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Résumé

Llobjectif principal de cette thése est d’étudier I'existence de solutions de systemes de Hodge
indéterminés dans des espaces fonctionnels “critiques”. L'exemple le plus simple est I'équation
de la divergence :

divu = f, sur R?, (%)

ou f est une fonction donnée et u un champ vectoriel. Si 1 < p <oo et f est une fonction L? a
support compact d’intégrale nulle, alors la théorie elliptique standard implique I'existence d’'une
solution de (*) dont le gradient appartient a L?. En revanche, lorsque p = 1 ou p = oo, il existe
des fonctions f dans L?, a support compact et d'intégrale nulle, telles que (%) n’a pas de solutions
u a gradient dans L?. Ces résultats de non-existence ont été prouvés par Wojciechowski (1999),
Bourgain-Brezis (2003), pour le cas p = 1, et par Preiss (1997), McMullen (1998), pour le cas
p =o0.

Nous obtenons des résultats similaires de non-existence dans le cas plus général des systémes
de Hodge indéterminés de la forme

du = f, sur R?, (%)

ou f est une /-forme fermée prescrite et u est une ( — 1)-forme.

En utilisant un nouveau résultat d’approximation pour les fonctions dans les espaces Sobolev
critiques, Bourgain et Brezis (2007) ont montré que si f a les coefficients L%, alors il existe
une solution u de (%), dont les coefficients sont bornés et dont le gradient appartient a L%.
En utilisant leur idée, Wang, Yung (2014) ont étendu ce résultat au cas plus général des groupes
homogenes stratifiés, Ultérieurement, Bousquet, Russ, Wang, Yung (2017) ont obtenu une version
euclidienne du résultat de Bourgain et Brezis, dans les espaces de Sobolev critiques avec une
plus grande régularité. Nous unifions les deux résultats mentionnés ci-dessus, en obtenant une
version pour les espaces de Sobolev critiques avec une plus grande régularité, dans le contexte
des groupes stratifiés homogenes.

D’autres sujets connexes sont étudiés. Nous étudions ’équation de divergence avec, comme
terme source, une mesure positive, nous fournissons une version améliorée du résultat de non-
existence de Preiss et McMullen, et nous analysons les multiplicateurs de Fourier dans les es-
paces de Sobolev homogenes W*2(R%), lorsque p =1 ou p = oo et k = 1 est un entier. Par ailleurs,
nous étudions un probleme concernant les relevements BV -minimaux des fonctions complexes
unimodulaires.

La these comprend trois parties.

Partie I. Dans cette partie, nous étudions des systemes de Hodge dont les termes sources
sont dans L! ou L®, ou sont des mesures non négatives. La plus part de résultats que nous
obtenons sont des résultats négatifs, concluant a la non-existence de solutions avec la régularité
maximale attendue. Nous présentons également plusieurs résultats d’existence pour des solu-
tions légerement moins réguliéres, qui illustrent 'optimalité des résultats de non-existence.

La Partie I est formée des quatre chapitres.

Dans le Chapitre 1, notre objectif est de généraliser le théoréme suivant de non-existence
pour I'’équation de divergence avec des termes sources non négatifs :
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6 RESUME

Théoréme. Soit 1 une mesure de Radon non négative sur R%, et un paramétre 1 < p < d/(d—1).
Si Uéquation divF = p a une solution F € LP(R%,R?), alors 1= 0.

Nous montrons que ce résultat de non-existence se généralise a des espaces invariants par
réarrangement (r. i. pour faire court). Sans donner ici une définition de ces espaces, nous
citons quelques exemples d’espaces fonctionnels largement utilisés qui sont r. i. : les espaces
de Lebesgue L?, les espaces de Lorentz L?9 (1 < p <o00,1 < q <o00) et les espaces d’Orlicz ®(L).
Dans cette direction, nous obtenons:

Théoréme. Soit 11 une mesure de Radon non négative sur R?, et X un espace r. i. de fonctions
sur R? tel que |x|1~%1g. n’appartienne pas & X. Si Uéquation divF = 1 a une solution F € X(RY,RY),
alors u=0.

De plus, nous montrons que la condition “|x|1~%1z. n’appartient pas a2 X” dans le théoréme ci-
dessus est optimale. En effet, soit ¢» une fonction non triviale non négative de L‘c’O(IRd) et définis-
sons u := ¢m (ou m est la mesure de Lebesgue), qui est une mesure positive non triviale. Si
x|l Igc € X, alors on montrons que I’équation divF = u a une solution F' dans X ([Rd, R%).

Nous étudions également le lien entre l'existence de solutions pour I'’équation de divergence
dans r. i. et les indices de Boyd associés a ces espaces.

