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0. Introduction

The purpose of this paper is to analyze the procedure of renormalization from the
mathematical point of view. Our original motivation came from trying to really
understand the paper [4]. This paper uses the so-called Batalin—Vilkovitski formal-
ism [6, 3]. Its main features include:

(1) given a QFT, one constructs a so-called quantum Batalin—Vilkovitski bracket
on the space of observables. Using this bracket one writes a Master equation
(a.k.a. Maurer—Cartan equation);

(2) every solution to this equation is supposed to produce a deformation of the
QFT.

It is the procedure of constructing such a deformation that is called renormal-
ization in the current paper.

Unfortunately, the treatment in [4] does not lead to a (mathematically) non-
contradictory definition of the Batalin—Vilkovitski bracket or renormalization (due
to divergencies). The goal of this paper is to begin filling this gap up.

Before working with the QFT from [4] (i.e. the Poisson sigma model), it makes
sense to start with simpler theories and to define the Batalin—Vilkovitski bracket
and the renormalization for them. In this paper we do it for the theory of free
boson in R?”, n > 1. It turns out that the construction generalizes more or less
straightforwardly to the situation in [4], which will be a subject of a subsequent

paper.
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The author hopes that the constructions of this paper will also work in a more
general context.

We deal with QFTs via a Dx-module M of observables of the theory (X is the
spacetime) and an OPE-product structure on M. So, we start with a definition of
an OPE-product. To this end one first has to prescribe possible singularities of these
OPEs. We call such a prescription a system (a precise definition is given below).
Given a system, we have a notion of an OPE-algebra over this system.

We then construct an appropriate system for the free scalar boson Euclidean
theory in R?", n > 1, in which case the only possible singularities are of the type:
products of squares of Euclidean distances in the denominator. We denote this
system by (i). The cases R?, R2"*! require semi-integer powers or logarithms, which
leads to slightly more complicated definitions. For simplicity we only work with R?",
n > 1 throughout the paper.

We then show that the Batalin—Vilkovitski bracket arises due to a certain
additional structure on the system. We call a system with such a structure pre-
symmetric. The system (i) has no natural pre-symmetric structure, nevertheless
we construct a differential graded resolution (R) — (i) which is pre-symmetric.
Furthermore, any OPE-algebra over (i) can be lifted to an OPE-algebra over ().
The building blocks for the system (2R) are certain spaces of generalized functions.
The lifting procedure can be interpreted as a regularization (i.e. passage from usual
functions with singularities to generalized functions). It seems to be very similar
to the well-known Bogoliubov—Parasyuk—Hepp procedure [11]. There is also some
affinity with the approach in [2].

It is worth to mention that the homotopy theory implies that, upto homotopy,
nothing should depend on the choice of such a lifting. What is not implied by the
homotopy theory is that we can always find an “honest” lifting (as opposed to a lift-
ing upto higher homotopies). Furthermore, we expect that the action of Hopf alge-
bras introduced in [8] (see also [2], where a somewhat similar object appears under
the name of “the group of renormalizations”) should provide us with (“honest”,
not quasi-) isomorphisms between the different liftings, which also looks slightly
different from what we are used to in the homotopy theory.

Next, we treat the renormalization procedure. It turns out that to accomplish
such a procedure, one needs certain additional properties of the system. We call a
system with these additional properies symmetric system. Unfortunately, the system
(R) is only pre-symmetric, and not symmetric. The reason is very simple: the
renormalized OPE have more sophisticated singularities. It turns out, though, that
there is a formal “symmetrization” procedure, which produces a symmetric system
out of a pre-symmetric one. So, starting from (R), we get a symmetric system
(RsY™m) and construct a renormalized OPE in this system.

Morally, the system (RSY™™) ig given in terms of a D-module whose solutions
are possible singularities of the renormalized OPE. Our last step is to interpret this
D-module as a sub-module in the space of real-analytic functions.
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Our approach has to be compared with the ones in [1] and [8, 9]. Our feeling
is that our approach is less general than the one in [1] (although, I believe, that
they become rather close, if one uses the abstract definition of a system (see 2.3.3);
the approach in [8, 9] studies a concrete renormalization procedure, nevertheless, it
seems that the Connes—Kreimer Hopf algebra is a rather general phenomenon by
means of which one can identify different regularizations (= liftings to (R)) of an
OPE-algebra, as was mentioned above.

I hope that the tools developed in this paper can help complete the project
described in [10] in a mathematically rigorous way. The major thing which is pre-
dicted by physicists (i.e. in [10]) and which is lacking in this paper is a construction
of a homotopy d-algebra structure on the de Rham complex of the D-module of
observables (we only construct a Lie bracket).

The main technical tool that we use in this paper is a D-module structure on the
space of observables. The author started to appreciate this structure in the process
of reading [5].

In the case of the free boson the module of observables equals Symy, Dx/Dx A,
where X is the spacetime and A is the Laplacian. This module is not free, which
prompts using resolutions and homological algebra.

1. Content of the Paper

The paper consists of three parts. In the first part we introduce the notion of
system and the structure of an OPE-algebra over a system. We then discuss a
naive approach to renormalization, the naiveness being in ignoring all complications
stemming from homological algebra. The rest of the paper is devoted to constructing
a homotopically correct (= derived) version of this naive construction. In the second
part we explain the main steps in our construction with all technicalities omitted.
The third part deals with these omitted technicalities.

Part I: Systems, OPE, Naive Renormalization
2. What is an OPE?

Before giving general definition of OPE, we will introduce this notion in the setting
of the theory of free boson. The general notion of an OPE will be obtained via a
straightforward generalization.

2.1. Notations

We are going to consider the Euclidean theory of free boson. Let Y := R?N be the
spacetime. We will prefer to work with the complexification X = C?V viewed as an
affine algebraic variety over C. Fix a positively-definite quadratic form ¢:Y — R.
Extend it to X and denote the extension by the same letter: g: X — C.
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For a finite set S, let X be the algebraic variety which is the product of #S
copies of X. Let Dys be the sheaf of algebras of differential operators on X°. Let
D-shg be the category of Dys-sheaves, i.e. non-quasi-coherent Dy s-modules. The
usage of non-quasi-coherent modules is indispensable in the setting of this paper;
on the other hand, since we are not going to use any of subtleties of the theory of
D-modules, Dy s sheaves will not cause any discomfort.

2.2. FExtension of a D-sheaf from a closed subvariety

The material in this subsection is standard and can be found for example in [5].

Let i:Y — Z be a closed embedding of algebraic variety and let M be a Dy-
sheaf. Let Y;, be the nth infinitesimal neighborhood of Y in Z. It is well known that
M is a crystal, i.e. it naturally defines an Oy, -sheaf; denote it by N,,. Set i"N :=
liminv,, N,,; it is a topological Dz-module, the topology is Zy-adically complete,
where Ty is the ideal of Y. There is a simple explicit formula for i"M:

iAY =9, Homoy (i*'Dz, M),

where i*Dy is the quasi-coherent inverse image of Dy viewed as a quasi-coherent
Oy-module via the left multiplication; i, is the sheaf-theoretic extension by zero;
the Dz-action on i\Y is via the right action on i*D.

One can prove an analogue of Kashiwara’s theorem in this setting: the functor
i is an equivalence of the following categories: the first category is the category
of Dy -sheaves; the second category is the category of Dy-sheaves which are sheaf-
theoretically supported on Y and are Zy-complete, the morphisms are continuous
morphisms. One of the corollaries is the existence of natural maps (M) ®0, N —
i"(M®eo, i*N): Kashiwara’s theorem implies that the right-hand side is the Zy-adic
completion of the left-hand side.

If i, k are consecutive embeddings, then ik = (ik)".

2.2.1.  All our closed embeddings are going to be the embeddings of a generalized
diagonal into some X°. It is convenient to describe them as surjections p: T — S.
Each such a surjection produces a closed embedding i,: X® — X7T in the obvious
way.

2.2.2.  Another feature of the D-modules theory that will be used in this paper is
the existence of exterior product functors

Raca: || D-shs, — D-shs,
acA

where S,,a € A is a finite family of finite sets and S = U,c.5,.
The functor " is related with the exterior product in the following way. Let
Pa: Ty — S, be a family of projections. Let T' = UyecaTy; S = UgeaSq; p: T — S,
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p = Ugeapq- We then have a natural transformation

A A
Maea H 1y — 1" Maea
acA

both functors act from || D-shg, to D-shy.

2.3. Construction of functors which are necessary
to define an OPE

Let us now take into account a specific feature of our problem: the presence of the
quadratic form ¢ which describes the locus of singularities of the corellators. Let
S be a finite set and s # t be elements in S. Let ¢y : X% — C be the function
q(X, — X;), where X, are the coordinates of a point on the sth component of X*
(X; are the coordinates on the tth copy of X). Let Dy be the divisor of zeros of
gst- Denote by Zg := X5\ (UyDsr). Let js: Zs — X* be an open embedding. Set
Bs = js.0z,. Bg is a Dxs-module.

For a projection p:T — S set B, = WsesB,-15; By is a Dxr-module. Set
i,:Cs — Cr,

ip(M) = i"(M) ®o_, Br. (1)

List the properties of these functors. First of all they interact with the exterior
products in the same way as iz’,\. The behavior under compositions is different.
Let

q P
R—T—S§

be consecutive surjections. We then have a natural transformation
ASpq tipg — ipigs

which is not an isomorphism. Let us construct as,,. We need an auxiliary module
Bp.q = Jp.g+Oz,.,, where jp 4 : Zp 4 — X is an open subvariety defined by

Zs,t:XR\ U Du
q(s)7#q(t)

It is clear that By, = By, ® B, and that i) B, ; = B,,. Here ij is the inverse image
for Oxs-coherent sheaves.
Define asj, ; as the composition

iy (M) @ Bpg = i) (M) @ By g @ By — iy (i) (M) @3By 4) @ By = igiy(M).
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2.3.1. Co-associativity

The maps as, , have a co-associativity property. Let
v--SRrR-L 1258

be a sequence of finite sets and their surjections. We then have two transformations
from i,qr — irigip:
the first one is given by

. .. Idxasqp . . .

Ypgr@Sr,pq Yripg Yriglp
and the second one is given by

. ASrqg,p PR as; oxId |

ipgr igrip irigip.

The co-associativity property says that these two transformations coincide.

2.3.2.  The maps as,, interact with the exterior products in the following way. Let
R, 25T, 25 S, (2)

be a family of finite sets and their surjections. Let M, € Cs,, a € A be arbitrary
objects. Let

R-LT 2§
be the disjoint union of (2) over A. Let
M =X,caM, €Cs.
Then the following diagram is commutative.

RaeAip, go Ma —= R aig, ip, My —= ig Raca ip, My igip M

|

ipg M

2.3.3. Abstract definition

We abstract the properties of the functors i,. Assume that for every surjection
p:S — T of finite sets we are given functors j, : D-shy — D-shg such that

(1) If p is a bijection, then j, is the equivalence of categories induced by p;
(2) jp interact with the exterior products in the same way as i,; If all p, are bijec-
tions, then the corresponding transformation is the natural one.
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(3) Let
RLT2ES
be a sequence of surjections. We then have transformations

ASpq *Jpg = Jqlp-

This transformation is an isomorphism if at least one of p, g is a bijection. If
both p, ¢ are bijections, then the map as,, is the natural isomorphism of the
corresponding equivalences.

(4) The maps as,, satisfy the co-associativity property as in (2.3.1).

(5) The maps as,, interact with the exterior product in the same way as in (2.3.2).

If all these properties are the case we say that we have a system.
The functors i, and their transformations form a system which we
denote by (i).

2.3.4. Morphisms of systems

Let (j), (&) be systems. A morphism of systems F:{j) — (&) is a collection of
transformations F, :j, — £, which commute with all elements of the structure of
system.

2.4. Definition of OPE

With these functors and their properties at hand we are ready to define an OPE-
algebra.
First of all, we need to fix a Dx-module M such that its sections are observables
of our theory. In the case of free boson, we set M = Sp, N, where N = Dx/Dx - A.
As we know from physics, an OPE is a prescription of maps

opeS:Mgs — irg (M),

where mg: S — {1} is the projection onto a one-element set. These maps should be
equivariant with respect to bijections S — S’ of finite sets.
Let us formulate the conditions. It is convenient to define maps ope, for an
arbitrary surjection p: S — T,
opep:/\/lgs — i, (MET)
as the composition:

Wierope, 1,

M&S g75€Ti7rp71t(~/\/l) - ip(M&T).

Now let R % T % S be a sequence of surjections of finite sets. We can define
two maps

MEBEE i MBS,
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The first one is induced by the map asg,,:

U]Jtpq

. asgq, ..
MEE 2t MBS 202 i MBS,

the second one is defined by:
p q . p P . .
MBr e, i,(MT) e, iy, (MBS,
The axiom is that

Axiom 2.1. These two maps should coincide.

3. Additional Features

It turns out that the procedure of renormalization depends on an additional struc-
ture possessed by the system i,, which we are going to introduce. The importance
of this structure is not restricted to the renormalization. The author believes that
this structure also plays a key role in formulation of the quasiclassical correspon-
dence principle and in the connection between the Hamiltonian and Lagrangian
formalism. Thus, let us describe this structure.

3.1. Preparation
3.1.1. The system |

Let lie' be the operad which describes Lie algebras with the bracket of degree 1.
Let £(S) := lie'(S)* be the linear dual, here S is a finite set. Let p:S — T be a
map of finite sets. Set

£(p) := QrerL(p ).

We then have maps £(p1) ® £(p2) — £(p1 Up2) and £(rq) — £(r) @ £(q), where
pi:S; =Ty r:T — R; q:S — T are maps of finite sets.

Now let p:.S — T be a surjection. Set [, : D-shyr — D-shys; [, = (ip«) @ £(p),
where i, : X — X7 is an embedding determined by p and i,. is the correspondent
D-module theoretic direct image. We then have natural maps

by (M) K1y, (M) — Uy, p, (M X Ma)

and [(rq) — (¢)(r), where p;: S; — Ty; r:T — R; q: S — T are maps of finite sets
and M; € Dys,. These maps are induced by the correspondent maps for £.

Thus, the functors [ possess the structure which is similar to the one on i. One
sees that all the properties for i stated in 2.3.3 remain true upon substituting [ for i.
In other words, [ form a system which we denote by ([).
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An OPE-algebra structure over the system ([) on a Dx-module M is equivalent
to a *-Lie structure on M[—1] as defined in [5]. Let us recall the definition.

3.1.2. Definition of *-Lie algebra structure

A *-Lie stucture on a Dx-module M is given by an antisymmetric map b: MXM —
1. M, where i: X — X x X is the diagonal embedding. The bracket b is supposed
to satisfy an analogue of Jacobi identity.

3.1.3. Quasi-isomorphisms of systems

Let (i), (j) be systems and let F': (i) — (j) be a morphism of systems. F is a quasi-
isomorphism if for every free Dxs-module M the induced map j,(M) — i, (M) is
a quasi-isomorphism for every surjection p: 7 — S.

3.1.4. Definition of additional structure I

The most important part of our additional structure can then be described as a

choice of quasi-isomorphisms (JR) — (i), (I) = (m) and a map of systems (JR) — (m):

(1) {0)

|

(R) —(m)

There is even more structure on (9R) which we shall use. This part is of some
importance, but not of principal importance, and will be discussed later (see
Sec. 4.1.3).

In the rest of Part I we ignore homotopy-theoretical complications and assume
that we have a map systems (i) — (I) (this helps to explain the ideas in a simper
way). A precise exposition will be given in the subsequent parts of the paper. Let
us now discuss a motivation for the introduced additional structure.

3.2. Physical meaning

Physical meaning of the introduced additional structure can be seen from examining
the case when p:S — pt, where S = {1,2} is a two-element set. As a part of our
structure, we have a map

ip = dps @ £(5).
But £(S) = k[1], therefore, we simply get a map
iy = Tpx. (4)
Recall that
i,(M) =i"(M) ®o s Bs
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and one can show that
ipe(M) = " (M) ®0, 5 ipsOx.

Assume for simplicity that the map (4) is induced in a natural way by a degree
+1 map

82 - ip* OX (5)

(we keep in mind the above identifications).
Such a map specifies an extension Cg fitting into exact sequence:

0— ip*OX — CS — Bs.

The meaning of Cg becomes clear, if we come back to the real (versus complex)
picture. The global sections of Bg produce functions on the real part Y¥ with sin-
gularities on the diagonal. A global section of Cg then has a meaning of distribution
on Y2, whose restriction onto the complement Y2\Y is a function from Bgs. If we
take the space C’ of all such distributions, we shall get a slightly larger extensions
as the kernel C’ — Bg consists of all distributions supported on the diagonal, which
is larger than 7,.Ox. Nevertheless, it turns out that the space of global sections of
Cs can be defined as a subspace of C’ (see 10.1).

Set Zg: Dx — Dxs to be

Is(M) =i"(M) @0, Cs.
For good M (say flat as Ox-modules), we have an exact sequence
0— ipe(M) = Z,(M) —i,(M) — 0.
Now let M be an OPE-algebra over (i). In particular, we have a map
MBS i (M).
We may now interpret the composition
MBS (M) — ip (M)

of this map with the map (4). Assume that M is a complex of free Dy modules
(bounded from above). Then we can lift the OPE-map to a map

H:Mgs_)Ip(M)

with a nonzero differential and the desired composition is equal to du. The proce-
dure of lifting from i, to Z, is nothing else but the regularization of divergences.
The map p has the meaning of the commutative product in the Batalin—Vilkovitski
formalism. Its differential then has a meaning of the Shouten bracket in the same
formalism. This simple physical argument suggests that the map du should be a
*.Lie bracket of degree +1.
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3.3. Geometrical meaning

We will hint at the geometric meaning of the additional structure on (i). Since our
intention is just to give a motivation, the arguments will not be rigorous.

Recall that the functors i have been constructed using the Dys-modules Bg,
which are defined as sheaves of functions on certain affine varieties Zg. Therefore,
the de Rham complex of Bg computes the cohomology of Zg shifted by dim Zg =
2ns, where 2n = dimc X and s = #S. Let By := i, (Ox) = iﬁps(ox) ® Bs,
where 7, : S — pt is the map onto a point. The de Rham complex of B computes
the cohomology of the intersection of Zg with a very small neighborhood of the
diagonal X C X5,

On the other hand, Zg contains as its real part the space Zg := YS\(US#ASt),
where Ag; is the corresponding diagonal. Thus we have a map from the de Rham
cohomology of B to the cohomology of the intersection of Z§ with a very small
neighborhood of the diagonal Y € Y% in Y which can be easily seen to be the same
as the cohomology of Z%. It is well known that HZ"~D=1(Z5) = £(5)[1 — 5],
where 2n = dimY and s = #5S. The shift on the right-hand side is made in such a
way that both sides have degree zero.

Let us slightly change our point of view. Instead of taking the full de Rham
complex, let us pick a point o € S and let p, : X — X be the projection onto the
correponding component. Let py.(BY%) be the fiber-wise de Rham complex shifted
by the dimension of the fiber (in this case H'p,., is the usual D-module theoretic
direct image).

We see that the induced map Zg — X is a trivial fibration whose fiber Fyg is
homotopy equivalent to Zg and dim Fs = dim Zg — 2n. Let V be a small neighbor-
hood of X ¢ X¥, then

H' (po(Bs)) = Ox @ H"= V¥ (Z5n V)
and we have a through map
H'™*(pou(Bs)) = Ox @ H" DD (Z5n V)
— HE=DED(Zen V) @ Ox — £(s)[1 — 5] ® Ox.
Since H>'7*(py+«(Bs)) = 0, we have an induced map
Pox(Bg) — Ox @ £(S).

It is well known that this map induces a map By — i.Ox ® £(S) in the derived
category of Dys-sheaves. Thus, the top cohomology of the configuration spaces
can be interpreted as maps By — i.Ox ® £(5). These maps can be extended to
maps i,(M) — [,(M) in the derived category of Dxr-sheaves on X7 for every free
D xs-module M.

Of course, this argument is insufficient for constructing a map of systems
(as opposed to a collection of maps of functors i, — [,).
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4. Renormalization. “Naive” Version

Here we will sketch a scheme for renormalization ignoring homotopy-theoretical
problems. Although this naive scheme is of purely heuristic value, the correct renor-
malization scheme is in the same relation to the naive one as derived functors are
to usual ones.

So, we shall simply assume that we are given a map (i) — ().

We start with defining the main ingredients.

4.1. *-Lie structure on M[—1]

Thus, we have a morphism of systems (i) — ([). Assume that M is an OPE algebra
over i. Then it is also an OPE algebra over [, i.e. M[—1] is a *-Lie algebra. Let
m: X — pt be the projection and denote by 7, M the direct image of M;

M = wx XDy M.

We know that g := m, M[—1] is then a DGLA and this DGLA acts on M. Therefore,
for every surjection of finite non-empty sets p:.S — T we have a g-action on

hom (M®S i, (M™T)).

A very important question for us is whether the elements ope, are g-invariant. It
turns out that in general the answer is no. We are going to impose an extra axiom
which would guarantee this property.

4.1.1. Extra axiom which ensures the g-invariance of ope,,

Let p: S — T be a surjection of finite sets as above. Pick an arbitrary element ¢ € T’
add one more element o to S and let p;: SU{c} — T be a map which extends p
in such a way that p;(c) = t. (This extra element is needed to take into account
the g-action.) Let I:S — SU{c} be the inclusion and let P: X“{e} — X5 be the
natural projection corresponding to I. Let P, be the corresponding direct image.
We are going to define several maps Pii,, — i,[1] as follows. Let s € S be such that
p(s) =t. Let Py:SUo — S be the map which is identity on S and Pso = s. Then
p: = pPs. We then have the following composition:

P, — Piip,i, — P.lpi,.
Note that
lp, 2ip. Ques L(P71s') Zip[l1].
Thus, we can continue our composition:

Pp,ip, — P*(Z'Ps*m)ip - ip[1]7
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where we used the natural map
P*iPS* i IdXS.
Let
Ag: Py, — ip[1]

be the resulting composition.

There is one more way to decompose p;. Let Q := pUId: SU{c} — TU{o}.
Let R:TU{o} — T be the identity on 7" and let R(c) = ¢. Then again p, = RQ.
Therefore, we have a composition:

P.i,, — P.igig.

Let Pr: XT9vst — X7 be the natural projection. It is not hard to see that we
have an isomorphism

Piig — ipPr..
Thus, we continue as follows:
P.igir — ipPriir — ipPrilr = i, Pryipe — ip[l].
Denote the composition of these maps by
By : Piiy, — ip[1].

Let Cy = By — ZséSp(s):t A,. Let us show that the maps C; determine the action
of g on as,. Let X € g. Let L(X) := X.ope,; L:g — hom(M™5 i, (M™T)).

Claim 4.1. L is equal to the following composition:

DreTasp

Y @rerg ® hom(MHSU} i (M¥T))

— @rerg @ hom(P. M5V Py, (MHT))

=~ @yerg[l] ® hom(gl] ® M%) P,i,, (M®T))

— @yer hom(M™S[1], Py, (M™7)) 55 hom(M™S[1], i, (MHT)[1)).

Therefore, if Cy = 0 for all t, then L = 0.
Proof. Straightforward. |

4.1.2. Call a system (i) endowed with a map (i) — (I} invariant if all C; = 0.
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4.1.3. Another axiom

It turns out that to construct a good theory one has to introduce a one more natural
axiom on (i). The importance of this axiom can be fully appreciated only when one
passes to a more precise consideration.

Let us describe this axiom. Let A = {1,2} be a two-element set. Let ¢: A — pt.
Let p: S — T be a surjection. Let i:pt — A be the inclusion in which a unique
element pt goes to 1. For an arbitrary injection j:U — V let p;: XV — XV be the
corresponding projection and p; : D-shyy — D-shy be the corresponding D-module-
theoretic direct image.

We then construct two maps

pIdsuiipl_lq - ipl_lIdpt'
The first map is as follows:
M :prasuitplg — Prdsuitidsugipuid,,
— PldsuidldsUgipuld,, = tplldpy,
and the second one is:
My :prasuilpug — Prasuilplldp, HdsUg
— PldsUitpUld,, Oldslg =2 ipLildy,
— ApUTdpe PIdsUiOldsLis
where we have used a natural isomorphism
Prasuilpurdy,, = iputd,, PIdsui-

Call a system (i) endowed with a map (i) — ([) to be pre-symmetric if M; = My,
for all p.
Finally, call a system symmetric, if it is both pre-symmetric and invariant.

4.1.4. What is the situation with the system (9R) that we are going to construct?
It turns out, that upto homotopies, it is pre-symmetric, but not symmetric. Pre-
symmetricity is the additional structure on (91) which was mentioned in (3.1.4).

The above reasoning suggests that renormalization is only possible in symmetric
(or, at least, invariant systems). Therefore, a procedure of “fixing” (M) (which we
call “symmetrization”) is needed to perform a renormalization. We shall discuss
a naive version of such a symmetrization after a more detailed explanation how
renormalization goes on in a symmetric system.

4.2. Renormalization in a symmetric system

As was mentioned, the system (9R) that we will construct in the example of free
boson is not symmetric. Nevertheless, to appreciate the importance of symmetricity,
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we will explain in the next section that were (JR) symmetric, the renormalization
of any OPE-algebra over () could be defined in a very simple fashion.

Let M be an OPE-algebra in a symmetric system (i). Then, by virtue of the map
i — [, M is also an OPE-algebra in [, i.e. M[—1] is a *-Lie algebra. Let 7, : X — pt
be the projection onto a point. Then m, M([1]is a DGLA. Let A be a formal variable
(the “interaction constant”). Pick a Maurer—Cartan element

& € Almy, M-1)[A]! = Amy MIN]J; d6 +1/2(8, 8] = 0.

This equation is called quantum Master equation. Using & we can perturb the
differential on M; let M’ := (M[[A]],d + [S,-]) be the corresponding differential
graded Dxpay-module.

The renormalization is the procedure of constructing a C[[A]]-linear OPE struc-
ture over (i) on M’. In our setting this procedure is trivial. Indeed, since M’ =
M][M]] as graded objects; the OPE structure on M gives rise to the maps

ope < (M')S — i, (M) BeT),

The [-invariance of i and Claim 4.1 imply that these maps are compatible with the
differential on M’. Thus, ope;, do define the renormalized OPE on M’.

4.3. An idea how to fiz non-invariance of (i): Symmetrization

Let us try to define a system i®™™ endowed with a map (i) — (i*™™) such that
in ™™ all ¢y = 0. Then our OPE-algebra M in (i) determines an OPE-algebra
in (i%™™) and the renormalization of this algebra goes the way as was described
above.

The obvious way to define (i%™™) is to simply put

iy = i /Span(ImCy) et

One checks that the structure of system on i is naturally transferred onto i"™™.

4.4. Summary

Let us first summarize what we have done.

We start with a system (i) which is quasi-isomorphic to the original system
(i) and is endowed with a map (i) — ([). We then construct a symmetric system
(i=y™m) which fits into the diagram (i) — (i*¥™™) — ([). Thereafter, having an OPE
algebra M over i, we observe that m, M[—1] is a DGLA and we pick a Maurer—
Cartan element & € Am, M([A]][1]. We then define the Dxpy-module M’ and
define an OPE structure on M’ over i%y™™,

What has to be done for this scheme to really work?

Problem 1. We need to construct i with the specified properties.
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Problem 2. We have an OPE algebra M over (i) and a quasi-isomorphism (R) —
(i). We need to lift M to an OPE algebra over (9R).

Problem 3. The passage from (R) to (RSY™™) ig not stable under quasi-
isomorphism of systems. Thus we need to develop a derived version of the map
(R) — (REymm),

Problem 4. After all, we get a renormalized OPE-algebra in an abstract system
(Rsymm) To give a physical meaning to this system, we have to find a construction
which transforms this OPE-algebra into OPE-products in terms of series of real-
analytic functions on Y°.

4.5. Plan for the future exposition

The rest of the paper is devoted to solving these problems. As this involves a lot
of technicalities, we shall first retell the content of the paper omitting them. Then
the detailed exposition, with proofs, will follow.

First, we shall formulate the list of properties that the system (2R), to be con-
structed, should possess. These properties form a homotopical variant of the def-
inition of the structure of pre-symmetric system. Every system possessing these
properties will be called pre-symmetric (this should not lead to confusion with the
naive definition of pre-symmetricity).

Secondly, we shall show how the renormalization can be carried over for
OPE-algebras over a pre-symmetric system (R) (including a construction for
symmetrization of (R) and a construction of the renormalized OPE-algebra over
the symmetrized system). These steps constitute a homotopically correct version
of the above outlined naive approach. Thereafter, we construct a pre-symmetric
system (9R) which is a resolution of the system (i).

To renormalize an OPE-algebra over (i) one has to be able to lift it to an OPE-
algebra over (R) so that the lifting be compatible with the quasi-isomorphism of
systems (JR) — (i). This happens to be a variant of the celebrated Bogoliubov—
Parasyuk theorem, saying that such a lifting is always possible. An analogous
theorem can be shown by a homotopy-theoretical nonsense, using the quasi-
isomorphicity of the map () — (i); but for this to work one has to replace the
stucture of OPE-algebra upto higher homotopies. Let us stress that Bogoliubov—
Parasyuk theorem produces a lifting of usual OPE-algebras, which is a stronger
statement. Homotopical approach, on the other hand, provides for a homotopical
equivalence of two different liftings. These homotopy-theoretic questions will be
discussed in a subsequent paper.

Finally, we solve Problem 4.

The exposition will be organized in such a way that the most difficult techni-
cal moments will be omitted at the “first reading”, which is Part II, and will be
discussed at the “second reading” (i.e. the concluding Part III).
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Part II: Exposition Without Technicalities

We shall pass from a naive approach to the realistic one, in which the naive def-
initions sketched above will be replaced with appropriate homotopically correct
versions.

Our plan is as follows. In the following section we give a homotopically correct
definition of pre-symmetric system.

Next we show how, having an OPE-algebra in a pre-symmetric system, one can
renormalize it.

Next we have to show these definitions work in the example of free scalar boson.
The major part of the required work is done in Part III, in this part we only sketch
the main steps which are:

(1) We have to construct a pre-symmetric system (R) which maps quasi-
isomorphically to the system (i);

(2) We have to show that every OPE-algebra over (i) lifts to an OPE-algebra
over (R).

Having done this we can apply the symmetrization and renormalization

procedures.

(3) And finally, we need to be able to interpret the renormalized OPE in the sym-
metrized system in terms of expansions whose coefficients are real-analytic func-
tions on Y without diagonals.

So, let us follow our plan.

5. Pre-Symmetric Systems

In this section we shall give a homotopy version of the notion of pre-symmetric
system (see 4.1.3 for naive version).

The plan is as follows. We shall give two slightly different (and slightly non-
equivalent) definitions of a homotopy analog of a pre-symmetric system. Any
pre-symmetric system in the sense of the first definition will naturally produce
a pre-symmetric system in the sense of the second definition. The first definition is
given in terms of functors Ry, d,, in the second definition we replace the functors
8, with functors of direct image with respect to all projections X — X7 We will
see that the second definition looks more natural. Moreover, the second definition
encloses all the structures needed for symmetrization and renormalization. So, we
consider the second definition as a more basic one. On the other hand, to define a
pre-symmetric system in the example of free boson, we shall use the first definition.

