operators

Denote by DY S the algebra of polynomial differential operators on Y S , it is clear
that each PY S is a DY S -module.

Claim 11.1. Each CS is a DY S -submodule of PY S .

Proof. This is obvious when S has 0 or 1 element. For an arbitrary S the proof
can be easily done by induction. Indeed, we only need to check that for any f ∈ CS
and any polynomial differential operator D, Df satisfies (23). It suffices to consider
only operators of zeroth and first order. If the order of D is zero, the statement is
immediate. Assume that the order of D is 1 and D1 = 0. Let

QS1S2 =
∏

s1∈S1;s2∈S2

qs1s2

and fQM ∈ TS1S2(CS1 ⊗ CS2). It is immediate that the space on the right-hand
side is a DY S -submodule of PY S . We then have

QM+1Df = D(QM+1f) − (M + 1)QM (DQ)f ∈ TS1S2(CS1 ⊗ CS2).

11.2. Map π : CS → BS and its surjectivity

11.2.1. Let f ∈ CS .

Claim 11.2. There exists a natural number M such that
 ∏

{s,t}⊂S
qst



M

f = P, (26)

where P is a polynomial and the product is taken over all 2-element subsets of S.

Proof. This is obvious when S is empty or has only one element. For general S
the argument follows from (23) by induction on the number of elements in S.
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Write

π(f) = P

/∏
s�=t

qst



M

.

It is clear that π(f) depends only on f and that π :CS → BS is a DY S -module
map.

Proposition 11.3. The map π is surjective.

11.3. Proof of Proposition 11.3

It is sufficient to construct for every integer M > 0 an F ∈ CS such that

F


 ∏

{s,t}⊂S
qst



M

= 1.

This is what we are going to do.

11.3.1. For convenience, denote by P := P2(S) the set of all 2-element subsets of
S; for T = {s, t} ∈ P write qT = qst. Denote U = CP ; for s ∈ U , write

qs :=
∏
T∈P

qsT

T .

It is clear that for every s ∈ U , qs :Y S → C is an analytic function on US.

11.3.2. Denote by dy the standard volume form on Y ; set

Ω :=
∏
s∈S

dys.

Note that the product does not depend on the order of multiples. Let fΩ ∈ DY S .
Write

Z(f, s) =
∫
Y S

(fqsΩ).

This integral converges if Re sT > 0 for every T ∈ P .

11.3.3.

Claim 11.4. For any f, Z extends to a meromorphic function on U . It can only
have poles of the first order along the divisors of the form

D(R, n) :=

{(∑
T⊂R

2sT

)
+ n = 0

}
,
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where R ⊂ S is a subset with at least 2 elements; T is an arbitrary 2-element subset
of R; n > (#R− 1)(N − 1) is a positive integer.

Proof. Let FM be the real Fulton–MacPherson compactification of US so that we
have a surjection P : FM → Y S . Denote V = P−1US . We know that P identifies V
and US . The complement FM\V can be represented as FM\V = ∪R⊂SFMR, where
#R > 1 and each FMR is a smooth subvariety of codimension 1; P (FMR) = DR,
where DR is the diagonal given by the equivalence relation eR on S in which x ∼eR y

and x �= y iff x, y ∈ R.
Let P ′(S) be the set of non-empty subsets of S. Let K ⊂ P ′(S). Then

FMK :=
⋂
R∈K

FMR �= ∅

if and only if for every R1, R2 from K, either one of them is inside the other, or
they do not intersect. In this case we call K forest. Let

FMo
K := FMK

∖ ⋃
L⊃K,L �=K

FML.

For every point x ∈ FMo
K , there exists a neighborhood W of x and a nondegenerate

system of functions tR, R ∈ K (i.e. all dtR are linearly independent at every point
y ∈W ) such that FMR is given by the equation tR = 0.

Claim 11.5. (1) We have

P−1Ω =
∏
R∈K

t
(N−1)(#R−1)
R ω,

where ω is nondegenerate at x.
(2)

P−1qst =


 ∏

{s,t}⊆R
t2R


ust,

where ust(x) �= 0.

Without loss of generality we can assume that

(1) both ω and all ust do not vanish on W ;
(2) φ := P−1f is supported on W .

11.3.4. We have

Z(s, f) =
∫
Y S

(∏
R∈K

t
2sR+(#R−1)(N−1)
R

)
F (s, y)φΩ, (27)

where F (s, y) is an integer function in s and sR =
∑
T⊂R sT . Therefore, Z(s, f)

can only have poles of at most first order along the divisors D(R, n), where n >
(#R − 1)(N − 1).
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11.3.5. Let M ∈ U be such that all MT are integer. Choose an arbitrary total
order <P on P2(S) and a point ε ∈ U such that

(1) each λT is positive real number;
(2) ∑

T∈P
λT < 1;

(3) for all T ,

λT >
∑
T ′<T

λT ′ .

Let C ⊂ C be the unit cirle. Then for all z ∈ CP2(S), Z(s, f) is regular at
M + λz. Set

U(M,λ, f) =
1

(2πi)#P

∫
CP

Z(M + λε, f)
∏
T∈P

dεT
εT

.

Note that the sign of this integral is well-defined.

It is clear that U(M,λ, f) is independent of λ; we set U(M,<P , f) :=
U(M,λ, f).

Claim 11.6. f 
→ U(M,<P ) is a distribution.

Proof. Let P : FM → Y S , x ∈ FM and a neighborhood W of x be as in the proof
of Claim 11.4.

It is sufficient to check that U(M,<P ) is continuous when restricted to a sub-
space DW of densities f such that P−1f is supported in W .

Let s′R := 2sR + (#R− 1)(N − 1). Let LR be arbitrary positive integers. Then
we can modify (27) as follows:

Z(s, f) =
∏
R∈K

(−1)L

(s′R + 1)(s′R + 2) · · · (s′R + LR)

∫
W

×
(∏

R

t
s′R+LR

R ∂LR
tR (φ(y)F (s, y))

)
ω,

where we assume that we have extended the set of functions tR to a coordinate
system on W and that ω is the standard density in this coordinate system.

Pick LR to be large enough. Then it is immediate that

U(M,<P , f) =
∫
W

(∑
S∈K

∂St AS

)
fω,

where AS are smooth functions on W . Therefore, U(M,>P ) is a distribution.
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Let S = S1�S2 so that Y S = Y S1 ×Y S2 . Let fi ∈ DY Si ; define f1�f2 :Y S → C

by f1�f2(Y1×Y2) = f1(Y1)f2(Y2), where Yi ∈ Y Si . Assume that MT ≥ 0 whenever
T = {s1, s2} with s1 ∈ S1, s2 ∈ S2.

Claim 11.7. We have

U(M,<P , f1 � f2) = U(M |S1 , <(P |P2(S1)), f1)U(M |S2 , <(P |P2(S2)), f2).

Proof. Clear

Claim 11.8. (1) qLU(M,<P ) = U(M + L,<P );
(2) qM (U(M,<P )) = 1;
(3) U(M,<P ) ∈ CS.

Proof. (1) Clear;
(2) follows from (1);
(3) Note that t.U(M,<P ) = 0, therefore U(M,<P ) is quasi-polynomial. The prop-
erty (23) follows by induction from Claim 11.7.

Thus, we have shown that π :CS → BS is surjective.

11.4. Filtration on CS

Let Diagn ⊂ Y S be the union of generalized diagonals of codimension n. Let
FnCS := CS,Diagn ⊂ CS be the submodule consisting of distributions supported on
Diagn. We will study this filtration.

11.4.1. Let ∆ ⊂ Y S be a diagonal. Let i∆ : ∆ → Y S be the corresponding inclu-
sion. Let D∆ be the algebra of polynomial differential operators on ∆. Let ω∆

(respectively ωY S ) be the bundle of top forms on ∆ (respectively on Y S). It is well
known that

D∆→Y := ωD∆ ⊗O∆ DY S ⊗O
Y S

ω−1
Y S

is a right D∆ and a left DY S -module. Let M be a left D∆-module. Set

i∆∗M := M ⊗DDe D∆→Y .

For example, let D′
Y S,∆ ⊂ D′

Y S be the submodule of distributions F such that

(1) F is supported on ∆
(2) there exists an M = M(F ) such that Fg = 0 for any smooth function vanishing

on ∆ at order ≥ M(F ). (Note that locally on ∆ the condition (2) is always
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true.) We have a natural isomorphism

I∆ := I∆,Y S : i∆∗D′
∆

∼−→ D′
Y S ,∆.

Claim 11.9. (1) Let ∆1 ⊂ ∆2 ⊂ ∆3. Consider the composition

i∆1∆3∗C∆1
∼= i∆2∆3∗i∆1∆2∗C∆1

I∆1∆2−−−−→ i∆2∆3∗C∆2

I∆2∆3−−−−→ C∆3 .

It is equal to ID1D3 .

11.4.2. Let ∆ be given by an equivalence relation e on S. We then have an
isomorphism ∆ ∼= Y S/e. Denote CD := CY S/e .

Proposition 11.10. (1)

I∆(i∆∗C∆) ⊂ CY S;∆;

(2)

I∆|C∆ : i∆∗C∆ → CY S;∆

is an isomorphism.

Proof. (1) It suffices to show that I∆(i∆∗C∆) ⊂ CS . Let A ⊂ i∆∗C∆ be the
subspace of all elements annihilated by multiplication by any function vanishing
on ∆. Let f ∈ DY S , a ∈ CD and u ∈ ωD ⊗O

Y S
ω−1
Y S . Then uf |∆ ∈ D∆ and

I∆(au)(f) = a(uf |∆).
Using this formula and a simple induction, we see that I∆(A) ⊂ CS . It is also

well-known that i∆∗C∆ is generated by A. This completes the proof of (1).
(2) We need the lemma:

Lemma 11.11. Let U ⊂ Y be a non-empty open set and assume that F ∈ CS
vanishes on U . Then F = 0.

Proof of Lemma. The statement is obvious when S is empty or has 1 element.
Let us now use induction. Let S = S1 � S2. We know that for some M∏

s1∈S1,s2∈S2

qMs1s2F ∈ TS1S2(CS1 ⊗ CS2).

There exist non-empty open sets Ai ∈ Y Si such that A1 ×A2 ⊂ U . Write:

∏
s1∈S1,s2∈S2

qMs1s2F ∈ TS1S2

(∑
i

ai ⊗ bi

)
,

where ai ∈ CS1 , bi ∈ CS2 and ai are linearly independent. By induction assumption,
restrictions of ai onto A1 are also linearly independent (because if these restrictions
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are dependent, then the same dependence holds for the whole Y S
1
). Therefore, there

exist pi ∈ DA1 such that ai(pj) = δij . Let q ∈ DA2 . We know that F (pi � q) = 0.
Therefore, bi(q) = 0, since q is arbitrary, bi vanishes on A2, hence by induction
assumption, bi = 0. Therefore,

∏
s1∈S1,s2∈S2

qMs1s2F = 0. Therefore, F is supported
on DS1S2 := ∩si∈SiDs1s2 , hence on

E = ∩S=S1�S2DS1S2 .

Show that E is the smallest diagonal ∆α. Indeed it is clear that ∆α ⊂ E. If
y /∈ ∆α, then there exists a partition S = S1 � S2 such that S1, S2 are non-empty
and Ys1 �= Ys2 whenever si ∈ Si. Therefore y /∈ ∆S1S2 , hence not in E.

Thus, F is supported on ∆α. Since F is quasi-polynomial and vanishes on U , it
also vanishes on U + a for all a ∈ ∆α. Therefore, F vanishes on a neighborhood of
∆α. Therefore, F = 0.

Proof of Proposition 11.10(2). (1) Choose a relatively compact open set
U ∈ Y S . Then it is well-known that there exists M such that F is annihilated
by multiplication by any function vanishing on ∆ ∩ U of order ≥ M . By virtue
of the lemma, this implies that F is actually annihilated by multiplication by any
function vanishing on ∆ of order ≥ M . (2) It suffices to check that there exists
f ∈ I∆(i∆∗C∆) such that F − f vanishes on U . It is easy to see that the latter is
equivalent to the following: for any polynomial P vanishing on ∆ of order M − 1,
Pf ∈ I∆(A). This follows easily by induction.

11.5. Let Diagn := Diagn(S) be the set (not the union!) of all diagonals in Y S

of codimension n. We have a map

In := ⊕D∈Diagn
I∆ ⊕ i : ⊕D∈Diagn

iD∗CD ⊕ CS, Diagn+1
→ CS, Diagn

.

Claim 11.12. (1) In is surjective;
(2) if

∑
∆∈Diagn

f∆ + g ∈ Ker In, where f∆ ∈ i∆∗∆ and g ∈ CS,∆n+1, then all f∆
are supported on ∆n+1.

Proof. We need the following lemma.

Lemma 11.13. Let ∆ ∈ Diag(S)n. There exists M :P2(S) → Z≥0 such that q∆ :=
qM = 0 on any ∆′ ∈ Diagn, ∆′ �= ∆ but qM �= 0 on ∆.

Proof. Set Mst = 1 if ∆st ⊃ ∆; otherwise set Mst = 0.

Proof of Claim 11.12. (1) Let F ∈ CS,∆n. Then F (q∆)m ∈ CS,∆ for m � 0. We
have an isomorphism CS,∆ ∼= i∆∗C∆. We also have the map π :C∆ → B∆ which
induces a map

i∗(π) : i∆∗C∆ → i∆∗B∆.
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In particular [i∆∗(π)]F (q∆)m ∈ i∆∗B∆. Since the multiplication onto q∆ is invert-
ible on i∆∗B∆, there is an element x ∈ i∆∗B∆ such that

x(q∆)m = (i∆∗(π)(F )(q∆)m).

Since π is surjective, so is i∆∗π. Pick a pre-image x′ := x′∆ of x in i∆∗C∆. Then

([i∆∗(π)](F (q∆)M − x′(q∆)M )) = 0.

It then follows that F −x′ is supported on the union of all n-dimensional diagonals
except D. Since each x′D is supported on ∆, we have:

F −
∑
∆

x′∆

is supported on ∆n+1.
Proof of (2). Let

∑
f∆ + g ∈ Ker In. It follows that (q∆)mf∆ is supported on

∆n+1 it is easy to check that if x ∈ ∆ and (q∆)m(x) = 0, then x ∈ ∆n+1. Therefore,
f∆ is supported on ∆n+1.

11.5.1.

Corollary 11.14. The map ⊕∆∈Eq(S)n
ID induces an isomorphism:

⊕∆∈Diagn
i∗BD → CS,Diagn

/CS,Eq(S)n+1 .

11.5.2. Let X := C
N be the complexification of Y viewed as an algebraic variety

over C. Let DXS be the sheaf of differential operators on XS . Then CS defines
a DXS -module CS in the usual way. The above claim implies that CS is a holo-
nomic DXS -module (because each quotient CS,Diag(S)n

/CS,Diag(S)n+1 determines a
holonomic DXS -module).

11.5.3. Let Diag(S) be the set of diagonals in XS ordered with respect to the
inclusion. We denote by the same symbol the corresponding category. We have a
functor D 
→ CS,D from Eq(S) to the category of DXS -modules.

11.5.4. Let I be a small category and C an abelian k-linear category. Let F : I → C
be a functor. Let I ′ be the abelian category of functors Iop → vect. For A ∈ I ′ we
can form the Eilenberg–MacLane tensor product F ⊗I A ∈ C. We call F perfect if
the functor A 
→ F ⊗I A is exact.

Claim 11.15. The functor ∆ 
→ CS,∆ is perfect.

Proof. Let n > 0 be an integer and ∆ ∈ Diag(S). Set Fn(e) := (CS,∆)n. We see
that Fn : Diag(S) → DXS are subfunctors of our functor F = F0.
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It suffices to show that for every n, Gn := Fn/Fn+1 is perfect.
It follows that

Gn(s) =
⊕

t∈Diagn;t≤s
Gt,

where Gt = it∗B∆t . The structure maps are the obvious ones.
We have

Gn ⊗Diag(S) A =
⊕

t∈Diag(S)n

A(t) ⊗Gt

and we see that the functor

A 
→ Gn⊗Diag(S)

is exact. Therefore, Gn is perfect.

11.5.5. Let Sa, a ∈ A be a finite family of finite sets. Then we have a∏
a∈ADiag(Sa)-filtration on

∏
a∈A CSa viewed as a DX�a∈ASa -module. The same

agument shows that the corresponding functor from the category
∏
a∈A Diag(Sa)

to the category of DX�a∈ASa -modules is perfect.

11.5.6. We are going to study how the map ID1D2 : iD1D2∗CD1 → CD2 is compatible
with the filtrations. The answer is very simple: this map induces an isomorphism

iD1D2∗CD1 → CD2,D1 .

The filtration on the L.H.S. induced by the filtration on CD1 coincides with the
filtration induced by the one on CD2,D1 .

12. Asymptotic Maps

12.1. Construction

Let De ⊂ Y S be a diagonal given by an equivalence relation e on S. Let p :S → S/e

be the canonical projection. Let Si := p−1i, i ∈ S/e. Denote

CeS := iDeY S ∧ (BD) ⊗ �i∈S/eCSi .

The multiplication by qst is invertible on CeS whenever p(s) �= p(t). Let Qe be the
product of all such qst.

12.1.1. We are going to construct a map

asS,e : CS → CeS
as follows.
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First of all it suffices to define a corresponding map on the level of global sections.
Let F ∈ CS . It follows from the definition that there exists an M such that

QMe F ∈ T ((⊗i∈S/eCSi)),

where the tensor product is taken over C. Where T is the natural inclusion

(⊗i∈S/eCSi) → CS ,

induced by the superposition of maps from (22). On the other hand, we have an
obvious map

(⊗i∈S/eCSi) → CeS .

Since the multiplication by Q is invertible on CeS , we have a well-defined map
as′S,e :CS → CeS , which determines the desired map asS .

13. Properties of asS

13.1. Compatibility with the filtrations

13.1.1. Filtration on CeS

Let f ≥ e be an equivalence relation. It can be equivalently described as a set of
equivalence relations fi on Si. Set

(CeS)f := i∧DeY S (BS) ⊗ �iCSi,∆fi
⊂ CeS .

Thus we have a filtration of CeS indexed by the ordered set Diag(S)≥e of all equiv-
alence relations which are greater than or equal to e. It is clear that this filtration
is perfect (i.e. the corresponding functor

Diag(S)≥e → DXS -mod

is perfect). We can also consider CeS as an object perfectly filtered by Diag(S) such
that (CeS)f = 0 if f is not greater than or equal to e.

We have an isomorphism

GrfCeS = iDfY S∗{iDeDf

∧(BS/e) ⊗ �iBSi/fi
}

if f ≥ 0 (otherwise the corresponding element is zero).

13.1.2. The map asS,e is compatible with the filtrations. Let f ≥ e. The induced
map from GrfCS ∼= iDfY SBS/f to GrfCeS is induced by the asymptotic map

BS → i∧DeDf
(BS/e) ⊗ �iBSi/fi

.

14. Formalism I, i, δ

In this section we will define functors I, i, δ. The functors i are the same as the ones
used to define an OPE (see (1)). The functors δ are the functors of direct image in
the theory of ∆-modules.

The functors I are built from CS .
These functors will be used to construct a required resolution of the system 〈i〉.
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14.1. Main definitions

14.1.1. Let ∆e ⊂ ∆f be two diagonals in XS determined by the equivalence
relations e ≤ f . Let p :S/f → S/e be the canonical projection. Let (S/f)i := p−1(i),
i ∈ S/e. Set

I∆1∆2 , i∆1∆2 , δ∆1∆2 :D-modX∆1 → D-modX∆2

to be defined by the formulas:

I∆2∆1(M) = i∆1∆2(M)∧ ⊗ �i∈S/eC(S/f)i
;

i∆2∆1(M) = i∧∆1∆2
(M) ⊗ �i∈S/eB(S/f)i

;

δ∆2∆1(M) = i∆1∆2∗(M).

Sometimes we will also use the notation Ii, ii, δi, where i :∆2 → ∆1 is the
inclusion of the corresponding diagonals.

14.1.2. Exactness

Let T ∈ S be a subset and pT :XS → XT be the corresponding projection. Call an
H ∈ D-modXS T -exact if H is locally free as a p−1

T OXT -module. Let i : ∆e→XS be
a diagonal and let T ⊂ S be such that the through map T →S → S/e is a bijection.

Let M ∈ D-mod∆e . Write

iH(M) = i∧(M) ⊗H.

Claim 14.1. (1) Let the functor H be T -exact. Then the functor

iH(·) :D-mod∆e → D-modXS

is exact.
(2) Let

0 → H1 → H2 → H3 → 0

be an exact sequence of T -exact modules. Then the sequence

0 → iH1(M) → iH2(M) → iH3(M) → 0

is exact for all M ∈ D-mod∆e.

Proof. Obvious.

Note that BS , CS, i∆∗O∆ are {s}-exact for any one-element subset s ⊂ S (here
i∆ : ∆ ⊂ XS is the smallest diagonal). This immediately implies that the functors
i, I, δ are exact.
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14.1.3. Filtration

Let ∆e ⊂ ∆f ⊂ ∆g. Let p :S/g → S/f and q :S/f → S/e. For x ∈ S/e let gx be
the equivalence relation on (qp)−1x induced by g. We have a projection

px : (qp)−1x→ (qp)−1x/gx ∼= q−1(x)

induced by p. We have a map

Jgfe : δ∆g∆f
I∆f∆e → I∆g∆e

defined as follows:

δ∆g∆f
I∆f ∆e(M) ∼= i∆f∆g∗(i

∧
∆e∆f

(M) ⊗ �i∈S/eCq−1(x))

∼= i∧∆e∆g
(M) ⊗ (i∆f∆g∗(�i∈S/eCq−1(x)))

∼= i∧∆e∆g
(M) ⊗ �x∈Sei∆gxX

(qp)−1x∗C∆gx

→ i∧∆e∆g
(M) ⊗ �x∈SeC(qp)−1x.

This map is injective for all M . Indeed, this needs to be checked only for the
last arrow, which follows from:

(1) injectivity of the arrow

i∆gxX
(qp)−1x∗C∆gx

→ �x∈SeC(qp)−1x;

(2) both terms of this arrow are OT exact where T ⊂ S/e is such that T → S/e→
S/g is a bijection, as well as the cokernel of this arrow.

The above results imply that these inclusions, for all f such that g ≥ f ≥ e,
define a perfect filtration on I∆g∆e . We denote by (I∆g∆e)f the correponding term
of this filtration.