Les Chapitres 2 et 3 sont consacrés a un méme résultat de non existence pour les systéemes
de Hodge, obtenu par deux méthodes différentes. Soit N = 2. Si g€ Li(RN ) est d’integrale nulle,
alors en général il n’est pas possible de résoudre I'’équation divX = g avec X € Wllo’i(RN :RN) (Woj-

ciechowski 1999), ou méme X € L]l\f) /(EN B :RN) (Bourgain et Brezis 2003). En utilisant ces ré-

sultats, nous prouvons que, pour N =3 et 2<¢ <N —1, il existe une ¢/-forme f € L%(IRN :AY) avec
les coefficients d’integrale nulle, satisfaisant la condition df = 0 et telle que ’équation dA = f
n’ait pas de solution A € Wllo’i(lRN :A’~1). Ceci donne une réponse négative a une question posée

par Baldi, Franchi et Pansu (2019).

Dans les deux chapitres, le probléme est réduit au probleme de I'équation de divergence. Dans
le Chapitre 2, cette réduction est faite en utilisant ’hypoellipticité de I'operateur de Laplace,
tandis que dans le Chapitre 3 la réduction est faite en utilisant la continuité des opérateurs de
Calderon-Zygumnd sur des espaces de Besov homogenes.

Dans le Chapitre 4, notre point de départ est le résultat suivant de non-existence : il existe g €
L>®(T?), d’integrale nulle et telle que 'équation () n’ait pas de solution f = (f1, f2) € WH(T?). Ce
résultat a été obtenu indépendamment par Preiss (1997), en utilisant un argument géométrique
délicat, et par McMullen (1998), via la non-inégalité d’Ornstein. Nous améliorons substantielle-
ment ce résultat, en montrant qu’en général (x) n’a pas de solution satisfaisant dyf9 € L°°, avec
f “un peu mieux” que L. Notre démonstration est basée sur les produits Riesz, dans I'esprit de
Papproche de Wojciechowski (1999) pour ’étude de () avec source g € L. La démonstration est
élémentaire et évite completement l'utilisation de la non-inégalité d’Ornstein.

Voici par exemple une conséquence, simple a énoncer, du résultat principal de ce chapitre :
Théoréme. Soit € > 0 fixé. Il existe une fonction g € L®(T?) telle que l'équation

g =fo+01f1+02f2
n’ait pas de solution satisfaisant fo, f1, fo € HE(T?) et daf2 € L(T?).
Ce résultat se généralise aux dimensions d = 3.

Partie II. Dans cette partie, nous étudions la possibilité d’obtenir des solutions pour des
systemes de Hodge indéterminés, un peu plus réguliers (bornés et avec la régularité différentielle
attendue) que ceux fournis par la théorie classique. Cette partie contient les Chapitres 5 et 6.

Le Chapitre 5 traite la généralisation commune de deux résultats d’approximation pour des
fonctions dans des espaces critiques de Sobolev. D’une part, il s’agit d’'un résultat pour les espaces
de régularité différentiable 1 obtenu dans le cas général des groupes stratifiés homogenes par
Wang et Yung (2014). D’autre part, d'un résultat d’approximation similaire obtenu par Bousquet,
Russ, Wang, Yung (2017), pour des espaces de Sobolev de régularité plus élevée, mais uniquement
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dans le cas euclidien. Nous obtenons un résultat d’approximation dans le cas d’espaces de Sobolev
de grande régularité sur des groupes stratifiés homogenes.

Pour simplifier la présentation, nous énoncons ci-dessous le résultat principal adapté au
groupe de Heisenberg H”.

Soient X1,..,X, et Y1,..,Y, les champs vectoriels standard sur le groupe H", définis par :

0 0 0 0
Xji=—+2yj—, Y= — —2x,— 1=1,2,...,n.
J ax] y]at7 J ayJ xjat, pour .] )&y 7n
Soit
Vp =(X1,.,X,,Y1,..,Yn).

Théoréme. Soit Q :=2n +2. Nous considérons les paramétres 1 < p,q <ooet a:=Q/p. Si
J1,J9 < {1,...,n} sont deux ensembles tels que |J1| + |J2| < min(p,2n), alors, pour chaque fonction
f, Schwartz sur H", et chaque 6 > 0 il existe une fonction F telle que :

;} ”Xj(f—F)”Fg‘l’P(u-un)*‘ g} ”Yj(f—F)”Fg‘l’P(Hn)S‘S”be”ﬁ’g’p(nﬂﬂ)
Jjed Jjed2

et
1E | ooy + 1F | e gy < Co Vo f Nl pep gy
ou Cgs est une constante qui ne dépend que de 6.