We start with formulation of the first definition. First of all, we need to provide
for a homotopy-theoretical analog of a map (i) — ([). This will be achieved via
replacement of (I) with a quasi-isomorphic system (I) = (m). We shall give the
definition of such an (m). A part of a structure of pre-symmetric system on a system
(R) will then be amap (R) — (m). As was mentioned in 4.1.3, to be pre-symmetric,
the system (R) should have additional properties. We will give their homotopical
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versions. This will accomplish the first definition of a pre-symmetric system. Finally,
we formulate the second definition (which is essentially a paraphrasing of the first
definition in terms of direct image functors with respect to projections), it will
then follow automatically that every pre-symmetric system in the sense of the first
definition gives rise to a pre-symmetric system in the sense of the second definition.

5.1. A homotopy version of the map (i) — (l)

As was explained above, the first step we need to do is to endow the system (i)
with a map of systems (i) — ([). We shall do it in a homotopical sense, i.e. we shall
construct systems (R) and (m) fitting into the following commutative diagram:

The vertical arrows should be quasi-isomorphisms.
Let us first define the system (m).

5.1.1. The system (m)

Let us define the complex m,, centered in strictly negative degrees by setting
m;n = @5;015;02 e 5;17"’ (6)

where the direct sum is taken over all diagrams

S S/ey 22 Sfeq B 2 S e, ST (7)
where w > e; > e2 > --- > e, > e, where e is the equivalence relation induced

by p and p; are natural projections. The differential is given by the alternated sum
d= D1 — D2 + -4 (—1)”Dn_1, where
D; : 5171 5112 T 5pn - 5?1 5?2 T §pi—15p'i+1pi§pi+2 T 511

n

is induced by the isomorphism

5,,0

Pi+1 - 5

DPi+1Pi-

The maps asg,, : m,, — mym, are defined in the following natural way. Let p =
rq. Let f be the equivalence relation on S determined by ¢ and e be the equivalence
relation determined by p so that f > e. One can assume that S -5 S/f 5 Se.

The map asg,, restricted to

51?1 5132 U 517

n
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as in (6), (7), vanish unless there exists a k such that e, = f, in which case it
isomorphically maps this term into

(61015;02 e 5Pk)(5pk+1 e 6Pn)'

The factorization maps
fact: Myea my, (My) — my, (K, M,)

are given by a “shuffle product”. Here is the construction.
Fix direct summands of m,,_:

5171(15172:1 T 5

Pnga?

where p;, : Sia — Sit1a, and define the restriction of the factorization map onto
them.
Define a shuffle as a sequence

a:= (a,as,...,an),
where
—a € A;
— ay, enters into the sequence aq,as, ..., an exactly ng times.

Given such a shuffle, let a(a) be the number of times a enters into the subse-
quence ai,a,...,0k.
Let

S;? = |_| Sak(a)a.

acA

Define the map
pi Sk — Sk
as

Pay(a)a |_| IdSQk(a/)a/ .
a’#a

We then have a natural map
fact(a): Maca 0p1,0psy = Opnr, o (Ma)
= Opebpg -+ Ope (MacaMy) — my (K M,).
Set the restriction of the map fact onto
Xaea0p1oOpsa = Opn,a (Ma)
to be equal to

Z(—l)Sig“(“)fact(a),

[e3

where sign(«) is the sign of the shuffle.
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Denote by

Ly imy — 0p[1]

the natural projection.
Then a map of systems (R) — (m) is uniquely determined by the knowledge of
compositions

lp:Rp —my — . (8)

In the sequel we will work with these maps rather than with the system (m).

5.1.2. A quasi-isomorphism (I) — (m)

As a part of our program, we have to define a quasi-isomorphism ([) — (m). As it
will not be used in the future, we shall give a very brief description.

It is not hard to see that the cohomology of any complex m,, is concentrated in
its lowest degree (i.e. #T — #5S, where p: S — T'); and it is not hard to see that
this cohomology is isomorphic to [,, whence the maps [, — m,. The axioms for a
map of systems can be easily checked.

5.1.3. First definition of pre-symmetric system

As a part of the structure of a pre-symmetric system (in the sense of the first
definition) we should include maps (8) which provide for a homotopy-theoretical
substitute for a map of systems (i) — ([). To complete the definition we should add
a structure which is a homotopical analog of properties 4.1.3. After we formulate
this structure, we will formulate the axioms which should be satisfied by the ele-
ments of the structure. This will complete the first definition of a pre-symmetric
structure.

We shall start with the most natural piece of structure. Let ¢:S — T and
g: A — B be surjections. Then we should have a natural map

01dsupReutdy — ReutdaO1dpug- 9)

Such a natural map also exists if one replaces (R) with (i).
Indeed:

§Idsu¢i¢'—’ld3 (M) = igl_lg(M) ®OXSuA (B¢ X Z'Q*OXB)v
whereas

tgu1daO1drig (M) = Boutas @0 sua iguta, (Oxr Mg Ox,)

B0 704 Hariig(M))
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and we see that the right-hand side in (9) is the completion of the left-hand side,
whence the desired map.
The corresponding map for R is constructed following the same principles.
The next piece of structure is more subtle and is given by a family of maps

Rqsug - Rqﬁl_lIdA 5IdT Ug»

where ¢:S — T and g: A — B are arbitrary surjections. The comparison of this
additional structure with the naive structure will be given after we list the axioms
satisfied by [, and s(¢, g). A pre-symmetric structure in the sense of the first def-
inition is then a collection of maps [, and s(¢, g) satisfying the axioms formulated
below.

5.2. Azxioms of the pre-symmetric system (in the sense
of the first definition)

5.2.1. Properties of the maps I,

The properties of ([,) we are going to simply express the fact that the collection of
maps [, should define a map of systems (R) — (m).

Property 1. If p is a bijection, then [, = 0.
Property 2. Let f;:S; — T; be nontrivial surjections. Then the composition

[ X
Ry, (M1) R Ry, (M) — Ryyup, (My B M) 22 5y, 1y, (M) K M)

is zero.
If f1 is a bijection, then the above composition equals

alXl
Ry, (My) B Ry, (Ma) — 87, (M) B3, (M) — Sp,p, (M1 B M),
where we used the isomorphism a: Ry, — df, for a bijective fi.

Property 3. Define the differential dI,,.

Let p: S — T and let e be the equivalence relation on S determined by e. Let e;
be a strictly finer nontrivial equivalence relation. Set py:S — S/ey, pa:S/er — T
to be the natural projections so that p = paop;. Set

Ipyslny ~
((e1) ‘Rp = Rp, Ry, > Opy Opy = 0.
‘We then have

dl, + > le1) =0,

where the sum is taken over all nontrivial equivalence relations on S which are
strictly finer than e.
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5.2.2. Properties of maps s(¢, g)

Property 1. The following diagram is commutative:

s(¢.gUh)
Reuguh —————— Reuguiddidutdun
(¢Ug,h)
7 lsw,g)

Rputdutd S1dugun

Property 2. Assume that ¢ is not bijective. Then the composition

5(¢,9) [
R¢U9 - R¢U1d51dl_lg le) 6¢|_|Id51d|_Jg

equals

[¢ g
RoLg — SpLg-

If ¢ is bijective and ¢ is not, then the above composition vanishes.
If both ¢ and g are bijections, then the above composition equals the natural
identification of the right and left-hand sides.

Property 3. Let g = g291, where g1, g2 are surjections. Introduce a map

K(¢17 ¢27 g1, 92) : R¢2¢1U9291 - R¢1 Ugi R¢2U92

s(¢1,91),5(¢2,92) (9)
s R uldOTdLigy Real1d0ldLigs — R utd RaLindOtdLigags -

The property then says: The map

s(¢2¢1,9)
BALELELLLN

RgodiLig Rgsp,01d01dug — Ry u1d Resu1d1dug

is equal to

Z K(¢17¢27gl792)7

9291=g

where the sum is taken over all diagrams
AL Aley & B, (10)

where e; is an arbitrary equivalence relation on A such that g passes through A/e,
and g1, g2 are the natural surjections.

Property 4. The following diagram is commutative:

s(P1,91)Xs .92
Rpugy (M1) B R gy, (Ma) (r.91) B8 (92:92) R fu1d01duig, (M1) KR 1,014 01duig, (M2)

s(f1Uf2,91Ug2)
R U211 Lg (M1 B M)

R fuf201d01dug, ugs (M1 B Ma).
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Property 5. Denote

l1g (9)
(91,0, 92) : Roug — Ridugs Rovigs —— S1duigs Reunadidugs — Reutddrdug;

l1a
(0, 91, 92) : Roug — Roug Ridugs ——2 Reunddtdug: Otdugs — ReutdOrdug-

The property asserts that
dS((]S,g) = Z (3(917 ¢792) - 3(¢7gla 92))7

9=9291

where the sum is taken over the same set as in (10).

5.2.3. Comment on the meaning of s(¢, g)

To see this meaning consider a special g: A — pt, where A = {1,2}, and ¢: S — T
is a surjection. Calculate the differential ds(¢,g).
It is equal to the difference A — B of two maps, where

l1au
A:Ryug — RoutaRidug ——2 Rputadrdug
and
B :Reug — RidugReutd — 01dugReutd — Reutddrdug-

Thus, the maps s(¢, g) provide for the difference A — B to be homotopy equiv-
alent to zero (upto higher homotopies).

Let j:S U {1} — SU{L,2} be the obvious inclusion. Composing A — B with
p;, we see that p;A = My, p; B = My as in Sec. 4.1.3. Thus the maps s(f, g) are
responsible for a homotopy analog of pre-symmetricity of (R).

In the next subsection the above described structure will be reformulated in
terms of functors of direct image with respect to projections. This will constitute a
basis for further exposition.

5.3. Reformulation in terms of direct images with respect to
projections: Second definition of a pre-symmetric system

Recall that the main ingredient in the renormalization procedure is an element of
p« M, where p: X — pt is a projection. Thus we have to incorporate into our picture
direct images with respect to projections. Let :S — T be an injection. It induces
a projection p;: X7 — X9. Let p; : D-shyr — D-shys be the corresponding D-
module theoretic direct image. We want to incorporate it into our picture and to
describe the maps which can be defined on superpositions of various R, and p;.
These maps will be derived from the maps [, and s(f,g). Note that the direct
images with respect to injections are not applied, they are only used to produce
maps between different iterations of R, and p;.
Thus, we shall now describe these maps and their properties.
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5.3.1.  The map we shall describe here is somewhat similar to (9).
Let ¢: S — T be an surjection and U be a finite set. Consider the following
commutative diagram

SUU—>=TUU
o
s — %

where p = ¢ U Id, and 4,j are the natural injections. Then we have an
isomorphism

piRp — quj. (12)

One can see that such an isomorphism is naturally defined, if we replace R

with 1.

5.3.2.  Using the maps [,: R, — d,, we can do the following.
Consider a commutative triangle

S —">T

Ve

K3

R
in which ¢, 7 are injections and p is a proper surjection. We then have a degree
+1 map

L(i,p):piRp — p;
given by
piRp — pidp = pj.

5.3.3. Let us now “translate” s(f,g) into our new language. Consider a commu-

R T
I

S —>p

tative square

ﬁ

in which ¢, j are injections and p, ¢ are proper surjections. Let T3 = T\T> be the
subset of all t € T such that p~1# N i(S) consists of >2 elements.

Call such a square suitable if the following is satisfied:

p~Y(Ty) Ci(9), ie.

Hp~'tni(8)) >2=p ) Ci(S).
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We then have a degree zero map
A(i»l% jv q) :piRp i qu]

Construction: Decompose T' = Tt UT?, where T consists of all ¢t € T such that
p~ 1t Ci(S) (so that Ty C T). Set

R" = pflTn, SN — Z’fan,

etc., so that our suitable square splits into a disjoint sum of two squares:

Rr

inj Jn\]
n qn n
ST—P
where n = 1,2. It follows from the definitions that ', ¢? are bijections so that we
may assume S' = R!, §2 = P2 il =1d,¢% = 1d.
So, we have the following diagram:
1 2
sturr YU
1dUs? J’ll—ljzjA (14)
q'uld
Sty S§? —= pliys?
The desired map is then defined as follows:
Ptz Rptup? — Prau Rptutadtdup? — RptutaPiduiz O1dup?

— RputdPraupziz = Rebj-

5.3.4. Properties

The above defined maps have the following properties, easily derived from the ones
of the maps [, s(¢, g). We shall now list them.

(1) Let
]

S—=p

be a suitable square and ¢ = ¢q2q1, where ¢, g2 are surjections.
Define the set X (g1, ¢2) of isomorphism classes of commutative diagrams

—>>

R—>>U—»-T

1.

S—»V—»P
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We will refer to such a diagram as (p1, p2, j’). Both squares in every such a diagram
are automatically suitable. Therefore, every element z := (p1,p2,7) € X(q1,92)
determines a map

Mg :PiRp = PiRp, Rp, = R pjrRp, — Rgy Ry, b5
Then the composition
PiRp = Repj — Rgi R,

equals

>

z€X(q1,92)

(2) Consider the following commutative diagram
R—2 o

I

5 —=p
ilT le
S—T>P

in which both small squares are suitable. Then the large square is also suitable and
the following maps coincide:

Pisiy 7—\)fp - R’f‘pj2j1
and
Pirin Rp = PisPiu Rp = Pis RaPjz = RebjiPjz — RePjaji -
(3) Consider the following commutative diagram:
R—">T
q
S—=P
v
k
Q
where the upper square is suitable. Then the following maps coincide:
pikRp - pkszp - kaqu — PakPj =P
and
pikRp — Ppik = Pi-
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(4) Let
R—>T
ij ;
§—=X
and

q1

Sl—»Xl

be suitable squares and let s:S — Sy, r:R — Ry, t:T — Ty, z: X — X be
bijections fitting the two squares into a commutative cube. Then the map A(i, p, 7, ¢)
can be expressed in terms of A(i1,p1,J1,¢1) in the following natural way:

A(i1,p1,51,91)
—

piRp = pspilprflerplptfl = p5pi1RP1pt;1 psR(Ilpjlpt;l

= psR(hpm*lpzpjlpt;qupj'

(5) Let (ik, pr,Jk,qr), k € K be a collection of suitable squares. Let iy : S, — Ry;
let M}, be a collection of D ys, -sheaves. Let i = Ugexir, p = Ukek Pk, J = Uker Jk,
q = Ukerqr, and M = Kpcx M. Then the square i, p, 7, q is also suitable and the
following compositions coincide:

‘ZkGKPikRPk (Mk) e IX'kGKRQkpjk (Mk) - quj (M)
and
Mier iy Ry, (Mi) = piRp(M) — Rep;(M).

(6) Let ix : Sy — R, k € K be injections and pg: Ry — Tk, k € K be surjections
such that jp := piip are injections. Let My be Dyr,-modules. Let i, j,p, M be
disjoint unions of the respective objects.

Assume that at least two of the maps py are proper surjections. Then the
composition

NMierPi, Rp, (Mk) — piRp(Ky M) — p; (M)

vanishes.
If only one of the surjections py is proper, say p., « € K, then the above
composition equals

NMrerpip Ry, (Mk) = pi, Rp, (M) Wi\ () Pi, Ry (M)

L(iw,pr)
P i (M) B s (o} Pis R (M) — By repy, (Mi) — pj(M).

(7) The diagram (11) is suitable, and the corresponding map A(i,p,j,q) is the
isomorphism (12).
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5.3.5. Differentials

The differential of the map L(i,p) is computed as follows. Consider the set of all
equivalence classes of decompositions p = pap1, where py, po are surjections and p1i
is injection. We then have a map

l(p1,p2) :piRp — PiRp, Rpy — Pprillpy — Ppopri = Ppi-
We then have

Z U(p1,p2) =0

(p1,p2)
(2) Let

Q:RL»T
],
§—">p

be a suitable square. Define two sets L(Q) and R(Q) as follows. The set L(Q) is
the set of all isomorphism classes of diagrams:

R s Ry BN T
(VN
S — 1 =P
such that p = p1ps. It is clear that the internal commutative square in this diagram

is also suitable.
Define the set R(Q) as the set of isomorphisms classes of diagrams

N

where p = p1ps2. The internal square in such a diagram is always suitable as well.
Every element [ := (p1,p2,i1) € L(Q) determines a map

JuipiRp — piRp, Ry, — piy Rp, — Rgbj-
Every element r = (p1,p2,j1) € R(Q) determines a map
gr:PiRp = piRp, Rp, — Rabji Rp, — Repj-
We then have

dA(i,p.g,0) = Y, fi—= >, 9.=0.

leL(Q) reR(Q)
This completes the list of properties.
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5.3.6. Second definition of a pre-symmetric system

Call a system (R) endowed with the above specified maps having the above prop-
erties a pre-symmetric system (in the sense of the second definition). As we will
mainly use pre-symmetric systems in the sense of the second definition, we shall
simply refer to them as pre-symmetric.

6. Renormalization in Pre-Symmetric Systems

We are going to describe the renormalization procedure for algebras over pre-
symmetric systems. The plan is as follows.

First of all given an algebra M over a pre-symmetric system, we show that the
direct image p.M has an L.o-structure, (here p: X — pt). Next we have to show
how, given a solution to the Master equation, one can deform the algebra M. As
in the naive approach, we see that to be able to renormalize, one needs an extra
structure on our system, and we define this structure (it is called symmetric). Next,
we show how the renormalization goes in symmetric systems, and finally, we discuss
a procedure by means of which, given a pre-symmetric system one can produce a
symmetric system (we call this procedure symmetrization). So, the renormalization
of an algebra over a pre-symmetric system includes:

(1) symmetrization of the system so that we get an OPE-algebra over a symmetric
system;
(2) renormalization in the symmetric system.

6.0.1. An Loo-structure on p,.M][1], where M is an OPE-algebra over (R)

Let M be an OPE-algebra over (R). We are going to introduce an L., structure
on p, M, where p: X — pt is the projection Let S be a finite set and ig:0) — S be
an embedding. Let pg := p;5. It is clear that p,; = p. and that

pS(Mlxs) = (p*M)®S'

Finally, set ps:S — pt.
Define a degree +1 map

Cs: (pM)®s — p.M
as the composition:

L(is,ps)
—

(peM)®5 = pg(M™S) 25, pi, (M) Pip. M = p, M.

Claim 6.1. The maps Cs endow p.M[1] with an Lo -structure.

Proof. The key ingredient in the proof is

Lemma 6.2. Let q: S — T be a surjection such that one can decompose S =
S1uUSy, T=T,UTs, g=q Uqgs, where q;: S; — T;, i = 1,2 are both non-bijective
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surjections. Then the composition
ps(MBS)  piy (MET) - pr (M)

vanishes.

Proof. Let A ={1,2}. Then the above composition equals:
ps(M™9) 22 ;. ig, (MBS RMS) — pi i, (g, (M) Rig, (M™2))
— psiq(MET & MMT2) — ppr(MXT).

Here ig, : (0 — Sy, i2:0 — Ss.
The composition of the last two arrows vanishes by Property 6 in the previous
subsection. O

The Claim now follows directly from the formula of the differential of
L(i,p). |

6.0.2. Action of the DGLA p.MI1] on M
Define the maps

ASI(P*M)®S®M—>M

as follows. Let Sy = S U pt. Let k:pt — Sy be the natural embedding. Let

ps, : So — pt.
We then set
L(k,
A (paM)®S @ M 2 p(MBS0) 00, g5 gy ZE20), g

It is not hard to see that the collection of maps Ag determines an L.,-action of
p«M[1] on M.

6.1. Symmetric systems

Pre-symmetric systems do not fit for renormalization. The reason is more or less the
same as in the naive approach, but let us reformulate it in terms of direct images
with respect to projections.

Let p: S — pt and pick an element s € S.

Let S":=SU{s}. Let t € S’. Define p,: S — S’ as follows:

pe(r)=r
if r # s;
pi(s) = t.
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Let ps: S — {a, s}, where a is an abstract element, a # s, by setting
ps(t) =a

if t # s; ps(s) = s.

Let ¢:S" — pt and r:{a,s} — pt. Let i:5" — S, j:{s} — {a,s} be natural
embeddings.

We then have several maps

piRp — Rq.
(a) Let t € 5. Set
Li:piRp — piRp, Rq — Ry;
Set
R:piRp — piRp, Ry — Rghj Ry — Ry.

Then luck of symmetricity manifests itself in the fact that the difference

Reyn
tes’
is not homotopic to 0.
We thus need to add extra homotopies which would take care about it. It turns
out that this can be accomplished in a very symple way:

Call a system (R) symmetric if the maps A(4,p, j, q) are defined for all commu-

tative squares
R T
S—P

where p, g are both non-bijective surjections (not necessarily suitable). The proper-
ties remain the same as for pre-symmetric system except that we drop the suitability
condition everywhere.

We shall demonstrate how the renormalization goes in symmetric systems.

Let now ® € Ap,. M°[[\]] be a MC element. For a finite set T" set

—>>

D7 =D € prAT MHT([N]].
Let i: R — S be an injection. Let 7' = S\i(R). We then have a map
MIXR _ pi)\lTlMgs[[)\H
defined by:

MR E2L, AR @ pp AT (] 2 pod T[],
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6.1.1. Let::S — R be an injection and ¢q: R — T be a surjection such that p := qi
is a surjection.
We then have a map

ope(q,i): M2 — p,M¥E — p, R, MPT — R, MBT.
Set

ope, = Z ope(q, 1), (15)

where the sum is taken over all isomorphism classes of decompositions p = ¢i. Let
M7 := M|[[N], do, where dg is the differential twisted by ©. Then (M’ ope”) is the
renormalized OPE-algebra.

Note that the sum (15) is infinite but it converges in the A-adic topology.

6.2. Symmetrization

Finally, we need a method on how, given a pre-symmetric system, one gets a sym-
metric system.

The idea is as follows. Let f:.S — T be a map of finite sets. Construct a category
Bpresymm (f) whose objects are compositions p;Rp, Rp, - - - Rp,,, where i is injective,
pi are surjective, all the maps are composable and

PnPn—1---p1i = [.

The morphisms are all possible morphisms one can get using the axioms of pre-
symmetric system. Given a pre-symmetric system (R) and a D yr-sheaf N, the
application

PiRp Rps - Rp, — PiRp Rpy - Rp, N
produces a functor
tf(N) : Bpresymm(f) — D-shxr.

Let Bsymm (f) be the same thing, but we use axioms of a symmetric system. We
then have a tautological functor R : Bpresymm (f) — Bsymm(f). One can construct
a bifunctor

B:B» (f) X Bsymm(f) — complexes,

presymm

where B(X,Y) = homg_ () (X,Y).
Set
o] (N) : Bsymm (f) — complexes

symm
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to be

tf(N) (973 £ B.

presymm(

Remark. Let R~! be a functor from:

the category of functors Bsymm (f) — complexes
to
the category of functors Bpresymm (f) — complexes

which is the pre-composition with R. One can show that R~! has a left adjoint R
and that tf,,m(N) = Rit/(N).

We can now construct a system (RSY™™) which is a symmetrization of R by
setting REY™™(N) = t?(N)(R;). We have to say that the introduction of a struc-
ture of system on the collection of functors (R3Y™™) is not at all a consequence of
a general nonsense. It turns out that in order to define such a structure one has to
use certain specific features of the categories Bpresymm; Bsymm-

We also have a natural map (R) — (RSY™™)_ Therefore, given an OPE-algebra
over (R}, we can transform it into an OPE-algebra over (R®™™) and then renor-
malize it.

We shall now give a more explicit construction of (RSY™™). In fact, the resulting
system (RSY™™) is isomorphic to the above described one. This follows from a more
detailed study of the categories Bpresymm, Bsymm which id done in 18.4.

7. Explicit Construction of (Rsy™m)
7.1. Main objects
7.1.1. Groupoid C%

Let f:S5 — T be a surjection. Define a groupoid C’} whose objects are diagrams
i P
S—U—T,

where 4 is injective, p is surjective, and pi = f. Isomorphisms are morphisms of
these diagrams inducing identities on S, 7.

7.1.2. Groupoid Cfy

Let (i,p) € Cy. Call p i-super-surjective if for every ¢ € T, the pre-image p~'t
either:

contains at least two elements from i(5)
or
consists of one element from i(.5).

Let Cy be the full sub-groupoid of C} consisting of all pairs (¢, p), where p is
i-super-surjective.
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7.1.3. Functors M(i,p), My

For an object (4, p) in Cy, set M(i,p) := p;R,. It is clear that M(, ) is a functor from
Cy to the category of functors from the category of Dxr-sheaves to the category
of Dys-sheaves. Set

M = limdirg, M(i, p).

Denote by I(i,p): M(i,p) — My the natural map. It is clear that I(i,p) passes
through M (i, p) Aute, (i.p)- Furthermore, we have an isomorphism

SM(i, p) Autc, (i) — My, (16)

where the sum is taken over an arbitrary set of representatives of isomorphism
classes of Cf.

7.2. Differential

symm

The symmetrized resolution R ¥ is given by the functor My as in (16), on which
a new differential is introduced. This differential is of the form d + L + R, where
d is the differential on My, and degree +1 endomorphisms L, R: My — M shall
be defined below.

7.2.1. Map L: My — My
7.2.2. Set Er(i,p)
Let
S—>U-=T
be an object in Cy. Define a finite set Er(i,p) whose elements are equivalence
relations e on U such that

(1) p passes through Ul/e;
(2) the composition

S—>U—=Ule
is injective.
Let 7. : U — U/e be the natural projection, let p. : U/e — T be the map induced
by p, and i, = 7m.i.

It turns out that (ie,m.) € Cy. Indeed, w1 (¢) is the quotient of p~'t by e and
elements of ¢(.S) are e-non-equivalent, which implies the super-surjectivity.

7.2.3. The map L
Define a map L. : M(i,p) — M (i, pe) as follows:

,Te)

L
piRp - piRﬂ'eRpe (—) pieRp

e
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Define a map L(i,p) : M(i,p) — My by setting
L(i,p)= Y Ilic,pe)Le.
e€Er, (i,p)

It is easy to see that the collection of maps L(i,p) descends to a map
L: Mf — Mf-

7.3. Map R: My — My
7.3.1. Set Er(i,p)
Let
S—i>U—p>T

be an object in Cy. Define a finite set Eg(4,p) whose elements are equivalence
relations e on U such that

(1) p passes through Ule;
(2) The restriction of e on S coincides with the equivalence relation on S determined
by f.
Let me:U — Ule. Let T, := Im(7ei) and V := V, := 7, 1T, and W := W, =
U\U.. Let ey (respectively ey ) be the restriction of e on V' (respectively W).
It is clear that
(1) i(S) cV;
(2) The map p"/¢v :V/ey, — T induced by p is bijective.
So, we have a diagram:

Pe

ie 7Te|V

S(

1% LlW»- W/eW

Elements of Er(i,p) can be equivalently defined as collections (W, ey ), where
W c U, Wni(S) = 0, and ey is an equivalence relation on W such that p|w
passes through ey . Indeed, let V := U\W and let ey be induced on V' by p|y. Set
e := ey U ey . This establishes a 1-1 correspondence between different descriptions
of Er(i,p).

Let us check that (ie,p.) € Cy. Indeed, for every t € T, p; 't = p~ 't N V. Since
V 2 i(9), we have: if p~1t N i(9) has at least two elements, then so does p_'t;
otherwise p~!t consists of exactly one element from i(S) and p, 't = p~'t.
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We will now define a map R, : M(i,p) — M(ic, pe). To this end we shall consider
a diagram:

p

We then observe that the square (I, e, J, me|v ) is clearly suitable. We can there-
fore define R : M (i,p) — M (ie, pe) via the following chain of maps:

Re :piRp = piepIRrpe - piepIRpeRr - pieRrrﬁ\VpJRr
= Pi. R |y Ppviev =Pi. Ry,

We then define

R= > Ilic,pe)Re.

e€ER(i,p)

7.3.2. Definition of the differential
We define the differential on (RY™™) ag a sum d + L + R.

7.4. Asymptotic decomposition maps
. symm symm 5 symm
aﬁfl’h'szfl _>’R'f1 sz
Suppose we have a chain of surjections

so that f = fof1.
Let

sty L

be in Cy. The map Z(i,p): M(i,p) — My determines a similar map Z(i,p) —

RT™™. In order to construct the map asy, we will first define maps

as(,p, f,9) : M(4,p) = My My,.
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Define the set E(i,p, f1, f2) whose elements are equivalence relations e on U
such that

(1) p passes through U/e
(2) The restriction e|s coincides with the equivalence relation on S determined
by f1~

Let V. C U be the set of all elements which are equivalent (with respect to e)
to elements of S. Let W, = U\V,. Let i.: S — Vo; pe: Ve — Ve /e, je: Ve/e — Ule,
ge:U/e — T be the map induced by p. We then have the following commutative
diagram:

i

Sm(]

Vo)l U/e p

It is easy to check that the square (I, m, je, pe) is suitable. This allows us to define
a map

as(i,p,e) : M(i, p) — M(ic,pe) M(je, qe)
as follows:
M(i,p) ZpiRp — pi p1Rg.n — Pi.PIR= Ry,
= Pi.Rp.pj. Ry, = M(ic, pe) M(je, e)-
Let
as(i, p, f1, fa) : M(i, p) — My My,
be given by the formula:
as(ip. fr.f2) = D TeaoZipoos(ipe).
e€E(i,p,f1,f2)

This completes the definition of the map asy, f,.

7.5. Factorization maps

Let f,: S, — T,, a € A be a family of surjections.

Let (iq,pa) € Cy,, a € A, be a family of objects. Let i = Uacata, p = UaeADas
f = uaeAfa-

Let M, € D-shyra. Let M :=KycaM,.
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We then have a natural map
gapiaRPa (Ma) - piRp(M)7
induced by the factorization maps for (R). These maps give rise to the factorization

maps in (RsYmm),

7.6. Maps L(i, f) : psRY™™ — p;
Let

7

be a commutative diagram. The map L(i,p) :p;/R7 ™ — p; is then defined via
maps

L(ki,p)

le(kap) = pklRp _— pja
where pk = f.

7.7. The maps A(%,p,J,q) : piRY™™ — RY™Mp;
Let

T

P

A(Z, f,j’ q) lejcymm N Rzymmpj

!

—_—

T S

—»»

be a commutative diagram. The maps

are defined as follows.
Let (k,p) € Cf. Let u = ki. One can show that there exists a unique, upto an
isomorphism decomposition v = usu; into a product of two injections such that in

|

the diagram

—>>

17
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uniquely, upto an isomorphism, constructed, given a decomposition u = usuy, the
square

(u27p7j7 (Jl)

is suitable, and in the pair

(U1»(I1)7

the map ¢ is super-surjective.
The map A(i, f,J,q) goes as follows:

A(uz,p,J,
AP, Ryby = M(ur, a1)p;.

piM(k,p) = priRp = Pu,Pus Ry
8. Constructing the System (R) with the Above
Explained Properties

8.1. Step 1. Spaces of generalized functions Cg

Our motivation comes from the construction in 3.2. In the case when p: S — pt,
where S has two elements, this construction suggests that one can replace i, with
a complex 0 — i,, — Z, — 0, where we put Z, in degree 0. Denote this complex
by R,. On the one hand, we have a map R, — ip, so that the induced map
Rp(M) — i,(M) is a quasi-isomorphism for good M’s; on the other hand we have
a map R, — 1,.Ox of degree +1. Thus, R, has all the desired properties.

Let us try to expand this construction to an arbitrary case. It is natural to start
with constructing certain spaces of generalized functions Cs on X* so that each
Cs is a sub-Dys submodule of the space of complex-valued generalized functions
on Y* with compact support. In pursuit of making Cs as small as possible we
construct Cg in such a way that they are holonomic D ys-modules; their structure
is as follows. Let D be a generalized diagonal in X and let C 5,(p] be the maximal
submodule supported on D. This defines a filtration on Cg whose terms are labeled
by the ordered set of generalized diagonals in X . The associated graded term

Cs,ip)/spangc pCs, (g = ip+Bp,

where Bp is the Dp-module of all meromorphic functions with singularities along
hyper-surfaces ¢(X; — X;) = 0, where X;|p # X;|p.