14.1.4. This filtration is perfect

Let p :S/g → S/e be the projection. For i ∈ S/e, let (S/g)i = p−1i. The ordered
set of equivelence relations f such that g ≥ f ≥ e is isomorphic to the product∏
x∈S/eDiag((S/g)x). Denote this ordered set by [e, g]. The filtration on I∆g∆e is

induced by the perfect
∏
x∈S/eDiag((S/g)x) = [e, g]-filtrations on �x∈S/eC(S/g)x

.

Denote by

F : [e, g] → D-modXS/g

the functor determined by these filtrations:

F ({fx}x∈S/e) = �x∈S/eC(S/g)x,fx
.
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The statement we are proving follows immediately from the following one:

Let T ⊂ S/g be a subset such that the through map T → S/g → S/e is a
bijection and

A : ([e, g])op → Vect.

Then F ⊗[e,g] A is T -exact.
Let us prove this statement. Indeed, we have seen that F has a filtration Fn

such that each Fn/Fn+1 is perfect. Furthermore, as it follows from Corollary 11.14,

Fn/Fn+1 ⊗[e,g] A =
⊕

t∈(
Q

x∈S/e Eq((S/g)x)))n

Gt ⊗A(t),

where each Gt is T -free.
Therefore, since each Fn/Fn+1 is perfect, the filtration on F induces a filtration

on F ⊗[e,g] A, its associated graded quotient being isomorphic to Fn/Fn+1 ⊗ A,
which are, as we have seen T -free. Therefore, F ⊗A is also T -free.

14.1.5. Thus, I∆g∆e is a perfect functor from the category ∆∆e-modules to the
category of [e, g]-perfectly filtered ∆∆g -modules. We have a canonical isomorphism

Grf (I∆g∆e(M)) ∼= δ∆g∆f
i∆f∆e(M).

14.1.6. Asymptotic decompositions

The asymptotic maps AsS,e from (12) define maps:

Asfge : I∆g∆e → I∆g∆f
i∆f∆e

in the obvious way.
The compatibility of AsS,e with the filtration implies that the map Asfge is

compatible with the filtrations in the following sence:

Asfge(I∆g∆e)f ′ = 0

if f ′ /∈ [f, g]. Otherwise

Asfge(I∆g∆e)f ′ ⊂ (I∆g∆f
)f ′ i∆f∆e . (28)

Furthermore, we have

(I∆g∆e)f ′ ∼= δ∆g∆f′I∆f′∆e

and the above inclusion (28) is given by the map

δ∆g∆f′I∆f′∆e → δ∆g∆f′I∆f′∆f
i∆f∆e

∼= (I∆g∆f
)f ′ i∆f∆e .

Compute the associated graded map

Grf ′I∆g∆e → (Grf ′I∆g∆f
)i∆f∆e . (29)
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We have

Grf ′I∆g∆e
∼= δ∆g∆f′ i∆f′∆e ;

therefore the map (29) is given by the map

δ∆g∆f′ i∆f′∆e → δ∆g∆f′ i∆f′∆f
i∆f∆e

induced by the asymptotic map

if ′e → if ′f ife.

14.1.7. Let Sα, α ∈ A be a finite family of finite sets. Let eα, fα ∈ Diag(Sα); eα ≤
fα; let Mα be some D∆eα

-modules. Let S = �α∈ASα; e := �α∈Aeα; f = �α∈Afα.
We then have a natural map

�α∈AI∆fα ∆eα
(Mα) → I∆f∆e(�α∈AMα).

15. Resolution

We will focus our study on the functors i and I. We will need the following prop-
erties. Let ∆1 ⊂ ∆2 ⊂ ∆3 ⊂ ∆4 be a flag of diagonals.

(1) We have natural transformations:

I∆i∆j → i∆i∆j , i > j;

i∆3∆1 → i∆3∆2 i∆2∆1 ;

I∆3∆1 → I∆3∆2 i∆2∆1 ;

�α∈AI∆fα∆eα
(Mα) → I∆f∆e(�α∈AMα).

�α∈Ai∆fα∆eα
(Mα) → i∆f∆e(�α∈AMα).

(2) The properties are:

(a) The functors i satisfy the axioms of system (see (2.3.3)).
(b) The following diagrams commute:

I∆4∆1
��

��

I∆4∆2 i∆2∆1
�� I∆4∆3 i∆3∆2 i∆2∆1

I∆4∆3 i∆3∆1

�������������������������

;

(30)

(31)
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15.0.1. Let f > e be equivalence relations on S. Let Zebra(f, e) be the
ordered set defined as follows. Elements of Zebra(S) are sequences s :=
(e1i12e2i23e3i34 · · · in−1nen), where f = e1 > e2 > · · · > en = e is a flag of equiva-
lence relations and each ipp+1 is one of the symbols i or I. Let s′ = (e′1i

′
12 · · · e′n′)

be another element of Zebra(f, e). We write e ≥ e′ if:

(1) for all k = 1, 2, . . . , n′, there exists nk such that e′k = enk
(in particular, n1 =

1;nn′ = n;
(2) if i′kk+1 = i, then ipp+1 = i for all p = nk, nk + 1, . . . , nk+1 − 1;
(3) if i′kk+1 = I, then ipp+1 = i for all p = nk + 1, . . . , nk+1 − 1 (it is possible that

inknk+1 = I).

Let ji∆1∆2
= i∆1∆2 if i = i and ji∆1∆2

= I∆1∆2 if i = I. For s ∈ Zebra(f, e)
write

j(s) := ji12∆1∆2
ji23∆2∆3

· · · jin−1n

∆n−1∆n
.

The above properties imply that j is a functor from the category determined
by the ordered set Zebra(f, e) to the category of functors D∆e-mod → D∆f

-mod;
our agreement is that whenever x′ ≤ x, x′, x ∈ Zebra(f, e), we have an arrow from
j(x′) → j(x).

15.1. Filtration on the functor

j :Zebra → Funct(D∆e-mod, D∆f -mod)

To define such a filtration we need some combinatorics.

15.1.1. Define the ordered set Segments(f, e). To this end, we need a notion of
segment in an arbitrary ordered set X , which is just an arbitrary pair of elements
x, y ∈ X such that x > y. We denote such a segment by [x, y]. Given two segments
[a, b] and [c, d], we say that [a, b] > [c, d] iff b ≥ c (in which case a > b ≥ c > d).
Define the set Segments(X) whose elements are arbitrary flags of segments

[a0, b0] > [a1, b1] > · · · > [an, bn].

Of course, this simply means that

a0 > b0 ≥ a1 > b1 ≥ a2 > b2 ≥ · · · ≥ an > bn.

Introduce an order on the set Segments(X) according to the following rule.
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Let

u = ([a0, b0] > [a1, b1] > · · · > [an, bn])

and

v = ([a′0, b
′
0] > [a′1, b

′
1] > · · · > [a′m, b

′
m])

be elements in Segments(X). We say that u ≤ v iff for every segment [a′i, b
′
i] there

exists a segment [aj, bj ] such that aj = a′i > b′i ≥ bj.
Let f ≥ e be equivalence relations on S. Let Diag(f, e) be the set of all equiva-

lence relations g such that f ≥ g ≥ e.
Set

Segments(e, f) := Segments(Diag(f, e)).

For s ∈ Zebra(f, e), where s = e1i12 · · · en, we will define an element ν(s) ∈
Segments(f, e) by setting

ν(s) = ([ek1 , ek1+1] > [ek2 , ek2+1] > · · · > [ekr , ekr+1]),

where k1 < k2 < · · · < kr is a sequence of all numbers such that ik,k+1 = I.

15.1.2. Let s ∈ Zebra(f, e),

s = e1i12 · · · en,
and let t ∈ Segments(f, e) be an element such that t ≥ ν(s). Let

t = ([a1, b1] > [a2, b2] > · · · > [ak, bk]).

Assume that ip,p+1 = I. Then there are two possibilities:

(1) either there exists p′ such that ep = ap′ , ep = ap′ < bp′ ≤ ep+1. In this case
write

j′p = δ∆a
p′b

p′ Ibp′ep+1 ;

(2) there are no segments [ap′ , bp′ ] as in (1).

We then set

j′p = j
ipp+1
∆ep∆ep+1

.

Define:

F tj(s) = j′1j
′
2 · · · j′p.

If it is not true that t ≥ ν(s), we then set F tj(s) = 0.
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Claim 15.1. For every s, F is a perfect filtration on j(s).

Proof. Let Segments(f, e)s = {t ∈ Segments[f, e]|t ≥ s}. Let u ∈
Segments(f, e). We see that j(s)u = 0 whenever u /∈ Ns. Therefore,

j(s) ⊗Segments(f,e) A ∼= j(s) ⊗Segments(f,e)s
A

for every A :Segments(f, e) → Vect. Thus, it suffices to show that the
Segments(f, e)s-filtration on j(s) is perfect. Let

s = ([a1, b1] > [a2, b2] > · · · > [anbn])

be an element in Segments(f, e). Then we have an isomorphism

Segments(f, e)s ∼=
∏
i

[ai, bi]Diag(S).

Indeed, let ai ≥ ui ≥ bi. Let i1 > i2 > · · · > ir be the subsequence of all numbers
such that ai > uik . Then the corresponding flag of segments is given by the formula

[ai1 , ui1 ] > [ai2 , ui2 ] > · · · > [air , uir ].

Consider two cases.
Case 1 a1 = f . Define an element s′ ∈ Segments(b1, e) by the formula

s′ = ([a2, b2] > · · · > [anbn]).

We then have

j(s) = I∆a1∆b1
j(s1).

We have

Segments(f, e)s ∼= [a1, b1]Diag(S) × Segments(b1, e)s′ ,

where a pair (u, r), where a1 ≥ u ≥ b1 and r ∈ Segments(b1, e)s′ ,

r = [a′2, b
′
2] > [a′3, b

′
3] > · · · > [a′l, b

′
l]

determine the flag of segments f , where

f = ([a1, u] > [a′2, b
′
2] > · · · > [a′n, b

′
n])

if a1 > u and

f = ([a′2, b
′
2] > · · · > [a′n, b

′
n])

if u = b1.
The filtration on j(s) is induced by the corresponding filtrations on I∆f∆b1

and j(s′).
We are going to use induction, so we can assume that we have already proven

that the filtration on j(s′) is perfect. We denote by the same letter the functors
determined by the corresponding filtrations on j(s), j(s′) and I∆f∆b1

.
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Denote jn := I∆f∆b1n
j(s′). Since the quotient

I∆f∆b1n
/I∆f∆b1 (n+1)

is T -free for every finite set T ⊂ S/f such that T → S/f → S/b1 is bijection, we
have:

jn/jn+1
∼= (I∆f∆b1n

/I∆f∆b1 (n+1))j(s′).

Using (11.14), we obtain

jn/jn+1 ⊗Segments(f,e)s
A ∼= ⊕t∈[b1f ]n(Gtj′(s′)) ⊗Segments(b1,f)s′ A(t, s′)

therefore, jn/jn+1 is perfect, hence j(s) is also perfect.
Case 2 f > a1 is similar.

15.2. Description of Grtj

15.2.1. Let t ∈ Segments(f, e); let

Zebra(f, e)t = {g ∈ Zebra(f, e)|ν(g) = t}.

We consider Zebra(f, e)t as an ordered subset of Zebra(f, e). Let i :Zebrat →
Zebra(f, e) be the inclusion.

Let Funct(Zebra(f, e)t, C) be the category of functors from Zebrat to an arbi-
trary abelian category C. We have the restriction functor

i−1 :Funct(Zebra(f, e), C) → Funct(Zebra(f, e)t, C).

Let i∗ be the right adjoint functor. It can be constructed as follows.
Let F :Zebra(f, e)t → C and s ∈ Zebra(f, e). There are two cases:

(1) It is false that ν(s) ≤ t, then i∗F (s) = 0;
(2) ν(s) ≤ t. Then there exists the least element st ∈ Zebra(f, e)t among the

elements in Zebra(f, e)t which are ≥ s (we will show it in the next paragraph).
Set i∗F (s) = F (st). It is clear that if ν(s1), ν(s2) ≤ t and s1 ≤ s2, then
(s1)t ≤ (s2)t. This determines the functor structure on i∗F .

We will now construct the element st. Let

s = (e = e1i12e2i23 · · · in−1nen = f).

Let

t = ([a1, b1] > [a2, b2] > · · · > [am, bm]).

The condition ν(s) ≤ t means that for every µ = 1, 2, . . . ,m there exists a
number ki such that ekµ = aµ > bµ ≥ ekµ+1 and ik(kµ+1) = I.
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Let e = u1 > u2 > · · · > uN = f be a flag of equivalence relations determined
by the condition

{u1, u2, . . . , uN} = {e1, e2, . . . , en} ∪ {a1, b1, a2, b2, . . . , am, bm}.

Define the symbols i′k,k+1, where k = 1, 2, . . . , N − 1, according to the rule:
if uk = em and uk+1 = em+1, then i′k,k+1 = i;
if uk = em = ar and uk+1 = br, then i′k,k+1 = I;
if uk = br and uk+1 = el, then i′k,k+1 = i. As we exhausted all the possibilities,

we can now define

st = (u1i
′
12u2i

′
23 · · ·uN ).

15.2.2. We have Grtj ∼= i∗i−1Grt(j) and it remains to describe G := i−1Grt(j). Let
s be such that ν(s) = t; s = (e1i12 · · · en).

Set cu = i if u = i; cu = δ if u = I. Then

G(s) = ci12∆e1∆e2
· · · cin−1n

∆en−1∆en
.

15.2.3. The functors P∆f∆e

We will study the functor

P∆f∆e := liminvs∈Zebra(f,e)j(s).

Set

P∆f ,∆e,t := liminvs∈Zebra(f,e)j(s)t,

where t ∈ Segments(f, e). Our goal is to show that the functor t 
→ P∆f ,∆e,t is

(1) a filtration on P∆f ,∆t ;
(2) a perfect functor on the category Segments(f, e).

Since these properties are the case for the functor t 
→ jt; it suffices to show that
the derived functors Ri liminvZebra(f,e), i ≥ 1, vanish on Grtj. This is what we are
going to do.

15.2.4. Let I be a small category and H : I → C be a functor, where C is an
arbitrary k-linear category. Let I− be the abelian category of functors I → Vect
Let hH(X) := homI(X,H) ∈ C, where X ∈ I−.

H is called flabby if the functor hH is exact. It is clear that flabby functors
are adjusted to the functor liminvI and that there are enough flabby objects in
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the abelian category of functors I → C. The functor i∗ is exact and maps flabby
functors to flabby (this follows from the existence of an exact left adjoint functor
i−1, therefore

hi∗H(X) = homZebra(f,e)(X, i∗H) ∼= homZebra(f,e)t
(i−1X,H),

which implies that i∗H is flabby).
Therefore,

R liminvZebra(f,e)Grt(j) ∼= R liminvZebra(f,e)t
G.

The category Zebra(f, e)t has an initial object ti, which is

ti = (f ia1Ib1ia2Ib2i · · · bnif),

where we assume that in the case e = a1, or bi = ai+1, or bn = f , the fragment
f ia1 (respectively biiai+1, respectively bnif) is replaced with f (respectively bi,
respectively f).

Therefore,

R liminvZebra(f,e)Grt(j) = G(ti).

15.2.5. Conclusion

As was mentioned above, these facts imply that we have a filtration on P∆f∆e

by subfunctors P∆f∆e,t and that this filtration is perfect. We will also denote
F tP∆f∆e := P∆f∆e .

15.2.6. Lemma

We will prove a lemma which will only be used in the next section. We have an
element eIf ∈ Zebra(f, e). Let

Zebra0(f, e) := Zebra(f, e)\{eIf}.

Let P0
fe := liminvZebra0(f,e)j. We have natural maps

0 → δfe → Pfe → P0
fe → 0. (32)

Lemma 15.2. The sequence (32) is exact.

Proof. It is easy to check that the composition of the arrows is zero. Let us now
prove the exactness. Let t ∈ Segments(f, e). Set

P0(f, e)t := liminvs∈Zebra0(f,e)j(s)t.
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The same argument as above shows that:

(1) t 
→ P0(f, e)t is a filtration on P0(f, e)t;
(2) the lowest element of the filtration is zero: P0(f, e)[f,e] = 0.
(3) the induced map

GrtP(f, e) → GrtP0(f, e)

is an isomorphism for all t �= [f, e]. If t = 0, then the induced map is a surjection
(onto zero).

The lemma then follows easily.

15.3. Formalism δ, P
We are going to describe a structure possessed by the functors δ,P . Let us first
introduce the elements of this structure and then describe their properties.

15.3.1. Decompositions

Define a map

α :P∆1∆3 → P∆1∆2P∆2∆3

as follows. Let s1 ∈ Zebra(∆1,∆2) and s2 ∈ Zebra(∆2,∆3). Let (s1s2) ∈
Zebra(∆1,∆2) be the obvious concatenation. Set

(ps1 × ps2)α = p(s1s−2).

It is immediate that this definition is correct.

15.3.2. Concatenations

Let s ∈ Zebra(f, e); s = (e1i12 · · · en). Define a map

c :P∆1∆2δ∆2∆3P∆3∆4 → P∆1∆4

by setting

psc = 0

if the following is wrong:
There exists an m such that imm+1 = I and

∆em = ∆2 ⊇ ∆3 ⊇ ∆em+1 .

Let Zebra(f, e)∆2∆3
⊂ Zebra(e, f) be the set of s for which this condition

is true. For s ∈ Zebra(f, e)∆2∆3
we define the elements s1 ∈ Zebra(∆1∆2) and

s2 ∈ Zebra(∆3,∆4) (we do not distinguish between a diagonal in XS and an
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equivalence relation on S by which it is determined) according to the rule:

s1 = e1i12 · · · em
and

s2 = ∆3Iem+1 · · · en.

We then have a composition:

cs :P∆1∆2δ∆2∆3P∆3∆4 → js1δ∆2∆3 js2 → js.

Define c by the condition psc = cs. Show that this definition is correct.
Let t > s. Let ats : js → jt be the induced map. We need to check that ct = atscs.

There are several cases.

Case 1. s /∈ Zebra(f, e)∆2∆3
. Since t > s, t /∈ Zebra(f, e)∆2∆3

; the correctness is
obvious;

Case 2. t /∈ Zebra(f, e)∆2∆3
; s ∈ Zebra(f, e)∆2∆3

. This means that t contains an
element ρ such that

∆2 = em > ρ > em+1,

but it is not true that

∆3 ≥ ρ.

In this case, the composition

δ∆2∆3I∆3em+1 → I∆2em+1 → I∆2ρiρem+1

is zero, therefore atscs = 0, and the correctness condition is satisfied.

Case 3. s, t ∈ Zebra(f, e)∆2∆3
— straightforward.

15.3.3. Factorization maps

Let Sa,a ∈ A be a finite family of finite sets. Let fa ≥ ea be equivalence relations
on Sa. Let S = �aSa; f = �afa; e = �aea; f ≥ e. Let Ma ∈ D∆ea

. Define a natural
transformation

µ : �a Pfaea(Ma) → Pfe(�aMa).

Let g be such that f ≥ G ≥ e. Any such an equivalence relation can be repre-
sented as g = �aGa, where fa ≥ ga ≥ ea.

Let

Φ = (g1i12g2 · · · in−1ngn);
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Φ ∈ Zebra(f, e). Let gr = �agra. Let

Φ′
a = (g1ai12g2a · · · in−1ngna).

After deletion of repeating terms we get an element Φa ∈ Zebra(fa, ea). Define

pΦµ : �a Pfaea(Ma)) → �apΦaPfaea(Ma)

∼= �a(ii12g1ag2a
ii23g2ag3a

· · · iin−1n
gn−1agna

(Ma))

∼= (�ai
i12
g1ag2a

)(�ai
i23
g2ag3a

) · · · (�ai
in−1n
gn−1agna

)(�aMa)

→ ii12g1g2 i
i23
g2g3 · · · iin−1n

gn−1gn
)(�aMa).

This defines the map µ. This completes the description of the elements. Now let us
pass to the properties.

15.3.4. Concatenation + factorization

It follows that the map

�a(Pfaea(Ma)) → Pfe(�aMa) → PegPgf (�aMa)

is equal to the map

�a(Pfaea(Ma)) → �a(PfagaPgaea(Ma))

→ Pfg �a Pgaea(Ma) → PfgPge(�aMa).

15.3.5. The map

F :Pfg′δg′g′′Pg′′e(M) � (Pf1e1(M1))

→ Pfe(M) � (Pf1e1(M1))

→ Pf�f1,e�e1(M �M1) (33)

is equal to the sum of the maps Fg1 , where f1 ≥ g1 ≥ e1:

fg :Pfg′δg′g′′Pg′′e(M) � (Pf1e1(M1))

→ Pfg′δg′g′′Pg′′e(M) � (Pf1g1Pg1e1(M1))

→ Pf�f1,g′�g1(δg′g′′Pg′′e(M) � Pg1e1(M1))

→ Pf�f1,g′�g1δg′�g1,g′′�g1Pg′′�g1,e�e1(M �M1)

→ Pf�f1,e�e1(M �M1).
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Let us prove this statement. We need to show that for every s ∈ Zebra(f �
f1, e � e1),

psF = ps
∑
g1

Fg1 .

Let

s = ((k0, h
0) > (k1, h1) > · · · (kn, hn)),

where

f = k0 ≥ k1 ≥ · · · ≥ kn = e

and

f1 = h0 ≥ h1 ≥ · · · ≥ hn = e1.

Let

s′ = (f = k′0 ≥ k′1 ≥ · · · ≥ k′n′ = e)

and

s′′ = (f1 = h′0 ≥ h′1 ≥ · · · ≥ h′m′ = e1)

be obtained from

f = k0 ≥ k1 ≥ · · · ≥ kn = e

and

f1 = h0 ≥ h1 ≥ · · · ≥ hn = e1

by deleting repeating terms.
Let us compute psF . To this end we first compute the composition

Pfg′δg′g′′Pg′′e → Pfe → Ik′0k′1Ik′1k′2 · · · Ik′n′−1
k′n , (34)

which does not vanish only if there exists an index α′ such that k′α′ = g′ ≥ g′′ ≥
k′α′+1. This is equivalent to the existence of an index α such that

kα = g′ ≥ g′′ ≥ kα+1.

The composition 34 is then equal to

Pfg′δg′g′′Pg′′e → Pfe → Ik0k1 · · · Ikα−1kαδg′g′′Ig′′k′α+1
Ikα+1kα+2 · · · Ikn−1kn′

→ Ik0k1Ik1k2 · · · Ikn−1kn

∼= Ik′0k′1Ik′1k′2 · · · Ik′n−1k
′
n
.
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The projection psF is then equal to:

Pfg′δg′g′′Pg′′e(M) � Pf1e1(M1)

→ (Ik0k1 · · · Ikα−1ka(δg′g′′Ig′′ka+1 · · · Ikn−1kn(M))

� (Ih0h1Ih1h2 · · · Ihn−1hn(M1))

→ I(k0,h0)(k1,h1) · · · I(kα−1,hα−1),(kα,hα){((δg′g′′Ig′′ka+1) · · · Ikn−1kn(M))

� (Ihαhα+1 · · · Ihn−1hn(M1))}
→ I(k1,h1) · · · I(kn,hn)(M �M1).