Ici, les espaces F;x P(H") sont les analogues naturels des espaces du type Triebel-Lizorkin. Si
a est un entier et ¢ =2, ces espaces coincident avec les espaces de Sobolev standard sur H".

Le Chapitre 6 aborde un probleme géométrique. Nous étudions les solutions des systemes de
Hodge dans les espaces critiques de Sobolev, avec des conditions aux limites du type Dirichlet.

Partie III. Dans cette partie, nous étudions deux problémes différents. Le premier probleme,
étudié au Chapitre 7, fait référence a la “généricité” des fonctions unimodulaires complexes qui
ont un unique relevement BV -minimal. Le deuxiéme probléme, étudié au Chapitre 8, est étroite-
ment lié a I'existence de solutions d’équations différentielles et concerne les multiplicateurs de
Fourier sur les espaces de Sobolev pathologiques.

Le but du Chapitre 7 est de répondre a une question posée par Brezis et Mironescu sur
les relevements BV -minimaux pur les fonctions unimodulaires complexes. Etant donné u €
wii (Q,§1) (ici, Q est un domaine lisse, borné et simplement connexe dans R?), nous appelons
relevement BV une fonction ¢ € BV (QQ,R) de sorte que u = e'? (Pexistence d’un telle function
¢ est connue). On dit que un relevement BV ¢ de u est BV-minimal si la seminorme BV de
¢ est minimale. La question que nous nous posons est la suivante : 'ensemble des fonctions
uewhl (Q,Sl) qui admettent un relévement BV -minimal unique (mod 27), est-il résiduel dans
wii (Q,Sl) ? Nous montrons que la réponse a cette question est oui. En fait, nous obtenons cette
réponse comme une conséquence du résultats suivant :

Théoréme. Soit 2 un domaine lisse, borné et simplement connexe dans R2. Soit k un en-
tier positiv. Lensemble des vecteurs a = (ay,...,ar) € QF pour lesquels chaque u € W11 (Q,Sl) N
C(Q\{a1,...,ar}) admet un relevement BV -minimal unique (mod 2n) est de pleine mesure dans
QF.

Nous démontrons ce résultat en réduisant le probleme a I’étude des propriétés algébriques
des distances entre les points du domaine ).

Au Chapitre 8, nous généralisons le résultat suivant obtenu par Kazaniecki et Wojciechowski
(2013) concernant les multiplicateurs de Fourier sur I'espace homogéne de Sobolev W11 :

Théoréme. Soit d > 2. Si m est un multiplicateur de Fourier sur W51 (R?), alors m € Cp, (R?).

Nous démontrons la généralisation suivante du résultat ci-dessus :
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Théoreme. Soient d =2 et | = 1 deux entiers. Si m est un multiplicateur de Fourier sur
Wil ([Rid), alors me Cy (Rd).
On obtient également un résultat similaire dans le cas de I'espace W»*(R?). Nous dé-

montrons ces résultats en utilisant une version de la méthode utilisée par Kazaniecki et Woj-
ciechowski.



Abstract

The main purpose of the present thesis is to study the existence of solutions of underdeter-
mined Hodge systems in “critical” function spaces. The simplest Hodge system is the (single)
divergence equation:

divu =f, on IRd, (*)

where f is a given function and u a vector field. As long as 1 < p <oo, if f is an L? compactly
supported function with zero integral, the standard elliptic theory provides a solution u to (x)
whose gradient belongs to L”. On the other hand, when p = 1 or p = 0o, there exist functions f
in L? which are compactly supported of integral zero, and such that () does not have solutions u
with gradient in L”. These nonexistence results were proved by Wojciechowski (1999), Bourgain-
Brezis (2003) in the case where p = 1, and by Preiss (1997), McMullen (1998) in the case where
p =o0.

We obtain similar nonexistence results in the case of more general undeterminated Hodge
systems of the form

du=f,onR?, (%)
where f is a prescribed closed /-form and u is an (I — 1)-form.

Using a new type of approximation result for functions in critical Sobolev spaces, Bourgain
and Brezis (2007), showed that if f has L% coefficients then there exists an (I — 1)-form u, solution
of (* %), whose coefficients are bounded and have the gradient in L¢. Following their idea, Wang,
Yung (2014) extended the result to the more general case of stratified homogeneous groups and
later Bousquet, Russ, Wang, Yung (2017) obtained an Euclidean version for higher regularity
Sobolev spaces. We unify under a common roof the two aforementioned results, obtaining a
version for higher regularity Sobolev spaces in the context of stratified homogeneous groups.