Construction of such Cg is done by means of certain analytical considerations.
Some of them a very similar to standard methods of regularization of divergent
integrals. The detailed exposition is in Secs. 10.2—-11.

8.2. Step 2. Functors I, and their properties

Next we construct the functors Z,, out of Cs in the same way as i, was constructed
out of Bg: let p: S — T be a surjection of finite sets; set

Cp = &teTCpflt.

1240002-39



D. Tamarkin

Define Z,,: Dxr — Dxs by
I,(M) = zIA,(M) ®o,.s Cp-

We then have natural maps Z, — i,. We then ask ourselves whether Z,, form a
system. The answer is no. It probably could be yes if Cs would be a bit larger sub-
space of generalized functions, because we have a technique of asymptotic decom-
position of generalized functions due to Bernstein (unpublished). But there are
examples in which we see that already for the set S = {1,2,3} consisting of three
elements there are functions f € Cg, whose asymptotic decomposition near the
diagonal X! = X? requires introduction of such functions as log(X; — X3). For
example, let Y = Re? and take

1
IXT = X32|X2 = X3

FXL X2 X3) =

This is a locally L'-function, therefore, it determines a generalized function.
Let us investigate its asymptotic as X' approaches X?2. According to Bernstein, we
should consider the following expression:

(X1, Xa + (X1 = X2)/AN X3) 41 42 43
U()\):/ |XT— X3[2|X2 — X3|2 & X d X d X,

where g is a compactly supported smooth function and A is a small positive param-
eter. Our goal is to find an asymptotic for a()\). Let z = X3, a = Xy — X7,
b= X3 — Xi. Let G(z,0a,b) := g(z,z + a,x + b). We then have

- G(z,a/A\Db) 4, 4 4
u() = Db + a2 d*bd ad x.

One can show that
u(\) = C / Gz, a/),0)In(|a2)d ad e + v(\),

where v()) is bounded as A — 40, and C'is a constant.
This means that

U()\) = /g(Xl,Xl + (X1 - XQ)//\,Xg)

1
: {lx1 ey o - OlX - Xl —X3>}

x d*X'd* XAt X3
is bounded as A — +40. This demonstrates that, at least, we have to include
In(|X; — X3|?) into our picture to get an asymptotic decomposition of

1
|X1 _X3|2|X2 _X3|2'
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The geometrical meaning of this phenomenon is that the cohomology of the
complex variety which is the complement in C* x C* to the set of complex zeroes of
|Z1 — Z3|? = 0 differs from the cohomology of the real part, which is R* x R* minus
the diagonal. We need to add functions which would kill the de-Rham cocycles
which are nontrivial on the complexification but become trivial upon restriction to
the real part.

Nevertheless, we have maps

Ipqg — Zgip (17)

for all surjections p, q.
For certain p, ¢ we also have maps

Ipg — LyZp. (18)
Namely, this happens if
q=q UId: Sy US; — Ry LISy
and
p=IdUp,: R US; — Ry UT5,

or if p, ¢ can be brought to this form via conjugations by bijections. This circum-
stance will play an important role in the future steps, but now let us concentrate
only on the maps Z,, — Z,i,. They have associativity properties similar to those
of i and they nicely behave with respect to X. They are compatible with the corre-
sponding maps i, — i4ip.

There is an additional feature stemming from the fact that the submodule
Cs,a C Cg, where A C X% is a generalized diagonal, is isomorphic to ia.Ca.

Let p be a surjection. Denote ¢, := i,.. We then have a natural map

0pLy — Lgp, (19)

whenever surjections p, g are composable. These maps behave nicely with respect
to the other parts of the structure.

8.2.1. Iterations of functors T and i
We will work with all possible functors of the form
.1 .2 .
]p1]p2 o .];Ln7
where p;:5; — Si11 are surjections and j; is either i, or Z, . Fix a surjec-

tion p:S — T and consider the class Zebra, of all such compositions with
PnPn—1---p1 = p (in particular, S; = S, S,4+1 = T'). The asymptotic decomposition
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maps (17) and their compositions produce maps between objects of Zebra, (warn-
ing: we exclude the maps (18)). For example, we can construct a map Zyrp — Zpirig
as a composition:

Lyrp — Lpigr — Lpiriy.
We can also take another composition:
Lyrp — Lrpiqg — Lpirig.

The associativity property implies that these compositions are equal.

On the other hand, there is no way to construct a map Zgrp, — ipZgir.

Thus, Zebra,, is naturally a category. Furthermore, it turns out that, because
of the associativity properties, there is at most one arrow between different arrows,
i.e. Zebra, is equivalent to a poset which will be denoted by Zebra(p). Let us
describe it. First of all, each isomorphism class in Zebra, does not even form a
set because of the indeterminacy in the choice of intermediate sets S;. This can be
easily resolved by demanding each S; to be S/e;, where e; is an equivalence relation
on S. More precisely, let e be the equivalence relation on S determined by p: S — T,
T being identified with S/e. Let Eq, be the poset of all equivalence relations on
S which are finer than e. Let us write e; > ey if e is finer than es. Denote by w
the trivial (the finest) equivalence relation on S. An element of Zebra(p) is then
a pair F,{j°}, where F = (w = e; > ---e,11 = €) is a proper flag of equivalence
relations and {j°}7_, is a sequence of symbols i or Z. It is convenient to visualize
an object of zebra as a subdivision of a large segment into n small subsegments;
the equivalence relations are associated with the nodes (es is associated with the
sth node from the left) and j* determines one of two colors of the small segment
between the sth and the (s + 1)th node.

To such data we associate the functor

[F’ {]S}] = 1117111272 o 'jITJLn’

where p;:S/e; — S/e;y1 is the natural projection. Let us describe the order (we
assume that an arrow X — Y exists iff X <Y'). We say that X <Y if

(1) the flag of Y is a refinement of the flag of X. Thus, each small segment of the
flag of X is then subdivided into even smaller segments (call them microscopic)
of the flag of Y.

(2) If a small segment of the flag of X is colored into the color “i”, then all its
microscopic subsegments are also colored into “i”. If a small segment is colored
into “Z”, then the color of its leftmost microscopic segment may be arbitrary,
but the colors of its remaining microscopic segments must by “i”. The detailed
exposition can be found in Sec. 14.
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8.3. Step 3. OPE-algebras over the collection
of functors I,,. The functors B,

Albeit the functors Z,, do not form a system, it is still possible to make a meaningful
definition of an OPE-algebra over a collection of functors Z,,, which we will now do.

Let M be a Dx-module. An OPE-structure over a collection of Z,, is a collection
of maps

XS
ope,. : M®5 — T, (M),
where pg: S — pt, with certain properties. To formulate them, we first form maps
ope, : M™% — T,(M™T)

for an arbitrary surjection p: S — T, in the same way as it was done in the definition
of an OPE-algebra over a system.
The natural maps Z,, — i, give rise to maps

opel, s MM — i, (MHT).

Let p = pupn_1---p1, where p;:S; — S;y1 and j',j?%,...,i" be as above. We
can construct maps

MHS — ]1191 o 'j;nMgT
as follows:

MRS ﬁ) jzlanQ Lei"z) j11)1j12)2M®SS ..
Thus for every object X € Zebra,, we have a map
opey : MBS — X (M™T),
Let u: X — Y be an arrow in Zebra,. We then have a composition

opey o u(MET): MBS — vy (MBT).

We demand that this composition be equal to opey-. If this is the case, then we say
that the maps ope,, . define an OPE-algebra structure on M over the collection 7.
We can now do the following. Set

Pp(M) = liminv xezebra, X (MZT).
Then the above axiom implies that the maps opey produce a map
oped : MM — 9, (MXT).
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It is not hard to see that the functors B3, form a system. Indeed: let p = rs.
Then PP, can be realized as an inverse limit of X (M™7) over a full subcategory
(=subset with an induced order) of Zebra(p) formed by all X's whose flags contain
the equivalence relation on S determined by r, whence a map

mp — PP

8.3.1. Ezample

Let S ={1,2,3} and p: S — pt. We have the following equivalence relations on S:
(a) the finest one w;

(b) the relations e;;, i # j, i,j € {1,2,3}, in which ¢ ~ j, and the remaining

element is only equivalent to itself;
(c) the coarsest relation « in which all elements are equivalent.

Let S;j := S/e;j. Let p;j: S — S/ei; and gi; : S/e;j — pt. Then P, is the inverse
limit of the following diagram:

Il’lzzéhz

\
/

Iplz‘ﬁhz 17?121-(112

/
\

I17121<112

7

P23

Z

q23

\
/

I, Lpssiges ipas L

q23

/
\

p ipza iqza
ZPISI‘]lii
\
IplSi‘hiZ iplSIQIS
\ /
ipl3i(113
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This diagram is co-final to the sub-diagram:

IPlQ 1(112 < 1 IPIZI(IIQ

Ty —— Lposiges ~5 Lpy3Lgos (20)

Iplslths < 3 IP131(113

We see that B, is an extension of Z,, by the kernels of the arrows 1,2, 3, which
are Zp, iq,.«, where i # j, 1,7 = 1,2,3.

8.3.2. The features of functoriality of the collection of functors 3, are inherited
from those of the collection 6,,ip,Z,. The most important ones are the following
ones:

(1) the structure of system on the collection of functors J,;
(2) maps PposPr — Prgp, Where p, g, r are surjections and ¢ is not a bijection.

Let us sketch the definition. First of all, such a map is uniquely defined by
prescribing all compositions

Ix 5mp6qmr - q:’)rqp — X,

where X runs through the set of all elements in Zebra(p).

Let R :=rqp; R:S — T; let Q = gp. Let e (respectively eq, respectively e,) be
the equivalence relation determined by R (respectively @, respectively p). It follows
that

w=>ep>eq > e,

where w is the trivial equivalence relation on S. Without loss of generality, we
may assume that p: S — S/e,, q:S/e, — S/eq, r:S/e, — S/e are the natural
projections.

Now let X be given by a flag

(w=fi>fo> " far1=0¢)

and a coloring j', 3%, ...,i".
The map fx is then specified by the following conditions:

(1) fx = 0 unless there exists a k such that f = e, > e, > frt1 and ji = Zy,.

(2) Assume that such a k exists. Let p:S/fr11 — T be the natural projection.
Let 0:S/eq — S/ fr41 so that r = po and oq:S/fi, — S/ fr+1 is the natural
projection. Define elements X, € Zebra(r) and X, € Zebra(r) as follows:

X, is given by the flag w > f;1 > -+ > fr = e,, and the coloring
(72
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X, is given by the flag

ws/pe = fur1/fe > fra2/fre > > e/ fr,
of equivalence relations on S/f. It follows that X decomposes as X =
X,T,0X,.
The map fx then goes as follows:

PBpogPBr — PpogPBeB) — XpdgZo X, — XpLlog X, = X.

8.3.3. Example

Let us come back to our example S = {1,2,3} and p: S — pt. We know that P, is
the inverse limit of the diagram (20). Let us describe the map

0p1Bai — Po-

First of all, B,,, — Zg,, is an isomorphism.

q12

We then have maps

6p121q12 = Lpiy Loy
and
6P121(I12 - I(I'

The diagram
5?12:[ - Ip12I

q12 q12

L

IP > Iplz 11112

turns out to be commutative (this is hidden behind the words “these maps behave
well with respect to the other elements of the structure” after (19)). Furthermore,
the compositions

610121(112 - Iq - IP2311123’IP131Q13

as well as

Op1aZars = Lpin L,

a2 — ip1 T

q12

all vanish, whence the desired map 6,,,Bq, — Bp-
Consider now the map ,,,d4,, — Bp. Again, we have an isomorphism

mpm - Iplz .

We also have a map

Zp120g15 — Ip1 T,

q12 q12»
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the composition
Tp120q12 = Tp1oZars = pioigus
being zero. Furthermore, the sequence
0— Ipm 6(112 - IPlQI(Im - I;Dm i(112 -0
is exact. Therefore, the map
IP12§Q12 - s’pp

realizes an embedding of the kernel of the arrow 1 in (20) into ,,.

Describe the map 6, — P,. It is given by the inclusion d, — Z,; since the
composition of this map with every arrow coming out of Z, vanishes, this is a
well-defined map. This map can also be described as a composition:

517 = 517125 - §P12IQ12 - s’pp'

q12

Finally, the map
Op120g12 = Py
is given by
Op120g12 = Lp1o Ly,

and is different from the previous one!
The maps that we considered fit into a commutative diagram

%%\

apuzqu Ip126q12 57)23qu3 IP23 51}23 51)131(;13 IP1356113

|

A R B
\ 6p /

This diagram specifies a map from the direct limit of its three lowest floors to
PB,. It turns out that this map is an inclusion whose cokernel is isomorphic to i,
via the natural map B, — 7, — i,.

This implies that 98, has a three-term filtration (the two lowest floors are com-
bined) whose successive quotients are

(1) dp Di<j 5pu'5qm
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(2) @i<j§piji(hj @ipij(sqij
(3) ip.

8.3.4. Filtration on P

The filtration on functors I, define a filtration on ,. See Secs. 15.1-15.2.3 for its
description. Its successive quotients are direct sums of the terms of the form

py 6111 1ps 6112 e 6qn Yt

with fixed n. Here p,41qnpn - --q1p1 = p; all p’s and ¢’s are surjective and all ¢’s
are not bijective.

8.4. Resolution R

We are now ready to define the desired resolution. The starting point is the maps
Bp — ip, which are surjections. Our goal is to kill the kernel, which turns out to
be spanned by the images of all maps

mafsbq:’)c - (’Bpa

where cba = p.
Thus, it makes sense to assign

Rg =P,
and
R = &PadPe,
where the direct sum is taken over all sequences
S %5 S/ey 2 Sles 5 T,

where e; > es > e are equivalence relations on S, e is determined by p, and a, b, c are
natural projections. The differential is given by the above described maps B.0,B-
The nth term R, ™ is given by the direct sum of the terms

mpl §Q1 s’]31)2 (qu e (sqns'ppn+17

where the sum is taken over all diagrams of the form
S Sler I S/ f1 B Sfen 5 S/ fo B o IS S fy BES T
where
e1>fizex>fo>>fr>e
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and p;, ¢; are all natural projections. The differential d: R;" — R, n+1 ig given by
the alternated sum of maps induced by

(@) Bp,0q,Bpisr = Ppiriqip, and
(b) 94:Bpis10qis1 — Oqit1pisrar» Which are nonzero iff p; 1 = Id, in which case they
are natural isomorphisms.

One then has to check that d*> = 0 and to define on R, a structure of system.
For all this we refer the reader to Sec. 15.5.

8.4.1. Ezxample
Let S = {1,2,3}. Then the complex R, is depicted as follows:

6?12Iq12 IPIZ(S(IIZ 5P23Iq23 5? Ip23 5(123 6?1311113 Ip13 6q13
— 1 — -
61)126‘]12 6])23 6(123 61)13 q13

where all the arrows are the natural maps; the arrows marked with — are taken
with the negative sign. Let us check that d? = 0. It suffices to check that

2
d |5p125q12 :6P125Q12 - ‘Bp
is zero. This reduces to checking that the compositions

A
:5171251112 - s’pp IP;

Ad?|s

P126<112

B,.
2 . ij
Bijd |5p125q12 '511125%2 3311 IpijIQ'ij

do all vanish. Let us so do.
Ad?. We have: A42 = A63; A51 = 0. Hence Ad? = A42 — A63 + A51 = 0.
Byjd?. If {i,j} # {1,2}, then all three maps

B;;42 = B;;63 = B;;51 = 0.
Consider now the remaining case Bjad?. We then have: B1242 = Bj351 and

31263 = O, which implies that Blgd2 =0.

8.5. The system (m) and the map (R) — (m)

Recall that the whole purpose of constructing (R) was to establish a link between
the systems (i) and (). Unfortunately, there is no direct map (R) — (I).
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Instead, we shall construct a map m: (R) — (m) satisfying the properties described
in Sec. 5.1.
Define a map m,, : R, — m,, by the following conditions.

(1) m, vanishes on all terms
Rp10gi Rpy0gs -+ O, Rpia

where at least on p; # Id. Otherwise, m,, is the identical embedding onto the
term

0g10g; -+ Oq

n

of m,,.
Denote by

lp: Ry — my — 0,[1]

the natural composition.

8.6. The additional structure induced by the maps (17)

Recall that the collection of maps (Z,,) has a functoriality (17) which we have never
used. It turns out that this additional functoriality yields an additional structure
on the system (R).
To obtain this additional structure one has to first understand the additional
structure on the system (J3) produced by these functors. Consider some examples.
Let A = {1,2} be a two-element set and let g: A — pt. Let f:S — T be a
surjection. Let

fUg:SUA—TUpt

be a disjoint union.
We may define two maps

n1,n2: Prug — Zrutda Zidrug-

The map n, is just the natural projection onto a member of Zebray ,. The map
ng is the composition

Brug — Lrug — LrutaaLidrugs

where we first apply the natural projection and then the map (17).
It follows that the compositions of n1,ns with the map

AN TrutaaZidrug — Lrutdaitdrug
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do coincide, therefore the difference ny — ny determines a map to the kernel of A,
i.e. a map

E(f,9) Brug — ZrutdaOtdrug-

This is only true because of the special form of g.
For a general g: A — B the kernel of A is spanned by the images of all maps

Tpitdau Zuy, — LputdaZidrugs
where u1,us are surjections, u; is not a bijection, and
uguy = Idp U g.

So that the structure of ny — no becomes more complicated.
Nevertheless, one can define maps

€(f,9):Brug — Zrutdadidrug

for an arbitrary g by means of the following inductive process. Let |g| = |A| — | B].
Since g is a surjection, |g| > 0. If g is a bijection, we then have a natural isomorphism

PBrug — BPrutdaOrdrugs

because Idr U g is a bijection.
Set £(f,g) to be the composition of this isomorphism with the natural map

B rutdaOtdrug — ZrutdaO1drLg-

Let us now assume that £(f, g) is defined for all g with |g| < N. Define it for all
g with |g| = N. Let e be an equivalence relation on A induced by g. Let wg > € > e,
let he: A — Afe and k. :S/e — B so that kche = g.

Define a map

C(€) :Brug — Pruk Prarutd,,. — LrutdaOtdruk Lidrutd,,. — ZrutdaZidrugs

set

(f.9)=-) Cle).

If £'(f, g) passes through Zf14, 014,14, it determines a map

PBrug — LrutdaOtdrugs

which we assign to be £(f,¢g). It can be checked that if this rule was obeyed when
&(f, g) was defined for all g with |g| < N, then C’(f, g) passes through Z¢ 14 , 01dLig
and gives rise to the map £(f, g).
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On the next step the maps £(f, g) are lifted to maps

c(f.9) :Brug — B ruradidug,

which in turn produce maps

s(f,9): Ryug — Ryutadidug

with a nonzero differential, which is described in (17.10).

8.6.1. Thus, we described a construction of a pre-symmetric (upto homotopies)
system (R).

9. Realization of the System (R3¥™™) in the Spaces
of Real-Analytic Functions

Our answer to the renormalization problem 1 is given in terms of a system (RSY™™),
To be able to get a physically meaningful answer we need an OPE expansion
in terms of series of real-analytic functions on the Y minus all generalized
diagonals.

The nicest possible way to do it includes constructing a system which is explicitly
linked to the spaces of real-analytic functions on Y¥ minus all generalized diagonals
and constructing a map from (RSY™™) to this system. Unfortunately, we do not
know how to realize this project. The problem is that arbitrary real-analytic func-
tions do not have a good asymptotic expansion in a neighborhood of generalized
diagonals, therefore, we cannot form a system based on such spaces.

Let us describe a palliative measure we take instead.

First of all, we shall work with spaces of global sections rather than with sheaves.
So, whenever we use a notation for a sheaf, it will actually mean the space of global
sections. If our sheaf is a Dys-module, then its space of global sections is a module
over the space of global sections of Dxs. Whenever we say “a Dxs-module”, we
actually mean “a module over the space of global sections of Dxs”.

Let Y C Y* be the main diagonal. We pick a vector field which contracts
everything to Y and take analytic functions on Y° minus the complement to all
generalized diagonals which are generalized eigenvalues of this field.

Denote this space spanned by such functions by A°g. This space has a grading
given by the generalized eigenvalue. Let .AC%N be the span of all elements whose
generalized eigenvalue is > N.

Then the spaces A°§N =A%/ A°§N do not depend on a choice of particular
vector field.

Let p: S — T be a projection. We define a functor A°, from the category of
Dxr-modules to the category of Dys-modules by the formula

A°p(M) = liminvyil (M) @0, o A°5" .
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These functors do not form a system. Nevertheless, given a € A°,(M), b €
A°p  A°p, (M), where p = papi, one can say whether b is an asymptotic decompo-
sition of a or not. The problem is that not every a has such a decomposition.

We define a functor

Foo(php?) - Aop D ‘Aoplepz

so that I'°°(p1, p2) (M) consists of all pairs (a, b) such that b is an asymptotic decom-
position of a. In other words, instead of a map A°, — A°, A°,, we have a “corre-
spondence” given by I'°°(p1, p2).

Next, we construct maps fp TR — A°,. We then show that these maps
are compatible with the correspondences I'°°(p1, p2) as follows:

Let

Joi ® Loy
o o
'A PlA p2-

LRSymm __ psymm o symm
/pl,pz P P1 P2
‘We then show that

p P1,pP2

passes through I'°°(p1, p2).

This construction provides us with an OPE product on M in terms of series of
real-analytic functions on Y.

The construction of the maps fp resembles the construction of the maps of
Sec. 8.6, which is based on the maps (17). The construction of fp is based on the
existence of asymptotic decompositions of generalized functions from Cg near gen-
eralized diagonals. Namely, let pg:S — pt, and let pg = pap1 be a decomposition.
We construct maps

Cs — APIIP2 ’

where A, is constructed in the same way as .A°,, but generalized functions which
are non-singular on the complement to generalized diagonals and are generalized
eigenvectors of the vector field which shrinks everything to the main diagonal, are
used.

Part III: Technicalities

In the concluding part of the paper we give constructions and proof required for
everything in the previous part to work. This includes

(1) constructing the system (R) and endowing it with a pre-symmetric structure;
(2) Bogoliubov—Parasyuk lifting theorem;
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(3) more details on the symmetrization procedure and on the renormalization in
symmetric systems. To this end we need to develop certain machinery (“pseudo-
tensor bodies”);

(4) real-analytic interpretation of the symmetric system that we obtain from (R).

10. Constructing the System (R)

10.0.1. Let Y = RY, where N is a fixed natural even number. We fix the coordi-
nates 2!, 22,... ;2N on Y. For z € Y we set q(z) = Zfil(xz)Q Also we take the
standard orientation on Y.

10.0.2. Let S be a finite set. Let Y'¥ be the space of functions S — Y. Let [n] =
{1,2,...,n}, then Y[l >~ y". Since Z is even-dimensional, the orientation on Y
produces canonically an orientation on Y. Thus, Y° will be assumed to have an
orientation.

Let e be an equivalence relation on S. Denote by A, C Y the corresponding
generalized diagonal consisting of points y:.S — Y such that s ~. t = y(s) = y(¢).

Let f:S — T be a map of finite sets. We have an induced map f#:Y7T — Y5,
Let pe:S — S/e. Then A, = Imp,. If [ is surjective, then f identifies A, with
YS/¢. We will use this identification.

For two equivalence relations e; and es on a finite set S we write e; < eo
iff s ~e, t = 5~ t. We have e; < eq iff A, C A.,. Denote by « the least
equivalence relation (i.e. every two points are equivalent) and by w the greatest
equivalence relation (i.e. every two distinct points are not equivalent). Let s,t € S
be distinct elements.

Let T' C S. Denote by er the equivalence relation in which two distinct elements
are equivalent iff both of them are in 7. For example, w = ep; a = eg. Set Ap :=
AeT; Ast = A{s;t}~

10.0.3. Denote

S = - e-
Us=Y*—-[]A
eFw

Obviously, a point y:S — Y is in Ug iff the map y is injective.

10.0.4. Let s,t € S be distinct elements. Denote by ¢ :Y® — R the function
defined according to the rule

gst(y) = q(y(s) — y(1)), (21)

where y:S — Y is a point in Y° and ¢ is the standard quadratic form on Y. Of
course, the set of zeros of gs(y) is As.
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10.0.5. Denote by Bg the space of functions Ug — C which can be expressed as
a ratio P(Y)/Q(Y), where P is an arbitrary polynomial and @ is a product of
non-negative integer powers of gy for arbitrary s, ¢.

10.0.6. As usual, we denote by Dys the space of compactly supported top forms
on 'Y and by D% s the space of distributions on Dy-s. Any smooth function on ys
will be regarded as a distribution in the usual way (recall that the orientation on
Y produces a canonical orientation on Y%).

10.1. Quasi-polynomial distributions

We have a diagonal action of the group RY on Y by translations. This induces an
action of the abelian N-dimensional Lie algebra ty on Dy s; DY 5. Call a distribution
f quasi-polynomial if there exists an M such that t™ f = 0. Let By s be the subspace
of all quasi-polynomial distributions.

We have natural continuous maps

/ / /
Ts, s, :gysl ® @ys2 - @YS1\_,52
which induce maps:

T5152 :Y«Bysl (4 ‘,Bysz — myslus2 . (22)

10.2. Definition of subspaces Cs € Pys

We define these subspaces recursively.

(1) If S is empty or has only one element, we set Cs := Py-s.

(2) Suppose, we have already defined C's C Bys for all S with at most m elements.
For an S with m + 1 elements, we say that a quasi-polynomial distribution f

on Y¥ is in Cg iff for any partition S = S; U S, there exists an integer M such
that

H qé\i[sz f € T5152 (CSI & CS2)a (23)
$1€S51;82€852

where Tg, s, is as in (22) and ¢s, s, is as in (21).

10.3. Example

Let S = {1,2}. We will also use the symbol [2] for {1,2}. For y:[2] — Y we write
y1 :=y(1) and yo := y(2). Then f € Cg iff f is quasi-polynomial and there exists
an M such that q(y1 — y2)™ f = P(y1,y2), where P is a polynomial.
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Define a map 7:Cg — Bg by nf = P/¢™. It is clear that this map is well-
defined and that Ker w consists of all functions f € Cg supported on the diagonal.
Denote Cs a := Kerm. We are going to describe this space.

Let s = (y,y) be a point on the diagonal. Then on any relatively compact
neighborhood U of s, any distribution supported on the diagonal is of the form

= Fuy)d" (g2 —w), (24)

where the sum is taken over a finite set of multi-indices p and f,, are distributions
onY.

Suppose that f € Cga. Then f is quasi-polynomial, tM' f = 0 for some M.
Therefore, tM’ fu = 0 for all x meaning that each f, is a polynomial of degree less
than M’. This immediately implies that (24) is true everywhere for some polyno-
mials f,. Conversely, if all f,, are polynomials, then f € Cg a.

The map 7 defines an injection C's/Cs A — Bg. Let us show that this is in fact
a bijection. This means that for any integer M > 0 and any polynomial P(y1,y2)
there exists a distribution F such that Fq(y; — y2)™ = P. It is sufficient to do it
for P = 1. Let us construct such an F.

10.3.1. To this end, take an fdy;dys € ®ys, where dy is the standard volume
form on Y = RY and consider the expression

2.) = [ Fnmdaton = ) e

Claim 10.1. This integral uniformly converges on any strip Res > K, where
K > —N/2.

Proof. To show it, change the variables y = y1, 2 = y2 —y1, and g(y, 2) = f(y,y +
z). Then

Z(s, f) = /Ygg(yﬂ)q(Z)sdde-

Let SN~ C Y be the unit sphere q(y) = 1. Let a: Ry x S¥~1 — Y be the
map: a(r,n) = rn. Let dn be the measure on S"~! determined by q. Then

Zis.f) = [ hy(rydr,
0
where
hy(r) = / g(y, rn)dydn.
Y xSN-1
Whence the statement. O
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10.3.2. Since Z(s, f) is (up to a shift) the Mellin transform of hy, we know that
Z (s, f) has a meromorphic continuation to the whole complex plane, the poles can
only occur at s = —(N+k)/2, k=0,1,2,... and are of at most first order. Denote

Z(s, f)
s+ M’

Un(f) = ress——m
Claim 10.2. Uy, is a distribution.

Proof. Set s/ =2s+ N —1; M' = —2M + N — 1 (M’ corresponds to s = M).
Integration by parts yields:

_ (_1)P > dP s’
Z(s, f) = (3/+1)(3/+2).,.(3/+p)/0 (dr—th(T))r +Pd7”7

whenever s’ + P > 0 and s’ # —1,-2,...,—P + 1. Choose P large enough so that
M'+ P > 1. Set

l(S/ 7,_) _ (_1)P ,rs'+P
’ (s +1)(s'+2)---(s'+ P)

and
A(r) =resg_pl(s',r) =r(M' + P)Cur p,
where C'yp p is a constant. Thus,
o P
Un (f) = CM’,P/O P g hy (r)dr

It is clear that the function A is smooth and rapidly decreasing as r — oc. Fur-
thermore, f +— hy is a continuous map from Dy-s to the space of rapidly decreasing
infinitely differentiable functions on [0, 0c], in which the topology is given by the
family of seminorms

Al &z = max LR (r)].

Since the map f +— hy is continuous, so is Ujps, whence the statement. O

Claim 10.3. (1) ¢ (Y1 — Ya) Uy =1
(2) tUp = 0. (for t see Sec. 10.1).

Proof. (1)
M
Un(g™ (V1 = Ya)f) = reSs:—M% = reSs:,M%
T R
(2) Obvious. .
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Corollary 10.4. Uy € Cs; w(Upr) = 1/¢™. Therefore, m is surjective.

Thus, we have an exact sequence:
0—>CS,A—>CS —>Bs—>0. (25)

We see that this is an extension of ®g-modules. From our description of Cg a,
it follows that Cga = ©.Oa, where i: D — Y? is the diagonal embedding. One
can show that this extension does not split. One can construct a similar extension
when N is odd, in which case it splits; the reason is that the Green function for the
Laplace operator requires extraction a square root.

11. Study of Cg
11.1. Action of differential operators

Denote by Dys the algebra of polynomial differential operators on Y°, it is clear
that each Py s is a Dy s-module.

Claim 11.1. FEach Cgs is a ®ys-submodule of Py-s.

Proof. This is obvious when S has 0 or 1 element. For an arbitrary S the proof
can be easily done by induction. Indeed, we only need to check that for any f € Cg
and any polynomial differential operator D, D f satisfies (23). It suffices to consider
only operators of zeroth and first order. If the order of D is zero, the statement is
immediate. Assume that the order of D is 1 and D1 = 0. Let

QS152 = H qslsz

$1€851;820€852

and fQM € Ts,s,(Cs, ® Cs,). It is immediate that the space on the right-hand
side is a ®y-s-submodule of Py s. We then have

QM+1Df = D(QM+1f) - (M + I)QM(DQ)JC € TSISQ (051 Y 052)' O

11.2. Map w:Cs — Bgs and its surjectivity
11.2.1. Let f € Cg.

Claim 11.2. There exists a natural number M such that
M

H qst f - P; (26)

{s,t}CS

where P is a polynomial and the product is taken over all 2-element subsets of S.

Proof. This is obvious when S is empty or has only one element. For general S
the argument follows from (23) by induction on the number of elements in S. O
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Write
M

W(f):P/ HQSt

s#t
It is clear that 7(f) depends only on f and that 7:Cs — Bg is a Dys-module

map.