Where the last map is induced by the map

((δg′g′′Ig′′kα+1) · · · Ikn−1kn(M)) � (Ihαhα+1 · · · Ihn−1hn(M1))

→ (Ig′kα+1 · · · Ikn−1kn(M)) � (Ihαhα+1 · · · Ihn−1hn(M1))

→ I(kα,hα)(kα+1,hα+1) · · · I(kn−1,hn−1)(kn,hn)(M �M1).

This map is equal to the map:

((δg′g′′Ig′′kα+1) · · · Ikn−1kn(M)) � (Ihαhα+1 · · · Ihn−1hn(M1))

→ (δg′g′′Ig′′kα+1 · · · Ikn−1kn(M)) � (IλaλaIhαhα+1 · · · Ihn−1hn(M1))

→ δ(g′,hα)(g′′,ha
I(g′′,hα)(kα+1,hα+1) · · · I(kn−1,hn−1)(kn,hn)(M �M1)

→ I(g′,hα)(kα+1,hα+1) · · · I(kn−1,hn−1)(kn,hn)(M �M1).

The map psF can then be rewritten as follows:

Pfg′δg′g′′Pg′′e(M) � Pf1e1(M1)

→ (Ik0k1 · · · Ikα−1kαδg′g′′Ig′′kα+1 · · · Ikn−1kn(M))

� (Ih0h1 · · · Ihα−1hαIhαhαIhαhα+1 · · · Ihn−1hn(M1))

→ I(k0,h0)(k1h1 · · · I(kα−1hα−1)(kαhα)δ(g′,hα)(g′′,hα)I(g′′,hα)(kα+1,hα+1)

· · · I(kn−1hn−1)(knhn)(M �M1). (35)

Let us now compute psFg1 . It follows that such a composition is not zero only
if there exists an α such that

(kα, hα) = (g′, g1) ≥ (g′′, g1) ≥ (kα+1, hα+1).

Since g′ > g′′, kα > kα+1. There exists at most one α such that kα > kα+1 and
ka = g′. Then g1 is uniquely determined and equals g1.
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In other words, there exists at most one g1 such that psFg1 �= 0. If such a g1
does not exist, then there is no α such that kα = g′ ≥ g′′ ≥ kα+ 1, therefore,
psF = 0. Thus, in this case psF = ps

∑
Fg1 .

If there exists an α such that kα = g′ ≥ g′′ ≥ kα+1, then ps
∑Fg1 = psFha .

It is not hard to see that psFha coincides with the map (35) which is the same as
psF , whence the statement.

15.3.6. Concatenation + concatenation

Let ∆1 ⊇ ∆2 ⊇ · · · ⊇ ∆6. Consider the following maps

a1 :P∆1∆2δ∆2∆3P∆3∆4δ∆4∆5P∆5∆6 → P∆1∆4δ∆4∆5P∆5∆6 → P∆1∆6

and

a2 :P∆1∆2δ∆2∆3P∆3∆4δ∆4∆5P∆5∆6 → P∆1∆2δ∆2∆3P∆3∆6 → P∆1∆6 .

In the case when ∆3 = ∆4, we also have a map

a3 :P∆1∆2δ∆2∆3P∆3∆4δ∆4∆5P∆5∆6 → P∆1∆2δ∆2∆5P∆5∆6 → P∆1∆6 .

In the case ∆3 �= ∆4 set a3 = 0.

Proposition 15.3. We have

a2 = a1 + a3.

Proof. Straightforward.

15.3.7. Concatenation + decomposition

Let ∆1 ⊇ · · · ⊇ ∆4 be diagonals and let E be another diagonal such that ∆1 ⊇
E ⊇ ∆4. Compute the composition:

P∆1∆2δ∆2∆3P∆3∆4 → P∆1∆4 → P∆1EPE∆4 .

Proposition 15.4. If ∆1 ⊇ E ⊇ ∆2, then this composition is equal to the
composition:

P∆1∆2δ∆2∆3P∆3∆4 → P∆1EPE∆2δ∆2∆3P∆3∆4 → P∆1EPE∆4 ;

if ∆3 ⊇ E ⊇ ∆4, then this composition is equal to the composition:

P∆1∆2δ∆2∆3P∆3∆4 → P∆1∆2δ∆2∆3P∆3EPE∆4 → P∆1EPE∆4 ;

otherwise this composition is zero.

Proof. Straightforward.
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15.4. Filtrations

We will study the relationship of the above introduced structure with the filtration
on the functors PE∆ (see Sec. 15.2.5), whenever E ⊃ ∆. We will see how it interacts
with the maps introduced in the previous section.

Let t1 ∈ Zebra(f, e)∆1∆2
and t2 ∈ Zebra(f, e)∆3∆4

. Let

t1 = (e1a12e2a23 · · · en)
and

t2 = (e′1a
′
12e

′
2a

′
23 · · · e′n′).

Define the concatenation

t1δt2 := (e1a12 · · · enδ∆2∆3e
′
1a

′
12 · · · e′n′).

We say that t2 starts with δ if a′12 = δ. In this case we define one more
concatenation

t1δ ◦ t2 := (e1a12 · · · enδ∆en∆e′2
e′2a

′
23e

′
3 · · · e′n′).

Proposition 15.5. If t1 does not terminate in δ, then

c(F t1P∆1∆2δ∆2∆3F
t2P∆3∆4) ⊂ F t1δt2P∆1∆4 ;

if t1 terminates in δ, then

c(F t1P∆1∆2δ∆2∆3F
t2P∆3∆4) ⊂ F t1δt2P∆1∆4 + F t1δ◦t2P∆1∆4 .

Proof. Straightforward.

We have the induced maps

Grt1P∆1∆2δ∆2∆3Grt2P∆3∆4 → Grt1δt2P∆1∆4 ,

if t2 does not start with δ; and

c(Grt1P∆1∆2δ∆2∆3Grt2P∆3∆4) → Grt1δt2P∆1∆4 ⊕ Grt1δ◦t2P∆1∆4 ,

if t2 starts with δ.
We see that

Grt1P∆1∆2δ∆2∆3Grt2P∆3∆4
∼= Grt1δt2P∆1∆4

∼= Grt1δ◦t2P∆1∆4 ,

whenever t2 starts with δ; otherwise we have only the first isomorphism in this
chain.

The above map (on the graded components) is induced by this isomorphism in
the case when t2 does not start with δ; otherwise the above map is induced by the
direct sum of our isomorphisms.
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15.5. Resolution

Fix two equivalence relations f ≥ e on S. We are going to construct a resolution
of i∆f∆e .

Denote by Flags(f, e) the set of all “non-strict” flags of the form

f = a0 ≥ b0 ≥ a1 ≥ b1 · · · ≥ bn = e,

where n ≥ 0 and bi �= ai+1 for all i. For i = 0, 1, . . . , n− 1 set

A(k) = a0b0 · · · ak−1bk−1akbk+1ak+2bk+2 · · ·anbn,

(we delete bk and ak+1). In the case ak+1 = bk+1 set

A[k] := a0b0 · · · akbkak+2bk+2 · · · anbn,

where we delete ak+1 and bk+1.
Denote |A| := n and set

R(A) := Pa1b1δb1a2Pa2b2 · · · Panbn .

Let Rn =
⊕

|A|=nR(A).
Denote

xk :Pakbk
δbkak+1Pak+1bk+1 → Pakbk+1 .

Let Xk :R(A) → R(A(k)) be the map induced by xk.
We also need maps Yk defined as follows. In the case when ak+1 = bk+1 we have

an isomorphism Yk :R(A) → R(A[k]).
In the case ak+1 �= bk+1 set Yk = 0.
For example: Let |A| = 2, then the above theorem implies that X1(X1 + Y1 −

X2) = 0 as a map R(A) → Pfe.
Define the map dn :Rn → Rn−1 by the formula

dn = X1 + Y1 −X2 − Y2 +X3 + Y3 + · · · (−1)nYn−1 + (−1)n+1Xn.

The above identity implies that dn−1dn = 0; thus, (R•, d) is complex.
We have a natural map v :R0 → ife; we have vd0 = 0.

Theorem 15.6. (1) The homology Hi(R•, d) = 0 for all i > 0.
(2) The map v identifies H0(R•)with ife.

Proof. We are going to consider the associated graded complex with respect to a
certain filtration which we are going to define.

Define the set Segments(fe)0 whose elements are flags of segments

[a1, b1] > [a2, b2] > · · · > [an, bn]
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such that

f ≥ a1 > b1 > a2 > b2 > a3 > · · · > bn ≥ e.

For each t ∈ Segments(f, e),

t = ([a′1, b
′
1] > [a′2, b

′
2] > · · · > [a′n, b

′
n])

define an element from Segments(f, e)0,

ν(t) = ([a1, b1] > [a2, b2] > · · · > [ak, bk])

according to the rule: the sequence a1b1a2b2 · · · bk is obtained from the sequence
a′1b

′
1 · · · a′nb′n by deleting all its repeating terms.
For an s ∈ Segments(FE )0, we set

ΦsR• =
⊕
ν(t)=s

F t(R•).

We see that F is a filtration on R• and that the associated graded complex can be
computed by the formula

GrsΦR• =
⊕
ν(t)=s

Grt(R•).

Let f ′ > e′ be a pair of equivalence relations on S. Let o ∈ Segments(f ′e′)0

be the least element, which is simply [f ′e′]. Denote Ro
f ′e′ := GroFR•. Let s ∈

Segments(fe)0 be an arbitrary element;

s = [a1, b1] > [a2, b2] > · · · > [anbn].

We then have

Rs
• ∼= ifa1R

o
a1b1 ib1a2R

o
a2b2 · · · . . . ibne.

This implies that our task is reduced to proving that Ro
fe is acyclic, which will

be done in the next subsection.

15.5.1. We see that the complex Ro
fe is isomorphic to the complex Rfe• ⊗ δfe,

where Rfe• is a complex of vector spaces; the vector space Rfen has a basis labelled
by the elements

H = (f = e1u12e2u23e3 · · · eN = e),

where e1 > · · · > eN each ukk+1 is either p or δ and the total number of deltas is
n. Denote |H | := N . The differential is given by the sum of several terms which
we are now going to describe. Let AkH be zero if ukk+1 = p and let it change
ukk+1 from δ to p otherwise.
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Let BkH be nonzero only if ukk+1 = δ, uk+1k+2 = δ, in which case it replaces
the fragment ukk+1ek+1uk+1k+2 with δkk+2.

Let CkH be nonzero only if ukk+1 = δ and uk+1k+2 = p, in which case the
fragment

ukk+1ek+1uk+1k+2

is going to be replaced with p.
Denote by dk the number of symbols δ before akk+1. It follows that the differ-

ential on R is given by

d =
∑

(−1)dk(Ak +Bk + Ck).

Set

FNR := ⊕|H|≤NCH.

It is clear that F is a filtration on R the associated graded complex has the basis
labelled by the same elements, the differential is given by

d′ =
∑

(−1)dkAk.

Let

Φ = (f = e1 > e2 > · · · > en = e)

be a flag and let RΦ ⊂ GrFR be the subcomplex spanned by the elements

H = (e1u12 · · · en),
with arbitrary uii+1 (it is clear that it is a subcomplex).

We have GrFR = ⊕FRF . Furthermore, let V = C〈δ, p〉 be a complex in which
|δ| = 1; |p| = 0 and dδ = 0. Then RF ∼= TNV and is therefore acyclic.

15.6. The structure of system on the collection of functors Rfe

15.6.1. Let f ≥ g ≥ e be a sequence of equivalence relations. Define the decompo-
sition map

Asfge :Rfe → RfgRge.

Let

A = (f = a1b1a2 · · ·anbn = e)

be an elements of Flags(fe). If there exists k such that ak ⊇ g ⊇ bk, then set

a :P(A) → P(a1b1 · · · bk−1akg)P(gbk · · ·anbn)
is induced by the decomposition map

Pakbk
→ PakgPgbk

.

1240002-87



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

Otherwise we set

a|P (A) = 0.

15.6.2. Factorization maps

We will first study

15.7. Factorization maps for R
15.7.1. We keep the notations of the previous subsection. Let Fα ∈ Flags(fα, eα),
α ∈ A and F ∈ Flags(f, e). We are going to define the map

µ({Fα}α∈A;F ) : �α R(Fα) → R(F ).

This map is zero for all Fa, F except those determined by the following conditions.
Let

F = (f = a1 ≥ b1 > a2 ≥ b2 · · · an ≥ bn = e).

We then require that

(1) For every i : biα = ai+1α for all α except exactly one (denote it by αi);
(2) Fix α and consider the sequence

a1α ≥ b1α ≥ a2α ≥ · · · ≥ anα ≥ bnα.

Construct a subsequence

F (α) = (aM1αbN1αaM2αbN2α · · · aMrαbNrα)

according to the following rule: we delete every pair biα ≥ ai+1α in which biα =
ai+1α. We have: M1 = 1; Nr = n; bNiα �= aMi+1α; Mr+1 = Nr + 1. Therefore,
F (α) ∈ Flags(fα, eα). Our second condition is then Fα = F (α) for all α.

15.7.2. We have a natural map

rα :R(F (α)) → Pa1αb1αδb1αa2α · · · Panαbnα ,

induced by the maps

PaMiα
bNiα

→ PaMiα
bMiα

PaMiα+1bMia
+1 · · · PaNiα

bNiα

which induce maps

PaM1α bN1α
δbN1αaM2α

· · · PaMrα bNrα

→ PaM1α bM1α
PaM1α+1bM1α+1 · · · PaN1αbN1α

δbN1αaM2α
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×PaM2αbM2α
PaM2α+1bM2α+1 · · · PaN2αbN2α

δbN2αaM3α
· · ·

×PaMrαbMrα
PaMrα+1bMrα+1 · · · PaNrαbNrα

∼= Pa1b1δb1a2Pa2b2 · · · Panbn .

We then define

�αR(Fα)
Q

α rα−−−−→ �αPa1αb1aδb1αa2α · · · Panαbnα

→ Pa1b1δb1a2 · · · Panbn

∼= R(F ).

15.7.3. Signs

The function i 
→ si defines a partition of the set {1, 2, . . . , n}. Fix an orientation
of S and denote by s(F ) the sign of this partition.

15.7.4. Definition of the map

Define

µ =
∑
F

s(F )µ({F (α)}α∈A, F ).

15.7.5. We are going to check that µ commutes with the differential.
This follows from the several statements we are going to formulate.
We assume that F satisfies the conditions from the previous section.
(1) Let

F 〈i〉 = (a1b1 · · · aibi+1ai+2 · · · bn);
Let XF

i :R(F ) → R(F 〈i〉) be induced by the map

Paibiδbiai+1Pai+1bi+1 → Paibi+1 .

Let U(F, i) be the set of all F ′ ∈ Flags(f, e) which are obtained from F by
changing bi, ai+1 only in such a way that αi, biαi and ai+1αi do not change.

This means that every F ′ is of the form

a1b1a2b2 · · · aib′ia′i+1bi+1ai+2 · · · anbn,
where b′i,αi

= bi,αi ; a′i+1,αi
= ai+1,αi , and for all α �= αi, b′iα = a′i+1α.

Let j be such that Njαi = i (such a j always exists and is unique because
biαi �= ai+1). We then have:∑

F ′ ∈ U(F, i)XF ′
i µ(F ′(α)α∈A, F ′) = µ({F (α)α�=αi ;F (αi)〈j〉};F 〈i〉)XFαi

j .
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To check this identity it suffices to consider the case n = 2, in which case the
statement follows immediately from (33).

(2) Let

F = (a1b1a2b2 · · · anbn).

Assume that ai = bi and set

F [i] = (a1b1 · · · bi−1ai+1bi+1 · · · anbn).

We then have a natural map

Yi :R(F ) → R(F [i]).

There are two cases:

Case 1. αi−1 = αi. Let j be such that Njαi = i. In this case we have:

Yiµ(F (α)α∈A;F ) = µ({F (α)α�=αi , F (α)[j]};F [i])Y F (αi)
j .

Case 2. αi−1 �= αi. In this case define

F ′ = (a1 · · · bi−1a
′
ib

′
iai+1bi+1 · · · anbn)

in such a way that α′
i := αF

′
i = αi+1, α′

i+1 = αi and a′iα′
i
= aiαi+1 .

We then have

Y Fi µ({F (α)α∈A}, F ) = Y F
′

i µ({F ′(α)α∈A}, F ′).

These facts imply that the factorization map commutes with the differential.

15.8. The factorization commutes with the asymptotic decomposition. We omit
the proof as it is straightforward.

15.9. The system m and a map 〈R〉 → 〈m〉
Was discussed in detail the above.

16. Bogoliubov–Parasyuk Theorem

Let 〈R〉 be the resolution of the system 〈i〉 constructed in the previous section and
let M be a cofibrant dg-∆X -sheaf endowed with an OPE-product over 〈i〉.

Theorem 16.1. There exists an OPE structure on M over 〈R〉 which lifts that
over 〈i〉.

The proof will occupy the rest of the section.
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16.1. Unfolding the definition of an OPE-algebra over 〈R〉
Let p :S → T be a surjection of finite sets and N a ∆XT -module. We have R0

p(N) ∼=
Pp(N) → Ip(N). This produces a natural transformation (whose differential is not
zero):

πp :Rp → Ip.

Thus, we have an induced map M�S → Ip(M�T ).
We also have a map of systems

R → m

which induces a strong homotopy *-Lie algebra structure onM . It turns out that the
maps πp and the *-SHLA structure on M completely determine the OPE-structure
on M . The precise formulation will be given below.

16.1.1. Suppose that for every surjective map pS :S → pt, we are given a map

aS :M�S → IpS (M),

such that:

— for #S = 1 we have: aS = Id;
— aS is equivariant with respect to bijections of finite sets.

Assume, in addition, that we are given some maps

CS :M�S → δpS (M)

of degree 1, where #S > 1, CS are equivariant with respect to bijections of finite
sets.

We shall impose certain conditions on these maps which will allow us to con-
struct an OPE-structure on M using these maps.

16.1.2. Condition 1

Let q :S → T be a surjection of finite sets. As usual, the product of maps aS gives
rise to maps

aq :M�S → Iq(M�T ).

Our first condition is as follows.

Condition 16.2. C1 Let

S
r−→ R

s−→ T
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be a sequence of surjections and q = sr. Then the following diagram should
commute:

M�S ��

��

Ir(M�R) �� IrIs(M�T )

��
Iq(M�T ) �� Iris(M�T )

One sees that it suffices to check this condition for all p :S → pt.
This condition implies the following fact. Let

a′p :M�S → IpM�T → ipM
�T .

Let p := (pi :Si → Si+1), i = 0, . . . , n− 1, be a sequence of surjections, where
S0 = S, Sn = T , and

pn−1pn−2 · · · p0 = p.

Let aI := a and let ai := a′. Let j := (j1, j2, . . . , jn−1) be an arbitrary sequence
of elements from the set {I, i}.

Define the map

jp :M�S → (j1)p1(j2)p2 · · · (jn−1)pn−1(M
�T )

by the formula:

M�S
aj1

p1 �� (j1)p1(MS1)
aj2

p2 �� (j1)p1(j2)p2(M�S2) �� · · · �� (j1)p1(j2)p2

· · · (jn−1)pn−1(M�T ).

Condition C1 implies that the collection of maps jp for all j and p determines a
map opep :M�S → Pp(M�T ).

16.1.3. Condition 2

Let us now formulate the condition on the collection of maps CS which is equivalent
to the fact that this collection endows M [−1] with a structure of *-SHLA.

We will formulate this condition in a slightly unusual way. Let p :S → T be a
surjection. Define the map

Cp :M�S → δp(M�T )

according to the following rule.

(1) The map Cp is not equal to zero only if there exists a unique tp ∈ T such that
#(p−1tp) > 1 (in which case #(p−1(t)) = 1 for all t �= tp).
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(2) If the above condition holds, then Cp is defined as follows. Let Sp := p−1tp and
S′ := S\Sp. Then Cp is defined as the composition:

M�S ∼= M�Sp �M�S′

CSp�Id−−−−−→ δSp(M) �M�S′ ∼= δp(M�T ),

where the last arrow is constructed via the natural identification T ∼= S′ � pt.

Now let p :S → T be a surjection and let Σp be the set of all isomorphism
classes of splittings

S
q �� R

r �� T ,

where r, q are surjections and p = rq. Then the *-SHLA axiom can be formulated
as follows:

Condition 16.3. C2 For any surjection p :S → T, we have:

dCp +
∑

(r,q)∈Σp

CrCq = 0,

where we pick one representative for each element in Σp.

It is clear that if this condition is satisfied for all p :S → pt, then it is satisfied
for all p.

16.1.4. Condition 3

This condition describes the differential of the maps ap. Let p, q, r be the same as
in the previous subsection. We have the natural transformation

fqr : δqIr → Iqr .

Using this transformation, define a map

φqr :M�S Cq �� δq(M�R)
ar �� δqIr(M�T )

fqr �� Ip(M�T )

Condition 16.4. C3 For every surjection p :S → T, we have:

dap +
∑

(q,r)∈Σp

φq,r = 0.

As in the previous subsection, if this condition holds for all p :S → pt, then it
holds for all p.
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16.1.5. We will show how, having the maps aS , CS satisfying conditions C1–C3,
one can construct an OPE structure on M over 〈R〉.

The definition of 〈R〉 implies that to define an OPE-structure over 〈R〉, we have
to prescribe maps

M�S → Pa1δb1Pa2δb2Pa3 · · · PanδbnPan+1(M
T ), (36)

where ai :S2(i−1) → S2i−1; bi :S2i−1 → S2i are surjections; S0 = S, S2n+1 = T , and
bi are not bijections. We define the map (36) as the composition

M�S
opea1 �� Pa1M

�S1
Cb1 �� Pa1δb1M

�S2 ��

· · · �� Pa1δb1 · · · PanδbnPan+1(MT ).

One checks straightforwardly that all the conditions are satisfied.

16.2. Proof of the Bogoliubov–Parasyuk theorem

We are going to use induction. To this end introduce a notion of N -OPE-structure
on M (over 〈R〉), where N ≥ 2 is an integer. This means that the maps aS, CS are
only defined when #S ≤ N and the conditions C1–C3 are satisfied for all surjections
p such that ∀ i#(p−1(i)) ≤ N .