We also investigate several other related topics. We study the divergence equation when
the source term is a nonnegative measure, we obtain improved versions of the nonexistence re-
sult of Preiss and McMullen and we analyze the multipliers of the homogeneous Sobolev spaces
Wkop ([R{d), when p =1 or p =oco and k2 =1 is an integer. Aside from these topics, we study a
problem concerning minimal BV -liftings of complex unimodular maps.
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Introduction

Overview

The main theme of this manuscript is the inversion of the divergence equation, or, more gen-
erally of underdetermined Hodge systems in “critical” function spaces. The central question is
whether or not these differential systems admit solutions which are sufficiently “smooth”. Clas-
sical regularity theory provides satisfying positive answers in most of the cases. However, there
are several limit situations in which the classical theories (e.g., the Calderén-Zygmund theory)
cannot be applied. In some of these cases, we expect the nonexistence of solutions “as smooth
as the source term allows”. On the other side, there are cases where we expect to find solutions
“smoother” than the ones provided by the classical theory.

We address several such questions. For equations or systems falling into the first category, we
either significantly enlarge the function space in which nonexistence occurs, or we extend known
nonexistence results from the divergence equation to Hodge systems. For the latter category, we
generalize the existing positive results obtained on Euclidean spaces or for low regularity source
terms to stratified homogeneous groups and to source terms with “critical regularity”.

In different directions, we investigate smoothness properties of multipliers in homogeneous
spaces, and the generic uniqueness of minimal liftings of unimodular maps.

1. The divergence equation

The simplest underdetermined system is the ubiquitous divergence equation
divY =Ff, (0.1)

where f is a given function (or, more generally, distribution) defined on a domain of R¢. The
function f will be called source term. The problems we are interested in here are related to local
regularity. In order to discard the possible influence of the boundary, we work with functions and
vector fields on the d-dimensional torus T¢ or on the d-dimensional Euclidean space R%. Here,
T¢ is the group R%/(27Z)?. In most cases, it will be identified with the set [-7,7)?¢ endowed with
the usual Lebesgue measure.

In general, it is easy to transfer existence results from T? to R? (or conversely), and from T¢
to smooth bounded domains.

If d = 2, the equation (0.1) is underdetermined. For example, if Y is a solution of and Y’
is another vector field satisfying divY’ =0 (i.e., Y’ is “divergence-free”), then

Y=Y +Y' (0.2)

is also a solution of (0.1). There are many divergence-free vector fields. For example, if d = 2, any
vector field Y’ of the form Y’ = (-02¢,01¢), where ¢ is an arbitrary distribution, is divergence-
free.

The case d = 1 is easy; in this case, (0.1) becomes
Y'=fonT. (0.3)

Let us note some regularity results in this trivial case; they will guide us in the higher di-
mensional case. Consider some 1 < p <oco. If f € LP(T) has zero integral, then there exists a
unique function Y € Wh2 (T,R) with zero integral satisfying . This Y has one extra degree of
regularity compared with f. This is a natural property that we expect to occur also in the case
d =2 whenever we have a solution, at least for one solution ((0.2) shows that this cannot hold for

13



14 INTRODUCTION

all the solutions and that, even in the Sobolev class, no uniqueness of solutions can be expected
in any reasonable sense).

From now on we assume that d = 2.

The case 1 < p < oco. Classical theory. Let us fix 1 < p < oco. We first observe that, if
f € L? (T%) and there exists Y in WP (T¢,R?) such that (0.1) holds, then

f f=| divy =o. (0.4)
Td Td

Hence, we have to impose the necessary condition (0.4), i.e., the source term must have zero
integral. We thus let f belong to L” (T¢), the space of all L? (T%)-functions with zero integral. If

fe Lg’ (T9), then it is well-known ’fhat there always exists a solution Y in W17 (T4,R?) of (0.1).
This can be easily seen by applying the standard Calderén-Zygmund theory. In fact, we have the
following explicit solution:
Y:=vaTlf, (0.5)
where A : 2'(T%) — 2'(T?)/R is the Laplacian on T¢, and A~ : 2/(T?)/R — 2/(T?) is its inverse.
Indeed, one may see that this Y satisfies on T in the sense of distributions:
divY =divVA~ f = AN = F.
Also, if we write Y =(Y1,...,Yy), we have
0,;Y;=0,0,A7 f =R;R;f, foralli,j=1,2,..,d, (0.6)

where R1,...,R4 are the Riesz transforms on T?. Here, the operators R ; are defined by the rela-

tions
n

Ry(n):= ﬁlf/(n), for any n € Z4\ {0}, R,1(0) =0, 0.7)
n
where v is any trigonometric polynomial on T¢ with
w(0)=0. (0.8)

Notice that this gives

S ninj . =) d
RiR;y(n)= e ¥(n)=0,0; A" y(n), for any n € Z% \ {0},
which formally justifies the formula (0.6).