Proposition 11.3. The map 7 is surjective.

11.3. Proof of Proposition 11.3

It is sufficient to construct for every integer M > 0 an F' € Cg such that
M

F H qst =1

{s,t}CS

This is what we are going to do.

11.3.1.  For convenience, denote by P := P»(S) the set of all 2-element subsets of
S; for T = {s,t} € P write qr = qs;. Denote U = CF; for s € U, write

¢ =[] "

TeP

It is clear that for every s € U, ¢°:Y® — C is an analytic function on Us.

11.3.2. Denote by dy the standard volume form on Y’; set

Q= H dys.

ses

Note that the product does not depend on the order of multiples. Let fQ € ©ys.
Write

249 = | (fe0).

This integral converges if Re sp > 0 for every T € P.

11.3.3.

Claim 11.4. For any f, Z extends to a meromorphic function on U. It can only
have poles of the first order along the divisors of the form

D(R,n) = {(Z 23T> +n :0},
TCR
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where R C S is a subset with at least 2 elements; T is an arbitrary 2-element subset
of R; n> (#R — 1)(N — 1) is a positive integer.

Proof. Let §91 be the real Fulton-MacPherson compactification of Ug so that we
have a surjection P:FM — Y. Denote V = P~1Ug. We know that P identifies V/
and Ug. The complement FM\V can be represented as FM\V = Ugc s§Mp, where
#R > 1 and each §Mp is a smooth subvariety of codimension 1; P(FMpr) = Dk,
where Dp, is the diagonal given by the equivalence relation eg on S in which x ~,, y
and x £y iff z,y € R.

Let P’(S) be the set of non-empty subsets of S. Let K C P’(S). Then

IMy = (] FMp #0
ReK

if and only if for every Rj, Ry from K, either one of them is inside the other, or
they do not intersect. In this case we call K forest. Let

FMG = ssmK\ U s

LOK,L#K

For every point 2 € MY, there exists a neighborhood W of 2 and a nondegenerate
system of functions tr, R € K (i.e. all dtr are linearly independent at every point
y € W) such that My is given by the equation tp = 0.

Claim 11.5. (1) We have

pta= [ i "# Yy,
ReK

where w is nondegenerate at x.

(2)

Pilqst = H tzR Ust,
{s,t}CR

where ug(r) # 0.
Without loss of generality we can assume that

(1) both w and all us; do not vanish on W;
(2) ¢ := P~1f is supported on W.

11.3.4. We have
Z(s.f) = /Y . ( 11 t?q‘*R“#R‘”(N‘”) F(s,9)60, (27)

ReK

where F(s,y) is an integer function in s and sg = ), s7. Therefore, Z(s, f)
can only have poles of at most first order along the divisors D(R,n), where n >
(#R — 1)(N —1). |

1240002-60



A Formalism for the Renormalization Procedure

11.3.5. Let M € U be such that all My are integer. Choose an arbitrary total
order <p on P(S) and a point € € U such that

(1) each Ap is positive real number;

(2)
Z )\T < 1;

TeP

(3) for all T,

Ap > Z A

T'<T

Let C C C be the unit cirle. Then for all z € C™2(9), Z(s, f) is regular at
M + Az. Set

1

_ der
(2mi)#P

UM, f) = /C 2 )

—
Tep T

Note that the sign of this integral is well-defined.

It is clear that U(M,\, f) is independent of \; we set U(M,<p,f) =
UM, f).

Claim 11.6. f+— U(M,<p) is a distribution.

Proof. Let P: 39 — Y°, 2 € M and a neighborhood W of 2 be as in the proof
of Claim 11.4.

It is sufficient to check that U(M, <p) is continuous when restricted to a sub-
space Dy of densities f such that P~1f is supported in W.

Let s :=2sg + (#R — 1)(IN — 1). Let Lg be arbitrary positive integers. Then
we can modify (27) as follows:

(=D* /
Z(s, f) =

wh= 1 e om0 b

ReK

* (H G oL (0ly) F (s, y))) w,
R

where we assume that we have extended the set of functions tz to a coordinate
system on W and that w is the standard density in this coordinate system.
Pick Lr to be large enough. Then it is immediate that

UM, <p.f) = /W (Z 3tsAs> fw,

SeEK

where Ag are smooth functions on W. Therefore, U(M, >p) is a distribution. O
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Let S = S1USs so that Y9 = Y51 x Y52, Let f; € Dyi; define /iR fo: Y5 — C
by f1X fo(Y1 x Ya) = f1(Y1) f2(Y2), where Y; € Y°i. Assume that M7 > 0 whenever
T = {31,82} with s; € Sl, S9 € S5.

Claim 11.7. We have
UM, <p, i f2) = U(M|s,, <(P|p,(s,)): JOU M| 555 <(P|p, (5,0)+ [2)-
Proof. Clear

Claim 11.8. (1) ¢*U(M,<p) =U(M + L, <p);
(2) M (UM, <p)) =1;
(3) UM, <p) € Cs. O

Proof. (1) Clear;

(2) follows from (1);

(3) Note that t.U(M, <p) = 0, therefore U(M, <p) is quasi-polynomial. The prop-
erty (23) follows by induction from Claim 11.7. m|

Thus, we have shown that 7:Cs — Bg is surjective.

11.4. Filtration on Cg

Let Diag"” C Y be the union of generalized diagonals of codimension n. Let
F"Cs := Cspiagn C Cs be the submodule consisting of distributions supported on
Diag™. We will study this filtration.

11.4.1. Let A C Y be a diagonal. Let ian : A — Y be the corresponding inclu-
sion. Let ©®a be the algebra of polynomial differential operators on A. Let wa
(respectively wys) be the bundle of top forms on A (respectively on Y*). It is well
known that

DA—»Y = WD, ®OA DYS ®Oys w;é
is a right Da and a left Dy-s-module. Let M be a left Da-module. Set
insM = M @ppe DAy .

For example, let D}, s , C D% s be the submodule of distributions F' such that

(1) F is supported on A
(2) there exists an M = M (F') such that F'g = 0 for any smooth function vanishing
on A at order > M (F). (Note that locally on A the condition (2) is always
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true.) We have a natural isomorphism
- / ~ !/
IA = IA7ys IZA*QA — QYS,A'

Claim 11.9. (1) Let Ay C Ay C Ag. Consider the composition

. . . Injng . Ingng
iA A5xCAy = iA,AgxTA AxCAy —— 1a,05xCn, —— Cage

1t is equal to Ip,p,.

11.4.2. Let A be given by an equivalence relation e on S. We then have an
isomorphism A 2 Y/¢. Denote Cp := Cy-s/..

Proposition 11.10. (1)
IA(in+CA) C Cys.as
(2)
In|lcs 1iaxCa — Cys.a

18 an tsomorphism.

Proof. (1) It suffices to show that Ia(iaCa) C Cg. Let A C ian.Ca be the
subspace of all elements annihilated by multiplication by any function vanishing
on A. Let f € Dys, a € Cp and u € wp Ro,s w;_lg Then uf|an € Da and
In(au)(f) = a(uf|a).

Using this formula and a simple induction, we see that In(A) C Cg. It is also
well-known that in.Ca is generated by A. This completes the proof of (1).

(2) We need the lemma:

Lemma 11.11. Let U C Y be a non-emptly open set and assume that F € Cg
vanishes on U. Then F = 0.

Proof of Lemma. The statement is obvious when S is empty or has 1 element.
Let us now use induction. Let S = S7 U .S5. We know that for some M

H qé‘szF € Ts,5,(Cs, @ Cs,).

51€S51,82€852
There exist non-empty open sets A; € Y% such that A; x Ay C U. Write:
H g, F € Ts,s, (Z a; ® bi>,
$1E€S51,82€ 85 7

where a; € Cg,, b; € Cg, and a; are linearly independent. By induction assumption,
restrictions of a; onto A; are also linearly independent (because if these restrictions
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are dependent, then the same dependence holds for the whole Y ' ). Therefore, there
exist p; € D4, such that a;(p;) = d;5. Let ¢ € D 4,. We know that F(p; Xg¢) = 0.
Therefore, b;(q¢) = 0, since ¢ is arbitrary, b; vanishes on Ay, hence by induction
assumption, b; = 0. Therefore, H81651,82652 qé‘f”F = 0. Therefore, F is supported
on Dg, 5, := Ng,es,Ds, s,, hence on

E =Ns=s,u5,Ds,5,-
Show that E is the smallest diagonal Ac«. Indeed it is clear that A, C E. If
y & A4, then there exists a partition S = 57 U Sy such that Sp,Se are non-empty
and Yy, # Ys, whenever s; € S;. Therefore y ¢ Ag,s,, hence not in E.
Thus, F'is supported on A, . Since F' is quasi-polynomial and vanishes on U, it

also vanishes on U + a for all a € A,. Therefore, I’ vanishes on a neighborhood of
A, . Therefore, F' = 0.

Proof of Proposition 11.10(2). (1) Choose a relatively compact open set
U € Y¥®. Then it is well-known that there exists M such that F is annihilated
by multiplication by any function vanishing on A N U of order > M. By virtue
of the lemma, this implies that F' is actually annihilated by multiplication by any
function vanishing on A of order > M. (2) It suffices to check that there exists
f € In(ia.Ca) such that F' — f vanishes on U. It is easy to see that the latter is
equivalent to the following: for any polynomial P vanishing on A of order M — 1,
Pf € In(A). This follows easily by induction. O

11.5. Let Diag,, := Diag, (S) be the set (not the union!) of all diagonals in Y
of codimension n. We have a map

I, := ®peviag, In @ i1 BDediag, 10+Cp ® Cs, Diag,,, — Cs, Diag,, -

Claim 11.12. (1) I,, is surjective;
(2) if ZAemag fa+g € KerI,, where fao € insA and g € Cs A, ., then all fa
are supported on Ay,11.

Proof. We need the following lemma.
Lemma 11.13. Let A € Diag(S),. There exists M : Po(S) — Z>o such that ga =
g™ =0 on any A’ € Diag,,, A # A but ¢™ #0 on A.

Proof. Set My =1if Ay D A; otherwise set My = 0. O

Proof of Claim 11.12. (1) Let F' € Cg,a,. Then F(ga)™ € Cg a for m > 0. We
have an isomorphism Cg A = ia.Ca. We also have the map m:Cax — Ba which
induces a map

14 () 1iaCA — inxBa.
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In particular [ia«(m)]F(ga)™ € ia«Ba. Since the multiplication onto ga is invert-
ible on ia.Ba, there is an element x € ia.Ba such that

2(qa)™ = (iax(m)(F)(ga)™)-

Since 7 is surjective, so is iam. Pick a pre-image 2’ := z/y of  in iA+Ca. Then
([ias(M](F(ga)™ —2'(ga)™)) = 0.

It then follows that F'— 2’ is supported on the union of all n-dimensional diagonals
except D. Since each a, is supported on A, we have:

F—Zx’A
A

is supported on A, 1.

Proof of (2). Let > fa + g € Ker I,,. It follows that (¢ga)™ fa is supported on
A, 41 it is easy to check that if x € A and (¢ga)™(x) = 0, then € A,,;1. Therefore,
fa is supported on A, 1. O

11.5.1.
Corollary 11.14. The map ©acgq(s), [p induces an isomorphism:

Baeviag, i+ Bp = Csmiag, /Cs Ba(8)n1-

11.5.2. Let X := C¥ be the complexification of Y viewed as an algebraic variety
over C. Let Dys be the sheaf of differential operators on X*°. Then Cg defines
a Dys-module Cg in the usual way. The above claim implies that Cg is a holo-
nomic D ys-module (because each quotient Cs piag(s),/Cs,miag(s),,, determines a
holonomic Dy s-module).

11.5.3. Let Diag(S) be the set of diagonals in X ordered with respect to the
inclusion. We denote by the same symbol the corresponding category. We have a
functor D — Cg,p from Eq(S) to the category of D ys-modules.

11.5.4. Let I be a small category and C an abelian k-linear category. Let F': I — C
be a functor. Let I’ be the abelian category of functors I°P — vect. For A € I’ we
can form the Eilenberg—MacLane tensor product F' ®@; A € C. We call F' perfect if
the functor A — F ®; A is exact.

Claim 11.15. The functor A — Cg a is perfect.

Proof. Let n > 0 be an integer and A € Diag(S). Set Fy,(e) := (Cs,a)n. We see
that F), : Diag(S) — Dxs are subfunctors of our functor F' = Fy.
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It suffices to show that for every n, G,, := F),/F,,11 is perfect.
It follows that

Gu(s)= P G

teDiag,,;t<s

where Gy = 4. Ba,. The structure maps are the obvious ones.
We have

Gn @oiag(s) A = @ At) ® Gy

teDiag(S)n
and we see that the functor
A gn®®iag($)

is exact. Therefore, G,, is perfect. O

11.5.5. Let S,,a € A be a finite family of finite sets. Then we have a
[1,c 4 Diag(Sa)-filtration on ], 4 Cs, viewed as a Dyu,cas.-module. The same
agument shows that the corresponding functor from the category [],. , Diag(Sa)
to the category of ® yu,c4s.-modules is perfect.

11.5.6. We are going to study how the map Ip,p, : ip,p,+«Cp, — Cp, is compatible
with the filtrations. The answer is very simple: this map induces an isomorphism

D, D2*CD1 - CD2 , D1+

The filtration on the L.H.S. induced by the filtration on Cp, coincides with the
filtration induced by the one on Cp, p,.

12. Asymptotic Maps
12.1. Construction

Let D, C Y be a diagonal given by an equivalence relation e on S. Let p: .S — S/e
be the canonical projection. Let S; := p~'i, i € S/e. Denote

Cs :==1ip,ys A (Bp) ® Kics/eCs, -

The multiplication by g¢s; is invertible on C§ whenever p(s) # p(t). Let Q. be the
product of all such gg;.

12.1.1. We are going to construct a map
ass e 265 — Cg
as follows.
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First of all it suffices to define a corresponding map on the level of global sections.
Let F € Cg. It follows from the definition that there exists an M such that

QéVIF S T((®i€S/eCSi))a
where the tensor product is taken over C. Where T is the natural inclusion
(®i€S/eCSi) — Cs,

induced by the superposition of maps from (22). On the other hand, we have an
obvious map

(®i€S/eCSi) - Cg’

Since the multiplication by @ is invertible on C§, we have a well-defined map
as . : Cs — Cg, which determines the desired map ass.

13. Properties of asg
13.1. Compatibility with the filtrations
13.1.1. Filtration on C¥§

Let f > e be an equivalence relation. It can be equivalently described as a set of
equivalence relations f; on S;. Set

(€C8)s = ip,ys(Bs) ©RiCs; a,, CCs.

Thus we have a filtration of C¢ indexed by the ordered set Diag(S)=¢ of all equiv-
alence relations which are greater than or equal to e. It is clear that this filtration
is perfect (i.e. the corresponding functor

Diag(S)=¢ — Dys-mod
is perfect). We can also consider Cg as an object perfectly filtered by Diag(S) such

that (C§)s = 0 if f is not greater than or equal to e.
We have an isomorphism

GryC¢ = ip,ys.{in.p, " (Bs/e) ® RiBs, /1, }

if f >0 (otherwise the corresponding element is zero).

13.1.2. The map asg . is compatible with the filtrations. Let f > e. The induced
map from GryCs = ip,ysBg/; to GryCg is induced by the asymptotic map

Bs — Z'%eDf (BS/e) ® IE’LBSz/fz

14. Formalism Z,i,4d

In this section we will define functors 7,1, §. The functors i are the same as the ones
used to define an OPE (see (1)). The functors § are the functors of direct image in
the theory of A-modules.

The functors Z are built from Cgs.

These functors will be used to construct a required resolution of the system (i).
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14.1. Main definitions

14.1.1. Let A, C Ay be two diagonals in X*® determined by the equivalence
relations e < f. Let p: S/f — S/e be the canonical projection. Let (S/f); := p~1(i),
i€ S/e. Set

TA,Apyin Ay OA, A, i D-modxa; — D-mod ya,
to be defined by the formulas:
Inon, (M) =in,n,(M)" @ HicseCisy s
ta,0, (M) =i}, 2,(M) @ Rics/eBs) p),;
Opngn, (M) =in, nye(M).

Sometimes we will also use the notation Z;,i;,d;, where i: Ay — A; is the
inclusion of the corresponding diagonals.

14.1.2. Ezactness

Let T € S be a subset and pr: X* — X7 be the corresponding projection. Call an

H € D-modxs T-exact if H is locally free as a p;lOXT—module. Let i: A.—X* be

a diagonal and let T C S be such that the through map T'— S — S/e is a bijection.
Let M € D-moda,. Write

in(M)=1i"(M)® H.
Claim 14.1. (1) Let the functor H be T-exact. Then the functor
ig(+): D-moda, — D-modys

s exract.
(2) Let

O—>H1—>H2—>H3—>O
be an exact sequence of T-exact modules. Then the sequence
0—ig, (M) —ipg,(M)— iHs(M)—0

is exact for all M € D-moda, .
Proof. Obvious. O

Note that Bg,Cg,iaOa are {s}-exact for any one-element subset s C S (here
in:A C X% is the smallest diagonal). This immediately implies that the functors
i,Z,6 are exact.

1240002-68



A Formalism for the Renormalization Procedure

14.1.3. Filtration

Let Ac C Ay C Ay. Let p:S/g — S/f and ¢:S/f — S/e. For x € S/e let g, be
the equivalence relation on (gp)~ !z induced by g. We have a projection

pe:(ap) "t — (ap) ' /gs 2 7 (2)
induced by p. We have a map
Jofe:0n,aLa;n, — Ia,n,
defined as follows:
0,0, Za;n (M) Zinpa, (iR, a, (M) ®Mics/eCy1(2))

in,a, (M) @ (in;n«(MicsseCoi(x)))

1

o~

i/A\eAg (M) 02y ‘ZzesﬁiAgIX(qp)—lm*CAgx
= i3, (M) ©Roes,Clgp)-1a-

This map is injective for all M. Indeed, this needs to be checked only for the
last arrow, which follows from:

(1) injectivity of the arrow
iAng(qp)_lx*CAgz - Igwesec(qp)_lz;

(2) both terms of this arrow are Op exact where T' C S/e is such that T — S/e —
S/g is a bijection, as well as the cokernel of this arrow.

The above results imply that these inclusions, for all f such that g > f > e,
define a perfect filtration on Za a,. We denote by (Za,a, ) the correponding term
of this filtration.

14.1.4. This filtration is perfect

Let p:S/g — S/e be the projection. For i € S/e, let (S/g); = p~ti. The ordered
set of equivelence relations f such that ¢ > f > e is isomorphic to the product
[.cs/. Diag((S/g)z). Denote this ordered set by [e, g]. The filtration on Za,a, is
induced by the perfect [], g, Diag((S/g).) = [e, gl-filtrations on W, es/.Cis/g).,-
Denote by

F:le,g] — D-modxs/e
the functor determined by these filtrations:
F({fz}zes/e) = Waes/eCis/g)a s
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The statement we are proving follows immediately from the following one:

Let T C S/g be a subset such that the through map T' — S/g — S/e is a
bijection and

A:([e,g])°® — Vect.

Then F ®, g A is T-exact.
Let us prove this statement. Indeed, we have seen that F' has a filtration F),
such that each F,/F, 1 is perfect. Furthermore, as it follows from Corollary 11.14,

EFo/Foy1 ®e g A= @ G ® A1),
t€([T,es/c Bal(S/9)2)))n

where each G; is T-free.

Therefore, since each F,/F, 1 is perfect, the filtration on F induces a filtration
on F ® 4 A, its associated graded quotient being isomorphic to F,/F, 1 ® A,
which are, as we have seen T-free. Therefore, F'® A is also T-free.

14.1.5. Thus, Za,a, is a perfect functor from the category A -modules to the
category of [e, g]-perfectly filtered Aa -modules. We have a canonical isomorphism

Gry(Za,a.(M)) = 6a,a,in,a,(M).

14.1.6. Asymptotic decompositions
The asymptotic maps Asg . from (12) define maps:
Wstge : In,n, — Ia,azinga,

in the obvious way.
The compatibility of Asg . with the filtration implies that the map As;q. is
compatible with the filtrations in the following sence:

Astge(Za,a, ) =0
if f" ¢ [f,g]. Otherwise
Astge(Za,a.)f C (Za,a,)fia,a.- (28)

Furthermore, we have
VINYNG PR INUN AN
and the above inclusion (28) is given by the map
0nga Inn. = 0a a0 Lo, apinga,
= (Za,a,)pinA. -
Compute the associated graded map

Grf’IAgAC — (Grf'IAgAf)iAfAﬁ~ (29)
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We have
GrpIa,a. = 08,0, 10,0,
therefore the map (29) is given by the map
NI YN R I TN NN
induced by the asymptotic map

ifre = iprfife.

14.1.7. Let S,,a € A be a finite family of finite sets. Let eq, fo € Diag(Sa); €a <
fa; let My be some Dp, -modules. Let S = UaeaSa; € := Uacata; [ = Uacafa-
We then have a natural map

aeaZn,, a., (Ma) = Iasa, (MacaMa).

15. Resolution

We will focus our study on the functors i and Z. We will need the following prop-
erties. Let Ay C Ay C Az C Ay be a flag of diagonals.

(1) We have natural transformations:
Iain; =i, 1> 7;
LNV VNV NS VN NE:
Iasn, = Lagnsingag;
MocaZa; a., (Ma) = Zaa, (MaeaMy).
IE&EAiAfQAea (M) — iAfAe (RapecaMy).

(2) The properties are:

(a) The functors i satisfy the axioms of system (see (2.3.3)).
(b) The following diagrams commute:

Iasn, —=Ta,n0in0n, —=Ta,nsins0,10,04;

| (30)

ANV VNV

MacaZagotrn (Ma) —= WaeaZag, Asaitzadre (Ma) —=Iaga, Waea in, o, (Ma) —— Tasazin.a, M

i ——

Iasa, (]\/[)

(31)
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15.0.1. Let f > e be equivalence relations on S. Let Zebra(f,e) be the
ordered set defined as follows. Elements of Zebra(S) are sequences s :=
(e1412€2i93€3134 * * *ip—1n€n), Where f = e > ey > -+ > ¢, = e is a flag of equiva-
lence relations and each iy,,11 is one of the symbols i or Z. Let s’ = (e}i}5---€l,)
be another element of Zebra(f,e). We write e > €’ if:

(1) for all k =1,2,...,n, there exists ny such that e}, = e,, (in particular, n; =
Lin, =n;
(2) if gy =1, then iy, =iforall p=mng,np +1,...,np11 — 1;

(3) if i;ck+l =7, then iy, =iforall p=mn,+1,...,n541 — 1 (it is possible that
inknk+1 = I)

Let ji\ a, = ia,a, if i = iand jy A, = Za,a, if i = Z. For s € Zebra(f,e)
write

; . t12 ai23 sin—1n
i(s) == IATAIAAs AL 1A,

The above properties imply that j is a functor from the category determined
by the ordered set Zebra(f,e) to the category of functors Da, -mod — Da -mod;
our agreement is that whenever 2/ < x, 2/, x € Zebra(f, ), we have an arrow from

j(z') = j(z).

15.1. Filtration on the functor
j: Zebra — Funct(Da,-mod, Da,-mod)

To define such a filtration we need some combinatorics.

15.1.1. Define the ordered set Segments(f,e). To this end, we need a notion of
segment in an arbitrary ordered set X, which is just an arbitrary pair of elements
x,y € X such that z > y. We denote such a segment by [z, y]. Given two segments
[a,b] and [c,d], we say that [a,b] > [c,d] iff b > ¢ (in which case a > b > ¢ > d).
Define the set Segments(X) whose elements are arbitrary flags of segments

[ao,bo] > [al,bl] > > [an,bn].
Of course, this simply means that
ag>bg>ay >by >ay>by>--->a, >b,.

Introduce an order on the set Segments(X) according to the following rule.
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Let
u = ([ag, bo] > [a1,b1] > -+ > [an, by])
and
v = ([ag, by] > [a},by] > -+ > [al,,bl.])

be elements in Segments(X ). We say that u < v iff for every segment [a}, b;] there
exists a segment [a;, b;] such that a; = a} > b; > b;.

Let f > e be equivalence relations on S. Let Diag(f,e) be the set of all equiva-
lence relations g such that f > g > e.

Set

Segments(e, f) := Segments(Diag(f,e)).

For s € Zebra(f,e), where s = eqija---e,, we will define an element v(s) €
Segments(f, e) by setting

V(S) = ([ek17ek1+1] > [ek27€k2+1] > > [ekwekr+l])7

where k1 < ky < --- < k, is a sequence of all numbers such that iy ;41 =Z.

15.1.2. Let s € Zebra(f,e),
§=e1l12" " €y,
and let t € Segments(f, e¢) be an element such that ¢ > v(s). Let
t = ([a1,b1] > [ag, ba] > -+ > [ak, bk]).
Assume that i, ,41 = Z. Then there are two possibilities:

(1) either there exists p’ such that e, = a,, €, = ap < by < epy1. In this case
write

];) = 5A‘1p/bplsz’ep+1;
(2) there are no segments [a,/, by | as in (1).

We then set

j/ — jipp+1
p Aep A5P+1 ’

Define:
Fli(s) = jije-- -y
If it is not true that ¢ > v/(s), we then set F'j(s) = 0.
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Claim 15.1. For every s, F is a perfect filtration on j(s).

Proof. Let Segments(f,e)s = {t € Segments|f,e]lt > s}. Let u €
Segments(f, e¢). We see that j(s), = 0 whenever u ¢ N,. Therefore,

](5) ®Segments(f,e) A= ](3) ®Segments(f,e)3 A

for every A:Segments(f,e) — Vect. Thus, it suffices to show that the
Segments(f, ) -filtration on j(s) is perfect. Let

s = ([a1,b1] > [ag, ba] > -+ > [anby])

be an element in Segments(f, ). Then we have an isomorphism

Segments(f,e); = H[ai» bilDiag(s)-

i
Indeed, let a; > u; > b;. Let i3 > is > -+ > i, be the subsequence of all numbers
such that a; > u;, . Then the corresponding flag of segments is given by the formula

[ail,uil] > [ai27ui2] > > [air7uir].

Consider two cases.
Case 1 a; = f. Define an element s’ € Segments(by, e) by the formula

s = (lag, ba] > -+ > [anby)).
We then have
i(s) = Za,, a,,i(51).
We have
Segments(f,e)s = [a1,b1]piag(s) X Segments(by,e)y,
where a pair (u,r), where a1 > u > by and r € Segments(by, ¢€)y,
r = [a5, b5] > [ag, bg] > -+ > [a, b]
determine the flag of segments f, where
f=(lax,u] > [ay, 0] > -+ > [a, b],])

if ap > v and

f=(la5,05] > -+ > [ay,, ,])

ifu= bl.

The filtration on j(s) is induced by the corresponding filtrations on NN
and j(s').

We are going to use induction, so we can assume that we have already proven
that the filtration on j(s’) is perfect. We denote by the same letter the functors
determined by the corresponding filtrations on j(s),j(s’) and Za,a,, -
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Denote j, := IAfAblnj(s’). Since the quotient

Insngn/Ia;ng, (nt1)

is T-free for every finite set T C S/f such that T — S/f — S/by is bijection, we
have:

Jnlin+1 = (Taynnn/Ia;n,, mn)i(s).

Using (11.14), we obtain

jn/.jn—i-l ®Segments(f,e)3 A= @te[blf]n (th/(s/)) ®Segments(b1,f)5/ A(ta 3/)

therefore, j,/jn+1 is perfect, hence j(s) is also perfect.
Case 2 f > a; is similar. O

15.2. Description of Gr'j
15.2.1. Let ¢t € Segments(f,e); let
Zebra(f,¢). = {g € Zebra(f,e)|v(g) = t}.

We consider Zebra(f,e); as an ordered subset of Zebra(f,e). Let i: Zebra; —
Zebra(f,e) be the inclusion.

Let Funct(Zebra(f,e):,C) be the category of functors from Zebra; to an arbi-
trary abelian category C. We have the restriction functor

i~!:Funct(Zebra(f,e),C) — Funct(Zebra(f,e):,C).

Let i, be the right adjoint functor. It can be constructed as follows.
Let F':Zebra(f,e); — C and s € Zebra(f,e). There are two cases:

(1) Tt is false that v(s) <, then i.F(s) = 0;

(2) v(s) < t. Then there exists the least element s; € Zebra(f,e); among the
elements in Zebra(f, e); which are > s (we will show it in the next paragraph).
Set i.F(s) = F(s¢). It is clear that if v(s1), v(s2) < t and s1 < sg, then
(1)t < (s2)¢- This determines the functor structure on i, F.

We will now construct the element s;. Let
s = (e = eyiroeaiog - in_1nen = f).
Let
t = ([a1,b1] > [az,b2] > -+ > [am, bm])-

The condition v(s) < t means that for every u = 1,2,...,m there exists a
number k; such that ey, =a, > b, > ey, and g, 1) =Z.
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Let e =u; > ug > -+ > uy = f be a flag of equivalence relations determined
by the condition

{ulvuza"‘7uN} = {617627"'7e’ﬂ}U{a17b17a27b27"‘7am7bm}'

Define the symbols i;c’kﬂ, where £k =1,2,..., N — 1, according to the rule:

if up = ey, and ugy1 = €y 1, then i;c,kﬂ =i

if up = e, = a, and ugy1 = by, then i;c,kﬂ =1

if up, = b, and ug41 = e, then i;c,k+1 = 1. As we exhausted all the possibilities,
we can now define

st = (urifouaihy - un).

15.2.2.  We have Gr'j 2 i,i~'Gr’(j) and it remains to describe G := i~ *Gr’(j). Let
s be such that v(s) =t; s = (erie - en).
Set ¢* =i ifu=1i;c* =9 if u=17. Then

en

G(s) =X ., €A

€2 en—1

15.2.3. The functors Pa,a.
We will study the functor
PAfAe = liminVSGZebra(f,e)j(s)'

Set

PAf,Ae,t = hminvsGZebra(f,e)j(s)t7
where ¢t € Segments(f, ). Our goal is to show that the functor ¢ — Payactis

(1) a filtration on Pa; A,;
(2) a perfect functor on the category Segments(f,e).

Since these properties are the case for the functor ¢ — j;; it suffices to show that
the derived functors R? liminvzepra(f,e), ¢ = 1, vanish on Gryj. This is what we are
going to do.

15.2.4. Let I be a small category and H:I — C be a functor, where C is an
arbitrary k-linear category. Let I~ be the abelian category of functors I — Vect
Let hg(X) :=hom;(X,H) € C, where X € I~.

H is called flabby if the functor hy is exact. It is clear that flabby functors
are adjusted to the functor liminv; and that there are enough flabby objects in
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the abelian category of functors I — C. The functor i, is exact and maps flabby
functors to flabby (this follows from the existence of an exact left adjoint functor
i~1, therefore

hz*H(X) = homZebra(f,e) (X» Z*H) = homZebra(f,e)t (iile H)7

which implies that 7. H is flabby).
Therefore,

R liminVZebra(f,e) Grt (]) =R liminVZebra(f,e)t G.
The category Zebra(f,e); has an initial object ¢;, which is
ti = (fiall'bliagl'bgi ce bnlf)7
where we assume that in the case e = aq, or b; = a;4+1, or b, = f, the fragment
fiay (respectively b;ia;i1, respectively b,if) is replaced with f (respectively b,
respectively f).

Therefore,

RUminvgepra(f,e) Gr'(j) = G(t;).