The theorem follows from two statements:

(1) (base of induction). There exists a 2-OPE structure on M such that the
composition

M �M
a{1,2} �� I{1,2}(M) �� i{1,2}(M)

equals to ope{1,2}.
(2) (transition). Assume there exists an N -OPE structure on M such that for every

finite set S with #S ≤ N the composition

M�S aS �� IS(M) �� iS(M) (37)

coincides with opeS . Then there exists an (N + 1)-OPE-structure on M such
that for all S with #S ≤ N the maps aS, CS coincide with the existing ones
and the composition (37) coincides with opeS for all S with #S ≤ N + 1.

Statement 1 follows from surjectivity of the map I{1,2}(M) → i{1,2}(M)
(because M is cofibrant). Therefore, the induced map

r : hom(M �M, I{1,2}(M))S{1,2} → hom(M �M, i{1,2}(M))S{1,2}
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is also surjective. Let a{1,2} be any lifting of ope{1,2}. Then r(da{1,2}) = 0, there-
fore, the image of da{1,2} is δ{1,2}(M). Set C{1,2} = −da{1,2}. It is clear that
(a{1,2}, C{1,2}) determine a 2-OPE-structure.

Statement 2. Let j be the functor from the category Zebra(pS) to the category of
functors D-modX → D-modXS as in (15.2.6) and let

P0 := P0
S = liminvs∈Zebra0(pS)j(s).

Let

P := PS = liminvs∈Zebra(pS)j(s).

The existing N -OPE product defines an equivariant map

a0
S :M�S → P0(M).

According to the lemma from (15.2.6), the map

P(M) → P0(M)

is surjective. Therefore, there exists an equivariant lifting

a1 :M�S → P(M)

of a0. Define aS as the composition

M�S → P(M) → j(M).

The condition C1 is then automatically satisfied. The map CS can be uniquely
found from condition C3. Indeed, let pS :S → pt. Let

Σ0
S := ΣpS\{(pS, IdS)}.

Then C3 reads as:

φpS ,IdS = −daS −
∑

(q,r)∈Σ0
S

φq,r.

The right-hand side is uniquely determined by the existing N -OPE structure and
by the chosen map aS . It is only the left-hand side that depends on CS . One can
find a unique CS satisfying C3 iff the right-hand side is a map whose image is
contained in δS(M) ⊂ IS(M). Let us show that this is indeed the case. Denote the
map specified by the right-hand side by u :M�S → IS(M). The image of u lies in
δS iff for every (q, r) ∈ Σ0

S , the through map

M�S u �� IS(M) �� Iqir(M)

is zero. This can be checked directly.
With such a choice of CS the condition C3 is satisfied.
Condition C2 is satisfied as well, as follows from the direct computation.

Bogoliubov–Parasyuk theorem is proven.
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17. The Maps Rf�g → Rf�IdδId�g

17.1. Notations

17.1.1. Let φ :S → T , g :A → B be surjections. Define a functor iIφ�g from the
category of DXT�B -modules to the category of DXS�A -modules by:

iIφ�g(M) = i
∧
φ�g(M) ⊗O

XS�A
(Bφ � Cg).

One can also define iIφ�g as a quotient of Iφ�g with the sum of images of all
maps

δφ1�IdIφ2�g → Iφ�g,

where φ = φ2φ1, φ1, φ2 are surjections, and φ1 is not bijective.

17.1.2. We then have natural maps

Iψφ�g → IφiIψ�g, (38)

which shall be denoted by aψφ×g.

17.2. Map ξ(φ, g) : Pφ�g → Iφ�IdδId�g

Let

φ :S → T ; g :A→ B

be surjections. We shall define a map

ξ(φ, g) :Pφ�g → Iφ�IdδId�g

recursively. The parameter of the recursion will be |g| = #A − #B. Since g is
surjective, |g| ≥ 0. To describe the recursive procedure we need to introduce some
notation.

Suppose we are given an (arbitrary) collection of maps

ξ(φ, g)

for all φ and all g with |g| < N . Fix a g with |g| = N . We then construct a map

X(φ, g) :Pφ�g → Iφ�IdIId�g

by means of the formulas:

X(φ, g) = U(φ, g) −
∑

g=g1◦g2,g1 �=g
F (φ, g1, g2),

1240002-96



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

A Formalism for the Renormalization Procedure

where

U(φ, g) :Pφ�g → Iφ�g → Iφ�IdIId�g;

F (φ, g1, g2) :Pφ�g → Pφ�g1PId�g2 → Iφ�IdδId�g1IId�g2 → Iφ�IdIId�g.
(39)

The recursive procedure will be now described by means of:

Definition-Proposition 17.1. There exists a unique collection of maps ξ(φ, g)
for all surjections φ, g such that

(1) If |g| = 0, i.e. g is a bijection, then ξ(φ, g) is the natural isomorphism induced
by g.

(2) The composition

Pφ�g → Iφ�IdδId�g → Iφ�IdIId�g

equals X(φ, g).

Proof. We shall prove by induction in |g| that given a natural N , the required
maps ξ(φ, g) can be constructed for all g with |g| ≤ N .

The base of induction, N = 0, is evident. Let us now pass to the transition. Pick
a g with |g| = N and assume that our statement is the case for all g′ with |g′| < N .

We will then show that for every decomposition g = lk, where k, l are proper
surjections (i.e. surjections but not bijections) the through map

X(φ, g) :Pφ×g → IφIg → IφIkil (40)

is zero. Indeed, we have the following commutative diagrams:

(I) Pφ�g
U(φ�g) ��

��

Iφ�IdIId�g �� Iφ�IdIId�kiId�l

Pφ�kIId�l

U(φ,k)
������������������������

(II) The composition

Pφ�g F (φ,g1,g2) �� Iφ�IdIId�g �� Iφ�IdIId�kiId�l (41)

does not vanish only if one can decompose g = lug1 in such a way that g2 = lu

and k = ug1. In this case the map (41) is equal to the composition:

Pφ�g �� Pφ�g1IId�lu �� Pφ�IdδId�g1IId�uiId�l �� Iφ�IdIId�g1uiId�l.

Therefore, the composition (40) is equal to

Pφ�g �� Pφ�kPId�l
V �� Iφ�IdIId�kiId�l
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where the arrow V is induced by the map

W :Pφ�k → Iφ�IdIId�l

given by the formula

W = Uφ,k −
∑

k=g2g1,g1 �=g
F (φ, g1, g2) − ξφ,k.

The induction assumption implies W = 0, therefore the map (40) vanishes as well.
Thus, the map X(φ, g) actually passes through Iφ�IdδId�g thus defining a map

ξ(φ, g) :Pφ�g → Iφ�IdδId�g.

This accomplishes the definition of ξ(φ, g).

17.2.1. Claim

Define maps

F (φ, ψ, g1, g2) :Pφψ×g → Pφ×g1Pψ×g2 → Iφδg1 iIψ×g2 → IφiIψ×g.
Let

a(φ, ψ, g) :Pφψ×g → IφiIψ×g
be as in Sec. 17.1.

Claim 17.2.

a(φ, ψ, g) =
∑

g=g2g1

F (φ, ψ, g1, g2).

Proof. (1) If ψ is bijective, then the statement follows directly from Proposi-
tion 17.1.

(2) For an arbitrary ψ, let

D(φ, ψ, g) := a(φ, ψ, g) −
∑

g=g1g2

F (φ, ψ, g1, g2)

be the difference. It then suffices to show that the composition

Pφψ×g D �� Iφ�IdiIψ�g �� Iφ�IdIId�giψ�Id

vanishes, by virtue of injectivity of the map

iIψ�g → IId�giψ�Id.

We have the following facts.
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(I) The diagram

Pψφ�g a(φ,ψ,g) ��

��

Iφ�IdiIψ�g �� Iφ�IdIId�giId�ψ

Pφ�gPψ�Id �� Iφ�giψ�Id

��













commutes.
(II) The following diagram is commutative:

Using I, II we see that the statement follows from the case when ψ = Id.

17.3. Claim

Introduce a terminology. Let g :A → B be a surjection. Let e be an equivalence
relation on A determined by g. A decomposition g = gk · · · g2g1 is by definition a
diagram

S
g1−→ S/e1

g2−→ S/e2 · · · gk−1−−−→ S/ek−1
gk−→ T,

where

e1 ≥ e2 ≥ · · · ≥ ek−1 ≥ e

are equivalence relations on S and qi are natural maps.
Let g = g2g1 be a decomposition. Define a map

Y (φ, ψ, g1, g2) :Pψφ�g → Pφ�g1Pψ�g2 → Iφ�IdδId�g1Iψ�IdδId�g2

→ Iφ�IdIψ�IdδId�g.

Set

Z(φ, ψ, g) =
∑

g=g2g1

Y (φ, ψ, g1, g2).

Claim 17.3. The map Z(φ, ψ, g) coincides with the composition

Pψφ�g �� Iψφ�IdδId�g �� Iφ�Idiψ�IdδId�g.

Proof. Denote this composition by W (φ, ψ, g). We shall use induction in |g|. Let
g = g2g1. Define a map

Z(φ, ψ, g1, g2) :Pφψ×g → IφiψIg
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as follows:

Z(φ, ψ, g1, g2) :Pψφ�g �� Pψφ�g1PId�g2
Z(φ,ψ,g1) �� Iφ�Idiψ�IdδId�g1IId�g2

�� Iφ�Idiψ�IdIId�g.

Define maps W (φ, ψ, g1, g2) in the similar way (using W (φ, ψ, g) instead of
Z(φ, ψ, g)). By the induction assumption,

Z(φ, ψ, g1, g2) = W (φ, ψ, g1, g2)

whenever g2g1 = g and g1 �= g. Therefore, it suffices to show that∑
g2g1=g

Z(φ, ψ, g1, g2) =
∑

g2g1=g

W (φ, ψ, g1, g2).

Let L be the sum on the L.H.S. and R be the sum on the R.H.S. It follows that L
equals the sum, over all decompositions g = g3g2g1, of the following maps

Pψφ�g →Iφ�IdδId�g1Pψ�g3g2
α−→ Iφ�IdδId�g1Pψ�g2IId�g3 → Iφ�IdδId�g1Iψ�IdδId�g2IId�g3
ω−→ Iφ�IdδId�g1Iψ�IdIId�g3g2 → Iφ�IdIψ�IdδId�g1IId�g3g2

→Iφ�Idiψ�IdIId�g.

Fix g1 and set g2 = g3g2. The previous claim implies that the sum of the
compositions of arrows from α to ω, over all decompositions g2 = g3g2, equals the
following composition:

Iφ�IdδId�g1Pψ�g2 → Iφ�IdδId�g1Iψ�IdIId�g2 .

Therefore, L equals the sum over all decompositions g = g2g1 of the following maps:

Pψφ�g → Pφ�g1Pψ�g2 → Iφ�IdδId�g1Iψ�g2 → Iφ�IdIψ�g
→ Iφ�IdIψ�IdIId�g → Iφ�Idiψ�IdIId�g.

This can be rewritten as follows:

Pψφ�g → Pφ�g1Pψ�g2 → Iφ�IdδId�g1Iψ�g2 → Iφ�IdIψ�g
→ Iφ�IdiIψ�g → Iφ�Idiψ�IdIId�g.

According to the previous statement, the sum of these maps equals the following
composition:

Pψφ�g → Iψφ�g → Iψ�IdiIφ�g → Iφ�Idiψ�IdIId�g.
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This composition, in turn, is equal to:

Pψφ�g → Iψφ�g → Iφ�IdIψ�IdIId�g → Iφ�Idiψ�IdIId�g.

It easily follows that this sum equals R. This completes the proof.

17.3.1. Compatibility with �

Claim 17.4. The following diagram is commutative:

Proof. We shall use induction. The composition

Pf1�g1(M1) � Pf2�g2(M2) → Pf1�f2�g1�g2(M1 �M2)

→ If1�f2�IdδId�g1�g2(M1 �M2) → If1�f2�IdIId�g1�g2(M1 �M2)

equals the negative of the sum over all decompositions g1 = h2h1, g2 = h4h3,
(h2 �h4 �= Id) of the following maps:

Pf1�g1(M1) � Pf2�g2(M2) → Pf1�f2�g1�g2(M1 �M2)

→ Pf1�f2�h1�h2IId�h3�h4(M1 �M2)

→ If1�f2�IdδId�h1�h2IId�h3�h4(M1 �M2)

→ If1�f2�IdIId�g1�g2(M1 �M2),

which is (due to the induction assumption) the same as:

Pf1�g1(M1) � Pf2�g2(M2) → Pf1�h1Ih3(M1) � Pf2�h2Ih4(M2)

→ Pf1�f2�h1�h2IId�h3�h4(M1 �M2)

→ If1�f2�IdδId�h1�h2IId�h3�h4(M1 �M2)

→ If1�f2�IdIId�g1�g2(M1 �M2),

which, in turn, equals:

Pf1�g1(M1) � Pf2�g2(M2) → Pf1�h1IId�h3(M1) � Pf2�h2IId�h4(M2)

→ If1�IdδId�h1IId�h3(M1) � If2�IdδId�h2IId�h4(M2)

→ If1�IdIId�g1(M1) � If2�IdIId�g2(M2)

→ Pf1�f2�IdIId�g1�g2(M1 �M2).
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The sum of all such maps over all decompositions g1 = h3h1, g2 = h4h2, is zero.
Therefore, the negative of the sum over all decompositions with h3�h4 �= Id is equal
to the map in which h1 = g1, h2 = g2, h3 = Id, h4 = Id, which immediately implies
the commutativity of the diagram in question.

17.4. Maps c(φ, g) : Pφ�g → Pφ�IdδId�g

First, we define maps

ξ(φ1, φ2, . . . , φn, g) :Pφ�g → Iφ1�IdIφ2�Id · · · Iφn�IdδId�g,

where φ = φnφn−1 · · ·φ1, as the sum over all decompositions g = gngn−1 · · · g1 of
the maps:

Pφ�g → Pφ1�g1Pφ2�g2 · · · Pφn�gn

→ Iφ1�IdδId�g1Iφ2�IdδId�g2 · · · Iφn�IdδId�gn

→ Iφ1�IdIφ2�Id · · · Iφn�IdδId�g.

The previous claim implies that the collection of maps ξ(φ1, φ2, . . . , φn, g) for
all decompositions φ = φnφn−1 · · ·φ1 gives rise to a map

c(φ, g) :Pφ�g → Pφ�IdδId�g.

17.4.1. Claim

Claim 17.5. The composition

Pψφ�g �� Pψφ�IdδId�g �� Pφ�IdPψ�IdδId�g

is equal to the sum, over all decompositions g = g2g1, of the maps

Pφψ�g �� Pφ�g1Pψ�g2 �� Pφ�IdδId�g1Pψ�IdδId�g2 �� Pφ�IdPψ�IdδId�g.

Proof. Clear.

17.5. Composition

Claim 17.6. The following diagram is commutative:

Pφ�g�h ��

��

Pφ�Id�IdδId�g�h

Pφ�g�IdδId�Id�h

���������������
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Proof. First, let us prove that the diagram

Pφ�g�h ��

��

Iφ�Id�IdδId�g�h

Pφ�g�IdδId�Id�h

���������������

���������������
(42)

is commutative. Denote the composition

Pφ�g�h �� Pφ�g�IdδId�Id�h �� Iφ�Id�IdδId�g�h �� Iφ�Id�IdIId�g�IdδId�Id�h

by U(φ, g, h).
Let g = g2g1 be a decomposition. Define a map

U(φ, g1, g2, h) :Pφ�g�h → Iφ�Id�IdIId�g�IdδId�Id�h

as the following composition:

U(φ, g1, g2, h) :Pφ�g�h → Pφ�g�IdδId�Id�h

→ Pφ�g1�IdPId�g2�IdδId�Id�h → Iφ�Id�IdδId�g1�IdIId�g2�IdδId�Id�h

→ Iφ�Id�IdIId�g�IdδId�Id�h.

Let also

A(φ, g, h) :Pφ�g�h → Iφ�g�IdδId�Id�h → Iφ�Id�IdIId�g�IdδId�Id�h.

Then, by definition,

U(φ, g, h) = A(φ, g, h) −
∑

g=g2g1,g1 �=g
U(φ, g1, g2, h). (43)

The map U(φ, g1, g2, h) equals, in turn, the sum over all decompositions h =
h2h1 of the maps:

U(φ, g1, g2, h1, h2) :Pφ�g�h

→ Pφ�g1�h1PId�g2�h2

U(φ,g1,h1)−−−−−−−→ Iφ�Id�IdδId�g1�IdδId�Id�h1IId�g2�IdδId�Id�h2

→ Iφ�Id�IdIId�g�IdδId�Id�h.

Then

U(φ, g, h) = A(φ, g, h) −
∑

g=g2g1,h=h2h1,g1 �=g
U(φ, g1, g2, h1, h2). (44)

Set

U(φ, g, h1, h2) := U(φ, g, Id, h1, h2) :Pφ�g�h → Iφ�Id�IdIId�g�IdIId�Id�h
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to be

Pφ�g�h → Pφ�g�h1PId�Id�h2

U(φ,g,h1)−−−−−−→ Iφ�Id�IdIId�g�IdδId�Id�h1IId�Id�h2 → Iφ�Id�IdIId�g�IdIId�Id�h.

Similarly, let

A(φ, g, h1, h2) :Pφ�g�h → Pφ�g�h1PId�Id�h2

A(φ,g,h1)−−−−−−→ Iφ�Id�IdIId�g�IdδId�Id�h1IId�Id�h2 → Iφ�Id�IdIId�g�IdIId�Id�h

and

U(φ, g1, g2, h1, h2, h3) :Pφ�g�h → Pφ�g�h2h1PId�Id�h3

U(φ,g1,g2,h1,h2)−−−−−−−−−−−→ Iφ�Id�IdIId�g�IdδId�Id�h2h1IId�Id�h3

→ Iφ�Id�IdIId�g�IdIId�Id�h.

Equation (43) implies that∑
h=h2h1

U(φ, g, h1, h2)

=
∑

h=h2h1

A(φ, g, h1, h2) −
∑

g=g2g1,g1 �=g;h=h3h2h1

U(φ, g1, g2, h3, h2, h1). (45)

The map ∑
h=h2h1

A(φ, g, h1, h2)

is equal to the following one:

X(φ, g, h) :Pφ�g�h → Iφ�g�h → Iφ�Id�IdIId�g�IdIId�Id�h.

The map

Y (φ, g1, g2, h1, h2) :=
∑

h2=h3h2

U(φ, g1, g2, h1, h2, h3)

equals

Pφ�g�h → Pφ�g1�h1PId�g2�h2

U(φ,g1,h1)−−−−−−−→ Iφ�Id�IdδId�g1�IdδId�Id�h1IId�g2×h2 → Iφ�Id�IdIId�g�IdIId�Id�h.

Therefore,

Y (φ, g1, g2, h1, h2) = U(φ, g1, g2, h1, h2).
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Equation (45) can now be rewritten as:∑
h=h1h2

U(φ, g, h1, h2) = X(φ, g, h) −
∑

g=g1g2,h=h1h2,g1 �=g
U(φ, g1, g2, h1, h2). (46)

Note that

U(φ, g, h1, h2) = U(φ, g, Id, h1, h2).

Therefore (46) implies that

U(φ, g, h, Id) = X(φ, g, h) −
∑

g=g2g1,h=h2h1,g1�h1 �=g2�h2

U(φ, g1, g2, h1, h2).

The induction assumption implies that U(φ, g1, h1) = c(φ, g1 �h1) if g1 �h1 �=
g� h. This implies that the right-hand side equals the composition:

Pφ�g�h c(φ,g�h) �� Iφ�Id�IdδId�g�h �� Iφ�Id�IdIId�g�IdIId�Id�h.

By definition, the left-hand side equals the composition:

Pφ�g�h → Pφ�g�IdδId�Id�h

→ Iφ�Id�IdδId�g�IdδId�Id�h → Iφ�Id�IdIId�g�IdIId�Id�h.

Therefore, the diagram (42) is commutative. The original statement can now be
proven straightforwardly using 17.5.

17.6. Compositions PδP → P → Iδ

Claim 17.7. (1) The composition

Pφ1�g1δφ2�g2Pφ3�g3 → Pφ�g → Iφ�IdδId�g (47)

vanishes if φ1 � g1 �= Id and φ1 �= φ or g3 �= Id. In the cases when it does not vanish
we have the following rules:

(2) In the case φ1 � g1 = Id, this composition equals :

δφ2�g2Pφ3�g3 → δφ2�g2Iφ3�IdδId�g3 → Iφ�IdδId�g.

(3) In the case φ1 = φ, g3 = Id, this composition equals −A, where

A :Pφ�g1δId�g2 → Iφ�IdδId�g1δId�g2 → Iφ�IdδId�g.

Proof. We shall use induction in g. Compute the composition

Pφ1�g1δφ2�g2Pφ3�g3 �� Pφ�g F (φ,g1,g2) �� Iφ�IdIId�g, (48)
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where F (φ, g1, g2) is as in (39). This composition is equal to:

Pφ1�g1δφ2�g2Pφ3�g3 �� Pφ�g �� Pφ�g1PId�g2 �� Iφ�IdδId�g1IId�g2

�� Iφ�IdIId�g.

This composition does not vanish only if

A: g3 = g2u, g1 = ug2g1;
B: φ1 = φ; g1 = g1, g2 = g3g2.

Consider several cases.

Case 1. φ1 �= φ and φ1 × g1 �= Id. The induction assumption implies that the
composition (48) vanishes whenever g2 �= Id. Therefore, the composition

Pφ1�g1δφ2�g2Pφ3�g3 �� Pφ�g �� Iφ�IdδId�g �� Iφ�IdIId�g

equals

Pφ1�g1δφ2�g2Pφ3�g3 �� Iφ�g �� Iφ�IdIId�g.

This composition vanishes because φ1 � g1 �= Id.

Case 2. φ1 � g1 = Id, g �= Id. In this case B is again excluded. By the inductive
assumption, the composition (48) equals

A(u, g2) : δφ2�g2Pφ3�g3
F (φ3,u,g

2) �� δφ2�g2Iφ3IId�g2u �� Iφ�IdIId�g.

The composition

δφ2�g2Pφ3�g3 �� Iφ�g �� Iφ�IdIId�g

equals

B : δφ2�g2Pφ3�g3 �� δφ2�g3Iφ3�IdIId�g3 �� Iφ�IdIId�g.

Therefore, the composition

δφ2�g2Pφ3�g3 �� Pφ�g �� Iφ�IdδId�g �� Iφ�IdIId�g

equals

B −
∑

g3=g2u,g2 �=Id

A(u, g2).