One may still define R; for distributions v on T% satisfying (which has to be under-
stood as (y,1) = 0), via formula (0.7). It is not difficult to see that, in this case, R;y is again a
distribution

The operators R; are bounded on L? (T%) (see below). Hence, we get 9,Y; € Lé’ (T4), for all

i,j=1,2,...,d, ie., for each j=1,2,...,d, we have Y; € WLP (T¢,R?). We also obtain the estimate
”Y”WI,p(]'d) = Cp ||f||Lp(1rd),
were C), is a constant depending only on p and d.

We now briefly recall why R; acts on L‘é’ (T%), when 1 < p < oo. A Calderén-Zygmund kernel
on R? is a measurable function K : R%\ {0} — C for which there exists a constant B > 0, such that
(see [22, p. 166]):

() 1K (x)l < Blx|™¢, for all x € R¥\ {0};

(ii) |K(x) - K(x - y)|dx < B, for all y e R\ {0};
lx|>2]y

(1i1) K(x)dx=0,forall 0 <s<t<oo.
s<|x|<t
With such a kernel we can associate an operator 7', formally defined by Tyw = K =y for
Schwartz functions y; T is called a Calderon-Zygmund operator. We have the following fun-
damental theorem of Calderén and Zygmund (see [22, Theorem 7.5]):
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THEOREM 0.1. Suppose T is a Calderén-Zygmund operator as above. Then, for every 1 <
p < oo one can extend T to a bounded operator on LP(R?) with the bound TN p—rr < CB, where
C =C(p,d) is a constant only depending on p and d.

The usual Riesz transforms R; on R? are Calderén-Zygmund operators whose kernels are
respectively defined by

kj(x)=cd||xﬁ, for x e R\ {0},
X

where ¢y is a constant such that

k(&) = Ii‘_JI for &eRIN\{0}.
Hence, each R : LP (R?) — LP (R9) is well-defined and bounded (see [22, Section 7.2]). Without
much difficulty, this result implies also the boundedness of the Riesz transforms on L? (Td) via a
transference method (see for example [14, Theorem 3.6.7]).

Concerning the divergence equation, the case of R? is very similar. This time A and R; will be
the Laplacian and the Riesz transforms on R?. The operator A~! will be defined by the formula:

ATy =E sy,

for any Schwartz function y, where E is “the” fundamental solution of A.

However, since R? is not compact, some care is needed when defining the right spaces to work
with. For example if f € L? (R?) and the tempered distribution Y is given by , then we have
again that each component of VY is L?,i.e., Y e W12 (Rd, IRd) (see Section [5|for notation). Yet, we
do not have in general that Y € L? (Rd, IRd). However, such a Y satisfiesY € Lfoc(IRd) [15, Theorem
4.5.8].

It is worth mentioning that Bogovskii ([2], 1980) found an explicit formula (see below)
for an inverse of the divergence operator on quite general domains.

Let Q be a bounded domain in R?. The question that we ask in this case is the following:
given a function f € L? (QQ) with zero integral on 2, does there exist a vector field Y € WO1 P (Q)
such that holds in the sense of distributions on 2? We recall that WO1 P (Q) is the closure of
C%°(Q) under the WhP-norm. Note that a solution Y satisfying the weaker condition Y € WHP(Q)
can be obtained as above. Indeed, we can extend f by letting f = 0 outside Q and then let Y
as in . The stronger condition Y € Wg P (Q) amounts to requiring in addition that, in some
generalized sense, we have Y =0 on 01).

In order to explicitly construct such a Y, we work on domains 2 that are star-like with respect
to a ball. More specifically, we assume that there exists a ball B(xg,r) such that B(xo,r) < Q and
Q is star-like with respect to every point of B(xg,r), i.e., for any x' € B(xg,r) and any y' € Q the
whole segment [x',y'] is contained in Q.

Consider now a function n € C°(B(xg,r)) such that

f n=1.
B(xo,r)

For a function f € L? (Q2), satisfying

| .£=0.

we define the vector field

Y (x) = fQ £ | x-y) fl n(y+tGe—y)tddt| dy. 0.9)

This vector field has the remarkable property that Y € WO1 P (Q) with
”Y”WLP(Q) < ||f||Lp(Q), (0.10)
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and it satisfies (0.1) (see [13, Lemma II1.3.1, p. 162]). Here and in what follows, A(x) < B(x)
stands for A(x) < CB(x), for some constant C < co independent of x. In particular, in (0.10) we
have , |Y llyirq) < Cllf llLr(q) for some C < oo independent of f.