15.2.5. Conclusion

As was mentioned above, these facts imply that we have a filtration on Pa FA
by subfunctors Pa,a.+ and that this filtration is perfect. We will also denote
FtPAfAe = PAfAe'

15.2.6. Lemma

We will prove a lemma which will only be used in the next section. We have an
element eZf € Zebra(f,e). Let

Zebra’(f,e) := Zebra(f,e)\{eZf}.
Let P, := iminvzepeqo(s,e)j- We have natural maps
0 — 8ge = Pge — Py, — 0. (32)

Lemma 15.2. The sequence (32) is exact.

Proof. It is easy to check that the composition of the arrows is zero. Let us now
prove the exactness. Let ¢t € Segments(f,e). Set

Po(f7 e)t = hminvseZebraO(f,e)j(s)t'
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The same argument as above shows that:

(1) t+— POf,e); is a filtration on PO(f, e);
(2) the lowest element of the filtration is zero: PO(f, e)(s. = 0.
(3) the induced map

Gr'P(f,e) — Gr'PO(f,e)

is an isomorphism for all ¢ # [f, e]. If ¢ = 0, then the induced map is a surjection
(onto zero).

The lemma then follows easily. O

15.3. Formalism 6, P

We are going to describe a structure possessed by the functors 0, P. Let us first
introduce the elements of this structure and then describe their properties.

15.3.1. Decompositions
Define a map
a:Pa;n; = PaasPasa,

as follows. Let s; € Zebra(A;1,As) and sy € Zebra(As, As). Let (s152) €
Zebra(A1, Ay) be the obvious concatenation. Set

(ps1 X psz)a = P(s15—2)-

It is immediate that this definition is correct.

15.3.2. Concatenations
Let s € Zebra(f,e); s = (e1i12 - - - €5,). Define a map
¢ Pa,a08,05Pasa, — Para,
by setting
psc =10

if the following is wrong:
There exists an m such that 4,,,,+1 = I and

Aem:A22A32A

€m41°

Let Zebra(f,e)x,n, C Zebra(e, f) be the set of s for which this condition
is true. For s € Zebra(f,e),, 5, We define the elements s; € Zebra(A;A;) and
sy € Zebra(Asz,Ay) (we do not distinguish between a diagonal in X and an
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equivalence relation on S by which it is determined) according to the rule:
S1 =e1l12 €
and
So = Aglenmy1 - ep.
We then have a composition:
Cs 1 Payns08,05Pasas — Js10A,850s, — s

Define ¢ by the condition psc = ¢s. Show that this definition is correct.
Let t > s. Let ass :js — j¢ be the induced map. We need to check that ¢; = a;scs.
There are several cases.

Case 1. s ¢ Zebra(f,e)5,n,- Since t > s, t ¢ Zebra(f,e),,; the correctness is
obvious;

Case 2. t ¢ Zebra(f,e)s,,; s € Zebra(f,e), 5, This means that ¢ contains an
element p such that

Ag =em > p>emit,
but it is not true that
Az > p.
In this case, the composition
0nsnsLagenmis = Lanenis = Laspipen i
is zero, therefore a;scs = 0, and the correctness condition is satisfied.

Case 3. s,t € Zebra(f,e),,n, — straightforward.

15.3.3. Factorization maps

Let S,,a € A be a finite family of finite sets. Let f, > e, be equivalence relations
on Sq. Let S = UaSy; f = Uqfa; € = Ugeq; f > e Let My, € Da,_ . Define a natural
transformation

p: Mo Pre, (Mg) — Pfe(lgaMa)'

Let g be such that f > G > e. Any such an equivalence relation can be repre-
sented as g = U,G,, where f, > g, > eq.
Let

O = (g191292 * * * In—1nGn);
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® € Zebra(f,e). Let g, = Uygrq. Let

P}, = (914912920 " * * in—1nGna)-
After deletion of repeating terms we get an element ®, € Zebra(f,, €,). Define
pap: Mo Proe, (Ma)) — Maps, Pre, (Ma)
= B (i gautghugse  lon oguo (Ma))
= (Maiyl g, ) Baiil g,,) - Baig 1y, ) (Ma )
— iz i it ) (R, M,).

9192 9293 In—19n

This defines the map p. This completes the description of the elements. Now let us
pass to the properties.

15.3.4. Concatenation+ factorization

It follows that the map
Xa(Ptiea(Ma)) = Pre(MaMa) — PegPgr(KaMa)
is equal to the map

‘Za(Pfaea (Ma)) - Iz‘7'(7)]‘11ga,})gaea (Ma))

- Pfg |X|a Pgaea (Ma) e ,Pfglpge(gaMa)-

15.3.5. The map
F Py bg g0 Pyre(M) W (Prye, (M1))
= Pre(M) ® (Ppye, (M1))
- Pfufl,euel (M X Ml) (33)
is equal to the sum of the maps F,, where fi > g1 > ey:
fg: Py 0g g7 Pygre(M) X (Pye, (M1))
— Prg8g1 g7 Pyrre(M) B (Py, g, Pgyey (M1))
— Prutr,gug (0g7 g7 Pgre(M) B Pgye, (M1))
— Prufi,9'Ugi 0g'Ugr,g"Ugy Pgrugy etiey (M X M)

- Pf'—’fhe'—’el (M X Ml)'
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Let us prove this statement. We need to show that for every s € Zebra(f U
fla el €1 )7

psF =ps»  Fy.
9
Let
s = ((ko, h%) > (k1) > - (kn, b)),
where
f=ko>k1>-->k,=c¢
and
fi=ho2>2hi1>-->h,=e
Let
sS'=(f=ky>k > >k, =e)
and

be obtained from

and
fi=ho>hi > >h,=e1

by deleting repeating terms.
Let us compute psF. To this end we first compute the composition

Pfg/§g/g// g''e — Pfe — Ikékllzkllklz t 'Ik;/_lk;;l, (34)
which does not vanish only if there exists an index o/ such that &/, = ¢’ > ¢"" >
k{1 This is equivalent to the existence of an index a such that

ka - gl Z g/l Z ka+1~
The composition 34 is then equal to

Pfg/(sg/gu g”E — Pfe — Ik?okl . 'Ika—lka §g’g//Ig//k;+lzka+1ka+2 . 'Ikn—lkn/
- Ikoklzktlk?2 o .Ikn—lkn

= Tipry Ligry - Iy, by,
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The projection psF is then equal to:
Pfg’ag'g”Pg“e(M) X Pfl er (Ml)
= (Thokr T 1ka Ogrgn Lgrkars * Thop 1k (M)
X (ZnohiZhihs *+* Zhy 1 (M1))
- I(kmho)(kl,hl) o 'I(ka—lyha—l)y(kayha){((69/9/l2g//ka+1) o 'Ikn—ﬂCn (M))

X (Zhahass Zhy 1ha (M1))}
= Ly hy) " Lk ) (M K M),

Where the last map is induced by the map
(O g7 Zgrkass) ** Thpskn (M) B (Tnghoss ** Thyyn, (M1))
= Zykarr Thnoika (M) & Tnohors* Thy_yh, (M1))
= Lka,ho) (kas1shosn) " Lkn1 b 1) (ko,h) (M B M)
This map is equal to the map:
(0997 Lo kars) ** Thnskn (M) B (Zhohosr =+ Thoah, (M)
= 0Ly kasr* Thniin (M) B (Ix, 3 Thahars Lo in, (M1))
= (g ha) (9" haLlg" ) Frashatn) * Llhn 1, 1) (ko) (M B M)
= L ha) (ke rshass) " Lkt 1) () (M B M).
The map psF can then be rewritten as follows:
Prgdg g Pyre(M) B P e, (M)
= Tkoks *** TharkaOg'g" Lo kars ** Lhn_1kn (M)
X (Zhony ** Tho1haZhahaLhahars =  Lhy 1h, (M1))
= Lo ko) (kiha "+ Llhaiha-1) (kaha) (g ha) (0" k) L9 ha) (has 1 bt 1)

Ty hn 1) (knhn) (M X My). (35)

Let us now compute psFy, . It follows that such a composition is not zero only
if there exists an a such that

(kasha) = (9",91) > (9", 91) > (kat1, hat1)-

Since g’ > ¢”, ko > ka+1. There exists at most one « such that ko > kot and
k, = ¢'. Then g is uniquely determined and equals g¢;.
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In other words, there exists at most one g; such that p,Fy, # 0. If such a ¢;
does not exist, then there is no « such that k, = ¢’ > ¢” > ka + 1, therefore,
psF = 0. Thus, in this case psF = ps »_ Fy,.

If there exists an « such that ko = ¢’ > ¢” > kat1, then ps Y Fg = psFn,.
It is not hard to see that psFj,, coincides with the map (35) which is the same as
psF, whence the statement.

15.3.6. Concatenation + concatenation

Let Ay D Ag D -+ D Ag. Consider the following maps

a1 PAi A0 A PasA A A PA A — PaabdansPasas — Paag
and

a2:PA 20883 PAsA 0,85 PAasag = Paynydn,asPasag — Pajag

In the case when Az = A4, we also have a map

a3:PA 208 A3 PAsA 0,85 PAasag = Paynydn,asPasag — Pajag
In the case Az # Ay set a3 = 0.
Proposition 15.3. We have

a2 = aj + as.

Proof. Straightforward. |

15.3.7. Concatenation+ decomposition

Let Ay D --- O Ay be diagonals and let E' be another diagonal such that A; D
E D Ay. Compute the composition:

Pa,as00,0,Pasa, — Paa, — PaEPEA,-

Proposition 15.4. If Ay DO E D Ag, then this composition is equal to the
composition:

Pains0n,085Pasn, — PayEPEA A A PAsa, — PaiePEAL;

if A3 D E D Ay, then this composition is equal to the composition:
Pains0ny85Pasn, — Pain0n,nsPasePea, — PaiePeay;

otherwise this composition s zero.

Proof. Straightforward. O
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15.4. Filtrations

We will study the relationship of the above introduced structure with the filtration
on the functors Pra (see Sec. 15.2.5), whenever E D A. We will see how it interacts
with the maps introduced in the previous section.

Let t; € Zebra(f,e)5 A, and t2 € Zebra(f,e)x,a,- Let

t1 = (e1a12€2a23 - €y)
and
ty = (ehalaehans - - €p).
Define the concatenation
t10ts = (e1a12 - €n0A, A€ A o - €hr).

We say that to starts with ¢ if ajy = ¢. In this case we define one more
concatenation

t10 oty := (e1aig - en(sAancé ehahses - el)).
Proposition 15.5. If t1 does not terminate in 6, then

C(Ft1PA1A25A2A3Ft2PA3A4) C Ft15t2PA1A4;
if t1 terminates in 0, then

C(Ft1PA1A25A2A3Ft2PA3A4) - Ft15t2PA1A4 + Ft150t2PA1A4'
Proof. Straightforward. O

We have the induced maps
GrtlpA1A2§A2A3Grt2PA3A4 - Grt15t2PA1A47
if to does not start with J; and
(Gr''Pa, a,08,0,Gr'2Paga,) — Gri1?2Pa a, @ Cr1%°2Py A,

if to starts with 4.
We see that

Cr'"Pa,n,0a,0, Gri2Pa,a, = Gri02Pp A, 2 Gri12°2 Py A,

whenever t, starts with §; otherwise we have only the first isomorphism in this
chain.

The above map (on the graded components) is induced by this isomorphism in
the case when t5 does not start with §; otherwise the above map is induced by the
direct sum of our isomorphisms.
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15.5. Resolution

Fix two equivalence relations f > e on S. We are going to construct a resolution
of iAfAﬁ .
Denote by Flags(f, e) the set of all “non-strict” flags of the form

f=a0>by>ar>by--->b, =e,
where n > 0 and b; # a;41 for all . For i =0,1,...,n — 1 set
Ay = aobo - - - ag—1bg—1axbr 10k 12brr2 - anbn,
(we delete by, and ag41). In the case axy1 = br41 set
Al = aobo - - - arbragy2br 2 - - anbp,

where we delete apy1 and by 1.
Denote |A| := n and set

R(A) = Pal b1 §b1a27)a2b2 T Panbn'

Let Ry = 4=, R(A).
Denote

Ty :Pakbkdbkak+l7)ak+lbk+l — Fagbryq-

Let X :R(A) — R(A)) be the map induced by .

We also need maps Y}, defined as follows. In the case when ayx41 = bi1 we have
an isomorphism Y}, : R(A) — R(A)-

In the case apy1 # br41 set Y = 0.

For example: Let |A| = 2, then the above theorem implies that X;(X; +Y; —
X5) =0 as amap R(A) — Pre.

Define the map d,, : R,, — R,_1 by the formula

dp=X14+Y1 —Xo Yo+ X3+ Y3+ (=1)"Vpoq + (—1)"TLX,.

The above identity implies that d,,_1d,, = 0; thus, (R,,d) is complex.
We have a natural map v:Rg — ife; we have vdy = 0.

Theorem 15.6. (1) The homology H;(Re,d) =0 for all i > 0.
(2) The map v identifies Hyo(Ra) with ife.

Proof. We are going to consider the associated graded complex with respect to a
certain filtration which we are going to define.
Define the set Segments(fe)? whose elements are flags of segments

[al,bl] > [a2,b2] > > [an,bn]
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such that
f>a1>by >as >by>a3>--->b, >e.
For each t € Segments(f,e),
t = (lay, b1] > [ag, by] > -+ > [ag,, by])
define an element from Segments(f,¢)?,
v(t) = ([ax, b1] > [az, ba] > -+ > [ax, by])

according to the rule: the sequence aibjasbs - - - by is obtained from the sequence
ayby ---al b, by deleting all its repeating terms.
For an s € Segments(FFE)?, we set

DR, = @ F'(R.).

v(t)=s

We see that F' is a filtration on R, and that the associated graded complex can be
computed by the formula

GryRe = @ Gr'(R.).

v(t)=s

Let f' > €’ be a pair of equivalence relations on S. Let o € Segments(f’e’)?
be the least element, which is simply [f’e’]. Denote R°fo = GrzR,. Let s €
Segments(fe)? be an arbitrary element;

S = [ahbl] > [a27b2] > > [anbn]
We then have
Rf = ifaliﬁ°alblibla2%°a2b2 sl g e

This implies that our task is reduced to proving that :R° ¢, is acyclic, which will
be done in the next subsection.

15.5.1.  We see that the complex Ry, is isomorphic to the complex Rfce ® dfe,
where R, is a complex of vector spaces; the vector space Ry., has a basis labelled
by the elements

H = (f = ejuizequszes - - ey = e),

where e; > -+ > ey each ugk41 is either p or § and the total number of deltas is
n. Denote |H| := N. The differential is given by the sum of several terms which
we are now going to describe. Let Ay H be zero if ugr+1 = p and let it change
Ukk+1 from § to p otherwise.
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Let By H be nonzero only if ugg11 = 6, ugr+1x+2 = 9, in which case it replaces
the fragment wggy1€p4+1Ug+1k42 With dggio-

Let CxH be nonzero only if ugry1 = 6 and ugy1x4+2 = p, in which case the
fragment

Ukk+1€k+1Uk+1k+2

is going to be replaced with p.
Denote by dj the number of symbols ¢ before agy41. It follows that the differ-
ential on R is given by

d=>"(~1)"(Ax + By, + Cy).
Set
FyR = EB|H|§N(CH.

It is clear that F' is a filtration on R the associated graded complex has the basis
labelled by the same elements, the differential is given by

d =) (~1)%™Ay.
Let
b= (f=e1>e3> - >e,=¢)
be a flag and let Rg C Grp R be the subcomplex spanned by the elements
H = (equia---ey),

with arbitrary w;;+1 (it is clear that it is a subcomplex).
We have Grp R = @pRp. Furthermore, let V = C(d, p) be a complex in which
|6/ = 1; |[p| = 0 and d§ = 0. Then Rp 2 TNV and is therefore acyclic. O

15.6. The structure of system on the collection of functors Ry,

15.6.1. Let f > g > e be a sequence of equivalence relations. Define the decompo-
sition map

Asrge : Rfe = RgRge-
Let
A= (f=a1braz---ayb, =€)
be an elements of Flags(fe). If there exists & such that ap 2 g O by, then set
a:P(A) — P(arby - -bi_1ak9)P(gbg - - - anby)
is induced by the decomposition map

Pak-bk - Pakgpgbk'
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Otherwise we set

alpay = 0.

15.6.2. Factorization maps

We will first study

15.7. Factorization maps for R

15.7.1.  We keep the notations of the previous subsection. Let F,, € Flags(fa,¢a),
a € A and F € Flags(f,e). We are going to define the map

p({Fataca; F): Mo R(Fa) — R(F).

This map is zero for all F,,, F' except those determined by the following conditions.
Let

F=(f=a1>b;>ay>by---a, >b, =c¢).
We then require that

(1) For every i: b;o, = 0,414 for all o except exactly one (denote it by «;);
(2) Fix « and consider the sequence

A1 Z bla Z A2¢ Z Zana Z bna~
Construct a subsequence
F(Ol) - (aMlaleaaMgabNga e aMroszroz)

according to the following rule: we delete every pair b;,, > @;414 in which b;, =

Aiy1a- We have: My = 1; N, = n; bya 7 aum,pia; Mry1r = Ny + 1. Therefore,
F(a) € Flags(fa, €a). Our second condition is then F,, = F'(«) for all a.

15.7.2.  We have a natural map
Ta : R(F(a)) = Parabiab1aasa *** Panabnas
induced by the maps
PGMm bn,, PGMm b, ,PGMMH bar; 41777 PaNm bN,,
which induce maps
73111\41(%bNm5[31\7104(1,\/1206 t ',PaMmC bN,o

- Pu]ﬂlabjulapajula‘*’lela‘*’l o PaNlalea 5bN1aaM2o<
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x PaMzabMQa PaM2a+le2a+l o PaN2(1bN2(Y 5bN2aaMsa e
X PaMr‘aer-a PaMm+1me+1 T PaNmbNm
= Palbl§bla2pa2b2 o 'Pllnbn'

We then define

Ha Ta
IEO‘R(FO‘) I Igapalabla(sblaa&x e Panabna

- Pa1515[31112 o 'Pllnbn

=~ R(F).

15.7.3. Signs

The function i — s; defines a partition of the set {1,2,...,n}. Fix an orientation
of S and denote by s(F') the sign of this partition.

15.7.4. Definition of the map
Define

p=Y s(F)u{F(@)}aea, F).
F

15.7.5.  We are going to check that g commutes with the differential.
This follows from the several statements we are going to formulate.
We assume that I satisfies the conditions from the previous section.
(1) Let

F<Z> = (a1b1 coeaibipai40 bn);
Let X :R(F) — R(F(i)) be induced by the map
Pa,ibi (sbiai+1 Pa'i+1bi+1 — Pa’ibi+1 .

Let U(F,4) be the set of all F’ € Flags(f,e) which are obtained from F by
changing b;, a;1 only in such a way that oy, b;q, and a;;11,, do not change.
This means that every F’ is of the form

’
a151a2[72 e aibiai+lbi+1ai+2 s anbn,

where b . = bja,; @} 4, = Qit1,a;, and for all a # a;, b, = a4,
Let j be such that Nj,, = ¢ (such a j always exists and is unique because
bia, 7 ai+1). We then have:
, / . N v Fa
D F e UF )X p(F (@)aea, F') = p({F(@)ara;s Flai) ()} F(i) X,
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To check this identity it suffices to consider the case n = 2, in which case the
statement follows immediately from (33).
(2) Let

F = (aibragbs -« - a,by,).
Assume that a; = b; and set
Fli] = (a161 - b;_1a;410,11 - - a,by,).
We then have a natural map
Yi: R(F) — R(FIi]).
There are two cases:

Case 1. o;—1 = oy. Let j be such that Nj,, = 4. In this case we have:

Yir(F(a)aeca; F) = p({F(a)asta,, F()[j]}; F[i])ij(m)_

Case 2. ;1 # «;. In this case define
F/ = (CI1 s bi71ﬂ;b;ﬂi+1 bi+1 cee Clnbn)

in such a way that o} := af"
We then have

Y/ u({F(@)acal, F) = YV p({F'(@)aea}, F).

! /
= Oi41, ai—i—l =y and amg = amiH.

These facts imply that the factorization map commutes with the differential.

15.8. The factorization commutes with the asymptotic decomposition. We omit
the proof as it is straightforward.

15.9. The system m and a map (R) — (m)

Was discussed in detail the above.

16. Bogoliubov—Parasyuk Theorem

Let (R) be the resolution of the system (i) constructed in the previous section and
let M be a cofibrant dg-A x-sheaf endowed with an OPE-product over (i).

Theorem 16.1. There exists an OPE structure on M over (R) which lifts that
over (i).

The proof will occupy the rest of the section.
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16.1. Unfolding the definition of an OPE-algebra over (R)

Let p:S — T be a surjection of finite sets and N a A yr-module. We have R)(N) =
Pp(N) — I,(N). This produces a natural transformation (whose differential is not
7€ero):

T Ry — L.

Thus, we have an induced map M™% — T,(MXT).
We also have a map of systems

R—m

which induces a strong homotopy *-Lie algebra structure on M. It turns out that the
maps 7, and the *-SHLA structure on M completely determine the OPE-structure
on M. The precise formulation will be given below.

16.1.1.  Suppose that for every surjective map pg:S — pt, we are given a map
as: M2 = 7, (M),
such that:

— for #5 =1 we have: ag = Id;
— ag is equivariant with respect to bijections of finite sets.

Assume, in addition, that we are given some maps
Cs: M%% = 5, (M)

of degree 1, where #5 > 1, C's are equivariant with respect to bijections of finite
sets.

We shall impose certain conditions on these maps which will allow us to con-
struct an OPE-structure on M using these maps.

16.1.2. Condition 1

Let ¢:S — T be a surjection of finite sets. As usual, the product of maps ag gives
rise to maps

ag: M™S — T, (M%7,
Our first condition is as follows.
Condition 16.2. C1 Let
S—SR-5T
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be a sequence of surjections and q = sr. Then the following diagram should
commute:

MBS ——— T (M¥F) —— 7,7, (M¥T)

| |

T, (MBT) I,is (M™T)

One sees that it suffices to check this condition for all p:.S — pt.
This condition implies the following fact. Let

af s MM — 7, M8 — i, M7

Let p := (p;:S; — Sit1), 1 =0,...,n — 1, be a sequence of surjections, where
So=45,85,=T, and

Pn—1Pn—2"*"Po = P-

Let af := a and let a' := a’. Let j := (j1,j2,...,in_1) be an arbitrary sequence
of elements from the set {Z,i}.
Define the map

jp : MIXS — (jl)Pl (j2)p2 T (jnfl)pnfl (M&T)
by the formula:

o 9 g
MBS — (11)p (M) = (1), (j2)p (M) ——= -+ ——= (11)p1 (i2)p

w (hn=1)p,y (MHT).

Condition C1 implies that the collection of maps jp for all j and p determines a
map ope,, : MBS — P, (MBT).

16.1.3. Condition 2

Let us now formulate the condition on the collection of maps Cs which is equivalent
to the fact that this collection endows M[—1] with a structure of *-SHLA.

We will formulate this condition in a slightly unusual way. Let p: S — T be a
surjection. Define the map

Cp: M®S §p(M|zT)
according to the following rule.

(1) The map C,, is not equal to zero only if there exists a unique ¢, € T such that
#(p~'t,) > 1 (in which case #(p~1(t)) = 1 for all t # t,,).
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(2) If the above condition holds, then C,, is defined as follows. Let S, := p~'t, and
S’ := S\S,. Then C, is defined as the composition:

M&S ~ M&SP X M&S'
Cg,KId y
= b, (M) R MY 2 5,(M™T),

where the last arrow is constructed via the natural identification T'= S’ LI pt.

Now let p:S — T be a surjection and let 3, be the set of all isomorphism
classes of splittings

S RrR-IT,

where r, ¢ are surjections and p = rq. Then the *-SHLA axiom can be formulated
as follows:

Condition 16.3. C2 For any surjection p:S — T, we have:

ac,+ Y C.Cy=0,

(r.q)€Xy

where we pick one representative for each element in ¥,,.

It is clear that if this condition is satisfied for all p:.S — pt, then it is satisfied
for all p.

16.1.4. Condition 3

This condition describes the differential of the maps a,. Let p,q,r be the same as
in the previous subsection. We have the natural transformation

for 162y — Tgr.
Using this transformation, define a map

far
—_—

Cq ap
Ggr : MBS "> 5, (M) —o 5, T, (MPT) > T, (MET)

Condition 16.4. C3 For every surjection p:S — T, we have:

da, + Z ¢qr = 0.

(q,r)€X,

As in the previous subsection, if this condition holds for all p: S — pt, then it
holds for all p.
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16.1.5. We will show how, having the maps ag, C's satisfying conditions C1-C3,
one can construct an OPE structure on M over (R).

The definition of (R) implies that to define an OPE-structure over (R), we have
to prescribe maps

M@S — Pal 5b1 PaQ 6b27)a3 e Pan 6bn Pan+1 (MT)7 (36)

where (073 Sg(ifl) — 521‘_1; bl : 521‘_1 — 521‘ are surjections; S() = S, SQnJ,_l = T, and
b; are not bijections. We define the map (36) as the composition

RS T RS, _Ch RS
MBS —"% P, MBS =P, 5, MBS >
> PuOby - Par6b, Py (MT).

One checks straightforwardly that all the conditions are satisfied.

16.2. Proof of the Bogoliubov—Parasyuk theorem

We are going to use induction. To this end introduce a notion of N-OPE-structure
on M (over (R)), where N > 2 is an integer. This means that the maps ag,Cg are
only defined when #S5 < N and the conditions C1-C3 are satisfied for all surjections
p such that Vi#(p~1(i)) < N.

The theorem follows from two statements:

(1) (base of induction). There exists a 2-OPE structure on M such that the
composition

a
M &M —2> Ty 5 (M) — ig1,2y(M)
equals to oper; .

(2) (transition). Assume there exists an N-OPE structure on M such that for every
finite set S with #S < N the composition

MBS 5 Tg(M) —ig(M) (37)

coincides with opeg. Then there exists an (N + 1)-OPE-structure on M such
that for all S with #5 < N the maps ag, Cs coincide with the existing ones
and the composition (37) coincides with opeg for all S with #S < N + 1.

Statement 1 follows from surjectivity of the map g 23 (M) — ig93(M)
(because M is cofibrant). Therefore, the induced map

7+ hom(M B M, Ty 0y(M))52 — hom(M & M, i oy (M))50:2)
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is also surjective. Let ag; 2y be any lifting of opegy 5y. Then r(dayy 2y) = 0, there-
fore, the image of dayy o) is d19y(M). Set Cyi9y = —dagigy. It is clear that
(ag1,23, C1,2) determine a 2-OPE-structure.

Statement 2. Let j be the functor from the category Zebra(ps) to the category of
functors D-modx — D-modxs as in (15.2.6) and let

PO .= Pg = liminvseZebraO(ps)j(s).
Let
P :=Ps = liminvczebra(ps)i(s)-
The existing N-OPE product defines an equivariant map
ag: M™S — PO(M).
According to the lemma from (15.2.6), the map
P(M) — P(M)
is surjective. Therefore, there exists an equivariant lifting
at: MBS — P(M)
of a®. Define ag as the composition
M®S — P(M) — j(M).

The condition C1 is then automatically satisfied. The map Cg can be uniquely
found from condition C3. Indeed, let pg:S — pt. Let

5% = S \{(ps, 1ds)}
Then C3 reads as:

¢ps,1ds = _dﬂS - Z ¢q,r'

(g,m)€XY

The right-hand side is uniquely determined by the existing N-OPE structure and
by the chosen map ag. It is only the left-hand side that depends on Cs. One can
find a unique Cyg satisfying C3 iff the right-hand side is a map whose image is
contained in dg(M) C Zg(M). Let us show that this is indeed the case. Denote the
map specified by the right-hand side by w: M®5 — Zs(M). The image of u lies in
§s iff for every (q,r) € X%, the through map

MBS > Tg(M) — Tqir (M)

is zero. This can be checked directly.

With such a choice of Cg the condition C3 is satisfied.

Condition C2 is satisfied as well, as follows from the direct computation.
Bogoliubov—Parasyuk theorem is proven.
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17. The Maps Ry ,g — Ry 1a01dug
17.1. Notations

17.1.1. Let ¢:S — T, g: A — B be surjections. Define a functor iJ4, from the
category of Dxrus-modules to the category of Dysua-modules by:

ij¢Ug(M) = i¢|_,g(M) ®(9XsuA (B¢ X CQ)'

One can also define iJ4.4 as a quotient of Zy,, with the sum of images of all
maps

Oy utdZesug — LoLigs

where ¢ = p201, P1, P2 are surjections, and ¢; is not bijective.

17.1.2.  We then have natural maps
Zygug — LoiTyug, (38)

which shall be denoted by ayp¢xg-

17.2. Map &(9, 9) : Poug — Lpu1adidug
Let

¢0:S—-T; g:A—B
be surjections. We shall define a map

£(9,9) : Ppug — Zpuiddidug

recursively. The parameter of the recursion will be |g] = #A — #B. Since ¢ is
surjective, |g| > 0. To describe the recursive procedure we need to introduce some
notation.

Suppose we are given an (arbitrary) collection of maps

£(¢.9)
for all ¢ and all g with |g| < N. Fix a g with |g] = N. We then construct a map
X(9,9) : Poug — ZpunaZidug
by means of the formulas:

X(¢a g) = U(d)a g) - Z F(¢a 91792)a

9=g1092,9179
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where

U(¢»9) 17)¢ug - Iqsug - IqsuIdIIdug; ( )
39
F(¢,91,92) : Pyug — Poug, Praug, — Zeutadidug, Zrdug, — ZeuraZidug-

The recursive procedure will be now described by means of:

Definition-Proposition 17.1. There exists a unique collection of maps &(¢, g)
for all surjections ¢, g such that

(1) If |g| =0, i.e. g is a bijection, then £(¢, g) is the natural isomorphism induced

by g.
(2) The composition

Psug — Leutadtaug — ZgtaZidug

equals X (¢, g).

Proof. We shall prove by induction in |g| that given a natural N, the required
maps £(¢, g) can be constructed for all g with |g] < N.
The base of induction, N = 0, is evident. Let us now pass to the transition. Pick
a g with |g| = N and assume that our statement is the case for all ¢’ with |¢’| < N.
We will then show that for every decomposition g = Ik, where k,[ are proper
surjections (i.e. surjections but not bijections) the through map

X(9,9): Poxg = LoLg — TpLihi (40)
is zero. Indeed, we have the following commutative diagrams:

U(oUg)

(D Pyg —— TpuraTiang — Zg1aZiaukita
| e
PourIiau
II) The composition
( p
F($,91,92) .
Poig P s TyinaTang — ZouaZiaunita (41)

does not vanish only if one can decompose g = lug; in such a way that go = lu
and k = ugy. In this case the map (41) is equal to the composition:

Psg — Pougi Zrauiu —= Peuiddidug: Zrauwitaur —= ZeutaZidug, witdui-

Therefore, the composition (40) is equal to
v .
Psrg —= PourPraui — ZyuraZidurizau
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where the arrow V is induced by the map
W Pyur — ZgutaZia
given by the formula

W=Upr— >,  Fld,g1,9) —Eon-

k=g291,91#9

The induction assumption implies W = 0, therefore the map (40) vanishes as well.
Thus, the map X (¢, g) actually passes through Zg 1q01aug thus defining a map

&(¢,9) : Poug — LZgunadiaug-
This accomplishes the definition of £(¢, g).