It follows that this composition equals:

δφ2�g2Pφ3�g3 �� δφ2�g2Iφ3�IdδId�g3 �� Iφ�IdIg�Id

which is what is predicted by 2.
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We have the last remaining case φ1 = φ, g �= Id, where we have to add contri-
butions from A and B.

Then the contribution from A is equal to zero if g3 = Id. Otherwise, according
to the inductive assumption, it equals to −C, where

C :Pφ�g1δId�g2PId�g3 → Iφ�IdδId�g1δId�g2IId�g3 → Iφ�IdIId�g.

We see that the contribution from B equals C. Therefore, the composition (48)
is zero if g3 �= Id and C otherwise. Note that the composition

C :Pφ�g1δId�g2PId�g3 �� Iφ�g
is always zero. Therefore, the map (47) is zero if g3 �= Id and −C otherwise. This
completes the proof.

17.7. Compositions PδP → P → Pδ

Claim 17.8. Consider the composition

Pφ1�g1δφ2�g2Pφ3�g3 → Pφ�g → Pφ�IdδId�g. (49)

If φ2 �= Id, this composition is equal to the following composition:

Pφ1�g1δφ2�g2Pφ3�g3 → Pφ1�IdδId�g1δφ2�g2Pφ3�IdδId�g3

→ Pφ1�Idδφ2�IdPφ3�IdδId�g → Pφ�IdδId�g.

Otherwise, this composition is equal to zero except the following cases :

(a) φ1 × g1 = Id, in which case our composition equals

δId�g2Pφ�g3 → δId�g2Pφ�IdδId�g3 → Pφ�IdδId�g; (50)

(b) φ3 � g3 = Id, in which case the composition is equal to

−C, (51)

where

C :Pφ�g1δId�g2 → Pφ�IdδId�g1δId�g2 → Pφ�IdδId�g.

Proof. We will prove the statement by induction in φ.
It suffices to check that
The composition (49) coincides with the maps (50), (51) after composing each

of them

(1) with the map

Pφ�IdδId�g → Iφ�IdδId�g
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(2) with the maps

Pφ�IdδId�g → Pφ1�IdPφ2�IdδId�g,

where φ1, φ2 �= Id.

(1) Can be checked straightforwardly:

(1a) φ2 �= Id.
If φ1 �= Id, then both compositions are immediately zero.
If φ1 = Id, g1 �= Id, then again both compositions are zero (the compo-
sition (50) is zero because the corresponding map Pφ1�g1 → Pφ1�IdδId�g1
is zero).
If φ1 � g1 = Id, then the two compositions coincide.

(1b) φ2 = Id. If none of φ1, φ3 is identity, then both compositions are clearly
equal to zero.
If φ1 = Id and g1 �= Id, then both compositions are zero.
If φ1 � g1 = Id, then both compositions do clearly coincide.
If φ3 = Id and g3 �= Id, then both compositions are zero.
If φ3 = Id and g3 = Id, then both compositions coincide.

(2a) φ2 �= Id. Compute the composition

Pφ1�g1δφ2�g2Pφ3�g3 → Pφ�IdδId�g → Pφ1�IdPφ2�IdδId�g.

This composition vanishes except the following two cases:

(i) φ1 = uφ1.
(ii) φ3 = φ2u.

In both cases the coincidence is obvious.
(2b) φ2 = Id,

φ1, φ3 �= Id. If φ1 �= φ1, both compositions are obviously zero.
Assume φ1 = φ1, φ3 = φ2. Then, according to (17.5) the composition

Pφ1�g1δId�g2Pφ3�g3 → Pφ�IdδId�g → Pφ1�IdPφ3�IdδId�g

is equal to the sum of two maps which annihilate each other. The second
composition is also zero.
If φ1 = Id or φ3 = Id, then the two compositions do clearly coincide.
This completes the proof.

17.7.1. Compatibility with �

Claim 17.9. The following diagram is commutative:

Pf1�g1(M1) � Pf2�g2(M2) ��

��

Pf1�IdδId�g1(M1) � Pf2�IdδId�g2(M2)

��
Pf1�f2�g1�g2(M1 �M2) �� Pf1�f2�IdδId�g1�g2(M1 �M2)
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Direct application of formulas yields the commutativity of the diagram

which proves the statement.

17.8. The maps s(φ, g) : Rφ�g → Rφ�IdδId�g

17.8.1. Definition

Define a map

S(φ1 � g1, φ1 � g1, . . . , φn � gn) :Pφ1�g1δφ1�g1 · · · Pφn�gn

→ Pφ1�Idδφ1�Id · · · δφn−1�IdPφn�IdδId�g,

where g = gngn−1 · · · g1, as follows:

Pφ1�g1δφ1�g1 · · · Pφn�gn → Pφ1�IdδId�g1δφ1�Id · · · δφn−1�IdPφn�IdδId�φn

→ Pφ1�IdδId�g1 · · · δId�φn−1Pφn�IdδId�g.

Let S′(φ1 � g1, φ1 � g1, . . . , φn � gn) = 0 if at least one of φi is identity. Otherwise
set

S′(φ1 � g1, φ1 � g1, . . . , φn � gn) = S(φ1 � g1, φ1 � g1, . . . , φn � gn).
The sum of all possible S′(φ1 � g1, φ1 � g1, . . . , φn�gn) produces a map

s(φ, g) : Rφ�g → Rφ�IdδId�g.

Let us study its properties.

17.8.2. Denote

s(g1, φ, g2) : Rφ�g → RId�g1Rφ�g2 → δId�g1Rφ�IdδId�g2 → Rφ�IdδId�g;

s(φ, g1, g2) : Rφ�g → Rφ�g1RId�g2 → Rφ�IdδId�g1δId�g2 → Rφ�IdδId�g.

Claim 17.10.

ds(φ, g) =
∑

g=g2g1

(s(g1, φ, g2) − s(φ, g1, g2))

Proof. Follows directly from Sec. 17.7.
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17.8.3. Claim 17.11. The following diagram is commutative:

Rφ�g�h ��

�������������
Rφ�g�IdδId�Id�h

��
Rφ�Id�IdδId�g�h

Proof. Follows directly from Sec. 17.5.

17.8.4. Claim 17.12. Assume that φ is not bijective. Then the composition

Pφ�g → Pφ�IdδId�g → δφ�IdδId�g

equals

Pφ�g → δφ�g.

17.8.5. Introduce a map

K(φ1, φ2, g1, g2) : Rφ2φ1�g2g1 → Rφ1�g1Rφ2�g2 → Rφ1�IdδId�g1Rφ2�IdδId�g2

→ Rφ1�IdRφ2�IdδId�g2g1 .

Claim 17.13. The map

Rφ2φ1�g → Rφ2φ1�IdδId�g → Rφ1�IdRφ2�IdδId�g

is equal to ∑
g2g1=g

K(φ1, φ2, g1, g2).

Proof. It suffices to check that the two maps coincide when compose with the
maps

(1)

Rφ1�IdRφ2�IdδId�g → δφ1�Idδφ2�IdδId�g

(2)

Rφ1�IdRφ2�IdδId�g → Rψ1�IdRψ2�IdRφ2�IdδId�g,

where ψ2ψ1 = φ1 and ψ1, ψ2 �= φ1;
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(3)

Rφ1�IdRφ2�IdδId�g → Rφ1�IdRχ1�IdRχ2�IdδId�g,

where χ2χ1 = φ2 and χ1, χ2 �= φ2.
Let us check (1). The composition

Pψ1�g1δψ1�g1 · · · Pψn�gn → Rψ�g → Rφ�IdδId�g → Rφ1�IdRφ2�IdδId�g

→ δφ1�Idδφ2�IdδId�g

does not vanish iff the leftmost term is

PIdδφ1�g1PIdδφ2�g2PId,

in which case it is

(a) zero if φ1 = Id or φ2 = Id;
(b) identity otherwise.

Let us now examine the composition:

Rφ�g → Rφ1�g1Rφ2�g2 → Rφ1�IdδId�g1Rφ2�IdδId�g2 → δφ1�Idδφ2�IdδId�g1δId�g2 .

According to the previous statement, this composition vanishes if φ1 = Id or
φ2 = Id. Otherwise, this composition equals:

Rφ�g → Rφ1�g1Rφ2�g2 → δφ1�g1δφ2�g2 .

We see that the two maps coincide.
(2) and (3) are immediate by induction.

17.8.6. Compatibility with �

Claim 17.14. The following diagram is commutative:

Proof. Similar to the previous one.

17.9. Direct images with respect to projections

The reformulation of the properties that were proven in the previous subsections in
terms of direct image functors with respect to projections is given in Sec. 5.3. We
are now passing to giving an appropriate formalism for description of structures
that we have encountered.
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18. Formalism for Description of Different Structures
on a Collection of Functors

18.1. Definition of skeleton

18.1.1. Let C be a category (for example, the category of finite sets). We consider
it as a 2-category with trivial 2-morphisms.

A skeleton over C is a 2-category S with the following features:

objects of S are the same as in C;
all categories S(S, T ) are groupoids;
we have a 2-functor P :S → Cop.

Let us decode this definition. Note that P induces maps of groupoids

P (T, S) :S(T, S) → Cop(T, S).

For F :S → T being an arrow in C, let S(F ) := P (T, S)−1(F ). Since setfop(S, T )
is a trivial groupoid (with only identity morphisms), we have an isomorphism of
groupoids:

S(T, S) = �F :S→TS(F ).

The rest of the structure can be reformulated as follows:
For every pair of C-arrows F :S → R and G :R → T , there should be given

composition functors

◦(F,G) :S(F ) × S(G) → S(GF );

for every triple of C-arrows F :S → R, G :R → P , H :P → T , there should be
given isomorphism i(F,G,H) of functors

S(F ) × S(G) × S(H) → S(GF ) × S(H) → S(HGF )

and

S(F ) × S(G) × S(H) → S(F ) × S(HG) → S(HGF ).

These isomorphisms should satisfy the pentagon axiom.
Namely, let

S
F �� P

G �� Q
H �� R

K �� S

be a sequence of maps of finite sets. Every bracketing of the product KHGF specifies
a functor

B(F ) ⊗ B(G) ⊗ B(H) ⊗ B(K) → B(KHGF ):
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for example, the bracketing (KH )(GF ) corresponds to the functor

[(KH )(GF )] : B(F ) ⊗ B(G) ⊗ B(H) ⊗ B(K)
◦(G,F )⊗◦(K,H) �� B(GF )

⊗B(KH )
◦(KH ,GF) �� B(KHGF ).

The other bracketings produce the corresponding functors in a similar way. Total
there are five such bracketings. The associativity maps induce isomorphisms
between these functors as shown on the following diagram:

K((HG)F ) �� K(H(GF ))

(K(HG))F

�������������
(KH)(GF )

�������������

((KH)G)F

����������������������

����������������������

The pentagon axioms requires that this pentagon be commutative.

18.2. Body

A body B built on a skeleton S is an arbitrary dg-2-category with the following
features:

Objects of B are the same as in C;
ObB(T, S) = ObS(T, S);

There exists a 2-functor

s :S → B
identical on objects and on ObS(T, S) for all T, S;

There exists a 2-functor PB :B → setfop such that PBs = P .
This definition is equivalent to the following one.
A body B is a collection of dg-categories B(F ) for all C-arrows F :S → T with

the following features:

(1) ObB(F ) = ObS(F );
(2) There are given functors s := s(F ) : k[S(F )] → B(F ) identical on objects;
(3) There are given functors ◦B(G,F ) :B(F ) × B(G) → B(GF ) which coincide on

the level of objects with ◦(G,F ) and such that

◦B(G,F )(s(a) × s(b)) = s(◦(F,G)(a × b));

where a is an arrow in S(G) and b is an arrow in S(F ).
(4) There are given associativity constraints cB(H,G, F ) which satisfy the pentagon

axiom and are compatible with c(F,G,H) in the obvious way, that is: given
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arrows a, b, c in respectively S(H),S(G),S(F ), one has:

s(cS(a, b, c)) = cB(s(a), s(b), s(c)).

18.2.1. To define a body one has to prescribe complexes B(X,Y ) for all X,Y ∈
S(F ) and certain poly-linear maps between these complexes. Assume that the iso-
morphism classes of C and the isomorphism classes of S(F ) form a (countable)
set for any C-arrow F . Then it is clear that the structure of a body with skeleton
S is equivalent to a structure of an algebra over a certain colored operad with a
(countable) set of colors. Denote this colored operad by body(S). The countability
hypothesis will always be the case in our constructions.

Thus, given a fixed skeleton, we have notions of a free body, a body generated
by generators and relations etc.

18.2.2. Example

In this example the objects of S(F ) will not form a set.
For F :S → T we set B(F ) to be the category of all functors from the category

of DXT -modules to the category of DXS -modules. Let S(F ) be the groupoid of
isomorphisms of B(F ). The rest of the structure is defined in an obvious way.
Denote such a body by FULL.

18.2.3. A map of bodies is naturally defined; a map B → FULL is referred to as
a representation.

18.3. Construction of a skeleton

We will mainly use a skeleton Ske, which will now be described. We set C := setf
to be the category of finite sets. Let F :S → T. Objects of S(F ) are sequences

S
� � i �� U0

p1 �� �� U1
p2 �� �� U2

p3 �� �� · · · pn�� �� Un = T,

where pn · · · p1i = F and each pk is a proper surjection (i.e. is not a bijection). Such
objects will also be denoted by

piRp1Rp2 · · ·Rpn .

We shall also use a notation

Rp1Rp2 · · ·Rpn

instead of

pIdU0
Rp1Rp2 · · ·Rpn .

We do not exclude the case n = 0, in which case the corresponding object will
be written simply as pi.
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18.3.1. Define isomorphisms in this groupoid. Let

Y = pjRq1Rq2 · · ·Rqm

be another object in Ske(F ), where qj :Vj−1 → Vj and Vm = T .
The set Ske(F )(X,Y ) is non-empty only if n = m.
An isomorphism p :X → Y is a collection of bijections bk :Uk → Vk for all k

satisfying the following natural compatibility properties:

(1) bn = IdT ;
(2) For k < k′ set

pk′k := pk′pk′−1 · · · pk+1;

qk′k := qk′qk′−1 · · · qk+1.

Then the diagram

U ′
k

bk′ ��

pk′k
��

Vk′

qk′k

��
Uk

bk �� Vk

commutes.
(3) The diagrams

S
i ��

j

���
��

��
��

� Uk

bk

��
Vk

commute.

The composition law is obvious.

18.3.2. Let

S
F �� T

G �� R.

The composition morphisms

◦ske(G,F )

are defined as follows.
Let

X = piRp0Rp1 · · ·Rpn ,

where i :S → U0, pk :Uk → Uk+1, Un+1 = T , F = pnpn−1 · · · p0i. Let

Y = pjRq0Rq1 · · ·Rqm ,

where j :T → V0, qk :Vk → Vk+1, Vm+1 = R, G = qmqm−1 · · · q0j.
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Let Z := V0\j(T ). Set U ′
k := Uk �Z, p′k := pk � IdZ , j′ :U ′

n+1 → V0, j′ := j � iZ ,
where iZ :Z → V0 is the natural embedding, j′ is then bijective. Set i′ :S → U0 →
U ′

0 to be the natural map.
Set ◦ske(G,F )(X,Y ) to be

pi′Rp′0Rp′1 · · ·Rjp′nRq0Rq1 · · ·Rqm .

We shall write XY instead of ◦ske(G,F )(X,Y ).

18.4. Bodies Bas, Bpresymm, Bsymm

We are going to define the bodies which axiomatize the situations we are working
with: those of a system (Bas); of a pre-symmetric system (Bpresymm) and of a
symmetric system (Bsymm). All these bodies are constructed on the skeleton Ske.

18.4.1. Body Bas
It is generated by the maps as(q, p) : Rpq → RqRp of degree zero with zero differen-
tial, where q :S → R and p :R → T and the relation:

The compositions

Rpqr
as(r,qp)−−−−−→ RrRpq

as(q,p)−−−−→ RrRqRp

and

Rpqr → RqrRp → RrRqRp

coincide.

18.5. Explicit description of the complexes homBas(F )(X, Y )

Let

X = piRp0Rp1 · · ·Rpn ,

where i :S → U0, pk :Uk → Uk+1, Un+1 = T , F = pnpn−1 · · · p0i. Let

Y = pjRq0Rq1 · · ·Rqm ,

where j :S → V0, qk :Vk → Vk+1, Vm+1 = T, F = qmqm−1 · · · q0j.
The space homBas(F )(X,Y ) is non-empty only if for every Uk there exists a Vl

such that #Uk = #Vl. Define the set S(X,Y ) whose each element f is a collection
of bijections fkl :Uk → Vl, whenever #Uk = #Vl satisfying all the properties from
Sec. 18.3.1. Set

homBas(F )(X,Y ) := k[S(X,Y )].
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The composition law in Bas(F ) and the inclusion functor Ske(F ) → Bas(F ) are
immediate.

18.5.1. The body Bpresymm

It is generated over Bas by the elements of two types:

Type 1. Consider a commutative triangle

S
p �� �� T

R
��
i

��

��

j
���������

in which i, j are injections and p is a proper surjection. We then have a degree +1
map

L(i, p) : piRp → pj.

Type 2. Consider a commutative square

R
p �� �� T

S
q �� ����

i

��

P
��

j

��
(52)

in which i, j are injections and p, q are proper surjections. Call such a square suitable
if the following is satisfied: Let T1 = T \T2 be the subset of all t ∈ T such that
p−1t ∩ i(S) consists of ≥2 elements. Then p−1(T1) ⊂ i(S), i.e.

#(p−1t ∩ i(S)) ≥ 2 ⇒ p−1(t) ⊂ i(S).

We then have a degree zero map

A(i, p, j, q) : piRp → Rqpj,

where Rqpj := ◦Ske(Rq, pj).

18.5.2. Relations

(1) Let

R
p �� �� T

S
��
i

��

q �� �� P
��

j

��
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be a suitable square and q = q2q1, where q1, q2 are surjections.
Define the set X(q1, q2) of isomorphism classes of commutative diagrams

R
p1 �� �� U

p2 �� �� T

S
��
i

��

q1 �� ����

j

��

V
��

j′

��

q2 �� �� P
��

j

��

We will refer to such a diagram as (p1, p2, j
′). Both squares in every such a diagram

are automatically suitable. Therefore, every element x := (p1, p2, j
′) ∈ X(q1, q2)

determines a map

mx : piRp → piRp1Rp2 → Rq1pj′Rp2 → Rq1Rq2pj.

Then the relation says that the composition

piRp → Rqpj → Rq1Rq2pj

equals ∑
x∈X(q1,q2)

mx.

(2) Consider the following commutative diagram

R
p �� T

S1

i2

��

q �� P1

j2

��

S

i1

��

r �� P

j1

��

in which both small squares are suitable. Then the large square is also suitable and
the following maps coincide:

pi2i1Rp → Rrpj2j1

and

pi2i1Rp → pi1pi2Rp → pi1Rqpj2 → Rrpj1pj2 → Rrpj2j1 .

(3) Consider the following commutative diagram:

R
p �� �� T

S
q �� ����

i

��

P
��

j

��

Q
��
k

��

��

l

���������

1240002-118



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

A Formalism for the Renormalization Procedure

where the upper square is suitable. Then the following maps coincide:

pikRp → pkpiRp → pkRqpj → pqkpj = pl

and

pikRp → ppik = pl.

(4) Consider the following commutative diagram

S �U �� T �U

S ��

��

T

��

this diagram is suitable and we require that the corresponding map A(i, p, j, q) be
equal to the corresponding isomorphism in Ske.
(5) Let

R
p �� �� T

S
q �� ����

i

��

X
��

j

��

and

R1
p1 �� �� T1

S1

q1 �� ��
��

i1

��

X1

��

j1

��

be suitable squares and let s :S → S1, r :R → R1, t :T → T1, x :X → X1 be
bijections fitting the two squares into a commutative cube. Then the mapA(i, p, j, q)
coincides with the map

piRp ∼= pspi1pr−1prRp1pt−1
1

∼= pspi1Rp1pt−1
1

→ psRq1pj1pt−1
1

∼= psRq1px−1pxpj1pt−1
1

Rqpj.

18.5.3. Differentials

(1) The differential of the map L(i, p) is computed as follows. Consider the set of
all equivalence classes of decompositions p = p2p1, where p1, p2 are surjections and
p1i is injection. We then have a map

l(p1, p2) : piRp → piRp1Rp2 → pp1iRp2 → pp2p1i = ppi.

We then have

dL(i, p) +
∑

(p1,p2)

l(p1, p2) = 0.
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(2) Let

Q :R
p �� �� T

S
q �� ����

i

��

P
��

j

��

be a suitable square. Define two sets L(Q) and R(Q) as follows. The set L(Q) is
the set of all isomorphism classes of diagrams:

R
p

1
�� �� R1

p2 �� �� T

S
q �� ����

i

��

��

i1

����������
P
��

j

��

such that p = p1p2. It is clear that the internal commutative square in this diagram
is also suitable.

Define the set R(Q) as the set of isomorphisms classes of diagrams

R
p1 �� �� R1

p2 �� �� T

S
q �� ����

i

��

P
��

j

��

��
j1

		��������

where p = p1p2. The internal square in such a diagram is always suitable as well.
Every element l := (p1, p2, i1) ∈ L(Q) determines a map

fl : piRp → piRp1Rp2 → Rqpi1Rp2 → Rqpp2i1 = Rqpj.

Every element r = (p1, p2, j1) ∈ R(Q) determines a map

gr : piRp → piRp1Rp2 → pp1iRp2 = pj1Rp2 → Rqpj .

We then have

dA(i, p, j, q) =
∑

l∈L(Q)

fl −
∑

r∈R(Q)

gr.

This completes the definition. We need to check that d2 = 0 and that d preserves
the ideal generated by the relations, which is left to the reader.

18.5.4. The system 〈R〉 with its properties provides for a representation of
Bpresymm.

18.5.5. Explicit description of the categories Bpresymm(F )

Consider two objects X,Y in A(F ) :

S
� � i �� U0

p0 �� �� U1
p1 �� �� · · · Uk

pk �� �� Uk+1
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and

S
� � j �� V0

q0 �� �� V1
q1 �� �� · · · Vl−1

ql �� �� Ul+1.

Define the set M(X,Y ) whose each element is a collection of injections

jr :Vmr ↪→ Ur,

where r = 0, 1, . . . , k+ 1,m0 = 0, 0 ≤ mr+1 −mr ≤ 1, mk+1 = l+ 1. The following
conditions should be satisfied:

(1) if mr+1 = mr, then the diagram

Ur
pr �� Ur+1

Vmr

jr

��
jr+1

��								

must be commutative.
(2) If mr+1 = mr + 1, then the diagram

Ur
pr �� Ur+1

Vmr

jr

��

qr �� Vmr+1

jr+1

��

must be commutative and suitable.