To check the estimate is a matter of Calderén-Zygmund theory. Since the argument
needs some careful computations we skip it. Also, the verification of is somewhat lengthy
and will be omitted. For both results, we refer the reader to [13] (see the proof of Lemma III.3.1,
p. 162.)

Finally, we note that it is intuitively clear that Y “vanishes” on the boundary. Indeed, suppose
for simplicity that f is smooth. In this case, after a more careful look at formula (0.9), one can
see that the vector field Y is also smooth (in the whole R?%). Consider now a point x € 4Q, or, more

generally, a point x which does not belong to 2. In order to see that Y (x) = 0, it suffices to show
that

ny+t(x—y))=0,

for any y € Q and for any ¢ = 1. Suppose this is not the case. If y and ¢ are fixed, then we must
have y+t(x —y) = b for some b € B(xg,r). However, we get from this that x is a convex combination
of y and b:

1
x:(l——
t

Since () is star-like with respect to b € B(xg,r), we get x € [y,b] < Q which contradicts our
hypothesis that x ¢ Q.

1
+-b.
Y t

This method can be extended to John domains (see [1]), or even to general bounded domains,
considering weighted L? spaces (see [12]).

The cases p = 1, p = co. “Pathological” sources. We saw that, as long as 1 < p < co, we
always have solutions of expected regularity. A natural question is to ask what happens in the
remaining cases. It is well-known that the Riesz transforms are not bounded on L! or L™ (see,
for example, [22, Exercise 7.5]).

Therefore, in these cases formula need not provide solutions with the expected regularity
of the divergence equation. This suggests that, when p =1 or p = co, WP solutions of the
divergence equation may not exist for a general f € L‘YﬂJ .

It turns out that this is indeed the case. More precisely, we have the following negative results
(which for technical reasons are formulated for the d-dimensional torus):

THEOREM 0.2. Assume d = 2. There exists f € L§ (T9) such that there is no vector field Y €
W1 (T9) with divY = f.

THEOREM 0.3. Assume d = 2. There exists f € L‘ﬁ’O (Td) such that there is no vector field Y €
WL (T4) with divY = f.

Theorem was first proved by Wojciechowski in 1998 (see [31]). His proof is by contradic-
tion, and relies on Riesz products. A simpler proof was given by Bourdaud-Wojciechowski ([7]) in
2000 and Bourgain-Brezis in 2003 ([3]) by showing that a stronger conclusion holds: there exists
fe L; (T?) such that there is no vector field Y € L% (T%) with divY = f. Here d’ := d/(d — 1) is the
conjugate exponent of d.

Theorem was initially proved by Preiss in 1997 ([26]) using a geometrical argument and
by McMullen in 1998 ([21]]), via Ornstein’s L!-non-inequality ([23]). The proof of Theorem
that we present below is essentially McMullen’s one.

Both theorems were rediscovered by Dacorogna, Fusco and Tartar in [10]. They also provided
several different proofs of Theorem

Since the proofs of Theorem [0.2] and Theorem [0.3] are instructive and simple, we recall them
below, following the presentation in [3].
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PROOF OF THEOREM [0.2l Suppose, by contradiction, that the statement of the theorem is
false. That is, for any f € L; (T9) there exists a vector field Y € W11 (T9) such that divY = f.

We find that the operator div : Wﬂl’l('ﬂ'd) — L;('I]'d) is continuous and surjective. By the open
mapping theorem, for every f € L;(T]'d), there exists some Y € Wh1(T9) satisfying

divY = f and |Y Iy SHf iz (0.11)
Combining (0.11) with Gagliardo’s embedding W1t — Ld,, we find that, for every f € L;(Td),

there exists some Y satisfying
divY =fand [Y| o SIflL- (0.12)

Let us fix ¢ € C*®(T¢) with zero integral. There exists f € L; (T9) with Ifllz1 = 1 such that
||<P||Loo <{¢@,f). With Y as in (0.12), we have

o]l o S {0, ) =, divY ) = =(V,Y) < | Voo 1o IV Il o S |V - (0.13)
From (0.13), we easily obtain the embedding W< (T?) — L>(T¢), which is well-known to be
false when d = 2. This contradiction completes the proof of Theorem 4

PROOF OF THEOREM[0.3] For simplicity we prove the theorem in the case d = 2. The general
case is very similar.
Suppose by contradiction that the statement of the theorem is false. That is, for any f €

Ly (T2) there exists a vector field Y € W1 (T2) such that divY = f. Using the open mapping

theorem, Y can be chosen such that
1Y lwroocrzy S 1 lzoo(r2y -
Let us fix ¢ € C®(T2). There exists f € L‘ﬁ’o (T2) with [|fliz = 1 such that 010201 <
(01029, ). Let Y be as above. Then we have
0102011 S (81029, F) = (0102¢,divY ) = (0102¢,01Y1) + (0102¢0,02Y2)
=(07¢,09Y1) +(05¢,01Y2) < 03¢ 1 102Y1 Il Lo + ||05¢0]| 11 101 V2l oo
Sloielz+ 1930l -

However, as Ornstein proved (see [23]), this inequality is false in general.