17.2.1. Claim

Define maps
F (., 91,92)  Poyxg = Poxgi Puxgs = L60g11Tyxgs — LgiTyxg-
Let
a(@,1,9): Poyxg = LpiJyxg

be as in Sec. 17.1. O

Claim 17.2.

a(d,h,9) = D F($,,01,92)-

9=9291

Proof. (1) If ¢ is bijective, then the statement follows directly from Proposi-
tion 17.1.

(2) For an arbitrary 1, let

D(¢,¢7g) = a(¢,¢7g)— Z F(¢,¢791’92)

9=9192
be the difference. It then suffices to show that the composition
D o~ .
Povxg — LoputdiTpug —= Lg1aZidugivuid
vanishes, by virtue of injectivity of the map
iJypug — Tidugiyuld-
We have the following facts.
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(I) The diagram

a(9,,9)

Pyaug Zp1diTypng — ToutaZidugitduy
PsLgPyutd —= Zsugiputd

commutes.
(IT) The following diagram is commutative:

F(¢,,91,92) . .
PupoLg o Zy1aiJypug — TyutaZidugiypuid
7)¢ug1 szpllzl_lld —_— I¢6IdLIgLIIdugzil/1uId

Using I, IT we see that the statement follows from the case when ¢ = Id. O

17.3. Claim

Introduce a terminology. Let g: A — B be a surjection. Let e be an equivalence
relation on A determined by g. A decomposition g = gi - - - g2g1 is by definition a
diagram

gk —
59_1>S/61 9_2,5/62...L,5/ek_1 9_’€>T,
where
€1 > ey > > €p1>€

are equivalence relations on S and ¢; are natural maps.
Let g = g2g1 be a decomposition. Define a map

Y (6,7, 91,92) : Pypgug — Pougi Puwigs — ZeutdOtdug, ZyutdOtdugs
— ZgutaZyutadrdug-

Set
Z(d,,9) = Y Y(h,,91,90).

9=9291
Claim 17.3. The map Z(¢,1,g) coincides with the composition

Pyoug —= Lyg1ddtdug —= Leutateurddtdug -

Proof. Denote this composition by W (¢, 1, g). We shall use induction in |g|. Let
g = g2g1. Define a map

Z(¢,%, 915 92) : Poypxg — LpipZy
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as follows:

Z(ps1h,g1) .
Z(6,%, g1, 92) : Pysg —= Puoigy Pidugs ————> Tyutaiputadidug Zidugs

— Ly 1daiyutaZidug-

Define maps W(¢,1,g1,92) in the similar way (using W(¢,,g) instead of
Z(¢,1,9)). By the induction assumption,

Z(¢7 ’(/}7 91, 92) = W(¢a "/}7 91, 92)

whenever gog1 = g and g1 # g. Therefore, it suffices to show that

Z Z(¢, 0, 91,92) = Z W(¢, ¥, 91,92).

9291=4g 9291=4g

Let L be the sum on the L.H.S. and R be the sum on the R.H.S. It follows that L
equals the sum, over all decompositions g = g3g2g1, of the following maps

Puygug = Loutadtdug: Puugsgs
5 Ty1a01dugs Pyugs Zidugs — Leinadidug: ZyutdSidugs Zidugs
5 Tyunadiaug ZoutaZidugs g — ZoutaZyputadidug, Zidugsgs
— ZgutatyputaZidug-

Fix g; and set g2 = g3go. The previous claim implies that the sum of the
compositions of arrows from « to w, over all decompositions g2 = g3g2, equals the
following composition:

Zy1d01dug, Pyug2 — Zeutadtdug, ZyutdTidug? -
Therefore, L equals the sum over all decompositions g = gog1 of the following maps:
P¢¢ug - P¢ugl Pwugz - I¢uld5lduglzwugz - Iqﬁl_lIdI'Ll)l_lg
— ZynaZyutaZidaug — ZeutatyputdZidug-
This can be rewritten as follows:
Pugug = Pougi Puug, — Zoutadidug Zoug, — Zeutalyug
— Ly 1diJyug — ZgutdivutdZidug-

According to the previous statement, the sum of these maps equals the following
composition:

Pygug — Lypug — Lyuaideug — ZeutaiyuiaZidug-
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This composition, in turn, is equal to:

Puosug — Lyoug — LZoutaZyuiaZidug — ZegutatypuraZidug-

It easily follows that this sum equals R. This completes the proof. O

17.3.1. Compatibility with X

Claim 17.4. The following diagram is commutative:

Privgs (M1) K Pry1g,(M2) —— Ly 01a01dug: (M1) B Zp,u1a01aug, (Ma) ——= L1 f01a01dugy g, (M1 B M)

i

Priufaugiuigs (M1 B Mo)

Proof. We shall use induction. The composition
Pflugl (Ml) X szugz (MQ) - Pfl'—’fz'—’glugz (Ml X M2)
— I ufu1d01aug ug, (M1 & M) — T,y punaZiaug: ug, (M B Ma)

equals the negative of the sum over all decompositions g1 = hohi, go = hahs,
(ha U hyg #1d) of the following maps:

Privgi (M1) W P19, (M2) = Priufougiug, (M1 X Ms)
— P UfaUhy Uha Ziduhsuhg (M1 B M)
— L4, Uf201d01dUh, Uhs Ziduhs Uih, (M1 B Ma)
- Ifll_lle_lIdIIduglugz (Ml X M2)7
which is (due to the induction assumption) the same as:
Privg (M1) B Pry1g, (M2) — Pryiiny Ly (M) WP pun, In, (Ma)
— P UfaUhy Uhs Ziduhsuhg (M1 B M)
— L4, Uf>01d01dUh, Uhs Zrduhs Lih, (M1 B Ma)
- Ifll_lle_lIdIIduglugz (Ml X M2)7
which, in turn, equals:
Priug, (M1) @ Pryig,(Ma) — Py, Trauns (M1) B Pryun, Ziaun, (Mz)
— L4, U1d01duh, Ziduhs (M1) B Zr, i1dOtauns Zidun, (M2)
— L, utaZraug, (M1) ¥ s, u1aZidug, (Ms)

- 7Dfl|_1f2|JId:ZIdI_lgl g (Ml X Mg)
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The sum of all such maps over all decompositions g1 = hshi, g2 = hqhs, is zero.
Therefore, the negative of the sum over all decompositions with hslhy # Id is equal
to the map in which hy = g1, hy = go, hs = Id, hy = Id, which immediately implies
the commutativity of the diagram in question. O

17.4. Maps c(¢,g) : Porg — Peuradidug

First, we define maps

E(P1, 02, -, On. 9) : Pog — ZputaZesund - - Lo, u1dO1dug,

where ¢ = ¢ 0p—1 - @1, as the sum over all decompositions g = ¢,g,—1---g1 of
the maps:

P¢|—|9 - P¢1|—|91 P¢2U92 o 'P¢n|—|gn
— L, u1d01dug: ZgsL1dOtdugs * * * Zg,,u1d O1dug,,

— Ly u1dZgo1d -+ L, u1d01dug-

The previous claim implies that the collection of maps £(¢1, @2, ..., dn,g) for
all decompositions ¢ = ¢, ¢,—1 - - - P71 gives rise to a map

c(9,9) : Pog — Poutadidug-
17.4.1. Claim
Claim 17.5. The composition
Pyoug — Pyoutddidug — Peuta Pyuiddtdug
is equal to the sum, over all decompositions g = g2g1, of the maps

Pawig —= Paigi Pyigs —= Pputdotdug: PyutdOtdugs —= Peutd Pyutddtdug-

Proof. Clear. O

17.5. Composition

Claim 17.6. The following diagram is commutative:

Psugun ——— Pgurdutddidugun

,

PsLgutdO1dutdun
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Proof. First, let us prove that the diagram

Psugun —— LputautdOtdugun
PpugutdO1dutdun

is commutative. Denote the composition

Pougun = Peugutadidutdun = Zgutdutadtdugun — ZeutdutdZidugutddtdutdun

by U(¢,g,h).
Let g = g2g1 be a decomposition. Define a map

U(9, 91,92, h) : Psugun — ZeutautaZiaugutddtdutdun

as the following composition:
U(9, 91,92, h) : Pguigun — Peuguiddrdutdun
— Pougrutd Prdugs utddtdutdun — Zeutdutd01dug, utdZidugs u1dd1dutdun

— Zgu1dutaZidugutddtdutdun.

Let also

A9, 9, ) Pougun — Leuguiadidutaun — ZgutautdZidugutd dtdutdun.-
Then, by definition,
U(¢7gvh) = A(¢7g7h) - Z U(¢7glag2ah)' (43)
9=9291,917#9

The map U(¢, g1, g2, h) equals, in turn, the sum over all decompositions h =
hohy of the maps:

U(¢7 91,92, h17 h2) :P¢|_lg|_lh

U(¢,91,h1)
— Peugiuh, Pldugsuh, —————

Zu1dutd O1dug, utd 0TdUTdUh, ZTdUgs LTdOTdUTdU R
— ZgutautdZidugutd Otdutdun -

Then

U(¢7gah) :A(¢7gah) - Z U(¢7gl7927h17h2)' (44)

9=g291,h=hah1,91#g

Set
U(o,g,h1,he) :=U(9,9,1d, hi, ha) : Pougun — ZeutdutdZidugutd Zidutdun
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to be

P¢uguh - Pqﬁl_lguhl PIduIduhz

U(¢,g,h1)
———— ZyurautdZidugutddtdutdun, Zrdutduhe — ZgutdutdZidugutd Zidutdun -

Similarly, let

A(, 9, h1,h2) : Pyuigun — Peugun, Prdutduns

A(¢,g,h1)
———— Ly 1dutaZidugutddtdutdun, Zidutdune — ZeutdutaZidugutd Zidutdun

and

U(®, 91,92, hi, ha, ha) : Pgugun — Peliguhshy Prdutduhs

U(¢,91,92,h1,h2)
——————— ZgutdutaZidugutd S1dutduhs hy Z1dutdUns

— TyutdutdZidugutdZidutdun-

Equation (43) implies that

Z U(¢7g7 h17 h2)

h=hah1

= > A, g,h1,hs) — > U(¢, 91,92, h3, ha, h1).  (45)

h=hahy 9=9291,917#9;h=hszhah1

The map
Z A(¢7ga hla h2)

h=hahy
is equal to the following one:
X(¢,9,h) : Pyugun — Lgugun — LgutautaZiaugutaZidutdun -
The map

Y($,g1,92,h1,h2) i= Y U($, 91,92, b1, ha, hy)
h2=hgh,

equals
Pougun — Pougiuhi Praugsun?

U(¢,91,h1)
————— Zgu1dutdOtdug, utddtdutdun, Zidugs xhe — ZeutdutdZidugutd Zidutdun -

Therefore,
Y(#, 91,92, h1, he) = U(9, 91,92, h1, ha).
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Equation (45) can now be rewritten as:

Z U(¢7gahlvh2) :X(¢7gah)_ Z U(¢7917927h17h2)' (46)
h=h1hs 9=g192,h=nh1h2,91#g
Note that

U(¢7g7h‘17h2) = U(¢,g,Id,h1,h2).

Therefore (46) implies that

U(¢,g,h,1d) = X (¢, 9,h) — > U(¢. 91,92, b1, ha).
9=g291,h=nh2h1,91Uh1#g2Uh>

The induction assumption implies that U(¢, g1,h1) = ¢(p, g1 Uh1) if g1 U1 #
g U h. This implies that the right-hand side equals the composition:

c(¢,gUh)
Psugun —— LputdutdO1dugun —= ZgutdutaZiauguta Zidutdun -

By definition, the left-hand side equals the composition:
quuguh - P¢ugu1d5ldulduh
— ZyutdutdOtdugutddrdutdun — ZeutdutdZidugutd Zidutdun -

Therefore, the diagram (42) is commutative. The original statement can now be
proven straightforwardly using 17.5. O

17.6. Compositions POP — P — Z6

Claim 17.7. (1) The composition

Ps11g1 0119 Posiigs — Poug — Leunddidug (47)

vanishes if o1 U g1 # Id and ¢1 # ¢ or g3 # 1d. In the cases when it does not vanish
we have the following rules:

(2) In the case ¢1 U gy = Id, this composition equals:
Ogaliga Popsigs — OgaligaLepsu1dOTdLgs — Lg1dOTdug-
(3) In the case ¢p1 = ¢, g3 = 1d, this composition equals —A, where
A Pyig, 01dugs — Lg1dO1dug, O1dugs — Zeutdrdug-
Proof. We shall use induction in g. Compute the composition

F(¢,9",9°)
Pp1ugi 051195 Posigs —= Porig —————— LpuiaZidug, (48)
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where F(¢,gt, g?) is as in (39). This composition is equal to:
Pp1ugi 0atigs Postigs —= Peig —> Porigt Praug? — ZeuiaO1dugt Zidug?
— Ly 1aZ1auy-
This composition does not vanish only if

A: g3 = 92% 91 = ug291;
B: ¢1=¢; g' = g1, 9* = 9392.

Consider several cases.

Case 1. ¢1 # ¢ and ¢1 x g1 # Id. The induction assumption implies that the
composition (48) vanishes whenever gs # Id. Therefore, the composition

P10g1 0209 Poatigs — Poig = LoLnadiaug — ZguraZlidug
equals
P¢1 Ug1 5¢>2ng P¢3Ugg — Idmg — Id)LJIdIIdI_Ig~
This composition vanishes because ¢ U gy # Id.

Case 2. ¢1Ugy = Id, g # Id. In this case B is again excluded. By the inductive
assumption, the composition (48) equals

F(¢3,u,97)

A(u, 92) 1 0galigs Pésligs 5¢2ug21¢311dug2u—> Ly 1aZidug-
The composition
Opatigs Posiigs — Loug — LpuraZidug
equals
B: 0¢,09,Postigs — 0¢a01gs LosiaLidugs — LouiaZidug-
Therefore, the composition
Ootigs Posigs —= Poug —= Zeu1adtdug — ZeutaZidug

equals

B— Z Au, g°).

g93=g%u,g?>#Id

It follows that this composition equals:
§¢2|—’gz P¢3|_193 — §¢2ugzz¢3uld§ldug3 — I¢uIdIgl_lId
which is what is predicted by 2.
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We have the last remaining case ¢1 = ¢, g # Id, where we have to add contri-
butions from A and B.

Then the contribution from A is equal to zero if g3 = Id. Otherwise, according
to the inductive assumption, it equals to —C', where

C': Py, 01dugs Praugs — ZeutdOtdug, 01dug. Zidugs — ZeutaZidug-

We see that the contribution from B equals C. Therefore, the composition (48)
is zero if g3 # Id and C' otherwise. Note that the composition

C': Pyiig, O1duigs Praugs — Zoug

is always zero. Therefore, the map (47) is zero if g3 # Id and —C otherwise. This
completes the proof. |

17.7. Compositions P6P — P — Pd
Claim 17.8. Consider the composition
Po1ugi 062019, Postigs — Poug — Poutadtaug- (49)
If ¢o # 1d, this composition is equal to the following composition:
7)¢1ugl 5¢2ug2P¢3ug3 - P¢1uld5ldug1 5¢2ugzp¢3u1d5ldugg
— Pgrutd0psu1d Ppsutd1dug — Peutddtdug-
Otherwise, this composition is equal to zero except the following cases:
(a) &1 X g1 =1d, in which case our composition equals
01dugs Peligs — 1dugs Peutddtdugs — PeLidd1dug: (50)
(b) ¢3Ugs =1d, in which case the composition is equal to
—C, (51)
where

C': Py, 01dugs — Poutadidug, Otdugs — Poutddrdug-

Proof. We will prove the statement by induction in ¢.

It suffices to check that

The composition (49) coincides with the maps (50), (51) after composing each
of them

(1) with the map
Py 1adraug — Zeutadrdug
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(2) with the maps

Pytadtaug — PgutaPs,uiadidug,

where ¢1, g2 # 1d.
(1) Can be checked straightforwardly:
(1a) ¢ £1d,

If ¢1 # Id, then both compositions are immediately zero.
If o1 = Id, g1 # 1d, then again both compositions are zero (the compo-
sition (50) is zero because the corresponding map Py, 119, — Pe,U1d01dug,
is zero).
If ¢1 U g1 = Id, then the two compositions coincide.
(1Ib) ¢ = Id. If none of ¢1, ¢3 is identity, then both compositions are clearly
equal to zero.
If 1 = 1d and g1 # Id, then both compositions are zero.
If ¢1 LU g1 = Id, then both compositions do clearly coincide.
If ¢35 = Id and g3 # Id, then both compositions are zero.
If 3 = Id and g3 = Id, then both compositions coincide.
(2a) ¢ # Id. Compute the composition

Po1ugr 06s0gs Posigs — PetdOtdug — PerutaPe2undd1dug-

This composition vanishes except the following two cases:

(i) ¢1 =ug'.

(11) ¢3 = ¢2u.

In both cases the coincidence is obvious.
(2b) ¢2 =1d,

o1, 3 # 1d. If ¢' # ¢1, both compositions are obviously zero.
Assume ¢1 = ¢!, ¢3 = ¢*. Then, according to (17.5) the composition

Po10gi O1dugs Pesigs — Pautddtdug — Peg,utdPesutadidug

is equal to the sum of two maps which annihilate each other. The second
composition is also zero.

If 1 = 1Id or ¢3 = Id, then the two compositions do clearly coincide.
This completes the proof. O

17.7.1. Compatibility with X

Claim 17.9. The following diagram is commutative:

Priug (M1) X Py, (M2) —— Py, u1ad1dug, (M1) B P, u1adrdug, (Ma)

| |

Priufaug10gs (M1 B Ma) —— P11, 01a01duigy Lig, (M1 X M)
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Direct application of formulas yields the commutativity of the diagram
Priug (My) WPy, (Ms) Piu1adidug, (M1) B P, u1a01dug, (M)

| l

P riufagi0gs (M1 X Ma) Puf201d01dUg Lgs (M1 X M)

l

Iu1l_lvll_lIdqulJvzl_IId v 'IunuvnuldélduglLIgz I uluvll_IIdqu\_lvzuId v 'Iunl_lvnl_llddldl_lgll_lgg

which proves the statement.

17.8. The maps s(d,9g) : Rpg — Repuradidug
17.8.1. Definition

Define a map
S(p1Ugr, ¢t Ugh, ..., dnlign) 2 Porugi0ptugt  + Po,lgn
— Pyu1adgriutd *  + Ogn—11a P, u1dO1dLigs
where g = gngn—1--- g1, as follows:
Poiugi0p1ugt = Pongn, — Poiu1d01dug: Ogtutd -« Ogn—101a Pg, L1dO1dLign

— Pg,u1d01dugt * + * O1dugn—1 P, u1dO1dug-

Let S"(¢1 Ug1, ¢ Ugh, ..., énUgn) = 0 if at least one of ¢’ is identity. Otherwise
set

S/(¢1 |—|gla¢1 ugla' . ~a¢n|—|gn) = S(¢1 u917¢1 ngl, .. ~7¢nu9n)'
The sum of all possible S’ (¢ U g1, ¢t Ugl, ..., ¢nllg,) produces a map

s(¢, 9) : Rgug — Rypuradidug-
Let us study its properties.

17.8.2. Denote
5(g1,®, 92) : Rgug — Ridug, Rpug, — 0tdug, Reutadidug, — Reuradidugs

5(¢,91,92) : Rgug — Reug, Ridug, — Reuradidug, Otdug, — Rguiddrdug-

Claim 17.10.
ds(¢,9) = Y (s(g1,6,92) — s(¢,91,92))

9=9291
Proof. Follows directly from Sec. 17.7. O
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17.8.3. Claim 17.11. The following diagram is commutative:

Rgugun — Rguguradiautdun

g

Rgtautadtaugun

Proof. Follows directly from Sec. 17.5. O

17.8.4. Claim 17.12. Assume that ¢ is not bijective. Then the composition

PoLig — Peuiadidug — puiadidug

equals

Popug — dgLg-

17.8.5. Introduce a map
K(¢1,02,91,92) : Rgrp,0g291 — Reyugi Ripiig, — Ry u1ad1augs Re,unadtdug,
— Ry, 11dR o u1d 01dUIgs g1 -
Claim 17.13. The map
Regsp,0g — Reop,utadtang — R, uraReg,u1ad1dug

is equal to

> K(é1,62,91,92).

9291=g

Proof. It suffices to check that the two maps coincide when compose with the
maps

(1)
R, utaR g, 1d01d0g — 06, 01d0psu1d O1dLg
(2)
Ry, u1aR g, 1d01dug — Rep, utaRy,u1d R, 1d S1dug,

where 1911 = ¢1 and ¥y, 1y # ¢1;
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(3)
Ry, u1dR e, 1d01dug — Ry utaRy; utaRy, u1d 1dug

where x2x1 = ¢2 and X1, x2 # ¢2.
Let us check (1). The composition

Plbll_lgl 511;1 Lgt " 'P'Ll)nl_lgn - R'LZ)I_Ig - R¢uld5ldug - R¢1uIdR¢2uId5Idug
— 0, u1d06,L1d01dLg
does not vanish iff the leftmost term is
P1ade,ug: Pradssugs Pid,
in which case it is

(a) zero if ¢ = 1Id or ¢o = Id;
(b) identity otherwise.

Let us now examine the composition:
Reug = Reiugi Rosugs — Reutadtdug Res1ddtdug, — 061 u1d0ps1d01dug: OTdugs -

According to the previous statement, this composition vanishes if ¢; = Id or
¢2 = Id. Otherwise, this composition equals:

R¢|—|g - R¢1U91 R¢2U92 - 5¢1U91 6¢2|—|g2'

We see that the two maps coincide.
(2) and (3) are immediate by induction. O

17.8.6. Compatibility with X

Claim 17.14. The following diagram is commutative:

Ry g, (M1) BIR g, (Ma) —— Ry, uta1dug, (M1) B Ry, 11a01dug, (M2) —— Ry, 1 pyu1d01aug, ug, (M1 X M2)

Rpyufaugiugs (M1 B M)

Proof. Similar to the previous one. O

17.9. Dzirect images with respect to projections

The reformulation of the properties that were proven in the previous subsections in
terms of direct image functors with respect to projections is given in Sec. 5.3. We
are now passing to giving an appropriate formalism for description of structures
that we have encountered.
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18. Formalism for Description of Different Structures
on a Collection of Functors

18.1. Definition of skeleton

18.1.1. Let C be a category (for example, the category of finite sets). We consider
it as a 2-category with trivial 2-morphisms.
A skeleton over C is a 2-category S with the following features:

objects of S are the same as in C;
all categories S(S,T) are groupoids;
we have a 2-functor P: S — C°P.

Let us decode this definition. Note that P induces maps of groupoids
P(T,5):8(T,S) — C°®(T,95).

For F:S — T being an arrow in C, let S(F) := P(T,S)~1(F). Since setf°”(S,T)
is a trivial groupoid (with only identity morphisms), we have an isomorphism of
groupoids:

S(T, S) = Up.s—17S(F).

The rest of the structure can be reformulated as follows:
For every pair of C-arrows F': S — R and G: R — T, there should be given
composition functors

o(F,G):S(F) x S(G) — S(GF);

for every triple of C-arrows F': S — R, G:R — P, H: P — T, there should be
given isomorphism i(F, G, H) of functors

S(F)x S(G) x S(H) — S(GF) x S(H) — S(HGF)
and
S(F)x S(G) x S(H) — S(F) x S(HG) — S(HGF).

These isomorphisms should satisfy the pentagon axiom.
Namely, let

sEHEpELQliris

be a sequence of maps of finite sets. Every bracketing of the product KHGF specifies
a functor

B(F) ® B(G) @ B(H) ® B(K) — B(KHGF):
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for example, the bracketing (KH )(GF') corresponds to the functor

(KH)(GF)] : B(F) ® B(G) @ B(H) ® B(K) X&D2 U

o(KH,GF)

B(GF)

® B(KH) B(KHGF).

The other bracketings produce the corresponding functors in a similar way. Total
there are five such bracketings. The associativity maps induce isomorphisms
between these functors as shown on the following diagram:

K((HG)F) K(H(GF))

7

(K(HG))F (KH)(GF)
(KH)G)F

The pentagon axioms requires that this pentagon be commutative.

18.2. Body

A body B built on a skeleton S is an arbitrary dg-2-category with the following
features:

Objects of B are the same as in C;
ObB(T, S) = ObS(T, S);

There exists a 2-functor
s:S— B

identical on objects and on ObS(T, S) for all T, S;
There exists a 2-functor Pg: B — setf® such that Pgs = P.
This definition is equivalent to the following one.

A body B is a collection of dg-categories B(F') for all C-arrows F': S — T with
the following features:

(1) ObB(F) = ObS(F);
(2) There are given functors s := s(F) : k[S(F')] — B(F) identical on objects;

(3) There are given functors og(G, F): B(F') x B(G) — B(GF') which coincide on
the level of objects with o(G, F') and such that

o5(G, F)(s(a) x 5(b)) = s(o(F, G)(a x b));

where a is an arrow in S(G) and b is an arrow in S(F).
(4) There are given associativity constraints cg(H, G, F') which satisfy the pentagon
axiom and are compatible with ¢(F,G, H) in the obvious way, that is: given
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arrows a, b, ¢ in respectively S(H), S(G), S(F'), one has:
s(cs(a, b, c)) = cp(s(a),s(b),s(c)).

18.2.1. To define a body one has to prescribe complexes B(X,Y) for all X,Y €
S(F) and certain poly-linear maps between these complexes. Assume that the iso-
morphism classes of C and the isomorphism classes of S(F') form a (countable)
set for any C-arrow F'. Then it is clear that the structure of a body with skeleton
S is equivalent to a structure of an algebra over a certain colored operad with a
(countable) set of colors. Denote this colored operad by body(S). The countability
hypothesis will always be the case in our constructions.

Thus, given a fixed skeleton, we have notions of a free body, a body generated
by generators and relations etc.

18.2.2. Ezample

In this example the objects of S(F) will not form a set.

For F': S — T we set B(F') to be the category of all functors from the category
of Dyr-modules to the category of Dys-modules. Let S(F') be the groupoid of
isomorphisms of B(F'). The rest of the structure is defined in an obvious way.
Denote such a body by FULL.

18.2.3. A map of bodies is naturally defined; a map B — FULL is referred to as
a representation.

18.3. Construction of a skeleton

We will mainly use a skeleton Ske, which will now be described. We set C := setf
to be the category of finite sets. Let F':.S — T. Objects of S(F) are sequences

s A B, B By, =T,
where p,, - - - p17 = F and each py, is a proper surjection (i.e. is not a bijection). Such
objects will also be denoted by
piRPlsz e RP

We shall also use a notation

R, R

n

D1 P2"'RP

instead of

P1dy, Rp Ry, -+ Ry,

We do not exclude the case n = 0, in which case the corresponding object will
be written simply as p,.
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18.3.1. Define isomorphisms in this groupoid. Let
Y =p;iRg Ry, - Ry,

be another object in Ske(F'), where ¢;:V;_y — V; and V;,, =T

The set Ske(F)(X,Y) is non-empty only if n = m.

An isomorphism p: X — Y is a collection of bijections by : U, — Vj, for all k
satisfying the following natural compatibility properties:

(1) by = Idy:
(2) For k < k' set

Pk'k ‘= Pk'Pk/—1 " " Pk+13
qk'k ‘= 4k’ qk’—1 " * " qk+1-

Then the diagram

L by
Uk — Vi

lpk’k j%’k
by
U, —= Vi

cominutes.
(3) The diagrams

commute.

The composition law is obvious.

18.3.2. Let
S>T17-%R
The composition morphisms
Oske(G, F)

are defined as follows.
Let

X = piRPoRm to Rpw

where i:S — U, pr:Ux — Upy1, Upy1 =T, F' = pppp_1---poi. Let
Y =p;jRgRq, - Ry,

where j: T — Vo, qp : Vi = Vi1, Vg1 = R, G = qmGm-1--"qoJ-
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Let Z :=Vo\j(T).Set Uy, :== Up U Z, p, :=prUIdz, j - U}, 1 — Vo, j' == jUiz,
where iz : Z — Vj is the natural embedding, j is then bijective. Set i': S — Uy —

U, to be the natural map.
Set ogke(G, F)(X,Y) to be

pi’Rpng’l o ‘ijil RgoRg, - Ry

We shall write XY instead of ogke(G, F)(X,Y).

18.4. Bodies Bas, Bpresymm, Bsymm

We are going to define the bodies which axiomatize the situations we are working
with: those of a system (Bgs); of a pre-symmetric system (Bpresymm) and of a
symmetric system (Bsymm ). All these bodies are constructed on the skeleton Ske.

18.4.1. Body Bgs

It is generated by the maps as(g, p) : Rpq — RyR,, of degree zero with zero differen-
tial, where ¢: S — R and p: R — T and the relation:
The compositions

as(r,qp) as(q,p)
Rpgr —— RrRpq

R,R,R,
and
Rpgr — RgrRp — Ry RgRy,

coincide.

18.5. Ezxplicit description of the complexes homgp, (r)(X,Y)
Let
X =pR, Ry, Ry,
where i:S — Ug,pi : Ux — Ugy1,Uns1 =T, F = pppp—1 - poi. Let
Y =piRg Ry -~ Ry,

where j:5 — Vo, qx : Vi — Vir1, Vinr1 = T, F = gmGm-—1- - qoJ-

The space hompg, (p)(X,Y) is non-empty only if for every U}, there exists a V;
such that #Uj = #V,. Define the set S(X,Y) whose each element f is a collection
of bijections fy;: Ux — Vi, whenever #U), = #V] satisfying all the properties from
Sec. 18.3.1. Set

homg, (7 (X, Y) := k[S(X,Y)].
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The composition law in B,s(F') and the inclusion functor Ske(F) — B,s(F) are
immediate.

18.5.1. The body Bpresymm
It is generated over B,s by the elements of two types:

Type 1. Consider a commutative triangle
§—L=1T
1
1
R
in which ¢, j are injections and p is a proper surjection. We then have a degree +1
map
L(i,p) : piRp — pj.
Type 2. Consider a commutative square
R—>T
q
S—P

in which 7, j are injections and p, g are proper surjections. Call such a square suitable
if the following is satisfied: Let 77 = T'\T, be the subset of all ¢ € T' such that
p~1tMi(S) consists of >2 elements. Then p~1(T7) C i(S), i.e.

4 ENi(S) = 2= p () C i(S).
We then have a degree zero map
A(i,p,j, Q) :piRp - quj7

where Rgp; := oske(Ry, pj).

18.5.2. Relations
(1) Let
R—>T
q
S—P
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be a suitable square and ¢ = g2q1, where ¢, g2 are surjections.
Define the set X (g1, ¢2) of isomorphism classes of commutative diagrams

We will refer to such a diagram as (p1, p2, j’). Both squares in every such a diagram
are automatically suitable. Therefore, every element = := (p1,p2,7) € X(q1,92)
determines a map

My PiRy — piRp Rp, — Ry pyRp, — Ry R, pje
Then the relation says that the composition
piRy — Rypj — Ry Ry, pj

equals

S o

z€X(q1,92)

(2) Consider the following commutative diagram

R—2s1T

S—"<p
in which both small squares are suitable. Then the large square is also suitable and
the following maps coincide:
pizilRp - R’f‘pj2j1
and
pi2i1RP - pilpiQRP - piqupjz - Rrpjlpjg - Rr‘pjzjl'

(3) Consider the following commutative diagram:

R—2>T

]

S—>>P
1
Q
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where the upper square is suitable. Then the following maps coincide:
pirRp — pepiRp — prRop; — parps = pi
and
PRy — Ppir = pi-
(4) Consider the following commutative diagram

SuU ——TuU

]

S—T

this diagram is suitable and we require that the corresponding map A(i, p, j, ¢) be
equal to the corresponding isomorphism in Ske.