Every element m = (j1, j2, . . . , jk+1) in M(X,Y ) defines a map

A(m) : piRp0Rp1 · · ·Rpk → pjRq0Rq1 · · ·Rql
,

where we set RId = Id, as follows. Define

q′mr
:Vmk

→ Vmr+1

to be IdVmr
if mr = mr+1 and qmr if mr+1 = mr + 1. We then have maps

Fk : pjr Rpr → Rq′mr
pjr+1 ,

where Fk = L(jr, pr, jr+1) if mr+1 = mr, and Fk = C(jr , pr, jr+1, q
′
mr

) if mr+1 =
mr + 1.

Set

A(m) : piRp0Rp1 · · ·Rpl
→ pjpj0Rp0Rp1 · · ·Rpl

A′(j0,p0,j1,q′m0
)−−−−−−−−−−→ pjRq′m0

pj1Rp1 · · ·Rpl
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A′(j1,p1,j2,q′m1
)−−−−−−−−−−→ pjRq′m0

Rq′m1
pj2Rp2Rp3 · · ·Rpl

→ · · · → pjRq′m0
Rq′m1

· · ·Rq′mk+1

∼= pjRq0Rq1 · · ·Rql
,

where

A′(ju, pu, ju+1, q
′
mu

) = A(ju, pu, ju+1, q
′
mu

)

if q′mu
�= Id. Otherwise

A′(ju, pu, ju+1, q
′
mu

) = l(ju, pu, ju+1).

Let N(X,Y ) := k[M(X,Y )]. Let

H(X,Y ) = ⊕ZN(Z, Y ),

where the sum is taken over all refinements Z of X . We have an obvious map
H(X,Y ) → hom(X,Y ). Set AF (X,Y ) := H(X,Y ). The relations given in the
previous section provide us with a composition law H(X,Y )⊗H(Y, Z) → H(X,Z)
and a differential.

18.5.6. Body Bsymm

The definition of the body Bsymm is exactly the same as the one of the body
Bpresymm except that the maps A(i, p, j, q) are defined for all commutative squares

R
p �� �� T

S
q �� ����

i

��

P
��

j

��

not necessarily suitable; the relations are the same except that we lift everywhere
the restriction of suitability; the formulas for the differential remain the same.

It is clear that we have a map of bodies

i :Bpresymm → Bsymm

We are going to study this map.

18.5.7. Explicit expression for homBsymm(F )(X,Y ), where X,Y ∈ Ske(F ) is
exactly the same as for Bpresymm.

The further study of Bsymm is facilitated by the statement we are going to
consider

18.5.8. Let

S
� � i �� R

p �� �� T
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be a diagram. Call it super-surjective if for every t ∈ T :
either p−1t ∩ i(S) has at least two elements
or p−1t is a one-element subset of i(S).

Claim 18.1. Let

R
p �� �� T

S
q �� ����

i

��

P
��

j

��

be a commutative diagram.
Then there exists a decomposition:

R
p �� �� T

U
��

i2

��

r �� �� P
��

j

��

S

q
�� ������������

i1

��

where the diagram is commutative, i = i2i1, the square (i2, p, j, r) is suitable and
the pair (i1, q) is super-surjective.

Such a decomposition is unique upto an isomorphism.

Proof. Existence. Call an element t ∈ T good if p−1t satisfies the condition of the
definition. Let GT ⊂ T be the subset of all good elements. Let U := i(S)∪ p−1GT .
Let i1, i2 be the natural inclusions. By definition, for every t ∈ Gt, the intersection
p−1t∩ i(S) is non-empty. Hence, GT ⊂ pi(S) = jq(S) and, therefore, p(U) = jq(S).

Thus, p(U) = Im j, which implies that the map p|U :U → T uniquely decom-
poses as jr, where r :U � P . It is clear that all the conditions are satisfied.

Uniqueness is also clear.

18.5.9. Corollary

Let X ∈ Ske(F ) be an object of the form

pjpi1Rp1pi2Rp2 · · · pinRpn ,

where every pair (ik, pk), ik :Uk → Ak, pk :Ak → Uk+1, is super-surjective. Let

Y = pjRp1i1Rp2i2 · · ·Rpnin .

The maps pikRpk
→ Rpkik induce a map fX :X → Y . Call X a super-surjective

decomposition of Y . Let super− sur(Y ) be the groupoid of all super-symmetric
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decompositions of Y and their isomorphisms (i.e. collections of isomorphisms Uk →
U ′
k fitting into the commutative diagrams. . . ). It is clear that if a :X1 → X2 is such

an isomorphism, then fX1 = fX2a.
Let Z, Y ∈ Ske(F ). Define a functor hZ : super− sur(Y ) → complexes by the

formula hZ(X) = homBpresymm(F )(Z,X).
The collection of maps fX induces a functor

limdirsuper−sur(Y )hZ → homBsymm(F )(Z, Y ).

Claim 18.2. This map is an isomorphism.

18.5.10. One more lemma

Let Y ∈ Ske(F ). Let F = F2F1 be a decomposition and assume that we have an
isomorphism t :Y → Y2Y1, where YiSke(Fi). We then have a natural functor:

super− sur(Y2) × super− sur(Y1) → super− sur(Y ).

Lemma 18.3. This functor is an equivalence of groupoids.

Proof. Clear.

18.6. Pseudo-tensor bodies

Let B be a body. A pseudo-tensor structure on B is a collection of several pieces of
data, the first one being functors

Ψ({Fi}i∈I) : ⊗i∈I B(Fi) ⊗ B(F )op → complexes,

where F = �i∈IFi , for all n > 0 and all collections Fi :Si → Ti of maps of finite
sets indexed by an arbitrary finite non-empty set I. Let Xi ∈ B(Fi) and X ∈ B(F ).
We then denote

hom({Xi}i∈I ;X) := Ψ({Fi}i∈I)((⊗i∈IXi) ⊗X).

Let π : I → J be a surjection of finite sets. Let Fi :Si → Ti, i ∈ I be maps of finite
sets. For a j ∈ J set

Fj := �i∈π−1jFi.

Let Xi ∈ B(Fi), Yj ∈ B(Fj), where i ∈ I, j ∈ J . Set

homπ({Xi}i∈I ; {Yj}j∈J) := ⊗j∈J hom({Xi}i∈I , {Yj}j∈J ).

An element f in this complex will also be written as

f : {Xi}i∈I → {Yj}j∈J .
Let X,Y ∈ B(G), where G :S → T be a map of finite sets. It is assumed that

hom(X,Y ) = homB(G)(X,Y ).
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18.6.1. Composition of the first type

Let F = �i∈IFi. The second feature of a pseudo-tensor structure is a collection of
composition maps of the first kind:

C1({Xi}i∈I ; {Yj}j∈J ;Z) : homπ({Xi}i∈I ; {Yj}j∈J) ⊗ hom({Yj}j∈J ;Z)

→ hom({Xi}i∈I ;Z).

Let σ : J → K be another surjection and set Fk := �j∈π−1k. Pick objects Zk ∈
B(Fk), k ∈ K. Define a map

C1({Xi}i∈I ; {Yj}j∈J ; {Zk}k∈K) : homπ({Xi}i∈I ; {Yj}j∈J )

⊗ homσ({Yj}j∈J ; {Zk}k∈K) → homσπ({Xi}i∈I ; {Zk}k∈K)

as the tensor product

⊗k∈KC1({Xi}i∈(σπ)−1k; {Yj}j∈σ−1k;Zk).

18.6.2. Compositions of the second kind

Let Fi :Si → Ti, Gi :Ti → Ri, i ∈ I be a family of maps of finite sets. Let F =
�i∈IFi, G = �j∈JGj . Let Xi ∈ B(Fi), Yi ∈ B(Gi), Z ∈ B(F ), W ∈ B(G). We then
have objects YiXi ∈ B(GiFi), WZ ∈ B(GF ). The last feature of a pseudo-tensor
structure is a prescription of composition maps of the second kind:

C2({Xi}i∈I , Z; {Yi}i∈I ,W ) : hom({Xi}i∈I ;Z) ⊗ hom({Yi}i∈I ;W )

→ hom({YiXi}i∈I ;WZ ).

Let π : I → J be a surjection. Let Fj = �i∈π−1jFi; Gj = �i∈π−1jGi. Let Xi ∈
B(Fi), YinB(Gi), i ∈ I;Zj ∈ B(Fj),Wj ∈ B(Gj), j ∈ J . Define a map

C2({Xi}i∈I ; {Yi}i∈I ; {Zj}j∈J ; {Wj}j∈J ) : homπ({Xi}i∈I , {Zj}j∈J)

⊗ homπ({Yi}i∈I , {Wj}j∈J) → homπ({YiXi}i∈I ; {WjZj}j∈J)

as the tensor product

⊗j∈JC2({Xi}i∈π−1j , Zj; {Yi}i∈π−1j ,Wj).

18.6.3. Axiom

The only axiom is as follows. Let I be a finite set and consider an I-family of chains
of maps

S0
i

F 1
i �� S1

i

F 2
i �� · · · FN

i �� SNi ,
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where N is a fixed number. For 0 ≤ p < q ≤ N , set F qpi :Spi → Sqi to be the
composition

F qi F
q−1
p · · ·F p+1

i .

We also set F qqi := IdSq
i
.

We shall also need a chain of surjections

I = I0
π1 �� �� I1

π2 �� �� · · · πM �� �� IM

where M is a fixed natural number. For 0 ≤ u < v ≤ M , denote by πvu : Iu → Iv
the composition

pvu = πvπv−1 · · ·πu+1;

set πuu := IdIu . For a j ∈ Ik define a subset

j := π−1
k0 (j)

of I0. Take the following disjoint unions

Srj = �i∈jSri ; F rj = �i∈jF ri ; F qpj = �i∈jF qpj .

Pick elements Xk
j ∈ B(F kj ), for all j ∈ Iu, 0 ≤ u ≤M and all k = 1, . . . , N . For

0 ≤ p < q ≤ N, set

Xqp
j = Xq

jX
q−1
j · · ·Xp+1

j

so that Xqp
j ∈ B(F qpj ).

Iterating various compositions of the two kinds in various ways, one can con-
struct, a priori, several maps

M⊗
u=1

N⊗
k=1

homπu({Xk
j }j∈Iu−1 ; {Xk

l }l∈Iu) → homπM,1({XN,0
s }s∈I1 , {XN,0

v }v∈IM ).

The axiom says that all these maps should coincide. Denote thus obtained unique
map by comp{Xk

s }.

18.6.4. Given a fixed skeleton S, a structure of a pseudo-tensor body on this skele-
ton is equivalent to the one of algebra over a certain colored operad body⊗(S).
Therefore, pseudo-tensor bodies can be specified by means of generators and
relations.

18.6.5. Example

Introduce a pseudo-tensor structure on FULL as follows. Let Xa ∈ FULL(Fa) and
Y ∈ FULL(F ), where Fa :Sa → Ta, S = �aSa, F = �aFa, etc.
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Let

�a :
∏
a

D-modXSa → D-modXS ,

�a :
∏
a

D-modXTa → D-modXT

be the functors of the exterior tensor product. Set

homFULL({Xa};Y ) := hom(�aXa;Y ◦ �a),

where hom is taken in the category of functors:∏
a

D-modXT a → D-modXS .

18.7. Maps of pseudo-tensor bodies

Let B1,B2 be pseudo-tensor bodies over skeletons respectively S1 and S2. Our goal
is to define a notion of a map R :B1 → B2. We shall give two equivalent definitions.
The first definition is based on a notion of

18.7.1. Induced skeleton

Let X : k[S1] → B2 be a 2-functor which maps k[S1](F ) → B2(F ) for all F . In the
sequel we shall write S1 instead of k[S1].

This structure is equivalent to the following one:

(1) we have functors X(F ) :S1(F ) → B2(F ) for all F ,
(2) for all composable pairs F,G, the natural transformation IX(G,F ), shown on

the diagram:

S1(F ) × S1(G)
◦(G,F ) ��

X(F )×X(G)

��

S1(GF )

X(GF ) .

��

IX (G,F )

�� ����������

����������

B2(F ) ⊗ B2(G)
◦(G,F ) �� B2(GF )

(3) The transformations IX should be compatible with the associativity transfor-
mations of S1 and B2 in a natural way.

Using such an X we shall construct a body X−1B2 on the skeleton S2. First of
all, we set

homX−1B2({Ya}a∈A;Z) := homB2({X(Ya)}a∈A, X(Z)).

The compositions of the first and second kinds on X−1B2 are naturally induced by
those on B2. Thus constructed pseudo-tensor body is called induced.
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18.7.2. Definition of a map f :B1 → B2

By definition, such a map is given by a 2-functor Xf :S1 → B2 as above and by a
map f ′ :B1 → X−1

f B2, where the meaning of f ′ is as follows: since B1 and X−1
f B2

are pseudo-tensor bodies over the same skeleton S1 they can be both interpreted
as algebras over the operad body⊗(S1); f ′ is by definition a map of such algebras.

This definition will be now decoded.

18.8. More straightforward approach

To define a map B1 → B2 one has to prescribe the following data:

(1) A collection of functors RF :B1(F ) → B2(F );
(2) For every sequence of maps of finite sets Fi :Si−1 → Si, i = 1, 2, . . . , N, such

that FNFN−1 · · ·F1 = F , consider a diagram of functors:

⊗iB1(Fi)
⊗iRFi ��

◦(FN ,FN−1,...,F1)

��

⊗iB2Fi

◦(FN ,FN−1,...,F1)

��
B1(F )

RF �� B2(F )

There should be specified an isomorphism I(F1, F2, . . . , FN ) between the com-
position of the top arrow followed by the right arrow and the composition of
the left arrow followed by the bottom arrow. As it is common in the theory of
2-categories, I(F1, F2, . . . , FN ) will be denoted by a double diagonal arrow:

⊗iB1(Fi)
⊗iRFi ��

◦(F1,...,FN )

��

⊗iB2Fi

◦(F1,F2,...,FN )

��
I

�� ���
���

���
�

���
���

��
��

B1(F )
RF �� B2(F )

(3) For every {Xa}a∈A, Xa ∈ B1(Fa), and every Y ∈ B2(F ), where F = �a∈AFa,
there should be given a map of complexes:

R{Xa}a∈A;Y : homB1({Xa}a∈A;Y ) → homB2({RFa(Xa)}a∈A;RF (Y )).

The axioms are as follows:

(1) Associativity axiom for I(FN , . . . , F1).
Pick a sequence 1 = i1 ≤ i2 ≤ · · · ik = N . Set

Gr := FirFir−1 · · ·Fir−1+1.

Let

◦r := ◦(Fir , Fir−1, . . . , Fir−1+1);
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let Ir := I(Fir , Fir−1, . . . , Fir−1+1). Let I := I(Gk, Gk−1, . . . , G1). We then
have the following diagram:

⊗iB1(Fi)
⊗iRFi ��

⊗r◦r

��

⊗iB2(Fi)

⊗r◦r

��
⊗rIr

�� �����������

�����������

⊗rB1(Gr)
⊗rRr ��

◦(Gk,Gk−1,...,G1)

��

⊗rB2(Gr)

◦(Gk,Gk−1,...,G1)

��
I

�� �����������

�����������

B1(F )
RF �� B2(F )

We then see that the two squares of this diagram are composable and the
axiom requires that the composition be equal to I(FN , FN−1, . . . , F1).

(2) Compatibility of R({Xa}a∈A;Y ) with compositions of the first type.
Let p :A→ B be a surjection of finite sets. Let Fa :Sa → Ta be an A-family

of maps of finite sets. Let

Sb = �a∈p−1bSa, Tb = �a∈p−1bTa; Fb = �a∈p−1bFa,

so that Fb :Sb → Tb. Let Xa ∈ B1(Fa), Yb ∈ B1(Fb). Let

Rp({Xa}a∈A; {Yb}b∈B) : homB1,p({Xa}a∈A; {Yb}b∈B)

→ homB2,p({RFa(Xa)}a∈A; {RFb
(Yb)}b∈B)

be the tensor product

⊗b∈BR({Xa}a∈p−1b;Yb).

Let, finally, q :B → C be another surjection. Let Sc = �a∈(qp)−1cSa; let
Tc, Fc be similar disjoint unions. Let Zc ∈ B1(Fc). We then have the following
diagram:
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The axiom says that this diagram should be commutative.
(3) Compatibility of R({Xa}a∈A;Y ) with compositions of the second type.

Let Fa :Sa → Ta, Ga :Ta → Ra be A-families of maps of finite sets. Let F =
�aFa and G = �aGa. Let Xa ∈ B1(Fa), Ya ∈ B2(Ga). Let

Ia := I(Ga, Fa)(Ya, Xa) :R(Ya)R(Xa) → R(YaXa);

I :R(Y )R(X) → R(Y X).

We then have the following diagram:

The axiom requires the commutativity of this diagram.

18.9. Pseudo-tensor structure on Bas, Bpresymm, Bsymm

18.9.1. Bas
The pseudo-tensor body Bas is generated over the usual body Bas by the following
generators and relations.

Generators: Let fk :Rk → Tk, k ∈ K be a family of surjections and ik :Sk → Tk
be a family of injections. Let f = �k∈Kfk and i = �k∈Kik.We then have a generator

fact({ik, fk}k∈K) : {pikRfk
}k∈K → piRf .

Let π :K → L be a surjection. For l ∈ L set

il = �k∈π−1lik;

fl = �k∈π−1lfk.

Set

fact({ik, fk}k∈K , {il, fl}l∈L) : {pikRfk
}k∈K → {pilRfl

}l∈L

to be

⊗l∈Lfact({ik, fk}k∈π−1l; il, fl).
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Relations:

(1) Let σ :L→M be a surjection. For m ∈M set

fm = �k∈(σπ)−1mfk;

im = �k∈(σπ)−1mik.

Then the composition of the first kind

{pikRfk
}k∈K → {pilRfl

}l∈L → {pimRfm}m∈M

equals C1({pikRfk
}k∈K , {pilRfl

}l∈L).
(2) Let fk :Sk → Rk, k ∈ K be surjections and ik :Rk → Tk be injections. Let

Zk := Tk\ik(Rk). Let S′
k = Sk �Zk, R′

k = Rk �Zk; let i′k :Sk → S′
k be the

natural inclusion. Let f ′
k :S′

k → Tk, f ′
k = fk � iZk

, where iZk
:Zk → Tk. We

then have isomorphisms in Ske(ikfk):

Rfk
pik → pi′

k
Rf ′

k
.

Let f = �kfk, i = �kik, f ′ = �kf ′
k, i

′ = �ki′k. We then have an isomorphism
in Ske(if):

Rfpi → pi′Rf ′ .

The relation says that the composition

{Rfk
pik}k∈K → {Rfpi} → {pi′Rf ′}

equals the following composition:

{Rfk
pik}k∈K → {pi′kRf ′

k
} → {piRf}.

(3) Let fk :Rk → Tk, k ∈ K be surjections. Let fk = gkhk, where gk, hk are
surjections. Let f = �k∈Kfk, g = �k∈Kgk, h = �k∈Khk.
Then the composition

{Rfk
}k∈K → Rf → RhRg

equals the composition

{Rfk
}k∈K → {Rhk

Rgk
}k∈K → RhRg.

18.9.2. Bpresymm

The pseudo-tensor structure on Bpresymm is generated by the same generators as
on Bas, and the relations include those in Bas with an addition of the following
relations:

(a) let ik, pk, jk, qk, k ∈ K be a collection of suitable squares. Let i = �k∈Kik,
p = �k∈Kpk, j = �k∈Kjk, q = �k∈Kqk. Then the square i, p, j, q is also suitable

1240002-131



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

D. Tamarkin

and the following compositions coincide:

{pikRpk
}k∈K → {Rqk

pjk}k∈K → Rqpj

and

{pikRpk
} → piRp → Rqpj .

(b) Let ik :Sk → Rk, k ∈ K be injections and pk :Rk → Tk, k ∈ K be surjections
such that jk := pkik are injections. Assume that at least two of the maps pk
are proper surjections. Then the composition

{pikRpk
}k∈K → piRp → Rj

vanishes.

If only one of the surjections pk is proper, say pκ, κ ∈ K, then the above
composition equals

{pikRpk
}k∈K = {piκRpκ , pikR{pk}k∈K

} L(iκ,pκ)−−−−−→ {pjκ , {pikRpk
}k∈K}

→ {pjk}k∈K → pj.

18.9.3. Bsymm

This pseudo-tensor body is generated by the same generators and relations as
Bpresymm except that we lift the condition of suitability. We have a natural map

Bpresymm → Bsymm. (53)

18.9.4. It is clear that the system 〈R〉 determines a map of pseudo-tensor bodies

Bpresymm → FULL,

any such a functor will be also called representation.

18.10. Explicit form of pseudo-tensor maps

18.10.1. Category of special maps

Consider a family of objects

Xa = piaRpa
1
Rpa

2
· · ·Rpa

na

indexed by a finite set A, where all pak are proper surjections and

pana
· · · pa2pa1ia = Fa

so that Xa ∈ Ske(Fa). Let N ≥ j ≥ i ≥ 1. Set paji = pajp
a
j−1 · · · pai+1 (if i = j, then

we set paji = Id). Let u := {uak}, where a ∈ A, k = 0, 1, 2, . . . , N , be a sequence of
numbers satisfying: ua0 = 0,

0 ≤ uak+1 − uak ≤ 1,
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and uaN = na. Set

pk(u) := �a∈Apaua
ku

a
k−1

Call u proper if such are all pk(u).
For proper u we set

X(u) := p�aiaRp1(u)Rp2(u) · · ·RpN (u).

We have natural maps

fact(u) : {Xa}a∈A → X(u).

For an Y ∈ Ske(�aFa) consider the groupoid GY whose objects are collections

({Xa ∈ Ske(Fa)}a∈A,u), m :Y → X(u),

where the meaning of the ingredients is the same as above and m is an isomorphism;
the isomorphisms in GY are isomorphisms of such collections. It is clear that GY
is a trivial groupoid. Let Za ∈ Ske(fa). We have a natural map

liminv{Xa}a∈A∈GY
⊗a∈A hom?(Za, Xa) → hom?({Za}a∈A, Y ).

We claim that this map is an isomorphism, where ? = Bas,Bpresymm,Bsymm.