Actually, this argument shows that one cannot take 01Ys and 02Y; in L*°, which is weaker
than requiring Y to be in W1, U

Let us make some observations concerning the above proofs. In the proof of Theorem we
have used the following relatively difficult non-inequality of Ornstein ([23], 1962):

J01020l: 5 1930l + |03l 0 € €2 (T2). ©19)

Following the same idea as in the proof of Theorem it is possible to prove Theorem
using the following non-inequality (see for example [10]):

01020l 1 5 1020l + 1350 0 € € (T2). 015

This non-inequality is easier than (0.14). In a more general form, it was first proved by de
Leeuw and Mirkil (see [20]) before Ornstein proved (0.14). The proof in [20] relies on relatively
simple duality methods. Also, some explicit constructions can be given. For example, Mityagin
gave in 1958 (see [18]) the following example illustrating the failure of (0.I5). Consider the
function

X x
g(x1,%) := Bx122 — 1 In (22 + 22) — 22 arctan | = | - x?arctan | =2 |, on (R\ {0})2,
X2 X1

extended by continuity to R?.
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One can check that

02g (x1,x2) = —Zarctan(fC—Q) , 028 (x1,x9) = —2arctan (jcc—l) , 01028 (x1,%2) = —In (2% +x2),
1 2

in the classical sense in (R \ {0})2, and in the sense of distributions in R2.
Now choose a function n € C°(B(0,1)) such that n =1 on B(0,1/2). By defining ¢ := gn, we
have
02¢p,05¢ € L™ and 0102¢ ¢ L™.
Identifying T2 with [, 7)? we get that smooth approximations of ¢ will provide examples for
(0.15).

Compared to (0.15), it is much more difficult to illustrate the failure of (0.14); actually, the
validity of was an open problem of L. Schwartz, negatively solved by Ornstein via a delicate
explicit construction, in the first part of its seminal contribution [23]. By the duality arguments
presented above, this suggests that Theorem is easier than Theorem

The case p = d. Critical spaces. Let us now turn to another “limiting” case for the exponent

p,namely p =d. As we already saw, if f € Lgl (T4), then there exists Y € W? (T¢) which satisfies

(0.1). It is important to recall that W¢ (T%) is not embedded in L® (T%). (Recall that d = 2.) An
explicit example of function in W14 ('I]'d) \L*® ('I]'d) is provided by
ga(x) :=[Inlx||“n(x),
where n € C(B(0,1)) is a function such that 7(0) =1 and 0 < @ < d’. One may observe that
gq € WH? (T?), while, clearly, g, is not bounded.
Let us consider the function

ho(x) :=x18a(x), on TY,
and define the vector field Y, := VA,. Clearly, we have
divY, = Ahg,,

and it is easy to see that Y, is the solution to the divergence equation with source term Ah,
provided by the formula (0.5). Clearly, Y, := (g4 +x101€¢,%1028q,-..,X104€ o) and, since g, +
x10184 € L (T?), we have that Y, ¢ L™ (T¢). By a direct computation, we see that

1
V2R o(x)| < o Inx/|**, on B(0,1),
X
and since

1

-1 d
— |In|x||* " €L
|x| loc

and h, is supported in B(0,1), we get that V2h, € L¢ (Td). In particular, this gives us that
Y, € W4 (T?) and that Ah, € LY (T9).
The above example is due to L. Nirenberg and appears in [3]. It shows that, in general, if

fe L‘ﬁi (Td), the solution to the divergence equation provided by formula lb is not necessarily
bounded.

However, it is possible to conclude by other means that, for this type of source term, the
divergence equation admits a bounded solution. (This does not contradict the above example,
since the divergence equation is underdetermined.) More precisely, we have:

THEOREM 0.4. For any f € L‘ﬁi (Td) there exists a vector field Y € L*° (Td) satisfying divY = f
and

1Y oo gray S I I paray- 0.16)

This was first proved by Bourgain and Brezis in [3] (2003). Since their proof is simple and
short we recall it below.
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PROOF. Recall that we have Gagliardo’s embedding
”u”Ld’(Td) N IVulpi(yay, (0.17)
for any smooth function u on T¢ with zero integral. Consider now the normed subspace
V.= {Vu | u smooth on T? with zero integral} cL! (Td,Rd) ,
and let f € L‘&l (T4). Define the functional Ls:V — R by
Ly (Vu):=—(f,u),

whenever u is smooth on T? with zero integral. Note that L r is well-defined, since u — Vu is
one-to-one for such u’s. Moreover, L is clearly linear.