(5) Let
T
|

Rl —»>T1

q1

Sl—»Xl

%

—»

T S

and

be suitable squares and let s: 5 — Sy, r:R — Ry, t:T — Ty, x: X — X1 be
bijections fitting the two squares into a commutative cube. Then the map A(i, p, 7, q)
coincides with the map

piRp = pspilprlerplpt;l = pspilRplptfl - pqulpjlptfl
= pqulpmflpzpjlptfqupT

18.5.3. Differentials

(1) The differential of the map L(7,p) is computed as follows. Consider the set of
all equivalence classes of decompositions p = pop1, where p1, p2 are surjections and
p1t is injection. We then have a map

l(p17p2) :piRp - piRmez - pplisz — Ppapri = Ppi-
We then have

Z Up1,p2) =0

(p1,p2)
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(2) Let
QRL»T
1.
§—1=Pp

be a suitable square. Define two sets L(Q) and R(Q) as follows. The set L(Q) is
the set of all isomorphism classes of diagrams:

R —>> Ry e
7, ]
S — P
such that p = p1ps. It is clear that the internal commutative square in this diagram

is also suitable.
Define the set R(Q) as the set of isomorphisms classes of diagrams

R—»-R1—>>T
S_»\P

where p = p1p2. The internal square in such a diagram is always suitable as well.
Every element [ := (p1,p2,i1) € L(Q) determines a map

Jr:piRp — piRp Rp, — Repiy Ry, = Roppyin = Repy.
Every element r = (p1,p2, j1) € R(Q) determines a map
gr:PiRp — piRp Ryy — iRy, = pj Ry, — Rypj.
We then have
dAG.p.j,a)= > fi— > or
leL(Q) reR(Q)

This completes the definition. We need to check that d?> = 0 and that d preserves
the ideal generated by the relations, which is left to the reader.

18.5.4. The system (R) with its properties provides for a representation of

Bpresymm'

18.5.5. Explicit description of the categories Bpresymm (F')
Consider two objects X,Y in A(F):

7 Po p1 Pk
SC Uy — Ugt1

Uy Uy
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and

J q0 q1

S ¢ Vo Wi Vier —> Upy.

Define the set M (X,Y) whose each element is a collection of injections
.jT . er — UT)

where r =0,1,....k+1,mg=0,0 <my11 —m, <1, mpy; =+ 1. The following
conditions should be satisfied:

(1) if my41 = m,., then the diagram

Ppr
U ——Ura

) Jr+1
Ir

Vin..

must be commutative.
(2) If my41 = m, + 1, then the diagram

Dr

Ur UT+1

er jr+1T

qr
er e VmTJrl

must be commutative and suitable.
Every element m = (j1, jo,...,jk+1) in M(X,Y) defines a map
A(m) :piR, Ry, - Rpp — p;Re Ry, -+ Ry,
where we set Ryq = Id, as follows. Define
G, Ving, = Vi,
to be Idy,, if m, = m,y1 and g, if myy1 = m, + 1. We then have maps
Fr:p;, Ry, — R%W Pjris

where Fk: — L(jr7pr7jr+1) if My41 = My, and Fk: = C(jr7prajr+laq;nr) if Mmyy1 =
m, + 1.
Set

A(m) PRy Ry, -+ Ry — pipi Ry Ry, -+ Ry,

A (§0,P0,J1,d7n)
- 7 mor

pJRQhO plepl Ry,
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A’ (j1,p1,42,400,)

1

_— ; - e
pJRq;nO Rq;nl pJQRp2Rp3 Rpl

. - >~ . e
== PRy, Ry oo R ZpiRg Ry, -+ Ry,

qi’”‘k-%—l
where

Al(juapua ju+1a qf;/nu) = A(,ju’pu’ ju+1a q’l/ﬂu)
if q;,,, # Id. Otherwise

A/(.juapua.ju+17q;nu) = l(ju,pu,ju—o—l)-
Let N(X,Y) := k[M(X,Y)]. Let
HX,)Y)=@®,N(Z,)Y),

where the sum is taken over all refinements Z of X. We have an obvious map
H(X,Y) — hom(X,Y). Set Ap(X,Y) := H(X,Y). The relations given in the
previous section provide us with a composition law H(X,Y)® H(Y,Z) — H(X, Z)
and a differential.

18.5.6. Body Bsymm
The definition of the body Bsymm is exactly the same as the one of the body

Bpresymm except that the maps A(4, p, 7, ¢) are defined for all commutative squares
P
R—==T
q
S—=P
not necessarily suitable; the relations are the same except that we lift everywhere

the restriction of suitability; the formulas for the differential remain the same.
It is clear that we have a map of bodies

v: Bpresymm - Bsymm

We are going to study this map.

18.5.7. Explicit expression for homgpg y(X,Y), where X,Y € Ske(F) is

symm(F
exactly the same as for Bpresymm-

The further study of Bsymm is facilitated by the statement we are going to
consider

18.5.8. Let
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be a diagram. Call it super-surjective if for every t € T
either p~1¢ N i(S) has at least two elements
or p~1t is a one-element subset of i(S).
Claim 18.1. Let
P T
jj
q

— P

|

R
S

Then there exists a decomposition:

be a commutative diagram.

=

T

i2

p
E——
J
T
e
i1

where the diagram is commutatlive, i = isi1, the square (ia,p,j,r) is suitable and
the pair (i1,q) is super-surjective.
Such a decomposition is unique upto an isomorphism.

-

P

W

Proof. Ezistence. Call an element ¢t € T good if p~'t satisfies the condition of the
definition. Let G C T be the subset of all good elements. Let U :=i(S) Up~1Gr.
Let 41,75 be the natural inclusions. By definition, for every ¢ € Gy, the intersection
p~1tNi(S) is non-empty. Hence, G C pi(S) = jq(S) and, therefore, p(U) = jq(S).
Thus, p(U) = Im j, which implies that the map p|y :U — T uniquely decom-
poses as jr, where r: U — P. It is clear that all the conditions are satisfied.
Uniqueness is also clear. O

18.5.9. Corollary
Let X € Ske(F) be an object of the form

pjpil]:Rpl piszz e pinRPn7
where every pair (ig, pr), ik : Ux — Ag, pr : Ax — Ugt1, is super-surjective. Let
Y = ijplilRPQiQ o 'anin'

The maps p; Ry, — R,,;, induce a map fx:X — Y. Call X a super-surjective
decomposition of Y. Let super — sur(Y) be the groupoid of all super-symmetric
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decompositions of Y and their isomorphisms (i.e. collections of isomorphisms Uy, —
Uj, fitting into the commutative diagrams...). It is clear that if a: X7 — X is such
an isomorphism, then fx, = fx,a.

Let Z,Y € Ske(F). Define a functor hy : super — sur(Y) — complexes by the
formula hz(X) =homg_ (7 (Z,X).

The collection of maps fx induces a functor

limdirgyper—sur(y)hz — hompg_ (7 (Z,Y).

Claim 18.2. This map is an isomorphism.

18.5.10. One more lemma

Let YV € Ske(F). Let F = F>F; be a decomposition and assume that we have an
isomorphism ¢:Y — Y5Y7, where Y;Ske(F;). We then have a natural functor:

super — sur(Y3) x super — sur(Y;) — super — sur(Y).

Lemma 18.3. This functor is an equivalence of groupoids.

Proof. Clear. O

18.6. Pseudo-tensor bodies

Let B be a body. A pseudo-tensor structure on B is a collection of several pieces of
data, the first one being functors

U({F;}ier): Qier B(F;) ® B(F)°? — complexes,

where ' = Uerp,, for all n > 0 and all collections Fj;:.S; — T; of maps of finite
sets indexed by an arbitrary finite non-empty set I. Let X; € B(F;) and X € B(F).
We then denote

hom({X; }ier; X) := W({Fi }ier) (®ier Xi) ® X).

Let m: I — J be a surjection of finite sets. Let F;:S; — T3, i € I be maps of finite
sets. For a j € J set

Fj = Ujer—1; F.

J
Let X; € B(F)), Y; € B(F;), wherei € I, j € J. Set
homy ({ Xi}ier; {Yj}jer) := ®jes hom({Xi}ier, {Yj}jer)-
An element f in this complex will also be written as
[ iAXitier = {Yj}jeu-
Let X,Y € B(G), where G:S — T be a map of finite sets. It is assumed that
hom(X,Y) = hompg)(X,Y).
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18.6.1. Composition of the first type

Let F' = ;1 F;. The second feature of a pseudo-tensor structure is a collection of
composition maps of the first kind:

Ci({Xitier: {Yj}jer: Z) - hom ({ Xitier: {Y;}jes) ® hom({Y}}jer: Z)
— hOHl({Xl}lej, Z)

Let o:J — K be another surjection and set Fj, := U;c,—1;. Pick objects Z; €
B(Fy), k € K. Define a map

Cr({Xistier: {Ystjeri{Zetrex) - homy ({Xi}tier; {Yj}jer)
®@hom, ({Y;}jeri {Zr}trerx) — homor ({ X ticr; {Zk rer)
as the tensor product

ke C1({Xitic(om 115 {Yi o113 Zk)-

18.6.2. Compositions of the second kind

Let F;:S; — T;, G;:T; — R;, i € I be a family of maps of finite sets. Let F' =
Uier F5, G = UjejGj. Let X; € B(Fl), Y, € B(Gl)7 Z € B(F), W e B(G) We then
have objects Y; X; € B(G;F;), WZ € B(GF). The last feature of a pseudo-tensor
structure is a prescription of composition maps of the second kind:

Co({Xitier, Zi{Yikier, W) - hom({Xi}ier: Z) © hom({Yi}ier; W)
— hom({Y; X; }ier; WZ).

Let m:1 — J be a surjection. Let Fj = Ujcr—1;F;; Gj = Ujer—1;Gi. Let X; €
B(F;),YinB(G;),i € I, Z; € B(F;),W; € B(Gj),j € J. Define a map

Co({Xitiers {Yitier: {Z;}jess {W;}jes) s homr({Xitier, {Z;}jer)
@ homy ({Yi}ier, {W;}jes) — homz ({YiX;}ier; {W;Z;}jer)
as the tensor product

®jesCo({Xitier—1j, Zji {Yi}tier—15, Wj).

18.6.3. Axiom
The only axiom is as follows. Let I be a finite set and consider an I-family of chains
of maps

g0 Pl g PP on

7 7 [
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where N is a fixed number. For 0 < p < ¢ < N, set F*: 5 — S! to be the
composition

pipa—1. . . pptl
it .

7

We also set [/ := Idga.
We shall also need a chain of surjections

2 ™M

I=1,

I Iy

where M is a fixed natural number. For 0 < u < v < M, denote by 7y, : [, — I,
the composition

Pou = ToTy—1 *** Tyu+1;

set my,y, = 1ds,. For a j € I}, define a subset

3 = 7Tk_01 (])

of Iy. Take the following disjoint unions

ST =U,S]; Ff=U

i€ji

-F". FP =1
v

Sy

_[4p
F,

1€
Pick elements Xj’-C € B(F]k), forall jel,,0<u<Mandallk=1,...,N. For
0<p<qg<N,set

ap _ yaya—1 . ypt+l
Xj —Xij Xj

so that X7¥ € B(F}").
Iterating various compositions of the two kinds in various ways, one can con-
struct, a priori, several maps

M N

®®homﬂ'u ({Xg"c}jefua;{Xlk}lefu) - homﬂ'MJ({XéV’O}Sefn{qu)V’O}UEIM)'
u=1 k=1

The axiom says that all these maps should coincide. Denote thus obtained unique
map by comp{XF}.

18.6.4. Given a fixed skeleton S, a structure of a pseudo-tensor body on this skele-
ton is equivalent to the one of algebra over a certain colored operad body (S).
Therefore, pseudo-tensor bodies can be specified by means of generators and
relations.

18.6.5. Ezample

Introduce a pseudo-tensor structure on FULL as follows. Let X, € FULL(F,) and
Y € FULL(F), where F,:S, — Ty, S = UySa, F = U, F,, etc.
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Let
X, : H D-mod s, — D-modys,

a

X, : H D-mod y7, — D-modxr

be the functors of the exterior tensor product. Set
hompurLL ({Xa};Y) := hom(X, X,; Y o K,),
where hom is taken in the category of functors:

H D-mod yr« — D-modys.

18.7. Maps of pseudo-tensor bodies

Let By, B2 be pseudo-tensor bodies over skeletons respectively &1 and Sy. Our goal
is to define a notion of a map R:B; — By. We shall give two equivalent definitions.
The first definition is based on a notion of

18.7.1. Induced skeleton

Let X : k[S1] — B2 be a 2-functor which maps k[S1](F) — Ba(F) for all F. In the
sequel we shall write S; instead of k[Si].
This structure is equivalent to the following one:

(1) we have functors X (F):S1(F) — Ba(F) for all F,
(2) for all composable pairs F, G, the natural transformation Ix (G, F'), shown on
the diagram:

o(G,F
Si(F) x & (G) —2&0

S1(GF)

X(F)xX(G) X(GF).
Ixy
o(G,F
Bo(F) @ By(G) — T2 g, (aF)

(3) The transformations Iy should be compatible with the associativity transfor-
mations of §; and Bs in a natural way.

Using such an X we shall construct a body X ~'B; on the skeleton Sy. First of
all, we set

homy -1, ({Ya}aca; Z) = homg, ({ X (Ya) faca, X(2)).

The compositions of the first and second kinds on X ~!3; are naturally induced by
those on Bs. Thus constructed pseudo-tensor body is called induced.
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18.7.2. Definition of a map f:By — Bs

By definition, such a map is given by a 2-functor Xy:S8; — B; as above and by a

map f':B; — Xf_lBg, where the meaning of f’ is as follows: since By and Xf_lBg

are pseudo-tensor bodies over the same skeleton §; they can be both interpreted

as algebras over the operad body, (S1); f’ is by definition a map of such algebras.
This definition will be now decoded.

18.8. More straightforward approach

To define a map B; — By one has to prescribe the following data:

(1) A collection of functors Rp : B1(F) — Ba(F);
(2) For every sequence of maps of finite sets F;:S;_1 — S;, i = 1,2,..., N, such
that FyFy_1--+-Fy = F, consider a diagram of functors:

®iRFp;
®iB1(F;) — @;B2F;
O(FN,FN1,~~~>F1)l lO(FN,FlewFl)
RFp

Bl(F) —>BQ(F)

There should be specified an isomorphism I(Fy, Fs, ..., Fy) between the com-
position of the top arrow followed by the right arrow and the composition of
the left arrow followed by the bottom arrow. As it is common in the theory of
2-categories, I(Fy, Fy, ..., Fxn) will be denoted by a double diagonal arrow:

®iRF,

®iB1(F}) - ®; B2 F;

o(Fy,...,FN)

I
RF,

Bl(F) —>BQ(F)

o(F1,Fa,....,FN)

(3) For every {X,}taca, Xo € B1(Fy), and every Y € Bo(F), where F' = UycaF,,
there should be given a map of complexes:

Rix,}uca:y : homp, ({Xa}taca; V) — homp, ({ Rr, (Xa) faca; Rr(Y)).
The axioms are as follows:

(1) Associativity axiom for I(Fy, ..., F).
Pick a sequence 1 =iy < iy < ---ip = N. Set

G :=F,Fi, 1 Fi, 41
Let
Oy 1= O(Fir,Firflv ceey Fn,1+1);
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let IT = I(FiraFirfla ey Fir,1+1)~ Let I := I(Gk, kal, ey Gl) We then
have the following diagram:

®iRF;
®;B1(F;) - ®:B2(F;)
&0 &0
®f'If'
r Ry
2,B1(Gy) “ @,B2(G.)
o(Gr,Gr—1,..-,G1) o(Gr,Gr—1,..,G1)
/
R
By (F) - Ba(F)

We then see that the two squares of this diagram are composable and the
axiom requires that the composition be equal to I(Fy, Fy_1,...,F1).
(2) Compatibility of R({X4}aca;Y) with compositions of the first type.
Let p: A — B be a surjection of finite sets. Let F, : S, — T, be an A-family
of maps of finite sets. Let

Sp = Uaep-165a;  To = Uaep-10Ta; £y = Uaep-16Fa,
so that Fy, : Sy, — Tp. Let X, € B1(F,), Yy € B1(F}). Let
RP({Xa}aeA§ Yotoen): homBl,p({Xa}aeA; Yo }ven)
— homgp, ,({ RF, (Xa)}aca; { Br, (Ys) }ren)
be the tensor product
@beBR({Xa}aecp-16:Ys)-

Let, finally, ¢: B — C be another surjection. Let S. = Ugg(gp)-1c5a; let
T., F. be similar disjoint unions. Let Z. € B1(F.). We then have the following
diagram:

homg, ,({Xa}; {Ys}) @ homp, ({Ys}; {Z.}) < homg, g ({Xa};{Zc})

lH({Xa};{Yb}) lR({X(zh{Zc})

homg, ,({R(Xa)}; {R(Y)}) © homp, o({R(Y,)}; {R(Z:)}) — > homss, 4 ({R(Xa)}: {R(Zc)}).
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The axiom says that this diagram should be commutative.
(3) Compatibility of R({Xs}aca;Y) with compositions of the second type.

Let F,:S, — Ty, Go:T, — R, be A-families of maps of finite sets. Let F =
UaFy and G = U,G,. Let X, € B1(F,), Y, € B2(G,). Let

I, = I1(Ga, F,)(Ya, Xa) : R(Y,)R(X,) — R(YoXa);
I:R(Y)R(X) — R(YX).

We then have the following diagram:

homg, ({X,}; X) ® homg, ({Ya};Y) homp, ({Y,X.}; Y X)
homg, ({R(Xa)}; R(X)) ® homg, ({R(Ya)}; R(Y)) homg, ({R(YaXa)}; R(Y X))

homBz ({R(Ya)R(Xa)}7 R(Y)R(X)) homBz ({R(Ya)R(Xa)}7 R(YX))

The axiom requires the commutativity of this diagram.

18.9. Pseudo-tensor structure on Bgs, Bpresymms Bsymm
18.9.1. Bgs

The pseudo-tensor body B, is generated over the usual body B,s by the following
generators and relations.

Generators: Let fi: Re — Ty, k € K be a family of surjections and iy : Sy — T
be a family of injections. Let f = Ugc i fr and i = Uge g ix. We then have a generator

fact({ix, fr}rex) : {pi Ry, Jrex — piRy.
Let m: K — L be a surjection. For | € L set

1 = Uper—110k;

Ji = Uken—11fk-
Set

fact ({ix, frteex, {i, fitier) :{pa Ry trex — {pi By hier
to be
@ierfact({ix, fu}rer—11iit, fi)-
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Relations:
(1) Let 0: L — M be a surjection. For m € M set
Im = Uke(om)-tm ks
im = Uke(om)- tmik-
Then the composition of the first kind
iRy teex — {pa Ry her — {pi Ry, bmem

equals Cl({pikak}k€K7 {plz RfL}IGL)'

(2) Let fr:Sk — Ry, k € K be surjections and iy : Ry — Ty be injections. Let
Z = Tk\ik(Rk). Let S,/C = S U Zy, R;C = Ry U Zg; let Z';C:Sk — S;C be the
natural inclusion. Let f:S; — Tk, f}, = fuUiz,, where iz, : Zy — Ty. We
then have isomorphisms in Ske(ix fx):

Ry — pi Ry

Let f = Uk fr, @ = Ugir, f' = Urfi, i = Ugij,. We then have an isomorphism
in Ske(if):

Rypi — piRy.
The relation says that the composition
{Rpebinteex — {Rspi} — {psRy}
equals the following composition:
{Rypi ke — {pg Ry} — {piRy}.

(3) Let fx:Rr — Tk, k € K be surjections. Let fr = gihi, where gg,hy are
surjections. Let f = Ugekr fx, 9 = Ukex gk, h = Ukex hi.
Then the composition

{Rythex = Ry — RuRy
equals the composition

Ry teerx — {Rpy Ry, e — RiRy.

18.9.2. Bprosymm

The pseudo-tensor structure on Bpresymm is generated by the same generators as
on Bgs, and the relations include those in B,s with an addition of the following
relations:

(a) let ix,pr,Jjk,qk, k € K be a collection of suitable squares. Let i = Ugexiy,
P = UkerPr, ] = UkerJk, ¢ = Urerx qr. Then the square i, p, j, ¢ is also suitable
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and the following compositions coincide:
{pinRpy teer — {Ropjy bhex — Rop;
and
{piRp,} = piRy — Rypj.

(b) Let iy : Sk — Ry, k € K be injections and py: R — Tk, k € K be surjections
such that ji := pgix are injections. Assume that at least two of the maps py
are proper surjections. Then the composition

{pikRpk}k:EK - piRp i Rg
vanishes.

If only one of the surjections pj is proper, say p,, £ € K, then the above
composition equals

} L(iw,pr)

{pikRPk}keK = {pianmpikR{pk}keK {pjm {pikRpk}kGK}

— {pj. kex — ;-

18.9.3. Boymm

This pseudo-tensor body is generated by the same generators and relations as
Bpresymm except that we lift the condition of suitability. We have a natural map

Bpresymm - Bsymm' (53)

18.9.4. Tt is clear that the system (R) determines a map of pseudo-tensor bodies
Bpresymm — FULL,

any such a functor will be also called representation.

18.10. Ezxplicit form of pseudo-tensor maps
18.10.1. Category of special maps
Consider a family of objects

Xo=piRpeRpg -+ Rpa

indexed by a finite set A, where all pj. are proper surjections and
Ph, - Papii® = Fq
so that X, € Ske(F,). Let N > j >i>1. Set Pji = Pipi_1 P (if i = j, then

we set pf; = Id). Let u := {uf}, where a € A, k =0,1,2,..., N, be a sequence of
numbers satisfying: u§ = 0,

0<up,, —up <1,
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and u}; = ng. Set
Pe(0) = UacaPrgus |

Call u proper if such are all py(u).

For proper u we set

X (1) = pui Ry ) Rps ) - Ry (-
We have natural maps
fact(u): {Xs}aea — X (u).
For an Y € Ske(U,Fy) consider the groupoid Gy whose objects are collections
({Xq € Ske(Fa)}aca,u), m:Y — X(u),

where the meaning of the ingredients is the same as above and m is an isomorphism;
the isomorphisms in Gy are isomorphisms of such collections. It is clear that Gy
is a trivial groupoid. Let Z, € Ske(f,). We have a natural map

liminv{xa}aeAGGY RaecA h0m7(Za7 Xa) — homrg({Za}aeA, Y)

We claim that this map is an isomorphism, where ? = By, Bpresymm, Bsymm-

18.10.2.  We shall also need another form of decomposition of the pseudo-tensor
maps in Bsymm-

Let {X,}aca be a family of objects X, € Ske(F,). Let F = UgcaF,. We then
have the following natural functors

presymm
(Xotaca : Bpresymm (F') — complexes
and

hsymm
{Xa}aEA

defined by the formulas:

: Bsymm (F') — complexes

AP ™™ (V) = homg, .y ({Xaacas V)

W (Y) = homg,,...({Xa}aea; Y).

We shall also need a functor

GSYymm . 3o (F) ® Bsymm(F') — complexes,

presymm
where GSY™™(Z, U) = homg

presymm
h{Xa }aEA ®B

Z,U). We then have a natural map:

ayenen (

(F) Gsymm s h?)),(r:}l:eA'

presymm

Lemma 18.4. This map is an isomorphism of functors.

Proof. Straightforward. O
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18.11. Linear span of a body

Let B be a pseudo-tensor body. We shall construct a body L[B], over another skele-
ton, as follows. Set L[B](F') to be the category of functors B(F)°? — complexes.
We shall start with the composition maps

o:=o(G, F): L|B](F) ® L|B|(G) — L|B](GF).
Introduce an auxiliary functor
D := D% B(F) ® B(G) ® B(GF)°P — complexes,
where
D(X,Y, Z) = hompgry(Z, YX).
Let now U € L[B](F),V € L|B](G). Define
VolU :=D®pesr VEU.
Let us construct the associativity map. Define

D3 := DY B(H) @ B(G) ® B(F) ® B(HGF)°P — complexes

D3(Z,Y,X,U) := hompgper) (U, ZYX).

Toneda’s lemma combined with the associativity maps implies isomorphisms

DY @par) DT 5 Ds;

DH.G RB(HG) pHG.F >, p,

Let U € B(F),V € B(G), and W € B(H). Set
(WVU) =W RV KU ®@pmesc)esr) Ds-
We then have isomorphisms
(WU = (WVU) = W(VU),

which furnish the associativity isomorphism.
For X; € [,[B](Fl), ie€landY € E[B](UiGIFi) set

hOHlﬁ[B}({Xi}iGI; Y) = hom(&iGIXiy homg({.}, ) QBp Y)

Define the compositions of the first kind. Let m:I — J be a surjection.
Let F;:S; — T; be a family of maps of finite sets. Let F}; = Ujc,—1;F;.
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Let K; € L[B](F;) and L; € L[B](F}). Let
A(m): ®@ier B(F;)*P ®jes B(Fj) — complexes
be given by:
A(m)({Xi}: {Y;}) = homp({ X} {Y}}).

Let By := ®ic1B(F;); By := ®,csB(Fj). Let K : B}® — complexes be M,;cK;. Let
L:B5” — complexes be M;c yL;. We then have:

hom/;[B],.,r({Ki}ie[; {Lj}) = hoch;p (K,L®p, A(r)).

Let 0:J — K be the third surjection. For k € K, let Fy := Ujc(or)-15Fi- Let
My, € B(Fy). Let Bx = QurexB(F)); let M := Rye g M. Then

homp),c ({L;}; {M}) = homper (L, M @p, A(0)).
To construct the composition of the first kind we shall also need an isomorphism
A(o) ®p, A(r) — A(om),

where the isomorphism follows from the Ioneda’s lemma.
In view of the above isomorphisms, the composition of the first kind reduces to:

hoch;p (K, L KB, A(Tl')) ® homsz (L, M ®p, A(O’))
— homper (K, M @5, A(0) @5, A(T))
= homper (K, M ®@p, A(om)).

Lastly, let us define the compositions of the second kind. We shall keep the
above notation. Let G;:T; — R; be another family of maps of finite sets. Let
K, € LIB|(G;) and L} € LIB](Gj). Let a € hom(K, L) and a’ € hom(K', L'). Let
A(m) be as above and let A’(7) (respectively A”(m)) be the same as A(w) but F; are
all replaced with G; (respectively G;F;). Let B} = ®;e1B(G;); BY = ®iciB(GiF;).
Construct the composition a’a € hom(K'K, L'L).

As was mentioned above, a determines a map

a:K —- L®pg, A(T)
and a’ produces a map
a:K' — L'®p, A'(n).
To construct the compositions K'K, L' L, introduce functors
O;:B; @ By @ (B})°® — complexes;
0;:B;® B, ® (B7)°° — complexes;
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by setting
Or({ X} {Xi 1 {X)"}) := hom({X7'}; { X[ X3 });
O, ({X; 1 AX5 1 {XT}) = hom({X]'}; { X7 X;}).
Then
K'K = K’&K@B@B} Or;
L'L=1 XL®p,ep, 0.
Application of a,a’ yields a map:
K XK ®p,e8, Or — I'KL @B, 08, (A(m) R A (7)) ®p,08, Or-
Next, by Ioneda’s lemma, we have an isomorphism.
(A(m) R A (7)) ®p,08, Or — O0y.
If we apply this isomorphism to the previous map, we will get the desired second
kind composition map:
K'®K @p,o8, Or — L'RW L ®5,08, 0.

This concludes the definition of the structure. Checking the axioms is straight-
forward.

18.11.1. A representation of a pseudo-tensor body B (i.e. a map B — FULL)
naturally extends to a representation of L[B].

18.12. Representation of a body in another body

An arbitrary map of bodies By — Ek[Bz] will be called a representation of By in Ba.
‘We shall construct

18.13. Representation of Bsymm N Bpresymm

By constructing such a representation, we shall automatically obtain a map
Bsymm — FULL, i.e. a symmetric system.
First of all construct maps Rp : Bsymm (F') — L[Bpresymm](F) by assigning

Rp(X)(Y) := homg J(V, X).

symm (£

On Rp(X), we have a natural structure of functor from the category Bsymm ()P
to the category complexes given by the map Bpresymm — Bsymm as in (53). Let
X; € Bpresymm (F;). We then have a natural map

I(Fy, F1): Rp, (X1)RE,(X2) — Rp,r (X1X2)
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given by:

(Rp, (X1)RF,(X2))(Z) = Rp, ® Rr, @p(r)eB(F) Dl

presymm

(2)

— Rp, ® Rp, ®B(F1)®B(F2) Dg2F1 (Z) = Rp,m (XlXQ)(Z)-

symm

Furthermore, as follows from the decomposition (18.4), I(F», F} ) is an isomorphism.
To defined the maps

Rix,yoeary : homp,, ({Xa}aca; YY) — homp,, o ({BF, (Xa) baca; RE(Y))
we shall use Lemma 18.4. We have
Rp(X)(Y) = G™(Y, X)),
where G®Y™™ is as in the statement of Lemma 18.4. Let
RPTEYIR @ 4e A Bpresymm (Fa)”” @ Bpresymm (F) — complexes
be defined by the formula

hPesY ([ Xatacas Y) = homp,, o ({Xa}aea; Y).
Then, by definition,

homg,, . m {RF, (Xa) }aca; Re(Y))

=homg, _,Bresymm(Fa)or (Mac AR (X ); APPSR @p () G,

The latter term is, by Lemma 18.4, isomorphic to

hOm@aeABpresymm(Fa)OP (IEQGARF (Xa); hSymm)’

where

RSP (LX ca;Y) :=homp {X.};Y).

symm (

Lastly, we have a natural map

homg, . .5 op (Maca Rp(X,); h3Y™)

symm(Fa)

- hom@aeAB )or (‘ZaGARF(Xa); hsymm)’

presymm(Fa

and the first space is, by loneda’s lemma, isomorphic to

homBsymm ({Xa }; Y) .

This completes the desired construction. Checking the axioms is straightforward.

18.13.1. As was mentioned above, the above construction provides us with a sym-
metric system. Denote it (RSY™™)  An explicit construction of (RSY™™) is given in
Sec. 7. Checking that this construction produces the same system as in the previous
section is straightforward, and we omit it.
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19. Realization of the System (RY™™) in the Spaces
of Real-Analytic Functions

19.1. Conventions and notation

We do not consider sheaves in this sections, but only their global sections. By
Dys we denote the algebra of polynomial differential operators on X°. By a Dys-
module we mean a module over the algebra Dys.

We denote by Dy s the space of compactly supported infinitely-differentiable
top-forms on Y, and by D45 the space of distributions (= generalized functions)
on Dys. D5 is a left D ys-module.

For simplicity, we fix a translation invariant top form w on Y, and define wg
to be a top form on Y which is the exterior product of copies of w. Because dim Y’
is even, the order in this product does not matter.

The space Dys is then identified with the space of compactly supported
infinitely differentiable functions on Y5,

19.2. Asymptotic decompositions of functions from Cg
19.2.1. The main theorem

Let S be a finite set. Let T' C S be a subset. Let R := S\T'. Pick an element 7 € T..
We shall refer to a point of Y as ({ys}ses), where y € Y.
For a positive real A\ set

OUnrdees) = ({0 + 252} torden).

This determines an action of the Lie group RZ, on Yo,
Let F € Cg.