18.10.2. We shall also need another form of decomposition of the pseudo-tensor
maps in Bsymm.

Let {Xa}a∈A be a family of objects Xa ∈ Ske(Fa). Let F = �a∈AFa. We then
have the following natural functors

hpresymm
{Xa}a∈A

:Bpresymm(F ) → complexes

and

hsymm
{Xa}a∈A

:Bsymm(F ) → complexes

defined by the formulas:

hpresymm
{Xa}a∈A

(Y ) = homBpresymm({Xa}a∈A;Y );

hsymm
{Xa}a∈A

(Y ) = homBsymm({Xa}a∈A;Y ).

We shall also need a functor

Gsymm :Bop
presymm(F ) ⊗ Bsymm(F ) → complexes,

where Gsymm(Z,U) = homBsymm(Z,U). We then have a natural map:

hpresymm
{Xa}a∈A

⊗Bpresymm(F ) G
symm → hsymm

{Xa}a∈A
.

Lemma 18.4. This map is an isomorphism of functors.

Proof. Straightforward.
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18.11. Linear span of a body

Let B be a pseudo-tensor body. We shall construct a body L[B], over another skele-
ton, as follows. Set L[B](F ) to be the category of functors B(F )op → complexes.
We shall start with the composition maps

◦ := ◦(G,F ) :L[B](F ) ⊗ L[B](G) → L[B](GF ).

Introduce an auxiliary functor

D := DG,F :B(F ) ⊗ B(G) ⊗ B(GF )op → complexes,

where

D(X,Y, Z) = homB(GF )(Z,YX ).

Let now U ∈ L[B](F ), V ∈ L[B](G). Define

V ◦ U := D ⊗B(G)⊗B(F ) V � U.

Let us construct the associativity map. Define

D3 := DH,G,F :B(H) ⊗ B(G) ⊗ B(F ) ⊗ B(HGF )op → complexes

by

D3(Z, Y,X,U) := homB(HGF)(U,ZYX ).

Ioneda’s lemma combined with the associativity maps implies isomorphisms

DG,F ⊗B(GF ) DH,GF ∼−→ D3;

DH,G ⊗B(HG) DHG,F ∼−→ D3.

Let U ∈ B(F ), V ∈ B(G), and W ∈ B(H). Set

(WVU ) := W � V � U ⊗B(H)⊗B(G)⊗B(F ) D3.

We then have isomorphisms

(WV )U ∼−→ (WV U) ∼−→W (V U),

which furnish the associativity isomorphism.
For Xi ∈ L[B](Fi), i ∈ I and Y ∈ L[B](�i∈IFi) set

homL[B]({Xi}i∈I ;Y ) := hom(�i∈IXi, homB({.}, .) ⊗BF Y ).

Define the compositions of the first kind. Let π : I → J be a surjection.
Let Fi :Si → Ti be a family of maps of finite sets. Let Fj = �i∈π−1jFi.
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Let Ki ∈ L[B](Fi) and Lj ∈ L[B](Fj). Let

A(π) : ⊗i∈I B(Fi)op ⊗j∈J B(Fj) → complexes

be given by:

A(π)({Xi}; {Yj}) = homB({Xi}; {Yj}).
Let BI := ⊗i∈IB(Fi); BJ := ⊗j∈JB(Fj). Let K :Bop

I → complexes be �i∈IKi. Let
L :Bop

J → complexes be �j∈JLj. We then have:

homL[B],π({Ki}i∈I ; {Lj}) ∼= homBop
I

(K,L⊗BJ A(π)).

Let σ :J → K be the third surjection. For k ∈ K, let Fk := �i∈(σπ)−1kFi. Let
Mk ∈ B(Fk). Let BK = ⊗k∈KB(Fk); let M := �k∈KMk. Then

homL[B],σ({Lj}; {Mk}) ∼= homBop
j

(L,M ⊗BK A(σ)).

To construct the composition of the first kind we shall also need an isomorphism

A(σ) ⊗BJ A(π) → A(σπ),

where the isomorphism follows from the Ioneda’s lemma.
In view of the above isomorphisms, the composition of the first kind reduces to:

homBop
I

(K,L⊗BJ A(π)) ⊗ homBop
J

(L,M ⊗BK A(σ))

→ homBop
I

(K,M ⊗BK A(σ) ⊗BJ A(π))

∼= homBop
I

(K,M ⊗Bk
A(σπ)).

Lastly, let us define the compositions of the second kind. We shall keep the
above notation. Let Gi :Ti → Ri be another family of maps of finite sets. Let
K ′
i ∈ L[B](Gi) and L′

j ∈ L[B](Gj). Let a ∈ hom(K,L) and a′ ∈ hom(K ′, L′). Let
A(π) be as above and let A′(π) (respectively A′′(π)) be the same as A(π) but Fi are
all replaced with Gi (respectively GiFi). Let B′

I = ⊗i∈IB(Gi); B′′
I = ⊗i∈IB(GiFi).

Construct the composition a′a ∈ hom(K ′K,L′L).
As was mentioned above, a determines a map

a :K → L⊗BJ A(π)

and a′ produces a map

a′ :K ′ → L′ ⊗B′
J
A′(π).

To construct the compositions K ′K,L′L, introduce functors

OI :BI ⊗ B′
I ⊗ (B′′

I )
op → complexes;

OJ :BJ ⊗ B′
J ⊗ (B′′

J)op → complexes;
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by setting

OI({Xi}; {X ′
i}; {X ′′

i }) := hom({X ′′
i }; {X ′

iXi});
OJ({Xj}; {X ′

j}; {X ′′
j }) := hom({X ′′

j }; {X ′
jXj}).

Then

K ′K = K ′ �K ⊗BI⊗B′
I
OI ;

L′L = L′ � L⊗BJ⊗B′
J
OJ .

Application of a, a′ yields a map:

K ′ �K ⊗BI⊗B′
I
OI → L′ � L⊗BJ⊗B′

J
(A(π) �A′(π)) ⊗BI⊗B′

I
OI .

Next, by Ioneda’s lemma, we have an isomorphism.

(A(π) �A′(π)) ⊗BI⊗B′
I
OI → OJ .

If we apply this isomorphism to the previous map, we will get the desired second
kind composition map:

K ′ �K ⊗BI⊗B′
I
OI → L′ � L⊗BJ⊗B′

J
OJ .

This concludes the definition of the structure. Checking the axioms is straight-
forward.

18.11.1. A representation of a pseudo-tensor body B (i.e. a map B → FULL)
naturally extends to a representation of L[B].

18.12. Representation of a body in another body

An arbitrary map of bodies B1 → k[B2] will be called a representation of B1 in B2.
We shall construct

18.13. Representation of Bsymm in Bpresymm

By constructing such a representation, we shall automatically obtain a map
Bsymm → FULL, i.e. a symmetric system.

First of all construct maps RF :Bsymm(F ) → L[Bpresymm](F ) by assigning

RF (X)(Y ) := homBsymm(F )(Y,X).

On RF (X), we have a natural structure of functor from the category Bsymm(F )op

to the category complexes given by the map Bpresymm → Bsymm as in (53). Let
Xi ∈ Bpresymm(Fi). We then have a natural map

I(F2, F1) :RF1(X1)RF2(X2) → RF2F1(X1X2)
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given by:

(RF1(X1)RF2(X2))(Z) = RF1 ⊗RF2 ⊗B(F1)⊗B(F2) DF2F1
Bpresymm

(Z)

→ RF1 ⊗RF2 ⊗B(F1)⊗B(F2) DF2F1
Bsymm

(Z) ∼= RF2F1(X1X2)(Z).

Furthermore, as follows from the decomposition (18.4), I(F2, F1) is an isomorphism.
To defined the maps

R{Xa}a∈A;Y : homBsymm({Xa}a∈A;Y ) → homBpresymm({RFa(Xa)}a∈A;RF (Y ))

we shall use Lemma 18.4. We have

RF (X)(Y ) = Gsymm(Y,X),

where Gsymm is as in the statement of Lemma 18.4. Let

hpresymm : ⊗a∈A Bpresymm(Fa)op ⊗ Bpresymm(F ) → complexes

be defined by the formula

hpresymm({Xa}a∈A;Y ) := homBpresymm({Xa}a∈A;Y ).

Then, by definition,

homBpresymm({RFa(Xa)}a∈A;RF (Y ))

= hom⊗a∈ABpresymm(Fa)op(�a∈ARF (Xa);hpresymm ⊗Bpresymm(F ) G
symm).

The latter term is, by Lemma 18.4, isomorphic to

hom⊗a∈ABpresymm(Fa)op(�a∈ARF (Xa);hsymm),

where

hsymm({Xa}a∈A;Y ) := homBsymm({Xa};Y ).

Lastly, we have a natural map

hom⊗a∈ABsymm(Fa)op(�a∈ARF (Xa);hsymm)

→ hom⊗a∈ABpresymm(Fa)op(�a∈ARF (Xa);hsymm),

and the first space is, by Ioneda’s lemma, isomorphic to

homBsymm({Xa};Y ).

This completes the desired construction. Checking the axioms is straightforward.

18.13.1. As was mentioned above, the above construction provides us with a sym-
metric system. Denote it 〈Rsymm〉. An explicit construction of 〈Rsymm〉 is given in
Sec. 7. Checking that this construction produces the same system as in the previous
section is straightforward, and we omit it.
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19. Realization of the System 〈Rsymm〉 in the Spaces
of Real-Analytic Functions

19.1. Conventions and notation

We do not consider sheaves in this sections, but only their global sections. By
DXS we denote the algebra of polynomial differential operators on XS. By a DXS -
module we mean a module over the algebra DXS .

We denote by DY S the space of compactly supported infinitely-differentiable
top-forms on Y S , and by D′

Y S the space of distributions (= generalized functions)
on DY S . D′

Y S is a left DXS -module.
For simplicity, we fix a translation invariant top form ω on Y S , and define ωS

to be a top form on Y S which is the exterior product of copies of ω. Because dimY

is even, the order in this product does not matter.
The space DY S is then identified with the space of compactly supported

infinitely differentiable functions on Y S .

19.2. Asymptotic decompositions of functions from CS

19.2.1. The main theorem

Let S be a finite set. Let T ⊂ S be a subset. Let R := S\T . Pick an element τ ∈ T .
We shall refer to a point of Y S as ({ys}s∈S), where y ∈ Y .

For a positive real λ set

Uλ(({ys}s∈S) =
({

yτ +
yt − yτ
λ

}
t∈T

; {yr}r∈R
)
.

This determines an action of the Lie group R
×
>0 on Y S .

Let F ∈ CS .

Claim 19.1. For every g ∈ DY S there exist :
constants A(F ), B(F ); distributions CFn,k ∈ D′

Y S , for every n ≥ A(F ) and every k
such that 0 ≤ k ≤ B(F ); such that for every N and every g ∈ DY S , the following
asymptotics takes place:

〈F,Uλg〉 =
∑

A(F )≤n≤N,0≤k≤B(F )

CFn,k(g)λ
n(lnλ)k + o(λN ).

Proof. We shall use induction in #R to prove even stronger statement:
There exist:

constants A(F ), B(F ),K(F ); distributions CFn,k on the space of compactly sup-
ported K(F )-times differentiable functions, for every n ≥ A(F ) and every k such
that 0 ≤ k ≤ B(F ); such that for every N there exists a constant L := L(N,F )
such that whenever

φ ∈ CL(Y S), g ∈ CLc (Y S),
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the following asymptotics takes place:

〈F, φUλg〉 =
∑

A(F )≤n≤N,0≤k≤B(F )

CFn,k((Uλ−1φ)g)λn(lnλ)k + o(λN ). (54)

Remark. We have

Uλ−1φ({xs}s∈S) = φ({xτ + λ(xt − xτ )}t∈T , {xr}r∈R).

Therefore, for L large enough, we can replace Uλ−1φ in (54) with a finite sum∑
λkφk.

Base: #R = 0. We then have 〈F,Uλg〉 = 〈U∗
λF, g〉. Let us study the action U∗

λ on
CS . It is clear that this action preserves the filtration on CS and that the associated
graded action is diagonalizable. It then follows that for every F ∈ CS ,

U∗
λF =

∑
n,k

λn(ln λ)kFnk,

where the sum is finite and Fnk ∈ CS .
The statement now follows immediately.
Now let R be arbitrary, and assume that the statement is the case whenever R

has a smaller number of elements.
Let R1 ⊂ R be an arbitrary non-empty subset. Let R2 = S\R1. Assume that

F = F1F2, (55)

where Fi ∈ CRi .
We then claim that the required asymptotics is the case. Indeed, we have

〈F1F2, φUλg〉 = 〈F1, 〈F2, φUλg〉〉
and the statement follows from the corresponding statement for F2 (which holds
by virtue of the induction assumption).

Let us generalize this result. Let IN,KR′,R′′ ⊂ CK(Y S) be the subspace consisting
of functions which vanish on each diagonal xr1 = xr2 , ri ∈ Ri upto the order N .

Let

QR1R2 :=
∏
ri∈Ri

q(xr1 − xr2).

It is not hard to see that for every M,L there exist N,K such that for every
χ ∈ IN,KR′,R′′ , we have

χ = QMψ,

where ψ ∈ CM (Y S). Thus, for N,K sufficiently large, and χ ∈ IN,K we have

〈F, χφUλg〉 = 〈FQM , ψφUλg〉.
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But for M large enough, FQM splits into a sum of elements of the form (55),
whence the statement for all χ ∈ IN,KR′,R′′ .

Let us now define the space JN,K ⊂ CKY S , consisting of all functions which
vanish on the diagonal

∀ t ∈ T :xt = xτ

upto the order N . It is not hard to see that for N,K large enough,

〈F, χφUλg〉 = o(λn).

Therefore, there are large enough N,K such that whenever

φ ∈
∑
R′

IN,KR′,R′′ + JN,K ,

the required asymptotics holds.
Let AN,K ⊂ CK(Y S) be the subspace of functions which vanish on the main

diagonal in Y S upto the order N .
By the Nullstellensatz, for some N ′,K ′,

AN
′,K′ ⊂

∑
R′

IN,KR′,R′′ + JN,K .

Therefore, the required asymptotics holds whenever

χ ∈ AN
′,K′

.

Let us now pass to the original statement.
Let

Ξl =
∑
t∈T

(xt − xτ )
∂

∂xt
,

Ξr =
∑
r∈R

(xr − xτ )
∂

∂xr
.

The action of the vector field Ξl + Ξr on the space CS preserves the filtration, and
the induced action on the associated graded quotients is diagonalizeable, therefore
we may assume that (Ξl + Ξr − n)NF = 0 for some n,N .

Consider expressions〈
F, P

(
Ξl,Ξr, λ

d

dλ

)
φUλg)

〉
, (56)

where P is a polynomial.
Let UM (z) = z(z − 1)(z − 2) · · · (z −M).
Consider the following ideals in the ring of polynomials of three variables:

AM =
(
UM

(
Ξl − λ

d

dλ

))
;

BM = (UM (Ξr));

C = ((Ξl + Ξr − n)N ).
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It is not hard to see that for M large enough, whenever P is large enough, the
expression (56) has the required asymptotics.

Indeed, consider for example the ideal AM . We have:

UM

(
Ξl − λ

d

dλ

)
φUλ(g) = (UM (Ξl)φ)Uλ(g)

and it is easy to see that χ := UM (Ξl)φ has at least the Mth order of vanishing
along the main diagonal, whence the statement. The ideals BM , CM can be checked
in a similar way.

Next, we see, by the Nullstellensatz, that for some M,L

UM

(
λ
d

dλ
− n

)L
∈ AM +BM + C.

Therefore, we see that there exists the required asymptotics for

UM

(
λ
d

dλ
− n

)L
〈F, φUλg〉.

The theory of ordinary differential equations now implies the statement.

19.2.2. A claim about the distributions Cn,k

Let G be a function on Y T which is invariant under translations by a vector from
Y , with support compact modulo the action of Y .

Let H be a function on Y R�{τ} with compact support.
We then have Uλ(GH) = HUλ(G).

Claim 19.2. We have,

Cn,k(HG) = Dn,k(G)(H),

where Dn,k(G) ∈ CR�{τ}.
Furthermore, for every N, the distributions Dn,k(G), where n ≤ N and k is

arbitrary, span a finitely dimensional vector subspace.

Proof. Use induction. If R is empty, there is nothing to prove.
Otherwise, let us split R = R1 �R2, in a nontrivial way.
We then see that for M large enough Dn,k(GQMR1�T,R2

) satisfy the statement
by virtue of the induction statement.

Also, for M ′ large enough and any G vanishing on the diagonal ∀ t ∈ T : yt = yτ
up to the order M ′, Dn,k(G) = 0. The Nullstellensatz then implies that for L large
enough, one can write

QLR1,R2
= P1Q

M
T�R1,R2

+ P2,

where P1, P2 are polynomials and P2 vanishes on the diagonal ∀ t ∈ T : yt = yτ upto
the order M ′.
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This implies that Dn,k(QLR1,R2
G) = Dn,k(G)QLR1,R2

satisfy the statement.
Also, Dn,k(G) are all translation invariants, therefore Dn,k(G) ∈ CR�{τ}.
Let C′ be the quotient of CR�{τ} by the distributions supported on the main

diagonal.
It then follows that Dn,k span a finitely dimensional space in C′.
Let QR =

∏
r,s∈R,r �=s q(xr − xs). Then Dn,k(G)QR also span a finitely dimen-

sional space. Hence, Dn,k(G) span a finitely-dimensional space in CR�{τ}.

19.2.3. Consider a decomposition S = S1 �S2 such that T ⊂ S1. Consider an
element F ∈ CS which decomposes as a product F = F1F2, where Fi ∈ CSi . We are
going to express DF

n,k in terms of DF1
n,k.

Let G be as above (i.e. an infinitely differentiable function on Y T invariant
under shifts by Y and with compact support modulo these shifts).

Claim 19.3. We then have

DF
n,k(G)(H) = 〈F2, D

F1
n,k(G)(H)〉.

Proof. Clear.

19.2.4. Let S be a finite set with a marked point σ ∈ S. Let Ξr be the dilation
vector field on XS given by: ∑

s∈S
(xs − xσ)

∂

∂xs
.

Denote D′
Y S,n the generalized eigenspace of Ξr with eigenvalue n. Let CS,n :=

CS ∩ D′
Y S,n.

We know that

CS = ⊕n∈ZCS,n.
Let us now go back to our situation in which we have a finite set S, its subset

T and a marked point τ ∈ T .
Consider a subspace D′

T,n ⊂ D′
Y T ,n consisting of all elements which are nilpotent

under translations by Y .
It is then not hard to see that

Lemma 19.4.

Dn,k ∈ D′
T,n ⊗OX CR�{τ},N−n,

where the OX -action is on the τ th components of both tensor factors.

19.2.5. Let

D′
T,≥n := ⊕N≥nD′

T,N ;
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let

D′ = ⊕ND′
T .

Let

E(S, T ) := liminvn→∞D′/D′
T,≥n ⊗ CR�{τ},N−n.

Given a function G ∈ DY S and an element

sn ∈ D′
T,≥n ⊗ CR�{τ},N−n

one has: 〈sn, UλG〉 = o(λn−1). Therefore, for every s ∈ E(S, T ) and G ∈ DY S we
have an asymptotic series

〈s, UλG〉.
Claim 19.5. There exists a map

ε :CS → E(S, T )

uniquely determined by the condition that 〈ε(F ), UλG〉 is an asymptotic series for
〈F,UλG〉.

19.2.6. Let π :S → S/T be the natural surjection. Define a functor Aπ from the
category of DXS/T -modules to the category of DXS -modules by the formula

Aπ(M) = liminvn→∞i∧π (M) ⊗O
XT

D′/D′
T,≥n.

Then the above result can be rewritten as a map

CS → Aπ(CS/T ).

19.2.7. Let q :S/T → P be an arbitrary surjection. Let τ ∈ S/T be the image of
T . Let χ = π(τ ). For p ∈ P set Sp := (qπ)−1p. Let σ :S → S/Schi be the natural
projection. We then have induced maps q1 :S/Sχ → P .

Lemma 19.6. The composition

CS → AπCS/T → AπIq(BXP )

equals the following composition:

CS → i∧qπ(BXP ) ⊗p∈P (CSp) → i∧qπ(BXP ) ⊗p�=χ (CSp) ⊗ (AσCSχ/T )

→ Aπ(i∧q (BXP ) ⊗⊗p∈P (Cq−1p)) = AπIq(BXP ).

Proof. Pick an F in CS and show that its images under the two maps coincide.
First of all we note the following thing. Let s1, s2 ∈ S be such that qπ(s1) �=

qπ(s2). Then q(xs1−xs2) is invertible in AπIq(BXP ). Let us multiply F by a product
of sufficiently large number of such factors. We shall then obtain an element in
⊗p∈PCSp , and it is sufficient to prove the statement for only such elements, (because
q(xs1 −xs2) are all invertible in the target space). In this case the statement follows
directly from Lemma 19.3.
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19.2.8. Let q :S → P be an arbitrary surjection. Define a functor Ap from the
category of DXP -modules to the category of DXS -modules by the formula

liminvN→∞i∧p (M) ⊗O
XS

⊗p∈PD′
q−1p/D

′
Xq−1p,N

.

19.2.9. Let p :S → R be an arbitrary surjection. For r ∈ R let Sr := p−1r. Pick
non-empty subsets Tr ⊂ Sr. Let P := �rSr/Tr. We then have a natural decomposi-
tion: Let p = p2p1, where p1 :S → P , p2 :P → R. We also denote pr :Sr → Sr/Tr.

The above constructions allow us to define a map

Ip → Ap1Ip2
as follows.

Ip(M) = i∧p (M) ⊗ (�r∈RCSr) → i∧p (M) ⊗ (�r∈RAprCSr/Tr
)

→ i∧p (M) ⊗Ap1(�r∈RCp−1
2 r)

→ Ap1(i
∧
p2(M) ⊗ �r∈RCp−1

2 r) = Ap1Ip2(M).

19.2.10. It follows that the map

Ip → Ap1Ip2
is defined for all decompositions p = p2p1 such that p1, p2 are surjections and for
every t ∈ Im p, p−1

2 t contains at most one element u such that p−1
1 u consists of more

than one element.

19.2.11. Let p2 = q2q1 be a decomposition, where q2, q1 are surjections.

Claim 19.7. The following diagram is commutative:

Ip ��

��

Ap1Ip2 �� Ap1Iq1 iq2

Iq1p1 iq2

��������������������

Proof. Follows from Lemma 19.6.