Claim 19.1. For every g € Dy s there exist:

constants A(F), B(F); distributions C’ik € D5, for every n > A(F) and every k
such that 0 < k < B(F'); such that for every N and every g € Dys, the following
asymptotics takes place:

(F,Uxg) = > CE (@A™ (A + o(AY).
A(F)<n<N,0<k<B(F)

Proof. We shall use induction in #R to prove even stronger statement:

There exist:
constants A(F), B(F), K(F); distributions C';, on the space of compactly sup-
ported K (F')-times differentiable functions, for every n > A(F') and every k such
that 0 < k < B(F); such that for every N there exists a constant L := L(N, F)
such that whenever

e CL(Y®), geCkY?),
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the following asymptotics takes place:

(F,Uxrg) = > CF L (Un-1¢)g)A" (In \)F + o(AY). (54)

Remark. We have

Ur-10({zs}ses) = o({zr + Mt — 20) }eer, {2r}rer)-

Therefore, for L large enough, we can replace Uy-1¢ in (54) with a finite sum

> Mgy

Base: #R = 0. We then have (F,Uxg) = (U5 F, g). Let us study the action U5 on
Cs. It is clear that this action preserves the filtration on Cs and that the associated
graded action is diagonalizable. It then follows that for every F' € Clg,

USF =Y A"(In\)*Fy,
n,k
where the sum is finite and F,; € Cs.
The statement now follows immediately.
Now let R be arbitrary, and assume that the statement is the case whenever R
has a smaller number of elements.
Let Ry C R be an arbitrary non-empty subset. Let Ry = S\ R;. Assume that

F=FF, (55)

where F; € Cp,.
We then claim that the required asymptotics is the case. Indeed, we have

(F1Fy, ¢Uxg) = (F1, (F2, 9Urg))

and the statement follows from the corresponding statement for Fy (which holds

by virtue of the induction assumption).

Let us generalize this result. Let I}]%[,’,IE,, C CK(Y?) be the subspace consisting

of functions which vanish on each diagonal x,, = x,,, 7 € R; upto the order N.
Let

QRle = H q(le _xrz)'

ri€R;

It is not hard to see that for every M, L there exist N, K such that for every
N,K
X € I/ "gi, we have

x=QY,
where 1 € CM(Y®). Thus, for N, K sufficiently large, and x € I™V"* we have

(F,x¢Uxrg) = (FQM ,¢¢Uxg).
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But for M large enough, FQ™ splits into a sum of elements of the form (55),
whence the statement for all x € I N,’,Ié,,.
Let us now define the space JN5 ¢ CKY*, consisting of all functions which
vanish on the diagonal
VteT :xy =2,
upto the order N. It is not hard to see that for N, K large enough,
(F,x¢Uxg) = o(A").
Therefore, there are large enough N, K such that whenever
N,K N,K
e I+ VK,
R/

the required asymptotics holds.
Let ANE c CK(YS) be the subspace of functions which vanish on the main

diagonal in V¥ upto the order N.
By the Nullstellensatz, for some N', K',

ANV SN L VK

R/
Therefore, the required asymptotics holds whenever
x € AN LK
Let us now pass to the original statement.
Let
0
B =) (@ —zr)5—,
teT O
- 0
=, = (xp —x7)=—.
reR 8307,

The action of the vector field =Z; 4+ =, on the space Cg preserves the filtration, and
the induced action on the associated graded quotients is diagonalizeable, therefore
we may assume that (Z; +Z, — n)V F = 0 for some n, N.

Consider expressions

d
<F7P<EZ7E'T’)‘5> ¢U>\g)> ) (56)

where P is a polynomial.
Let Uy(2) =2(z — 1)(z2—2) -+ (2 — M).
Consider the following ideals in the ring of polynomials of three variables:
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It is not hard to see that for M large enough, whenever P is large enough, the
expression (56) has the required asymptotics.
Indeed, consider for example the ideal Ay;. We have:

U (21 = Mgy ) 6UA(0) = (O (200 o)

and it is easy to see that x := Up(Z;)¢ has at least the Mth order of vanishing
along the main diagonal, whence the statement. The ideals By, Cyy can be checked
in a similar way.

Next, we see, by the Nullstellensatz, that for some M, L

d L
UM<)\5—TL> € Ay + By +C.

Therefore, we see that there exists the required asymptotics for

d L
Um <)\a - n) (F, pUxg).

The theory of ordinary differential equations now implies the statement. O

19.2.2. A claim about the distributions C, i,

Let G be a function on Y7 which is invariant under translations by a vector from
Y, with support compact modulo the action of Y.

Let H be a function on Y {™} with compact support.

We then have Uy(GH) = HU\(G).

Claim 19.2. We have,
Chx(HG) = D, 1 (G)(H),

where Dy, 1 (G) € Crugry-
Furthermore, for every N, the distributions Dy (G), where n < N and k is
arbitrary, span a finitely dimensional vector subspace.

Proof. Use induction. If R is empty, there is nothing to prove.

Otherwise, let us split R = R; U Ro, in a nontrivial way.

We then see that for M large enough Dn,k(GQ% UT.R,) Satisfy the statement
by virtue of the induction statement.

Also, for M’ large enough and any G vanishing on the diagonal Vi € T : 1y, = y,
up to the order M’, D,, 1(G) = 0. The Nullstellensatz then implies that for L large
enough, one can write

L _ M
QRl,RQ - PlQTI_IRl,RQ + P27

where P, P» are polynomials and P» vanishes on the diagonal V¢ € T":y; = y, upto
the order M’.
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This implies that Dy, (Q%, r,G) = Dnx(G)Q%, g, satisfy the statement.

Also, D, 1(G) are all translation invariants, therefore D, (G) € Crii{r}-

Let C’ be the quotient of Cr 1 by the distributions supported on the main
diagonal.

It then follows that D,, , span a finitely dimensional space in C’.

Let Qr = [I, serrss 4(xr — x5). Then Dy, 1 (G)Qr also span a finitely dimen-
sional space. Hence, D,, (G) span a finitely-dimensional space in Cg{}- O

19.2.3. Consider a decomposition S = S;U.Ss such that T C S;. Consider an
element I’ € Cg which decomposes as a product F' = F} Fh, where F; € Cg,. We are
going to express Dik in terms of Dilk.

Let G be as above (i.e. an infinitely differentiable function on Y7 invariant
under shifts by ¥ and with compact support modulo these shifts).

Claim 19.3. We then have
D} (G)(H) = (Fy, D[ (G)(H)).

Proof. Clear. O

19.2.4. Let S be a finite set with a marked point o € S. Let =, be the dilation
vector field on X given by:

0
Z(xs - J;g)a—xs

ses

Denote ;/s,n the generalized eigenspace of =, with eigenvalue n. Let Cg,, :=
CsN Q/Ys,n'
We know that

Cs = ®nezCsn-

Let us now go back to our situation in which we have a finite set S, its subset
T and a marked point 7 € T.

Consider a subspace @7, C Dy -z, consisting of all elements which are nilpotent
under translations by Y.

It is then not hard to see that

Lemma 19.4.

Dn,k € 33’/1"711 Rox CRI_I{T},N—rw

where the Ox-action is on the Tth components of both tensor factors.

19.2.5. Let

/ R / .
D1 >n = ON>nD7 N
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let
D' = OND.
Let
E(S,T) := liminv, 0D /D7 5, @ Criigry, N—n-
Given a function G € Dy s and an element
$n € D7 >n @ CRUL) N-n

one has: (s,, UxG) = o(A"~1). Therefore, for every s € E(S,T) and G € Dys we
have an asymptotic series

<S, UAG>.
Claim 19.5. There exists a map
e:Cg — E(S,T)

uniquely determined by the condition that (e(F),UxG) is an asymptotic series for
(F,U,G).

19.2.6. Let m: S5 — S/T be the natural surjection. Define a functor A, from the
category of ® ys/r-modules to the category of ® ys-modules by the formula
A (M) = liminv,, i3 (M) ®0 D' /D7 5,
Then the above result can be rewritten as a map

CS — .Aﬂ— (CS/T)

19.2.7. Let ¢:S/T — P be an arbitrary surjection. Let 7 € S/T be the image of
T. Let x = n(T). For p € P set S, := (¢qm) " 'p. Let 0:S — S/S.hi be the natural
projection. We then have induced maps ¢; : S/5, — P.

Lemma 19.6. The composition
Cs — ArCg/r — Axly(Bxr)
equals the following composition:
Cs — ip(Bxr) @pep (Cs,) = ihr(Bxr) @pry (Cs,) @ (AsCs, /1)
— Ar(ig (Bxr) ® @pep(Ci-1p)) = AxLy(Bxr).

Proof. Pick an F in Cg and show that its images under the two maps coincide.
First of all we note the following thing. Let s1,s2 € S be such that gn(s1) #
gm(s2). Then g(xs, —x5,) is invertible in A, Z,(Bxr ). Let us multiply F' by a product
of sufficiently large number of such factors. We shall then obtain an element in
®pepCs,, and it is sufficient to prove the statement for only such elements, (because
q(zs, —xs,) are all invertible in the target space). In this case the statement follows
directly from Lemma 19.3. |
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19.2.8. Let ¢: S — P be an arbitrary surjection. Define a functor A, from the
category of ® yr-modules to the category of © ys-modules by the formula

liminy § o) (M) ®0, s OpePDy-1 /@Xq 1p N°

19.2.9. Let p:S — R be an arbitrary surjection. For » € R let S, := p~'r. Pick

non-empty subsets 7). C S,.. Let P := U,.S,./T,.. We then have a natural decomposi-

tion: Let p = pop1, where p; : S — P, pa: P — R. We also denote p,-: S, — S,./T,.
The above constructions allow us to define a map

Ly = Ap I,
as follows.
Ip(M) =iy (M) ® (BrerCs,) — iy (M) ® (MrerAp,Cs, /1)
(M) ® Ay, (RrerC,o,)

— Ay, (i, (M) ® ‘ZTGRsz_l’[‘) = Ap, Ip, (M).

P2

19.2.10. It follows that the map
Iy — ApIp,

is defined for all decompositions p = pop; such that pi, pe are surjections and for
every t € Imp, py ¢ contains at most one element u such that pflu consists of more
than one element.

19.2.11. Let p2 = g2q1 be a decomposition, where g2, g are surjections.

Claim 19.7. The following diagram is commutative:

IP -A;Dl Ipz APII(II iqg
IQ1P1 iqz
Proof. Follows from Lemma 19.6. O

19.2.12. Compositions d¢,Zq, — Ip — Ap,Ip,
Let gog1 = p be a decomposition of p as a product of two surjections. We will
investigate the composition
001 Zgy = Ip — Ap Ip,-
Let a be a universal surjection among those that p; and ¢; pass through a:
p1 = pla,q1 = ¢ja. The surjection a is uniquely determined by the condition

a(z) = a(y) iff p1(z) = p1(y) and ¢1(x) = ¢1(y). Let b be the universal surjection
among those that b = byp1 = byq:.
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Let us describe b more concretely. For t € T') let R, = pz_lt and S; = p~'t. Then
there is at most one r; € R; such that #pl_lrt > 1. If there is no such an element
pick r; arbitrarily.

Let P, = pl_lrt. Then

S/ Py — Ry.

Let e be the equivalence relation on S determined by ¢;. The subsets S; are not
connected by this relation. Define the equivalence relation f which determines b.
Let u,v € Sy we say u ~¢ v if either u ~. v or if there are «’,v" € R; such that
u~eu and v~ V.

We then have a commutative diagram:

TN,
Ny Ze

We see that there is a natural map
(5q1 .Abq i .Apll (pr.
Claim 19.8. The composition
001 Zq, = Ip — Ap, Iy,
coincides with the composition:

00 Zgs — 0aday Lo, — Saly Ap, Te — 60 Ay 85, Tc — Ap Ty,

Proof. Clear. O

19.3. Maps Pp, — Ap,0p,

We always assume that p, p1, p2 are the same as above.
We are going to define maps x(p1, p2): Pp — Ap, 0p, using induction in |ps| :=

#R — #P.
The base is |p2]| = 0, i.e. a bijective pa. Without loss of generality we can assume
that P = S/T and ps = Id. The map x(p1,1d) is then defined as a composition

Pp—1Ip — Ap.

The transition is as follows. We begin with construction of a map &(p1, p2) : Pp —
Ay, Ip,. We then show that it passes through a unique map z(p1,p2) : Pp — Ay, 0p, -

(1) Construction of &(p1, p2). For every decomposition ps = ¢a2q1, all the maps being
properly surjective, we define a map

5(?1#}17 CI2) P - AP1IP2
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as the composition:
Pp = ParpiLgs — Api0g:Zg, — Ap, Iy

We also set K(p1,p2):Pp — Zp,Zp, — ApZLp,; L(p1,02):Pp — I, —
A, Z,, to be the natural maps.
We finally define a map

f(Pl»Pz) :Pp - AP1IP2

as:

£(p1,p2) = L(p1, p2) — K(p1,p2) Z £(p1, a1, 42)-
4=4q291

(2) We will now show that all compositions

&(p1.p2) .
Pp ———— Ap Ly, —— Ap Ly,

vanish, where ps = g2 is an arbitrary decomposition into a product of proper
surjection. To show the vanishing, introduce a notation. For a map L:Py,,, —
Ay, Iy, we set

Ly :Pp — Popiip, = Api Ly, ip,-
We then have (1) if ¢ = ¢3¢* and g3, ¢" is proper,
af(p1,q", 42a3) = E(p1,q" 43)13
(2)
ag(p1, q1,q2) = &(p1, q1)1;

(3) a&(q*,q*) = 0 if q; does not pass through ¢°;
(4)

aK(p1,p2) = K(p1,q1)1;
(5)
aL(p1,p2) = L(p1, q1)

Therefore,

a(pr,p2) = €, a0 — Lpr, ) + Kpua) + Y E(p1,4',98)1 =0,

q1=q3q"

by virtue of the induction assumption.
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This implies that &(p1,p2) passes through A, dp,. This completes the
construction.

19.4. Interaction with the maps PP — P

We are going to study the compositions
Pp16y2Ppy — Pp — Ap, 0p,, (57)

where p, p1,p2 are as above and p = p>p?p! is an arbitrary decomposition into a
product of surjections and p? is proper.

19.4.1.  We first of all note that the map P, — Ap, J,, passes through the direct
sum of natural maps
Pp i Iplez B ~ka,

where pFpF=1...p! = p is a decomposition into a product of proper surjections,
and p' = ap, for a surjection a.

This implies that the composition (57) vanishes except the following cases

(1) p1 is bijective; (2) ps is bijective; (3) p1 = ap®.

Consider these cases.

(1) Investigate the composition
0g: Pgy = Pp — Ap1p2.

We shall use the notations from Sec. 19.2.12. We then claim that this compo-
sition equals:

01 Pgz — 0a0q; Peb, — 0adq; A, 0c — 00 Ay 0b,0c — Ap, 0p, -

(2) The composition Py, dp, — Pp — A,18,2 does not vanish only if p; = ap' for
some a, in which case this map equals:

Pp15p2 - Ap15a§p2 - Apl §p2.

(3) In this case the composition vanishes. We shall use induction in |p?|.
The base, i.e. the case when p? is bijective is clear.
Let us pass to the transition. We will show that the composition

1 2
Pap“spzpps — Py Sus )9 -’41112172
vanishes.

We first consider the case when a is proper.

We see that L(p',p*)u = K(p',p?)u = 0. And that &(p',q1,q2)u = 0 unless
(q1,42) belong to the isomorphism class of g1 = a or ¢; = aps in which cases these
compositions mutually annihilate each other.
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In the case a = Id, K(p*, p?) = 0,&(pt, q1,q2) = 0 every time except when the
isomorphism class of (g1, g2) is given by ¢ = p1. In this situation L and &(p*, pa, p3)
annihilate each other.

19.4.2. Composition Prgun — Preutdbidun — Agutdd run

We claim that this composition coincides with the map

Prguta — Agurd — 0u1d-

19.5. Interaction with the maps with P — PP

The collection of functors A, does not form a system because it may include very
bad singularities which do not admit the required asymptotic decomposition.

One can, nevertheless, define a “correspondence”. That is, for every decompo-
sition p = pap1. One can define a functor I'(py, p2) such that

[(p1,p2)(M) C Ap(M) @AmApz(M)'

This is what we are going to do.

19.5.1. A subspace T') C D'y & A,D/

Let p: S — T be a surjection. We shall construct a subspace I, C Dy & A,D7..
Pick a splitting i : T — S so that pi = Idp. For {zs}ses € Y and A > 0 we set

Ts — Lip(s
Va({zs}ses) = {xip(s) + %ﬂ} .
AeS

Pick an element 7 € T} for a point {z;};e7 € YT and p > 0 we set

Us({zther) = {xr T A } .
H teT

Pick f € Dys, g € Dyr and F € D). We then have a function A(\, p) =
(F,VafU,g) in two variables A, p. This function is smooth for all A, > 0.
Let now F’ € A,®7,. We can then construct an element

A= (F',VAfUpug) € Cllnp, =", p][In X, A1, A

in the obvious way.
We say that A’ is an asymptotic series for A if for every P,Q > 0 and every
sufficiently large partial sum A" of A’

A— A" = NP () + Ay (A, ),
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where x(A, 1) is continuous for all A > 0, > 0, and A, p is continuous for all
A, > 0.

Define T', as the set of all pairs F, F’ such that A’ is an asymptotic series for
A for all f, ¢ and all splittings 7 (one can actually show that if this is true for one
splitting i, it is also true for every such a splitting).

The map I', — DY is injective and closed under the action of dilations UY. We
may, therefore, split I'), = ®,I',,, into the direct sum of generalized eigenvalues
of Uy.

Let p1:S — R, p2: R — T be surjections. For ¢t € T let S;, R; be the preimages
and let py;: Sy — R; be the induced maps.

Set

T(p1, p2)(M) := liminvy <® T, / Fpu,N> ®ih(M).

teT
The inclusions
! !
Ly, CD, & Ay, D,
induce the inclusions

F(Phpz) C Ap D API‘AP2'

19.5.2. Let p,p1,p2 be as above. We then have maps
a:Cg — Ay (Cr)
and
b:Cs — A, Cr — Ap, Ap,Cr.

Claim 19.9. The map a ® b passes through T'(p1,p2)Cr.

19.5.3. Asymptotic series modulo diagonals

We will need a weaker version of the above definition. In the setting of the previous
section, we say that F' is an asymptotic series for F modulo diagonals in X5/T
(respectively in X ¥) if for every P, @ there exists an N such that whenever g vanishes
on all generalized diagonals upto the order N (respectively f and g vanish on all
generalized diagonals upto the order N), we have

A— A" =N\ 1) + Ay (A ),

where z(\, u) is continuous for all A > 0, u > 0, y(\, ) is continuous for all A, u > 0,
and A” is a partial sum of A’ with sufficiently many terms.

Define I'°(p1,p2) (respectively I'°°(p1,p2)) in the same way as I'(p1,p2) but
using asymptotic series modulo diagonals in X /T (respectively X ).
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Let a,b € S be such that pi(a) # pi(b). I'°(p1,p2) “does not feel sections
supported on the diagonal a = b”. Formal meaning is as follows. Let 7:5 —
S/{a,b}; let p’: S/{a,b} — T. Let H :irv Ay — A, be the natural map. Then the
functor

(H (ixs Ap (M)),0) C T°(p1, p2)-

Similarly, let po = paps be a decomposition into a product of surjections, where
p3 is proper. Let i,,.A,, — Ap, be the natural map. Let

G: Apl Z1113*"4174 - Am Apz
be the induced map. Then

(0, G(Ap, ipsAp, ) (M)) € T°(p1,p2)-

19.6. Decomposition of the map Pp — Ap,0p,

Let p = pap1 be as in Sec. 19.2.10. Choose a decomposition ps = g2q1, where g2, ¢1
are surjections.
We are going to construct a map

Pp — Aqu Ag 0p,
such that its direct sum with the map
Pp — Ap,p,

will pass through I'°(g1, ¢2)dp, -

19.7. For a surjection u: A — B let B,,(p) C B be given by
B (u) = {z € B #p; ' (x) > 1}.

Let A, (u) = u !B, (u). Let B = B, (u)UBg(u), A = Ap(u)UAs(u) be the
decompositions. We then have u = wu,, Uus, where uy is bijective and u,, is essen-
tially surjective, i.e. #u, 'z > 1 for all x € B,,(u).

19.7.1. Letp1:S - R,po:R—T.Let 1:5 - U, q2:U — R.

Let S, = Sm(p1), Ss = Ss(p1). Then ¢1(Ss),p1(Ss) are identified with S;.
Using this identification, we may assume that U = U,,US; and that ¢y =
¢1m UIds,; R = R, USs, g2 = qam Uldg, (see the diagrams below).

We will work with isomorphism classes of maps v:U — X which are

(1) injective on Uy,
(2) there exists w: X — T such that wv = pago.
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We may therefore assume that
X=U,UY

and that v = Id U vs.
We see that equivalently, one can define a map v by a prescription of a map
vs:Ss — U, UY such that

(1) vs(Ss) DY,
(2) there exists a map wy:Y — T (it is then determined uniquely) such that the
diagram below commutes.

We then have w = paqom, L ws.

Let Z = R,UY. Let wi: X — Z, w1 = e Uldy; let we: 2 — T, wy =
P2|R,, Lws.

Let 0: R — Z be given by Idg,, Uwvs.

S p1 R P2 T
NN S
U Z
X

P1m UIds,
s
q2m UIds,
qlmkA / Idm p2|R,, Uws
R, UY
q2m UIdy

U,UuY
We also see that there is a natural transformation:
Oy Ay, — Agy 05
Therefore, one constructs a map
to 2 Pp = Pugi Pwsws — Agy 0 A, 0wy — Agy Aga 060wy = Agy Ags Op, -
Define a map

N(QIan) P _>‘AQ1‘AQ2§P2

as a sum of u, over the set of all isomorphism classes of maps v.
Let v:Pp, — Ap, 0p,.

Claim 19.10. The map v & p passes through I'°(q1, g2)dp,
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19.7.2. We need a lemma.
Let

L:P, =1, — ApZLp,.
For v as in the previous section, set
Ao 1 Pp = Pugi Pw — Agi 60Ty — Ag Lprgo — Agi Age Ly, -
Let A=, Ay

Lemma 19.11. L — A passes through I'° (g1, ¢2)Zp,

Proof. Let A be given by:
Pp = Ip = AqLprgy — Aq AgoLp,-
As we have seen above, L — A passes through

I'°(q1, ¢2).

We can now focus on the difference A — \. It suffices to show that it passes
through Ag, A°,Zp,.
Let

H:P, =1, — Ay Tpsq-
Let
Gy :Pp — PugiPw = A0y, — Agi Lpsgs-
We see that A — X equals the composition of H — )", G, with the map
A Tpogs — Agi AgLp, .

Let paga = wv be a decomposition such that v is as above. Then it is not hard
to see that the compositions of H — )" G, with the map

Lprge = Loiw
vanish. This implies that the composition of H — " G, with the map
'A(hI;Dqu - A(h A(I2IP2
passes through
'A(h Aoqzzpr
This implies the statement. O
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19.7.3. Proof of the claim

We shall use induction with respect to |p|. The base is clear. Let us pass to the
transition.
By definition, the composition

5(1017272) :Pp - Apl 5?2 - AP1IP2

equals —L + " &(p1;r1,72), where we changed ¢ for r to avoid a confusion, and the
sum is taken over all isomorphism classes of decompositions ps = rory such that ro
is proper (so that K is included as the term corresponding to r; = Id).

Define the map n(p1;r1,72) as the composition:

Pp = Pripy Pry = Agi Ag, 00 Lr, — Ag Ag, Ly, -
According to the induction assumption, the direct sum

§(p1,7r1,m2) +0(p1sry,2)

passes through I'°(q1, g2)Z, -
Let A be as in the lemma. We then know that L + A passes through I'°(g1, ¢2).
It now suffices to prove that — > A, + > n(p1,r1,72) = 0.
We, first of all see that

> nlpr,rra)

equals the sum of the maps of the form

E(wr,wh,ra)
—

Py — Pug ,Przwéwl — Pug: Pwéwl Pr, -Avql -Awlz-rzwé
— Aqg, 5U~Aw1IT2w’2 — Ag Ag, Ly,
. , . . . s
where v, wy,wy = rows are as in the previous section, and the decompositions

wg = row} are arbitrary, not necessarily proper.
The map X equals

PP - PU(Il Pﬂ) - PU(hIw £> Pv(h AU/IIU/Q - 'A(h 6UAw11w2 - 'A(h A(I2IP2

The statement now follows immediately.

19.8. Maps p;Pp — Agp;
19.8.1. Definition

Suppose we have a commutative square
R—>T
q
S —— Q
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Let us define a map p;Pp, — Agp; in the following way.
Let L := R\i(S). We then have an identification R = SUL. Let p1: R — QUL
be just
R, guL M QUL

Let po: QU L — T be given by j L pir. We then have p = pap1, where py, py are
surjections. We see that they satisfy the conditions which are necessary to define
the map

Pp — Ap, 0p,.
Finally, let ig:Q — QUL be the inclusion. We then have a natural map
piApl — qulQ
The map p;P, — Py, is now defined as the composition:

piPp — PiAp, 0p, — qui@ Opy — qupz%‘@ = App;-

19.8.2. Properties

We shall translate the properties of the maps Pp,p, — Ap, 0p, into the language of
the maps

pi,Pp — quj.
(1) If the square (i,p, j, q) is suitable, then the diagram
piPp —— Agp;

N

quj

is commutative.
(2) Let p = pspap1 be a decomposition into a product of surjections, where ps is
proper.

(3.1) The composition
PiPp,0p, Pps — piPp — Pqd;

vanishes unless p; or p3 are bijective.
(3.2) Investigate the composition

pi5p27)?3 - piPp - Pqu~

We can uniquely decompose pat = j2qo, where jo is injective and ¢s is
bijective. Furthermore, we can decompose p3js = jq’ for a surjection ¢'.
The above composition is then:

pi5P2 - (qupszpB - 5Q2~AQ’pj - quj'
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(3.3) The composition
piPp16P2 — piPp — Pyp;

does not vanish only if one can decompose p1i = j1q, where j; is injective,
in which case it equals

PiPpi0ps = PaPjr0p, — Pobj-
(4) Let ¢ = ¢%q" be a decomposition into a product of surjections.
Consider the set of all isomorphism classes of the diagrams
1 2

R$R1P—>T

1]\ jl} J'T
qa" @
S——P ——P
where p?p! = p. For every such a diagram D we have a map
up :pipp - piPplppz - AQ1 ijPPZ - AQ1 qupj'

Let u be the sum of up taken over the set of all diagrams D.
Let v:p;Pp — Pyp;. Then the direct sum u & v passes through I'°(g1, ¢2)p;.

19.9. Maps fq (R — A%

We define fq = 0 on all terms of cohomological degree <0. The terms of degree zero
are all of the form p;,Pp, where p; = ¢, 7 is injective and P is surjective. We define

Ja

pi.P, as the composition:

pixPp — Ay — A°.
Claim 19.12. dfq =0.
Proof. We need to check that the composition
()= L @ g,

vanishes.
The functor (RZY™™) — 1 is a direct sum of the terms p;Pp, o5, Pp,, where p =
p1p2pst, where ¢ is injective and p1, po, p3 are surjective and ps is proper.
Consider several cases.

(1) p1 is bijective. We may think that p; = Id. The restriction of the differential
onto this term equals the sum —D; + Dy, where

D, :pi5p2Pp3 - pipp?,pz'
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The map Ds does not vanish only if 7; = poi is injective, in which case
Do :pi(spzpp?, - pi2Pp3'

The check now reduces to showing that the diagram

p
AN
PiOps Pps A%y

)

iPPsz

R\
Pis Fps

is commutative which follows from the Property 3.2.
(2) ps is bijective. We may assume p3 = Id. In this case, the restriction of the
differential onto p;Pp, dp, equals —D; + D, where

Dy : piPpl 5?2 - piszm :

The second term Dy does not vanish only if p1i = jq, where j is injec-
tive. In this case we can construct a commutative diagram (uniquely upto an
isomorphism):

in which the square iz, p,r, j is suitable.
The map D- is then:

pipm 51?2 — Piy pizppl 5132 - pilprpj(spz - pi1PT'

The Property 3.3, and 19.4.2 imply that the diagram

p
y \
PiPp,0ps A%y

P

ippzm

K
Pi,

is commutative, whence the statement.
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(3) p1,ps are proper. In this case the restriction of the differential onto Pp, dp, Pp,
simply equals:
9iPp0ps Pps — PiPp.
The composition
PiPp,0p, Pps — piPp — A%

vanishes according to Sec. 3.1. O

19.9.1. Interaction with the maps RSY™™ — RSymm[symm

Let p = pap1 be surjections. Let fplm (REY™m™ — RIYmmRIYmM — A°), A,

Claim 19.13. The map fp@fpl o, Passes through re°(py,p2).

Proof. Compute the restriction of the map R;Y™™ — REY™MMRIY™™ onto p; P,

By definition, such a restriction equals the sum of maps m(qi, g2), where ¢ = gaq1
and ¢1¢ = jp2, where j is injective. In this case one can construct a unique, upto
an isomorphism, commutative diagram

.| P2
12 J
s
—_—

where the square i, g1, j, 7 is suitable.
The map m(q1,gz) is then given by:

PiPq = Pi,pi Pgy Pgy — iy PPy,
The composition
PiPq = PisPi Pgy Pay — Pis PrpjPg, — Ap Ap,
equals, by virtue of Sec. 19.4.2,
u(q1,q2) :piPq = PiPg Pgy — ApipjAg, — Api Ap,.

The sum of all u(qgi,g2) is the map w from 4. Therefore, the direct sum of the
composition

PiPq = PisPi Py Pay — Pis PrpjPg, — Ap Ap,
with the map
piPg — Ap
passes through A°(p1, p2), whence the statement. O

1240002-157



D. Tamarkin

Acknowledgments

I would like to thank D. Kazhdan for attracting interest to the problem and valuable
conversations without which this paper would not be written.

I also thank A. Beilinson, P. Bressler, A. Cattaneo, V. Drinfeld, G. Felder,

M. Kontsevich, Yu. Manin, and B. Tsygan for helping me and sharing their ideas.
This work was partially supported by an NSF grant.

References
1. R. Borcherds, Quantum vertex operator algebras, preprint math-ph.
2. R. Borcherds and A. Barnard, Lectures on QFT, preprint math-ph.
3. A. S. Schwarz, Geometry of the Batalin—Vilkovitski quantization, Commun. Math.
Phys. 155 (1993) 249-260.
4. A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization
formula, Commun. Math. Phys. 212 (2000) 591-611.
5. A. Beilinson and V. Drinfeld, Chiral Algebras (Amer. Math. Soc., 2004).
6. I. Batalin and G. Vilkovitski, Gauge algebra and quantization, Phys. Lett. 102B
(1981) 27.
7. J. Bernstein, unpublished.
8. A. Connes and D. Kreimer, Renormalization in quantum field theory I, Hopf algebras
and the Riemann—Hilbert problem, Commun. Math. Phys. 210 (2000) 249-273.
9. A. Connes and D. Kreimer, Renormalization in quantum field theory II, Hopf algebras
and the Riemann—Hilbert problem, Commun. Math. Phys. 216 (2001) 215-241.
10. Y.-S. Park, Pursuing the quantum world: Flat family of QFT and quantization of
d-algebras, preprint MATH.
11. N. Bogoliubov and O. Parasyuk, Acta Math. 97 (1957) 227; K. Hepp, Commun. Math.

Phys. 2 (1966) 301.

1240002-158