19.2.12. Compositions δq1Iq2 → Ip → Ap1Ip2
Let q2q1 = p be a decomposition of p as a product of two surjections. We will
investigate the composition

δq1Iq2 → Ip → Ap1Ip2 .
Let a be a universal surjection among those that p1 and q1 pass through a:

p1 = p′1a, q1 = q′1a. The surjection a is uniquely determined by the condition
a(x) = a(y) iff p1(x) = p1(y) and q1(x) = q1(y). Let b be the universal surjection
among those that b = bpp1 = bqq1.
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Let us describe b more concretely. For t ∈ T , let Rt = p−1
2 t and St = p−1t. Then

there is at most one rt ∈ Rt such that #p−1
1 rt > 1. If there is no such an element

pick rt arbitrarily.
Let Pt = p−1

1 rt. Then

St/Pt
∼−→ Rt.

Let e be the equivalence relation on S determined by q1. The subsets St are not
connected by this relation. Define the equivalence relation f which determines b.
Let u, v ∈ St we say u ∼f v if either u ∼e v or if there are u′, v′ ∈ Rt such that
u ∼e u′ and v ∼e v′.

We then have a commutative diagram:

bp
���

��
��

��
�

p2

���������������

S
a ��

p1

���������������

q1
���������������

p′1

����������

q′1

���
��

��
��

�
c �� T

bq

����������
q2

���������������

We see that there is a natural map

δq′1Abq → Ap′1δbp .

Claim 19.8. The composition

δq1Iq2 → Ip → Ap1Ip2
coincides with the composition:

δq1Iq2 → δaδq′1Icbq → δaδq′1AbqIc → δaAp′1δbpIc → Ap1Ip2 .

Proof. Clear.

19.3. Maps Pp → Ap1δp2

We always assume that p, p1, p2 are the same as above.
We are going to define maps x(p1, p2) :Pp → Ap1δp2 using induction in |p2| :=

#R− #P .
The base is |p2| = 0, i.e. a bijective p2. Without loss of generality we can assume

that P = S/T and p2 = Id. The map x(p1, Id) is then defined as a composition

Pp → Ip → Ap.

The transition is as follows. We begin with construction of a map ξ(p1, p2) :Pp →
Ap1Ip2 . We then show that it passes through a unique map x(p1, p2) :Pp → Ap1δp2 .

(1) Construction of ξ(p1, p2). For every decomposition p2 = q2q1, all the maps being
properly surjective, we define a map

ξ(p1, q1, q2) :Pp → Ap1Ip2
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as the composition:

Pp → Pq1p1Iq2 → Ap1δq1Iq2 → Ap1Iq.

We also set K(p1, p2) :Pp → Ip1Ip2 → Ap1Ip2 ; L(p1, p2) :Pp → Ip →
Ap1Ip2 to be the natural maps.

We finally define a map

ξ(p1, p2) :Pp → Ap1Ip2
as:

ξ(p1, p2) = L(p1, p2) −K(p1, p2) −
∑

q=q2q1

ξ(p1, q1, q2).

(2) We will now show that all compositions

Pp ξ(p1,p2) �� Ap1Ip2 a �� Ap1Iq1 iq2
vanish, where p2 = q2q1 is an arbitrary decomposition into a product of proper
surjection. To show the vanishing, introduce a notation. For a map L :Pq1p1 →
Ap1Iq1 we set

L! :Pp → Pq1p1 ip2 → Ap1Iq1 ip2 .

We then have (1) if q1 = q3q
1 and q3, q1 is proper,

aξ(p1, q
1, q2q3) = ξ(p1, q

1, q3)!;

(2)

aξ(p1, q1, q2) = ξ(p1, q1)!;

(3) aξ(q1, q2) = 0 if q1 does not pass through q3;
(4)

aK(p1, p2) = K(p1, q1)!;

(5)

aL(p1, p2) = L(p1, q1)!.

Therefore,

aξ(p1, p2) = ξ(p1, q1)! − L(p1, q1)! +K(p1, q1)! +
∑

q1=q3q1

ξ(p1, q
1, q3)! = 0,

by virtue of the induction assumption.
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This implies that ξ(p1, p2) passes through Ap1δp2 . This completes the
construction.

19.4. Interaction with the maps PδP → P
We are going to study the compositions

Pp1δp2Pp3 → Pp → Ap1δp2 , (57)

where p, p1, p2 are as above and p = p3p2p1 is an arbitrary decomposition into a
product of surjections and p2 is proper.

19.4.1. We first of all note that the map Pp → Ap1δp2 passes through the direct
sum of natural maps

Pp → Ip1Ip2 · · · Ipk ,

where pkpk−1 · · · p1 = p is a decomposition into a product of proper surjections,
and p1 = ap1 for a surjection a.

This implies that the composition (57) vanishes except the following cases
(1) p1 is bijective; (2) p3 is bijective; (3) p1 = ap1.
Consider these cases.

(1) Investigate the composition

δq1Pq2 → Pp → Ap1δp2 .

We shall use the notations from Sec. 19.2.12. We then claim that this compo-
sition equals:

δq1Pq2 → δaδq′1Pcbq → δaδq′1Abqδc → δaAp′1δbpδc → Ap1δp2 .

(2) The composition Pp1δp2 → Pp → Ap1δp2 does not vanish only if p1 = ap1 for
some a, in which case this map equals:

Pp1δp2 → Ap1δaδp2 → Ap1δp2 .

(3) In this case the composition vanishes. We shall use induction in |p2|.
The base, i.e. the case when p2 is bijective is clear.
Let us pass to the transition. We will show that the composition

Pap1δp2Pp3 u−→ Pp ξ(p1,p2)−−−−−→ Ap1Ip2
vanishes.

We first consider the case when a is proper.
We see that L(p1, p2)u = K(p1, p2)u = 0. And that ξ(p1, q1, q2)u = 0 unless

(q1, q2) belong to the isomorphism class of q1 = a or q1 = ap2 in which cases these
compositions mutually annihilate each other.
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In the case a = Id,K(p1, p2) = 0, ξ(p1, q1, q2) = 0 every time except when the
isomorphism class of (q1, q2) is given by q1 = p1. In this situation L and ξ(p1, p2, p3)
annihilate each other.

19.4.2. Composition Pfg�h → Pfg�IdδId�h → Ag�Idδf�h

We claim that this composition coincides with the map

Pfg�Id → Ag�Id → δf�Id.

19.5. Interaction with the maps with P → PP
The collection of functors Ap does not form a system because it may include very
bad singularities which do not admit the required asymptotic decomposition.

One can, nevertheless, define a “correspondence”. That is, for every decompo-
sition p = p2p1. One can define a functor Γ(p1, p2) such that

Γ(p1, p2)(M) ⊂ Ap(M) ⊕Ap1Ap2(M).

This is what we are going to do.

19.5.1. A subspace Γp ⊂ D′
S ⊕ApD

′
T

Let p :S → T be a surjection. We shall construct a subspace Γp ⊂ D′
S ⊕ApD

′
T .

Pick a splitting i :T → S so that pi = IdT . For {xs}s∈S ∈ Y S and λ > 0 we set

Vλ({xs}s∈S) =
{
xip(s) +

xs − xip(s)

λ

}
λ∈S

.

Pick an element τ ∈ T ; for a point {xt}t∈T ∈ Y T and µ > 0 we set

Uµ({xt}t∈T ) =
{
xτ +

xt − xτ
µ

}
t∈T

.

Pick f ∈ DY S , g ∈ DY T and F ∈ D′
S . We then have a function A(λ, µ) :=

〈F, VλfUµg〉 in two variables λ, µ. This function is smooth for all λ, µ > 0.
Let now F ′ ∈ ApD

′
T . We can then construct an element

A′ := 〈F ′, VλfUµg〉 ∈ C[lnµ, µ−1, µ][lnλ, λ−1, λ]

in the obvious way.
We say that A′ is an asymptotic series for A if for every P,Q > 0 and every

sufficiently large partial sum A′′ of A′

A−A′′ = λP+1x(λ, µ) + λPµQy(λ, µ),
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where x(λ, µ) is continuous for all λ ≥ 0, µ > 0, and λ, µ is continuous for all
λ, µ ≥ 0.

Define Γp as the set of all pairs F, F ′ such that A′ is an asymptotic series for
A for all f, g and all splittings i (one can actually show that if this is true for one
splitting i, it is also true for every such a splitting).

The map Γp → D′
S is injective and closed under the action of dilations USλ . We

may, therefore, split Γp = ⊕nΓp,n into the direct sum of generalized eigenvalues
of USλ .

Let p1 :S → R, p2 :R → T be surjections. For t ∈ T let St, Rt be the preimages
and let p1t :St → Rt be the induced maps.

Set

Γ(p1, p2)(M) := liminvN

(⊗
t∈T

Γp1t

/
Γp1t,N

)
⊗ i∧p (M).

The inclusions

Γp1t ⊂ D′
p ⊕Ap1D

′
Rt

induce the inclusions

Γ(p1, p2) ⊂ Ap ⊕Ap1Ap2 .

19.5.2. Let p, p1, p2 be as above. We then have maps

a :CS → Ap(CT )

and

b :CS → Ap1CR → Ap1Ap2CT .

Claim 19.9. The map a⊕ b passes through Γ(p1, p2)CT .

19.5.3. Asymptotic series modulo diagonals

We will need a weaker version of the above definition. In the setting of the previous
section, we say that F ′ is an asymptotic series for F modulo diagonals in XS/T

(respectively in XS) if for every P,Q there exists anN such that whenever g vanishes
on all generalized diagonals upto the order N (respectively f and g vanish on all
generalized diagonals upto the order N), we have

A−A′′ = λP+1x(λ, µ) + λPµQy(λ, µ),

where x(λ, µ) is continuous for all λ ≥ 0, µ > 0, y(λ, µ) is continuous for all λ, µ ≥ 0,
and A′′ is a partial sum of A′ with sufficiently many terms.

Define Γ◦(p1, p2) (respectively Γ◦◦(p1, p2)) in the same way as Γ(p1, p2) but
using asymptotic series modulo diagonals in XS/T (respectively XS).
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Let a, b ∈ S be such that p1(a) �= p1(b). Γ◦(p1, p2) “does not feel sections
supported on the diagonal a = b”. Formal meaning is as follows. Let π :S →
S/{a, b}; let p′ :S/{a, b} → T . Let H : iπ∗Ap′ → Ap be the natural map. Then the
functor

(H(iπ∗Ap′(M)), 0) ⊂ Γ◦(p1, p2).

Similarly, let p2 = p4p3 be a decomposition into a product of surjections, where
p3 is proper. Let ip3∗Ap4 → Ap2 be the natural map. Let

G :Ap1 ip3∗Ap4 → Ap1Ap2

be the induced map. Then

(0, G(Ap1 ip3∗Ap4)(M)) ∈ Γ◦(p1, p2).

19.6. Decomposition of the map Pp → Ap2δp1

Let p = p2p1 be as in Sec. 19.2.10. Choose a decomposition p2 = q2q1, where q2, q1
are surjections.

We are going to construct a map

Pp → Aq1Aq2δp1

such that its direct sum with the map

Pp → Ap2δp1

will pass through Γ◦(q1, q2)δp1 .

19.7. For a surjection u :A→ B let Bm(p) ⊂ B be given by

Bm(u) = {x ∈ B |#p−1
1 (x) > 1}.

Let Am(u) = u−1Bm(u). Let B = Bm(u)�Bs(u), A = Am(u)�As(u) be the
decompositions. We then have u = um �us, where us is bijective and um is essen-
tially surjective, i.e. #u−1

m x > 1 for all x ∈ Bm(u).

19.7.1. Let p1 :S → R, p2 :R → T . Let q1 :S → U , q2 :U → R.
Let Sm := Sm(p1), Ss = Ss(p1). Then q1(Ss), p1(Ss) are identified with Ss.

Using this identification, we may assume that U = Um �Ss and that q1 =
q1m � IdSs ; R = Rm �Ss, q2 = q2m � IdSs (see the diagrams below).

We will work with isomorphism classes of maps v :U → X which are

(1) injective on Um,
(2) there exists w :X → T such that wv = p2q2.
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We may therefore assume that

X = Um � Y
and that v = Id� vs.

We see that equivalently, one can define a map v by a prescription of a map
vs :Ss → Um �Y such that

(1) vs(Ss) ⊃ Y ;
(2) there exists a map ws :Y → T (it is then determined uniquely) such that the

diagram below commutes.

We then have w = p2q2m �ws.
Let Z = Rm �Y . Let w1 :X → Z, w1 = q2m � IdY ; let w2 :Z → T , w2 =

p2|Rm �ws.
Let σ :R → Z be given by IdRm � vs.

S
p1 ��

q1

���
��

��
��

R
σ

���
��

��
��

p2 �� T

U

q2
���������

v

���
��

��
��

Z

w2

���������

X

w1

���������

Sm �Ss
p1m � IdSs ��

q1m � IdSs ������������ Rm �Ss

IdRm�vs ������������
p2 �� T

Um �Ss

q2m�IdSs

 �����������

IdUm�vs ! ���������� Rm �Y
p2|Rm�ws

"!���������

Um � Y

q2m�IdY

#"����������

We also see that there is a natural transformation:

δvAw1 → Aq2δσ.

Therefore, one constructs a map

µv :Pp → Pvq1Pw2w1 → Aq1δvAw1δw2 → Aq1Aq2δσδw2
∼= Aq1Aq2δp2 .

Define a map

µ(q1, q2) :Pp → Aq1Aq2δp2

as a sum of µv over the set of all isomorphism classes of maps v.
Let ν :Pp → Ap1δp2 .

Claim 19.10. The map ν ⊕ µ passes through Γ◦(q1, q2)δp2 .
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19.7.2. We need a lemma.
Let

L :Pp → Ip → Ap1Ip2 .

For v as in the previous section, set

λv :Pp → Pvq1Pw → Aq1δvIw → Aq1Ip2q2 → Aq1Aq2Ip2 .

Let λ =
∑
v λv.

Lemma 19.11. L− λ passes through Γ◦(q1, q2)Ip2

Proof. Let Λ be given by:

Pp → Ip → Aq1Ip2q2 → Aq1Aq2Ip2 .

As we have seen above, L− Λ passes through

Γ◦(q1, q2).

We can now focus on the difference Λ − λ. It suffices to show that it passes
through Aq1A◦

q2Ip2 .
Let

H :Pp → Ip → Aq1Ip2q2 .

Let

Gv :Pp → Pvq1Pw → Aq1δvIw → Aq1Ip2q2 .

We see that Λ − λ equals the composition of H −∑v Gv with the map

Aq1Ip2q2 → Aq1Aq2Ip2 .

Let p2q2 = wv be a decomposition such that v is as above. Then it is not hard
to see that the compositions of H −∑v Gv with the map

Ip2q2 → Iviw
vanish. This implies that the composition of H −∑v Gv with the map

Aq1Ip2q2 → Aq1Aq2Ip2
passes through

Aq1A◦
q2Ip2 .

This implies the statement.
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19.7.3. Proof of the claim

We shall use induction with respect to |p|. The base is clear. Let us pass to the
transition.

By definition, the composition

ξ(p1, p2) :Pp → Ap1δp2 → Ap1Ip2
equals −L+

∑
ξ(p1; r1, r2), where we changed q for r to avoid a confusion, and the

sum is taken over all isomorphism classes of decompositions p2 = r2r1 such that r2
is proper (so that K is included as the term corresponding to r1 = Id).

Define the map η(p1; r1, r2) as the composition:

Pp → Pr1p1Pr2 → Aq1Aq2δr1Ir2 → Aq1Aq2Ip2 .
According to the induction assumption, the direct sum

ξ(p1, r1, r2) + η(p1; r1, r2)

passes through Γ◦(q1, q2)Ip1 .
Let λ be as in the lemma. We then know that L+ λ passes through Γ◦(q1, q2).
It now suffices to prove that −∑v λv +

∑
η(p1, r1, r2) = 0.

We, first of all see that ∑
η(p1, r1, r2)

equals the sum of the maps of the form

Pp → Pvq1Pr2w′
2w1 → Pvq1Pw′

2w1Pr2
ξ(w1,w

′
2,r2)−−−−−−−→ Avq1Aw1Ir2w′

2

→ Aq1δvAw1Ir2w′
2
→ Aq1Aq2Ip2 ,

where v, w1, w2 := r2w
′
2 are as in the previous section, and the decompositions

w2 = r2w
′
2 are arbitrary, not necessarily proper.

The map λ equals

Pp → Pvq1Pw → Pvq1Iw L→ Pvq1Aw1Iw2 → Aq1δvAw1Iw2 → Aq1Aq2Ip2 .
The statement now follows immediately.

19.8. Maps piPp → Aqpj

19.8.1. Definition

Suppose we have a commutative square

R
p �� �� T

S
��

i

��

q �� �� Q
��
j

��
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Let us define a map piPp → Aqpj in the following way.
Let L := R\i(S). We then have an identification R = S �L. Let p1 :R → Q�L

be just

R
cong−−−→ S �L q�IdL−−−−→ Q�L.

Let p2 :Q�L→ T be given by j � p1L. We then have p = p2p1, where p2, p1 are
surjections. We see that they satisfy the conditions which are necessary to define
the map

Pp → Ap1δp2 .

Finally, let iQ :Q→ Q�L be the inclusion. We then have a natural map

piAp1 → AqpiQ .

The map piPp → Pqpj is now defined as the composition:

piPp → piAp1δp2 → AqpiQδp2 → Aqpp2iQ = Appj .

19.8.2. Properties

We shall translate the properties of the maps Pp2p1 → Ap1δp2 into the language of
the maps

piPp → Aqpj .

(1) If the square (i, p, j, q) is suitable, then the diagram

piPp ��

��











Aqpj

Iqpj

��

is commutative.
(2) Let p = p3p2p1 be a decomposition into a product of surjections, where p2 is

proper.

(3.1) The composition

piPp1δp2Pp3 → piPp → Pqδj
vanishes unless p1 or p3 are bijective.

(3.2) Investigate the composition

piδp2Pp3 → piPp → Pqpj .
We can uniquely decompose p2i = j2q2, where j2 is injective and q2 is
bijective. Furthermore, we can decompose p3j2 = jq′ for a surjection q′.
The above composition is then:

piδp2 → δq2pj2Pp3 → δq2Aq′pj → Aqpj .

1240002-154



April 20, 2012 13:13 WSPC/S1793-7442 251-CM 1240002

A Formalism for the Renormalization Procedure

(3.3) The composition

piPp1δp2 → piPp → Pqpj
does not vanish only if one can decompose p1i = j1q, where j1 is injective,
in which case it equals

piPp1δp2 → Pqpj1δp2 → Pqpj .
(4) Let q = q2q1 be a decomposition into a product of surjections.

Consider the set of all isomorphism classes of the diagrams

R
p1 �� R1

p2 �� T

S

i

��

q1 �� P1

j1

��

q2 �� P

j

��

where p2p1 = p. For every such a diagram D we have a map

uD : piPp → piPp1Pp2 → Aq1pj1Pp2 → Aq1Aq2pj .

Let u be the sum of uD taken over the set of all diagrams D.
Let v : piPp → Pqpj . Then the direct sum u⊕ v passes through Γ◦(q1, q2)pj .

19.9. Maps
∫

q
: Rsymm

q → A◦
q

We define
∫
q = 0 on all terms of cohomological degree <0. The terms of degree zero

are all of the form pi∗Pp, where pi = q, i is injective and P is surjective. We define∫
q |pi∗Pp as the composition:

pi∗Pp → Aq → A◦
q.

Claim 19.12. d
∫
q

= 0.

Proof. We need to check that the composition

(Rsymm
p )−1 d→ (Rsymm)0p

R
p−→ Ap

vanishes.
The functor (Rsymm

p ) − 1 is a direct sum of the terms piPp1δp2Pp3 , where p =
p1p2p3i, where i is injective and p1, p2, p3 are surjective and p2 is proper.

Consider several cases.

(1) p1 is bijective. We may think that p1 = Id. The restriction of the differential
onto this term equals the sum −D1 +D2, where

D1 : piδp2Pp3 → piPp3p2 .
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The map D2 does not vanish only if i1 = p2i is injective, in which case

D2 : piδp2Pp3 → pi2Pp3 .

The check now reduces to showing that the diagram

piPp3p2

$#�
��

��
��

��

piδp2Pp3

D1

#"����������

D2

������������
A◦

q

pi2Pp3

"!���������

is commutative which follows from the Property 3.2.
(2) p3 is bijective. We may assume p3 = Id. In this case, the restriction of the

differential onto piPp1δp2 equals −D1 +D2, where

D1 : piPp1δp2 → piPp2p1 .

The second term D2 does not vanish only if p1i = jq, where j is injec-
tive. In this case we can construct a commutative diagram (uniquely upto an
isomorphism):

p1 �� p2 ��

i2

��

r

���
��

��
��

i1

��

q ��

j

��

Id

%$�������������

in which the square i2, p, r, j is suitable.
The map D2 is then:

piPp1δp2 ∼−→ pi1pi2Pp1δp2 → pi1Prpjδp2 ∼−→ pi1Pr.

The Property 3.3, and 19.4.2 imply that the diagram

piPp2p1

$#�
���

��
��

�

piPp1δp2

D1

#"����������

D2

������������
A◦

q

pi1Pr

"!���������

is commutative, whence the statement.
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(3) p1, p3 are proper. In this case the restriction of the differential onto Pp1δp2Pp3
simply equals:

piPp1δp2Pp3 → piPp.
The composition

piPp1δp2Pp3 → piPp → A◦
q

vanishes according to Sec. 3.1.

19.9.1. Interaction with the maps Rsymm → RsymmRsymm

Let p = p2p1 be surjections. Let
∫
p1p2

: Rsymm
p → R

symm
p1 R

symm
p2 → A◦

p1A◦
p2

Claim 19.13. The map
∫
p
⊕ ∫

p1,p2
passes through Γ◦◦(p1, p2).

Proof. Compute the restriction of the map Rsymm
p → Rsymm

p1 Rsymm
p2 onto piPq.

By definition, such a restriction equals the sum of mapsm(q1, q2), where q = q2q1
and q1i = jp2, where j is injective. In this case one can construct a unique, upto
an isomorphism, commutative diagram

q1 �� q2 ��

i2

��

π ��
j

��
p2

���������

i1

��
p1

���������

where the square i2, q1, j, π is suitable.
The map m(q1, q2) is then given by:

piPq → pi1pi2Pq1Pq2 → pi1PπpjPq2 .
The composition

piPq → pi1pi2Pq1Pq2 → pi1PπpjPq2 → Ap1Ap2

equals, by virtue of Sec. 19.4.2,

u(q1, q2) : piPq → piPq1Pq2 → Ap1pjAq2 → Ap1Ap2 .

The sum of all u(q1, q2) is the map u from 4. Therefore, the direct sum of the
composition

piPq → pi1pi2Pq1Pq2 → pi1PπpjPq2 → Ap1Ap2

with the map

piPq → Ap

passes through A◦(p1, p2), whence the statement.
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