The inequality (0.17) gives us that L is bounded on V, and that
ILEN S llpa. (0.18)

*

By using the Hahn-Banach theorem, we can find a bounded extension L € (L' (T%,R%))
L (T%,R?) of Ly such that |IL| = [Lfll. Let Y € L% (T¢,R?) be a vector field representing L.
We have

—(f,uy=Lp(Vu)=L;(Vu)=(Y,Vu) = —(divY,u),

for any u smooth on T¢ with zero integral. Hence, Y is a bounded solution (0.1) in the sense of
distributions on T¢. Estimate (0.16) follows from (0.18). O

Observe that in the above theorem the solution is obtained by a nonconstructive argument. In
their paper [3], Bourgain and Brezis also proved that the bounded solution Y whose existence is
given by Theorem cannot depend linearly on f. Equivalently, there is no bounded linear map
T ;Lgurd ) — L®(T%;R?) satisfying divT'f =f, Vf € Lgﬂrd ). This is in contrast with the explicit
and linear formula (0.5).

The striking fact that was proved in [3] is that we can simultaneously satisfy the conditions
Y eL®(T¢) and Y € W14 (T9). More precisely, we have

THEOREM 0.5. Forany f € Lél (T9) there exists a vector field Y € L*® (T?) nW1e (T9) satisfying
divY =f and

1Y N poo(ray + 1Y llypraqray S 1 Ipa(ray- (0.19)

This result was proved by an involved approximation argument using the Littlewood-Paley
square function. We will not describe the argument here. We mention instead that the compli-
cated construction used in [3] can also be used in more general situations. Following the ideas in
[3l, Bousquet, Mironescu and Russ proved in [5] (2014) the following generalization of Theorem
[0.5]in the scale of Triebel-Lizorkin spaces:

THEOREM 0.6. Suppose that 2 < q < p <oo and s > —1/2 are such that (s+1)p =d. For any
f € FyP (T9), there exists a vector field Y € L™ (T4) meIH’p (T9) satisfying divY = f and

1Y Ml oo(gay + IIYIIF;H,p(Td) S pse (ray- (0.20)

In order to keep the presentation simple, we omit here the precise definition of the Triebel-
Lizorkin spaces, and refer the interested reader to Section |5, It is worth noting that the scale of
these spaces includes the classical Sobolev spaces W2 EeN, 1< p < oco.

The existence of a vector field Y satisfying one of the estimates |Y || ey S IflLacray or
1Y llwracray S Ifllpacpay (implied by (0.20)) follows from standard results in harmonic analysis.
Indeed, it suffices to adapt the proof of Theorem [0.4] for the first estimate (and to use the adapted
Sobolev type embedding), respectively to apply Calderén-Zygmund theory (whose validity for
Triebel-Lizorkin spaces is well-established) for the latter one. As in the case of Theorem the
difficulty consists of finding Y satisfying both estimates.

In [5], the authors
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also proved a version of Theorem [0.6]on smooth domains.

THEOREM 0.7. Suppose that 2<q < p <oo and s > —1/2 are such that (s+1)p =d. Let Q) be a
smooth bounded domain in R?® and let f € F3” (Q) be such that

| £=0

Then, there exists a vector field Y € L°°(Q) ﬂFzﬂ’p (Q) satisfying divY = f and trY =0 on 0.
Moreover, we can choose Y such that

Sources which are nonnegative measures. We also consider the case where sources are
measures rather than L? functions. This is related to the “pathological” case where the sources
were L', however, we are interested here in the decay at infinity of the solutions, rather than
their differential regularity.

We consider the equation
divF =pu on [Rd, 0.21)

with i a nonnegative Radon measure on R?.
Let us prove, by a simple argumentﬂ that, if the above equation has a solution in certain L?
spaces, then we necessarily have p = 0.

For this purpose, suppose u is as above and let F' be a solution of that belongs to L? (IRd)
for some 1 < p <d’. For simplicity, we suppose that F' is smooth, but this is not relevant for the
final conclusion. Even without the smoothness assumption on F', we can “smooth” the problem
by taking convolutions with smooth compactly supported functions, and then argue as below.

By applying the Gauss-Ostrogradskii theorem, we get, for any R >0,
u(BO,R)) = d,u:f didex:f F-vdo,
B(O,R) B(O,R) S(0,R)
where S (0,R) is the boundary of B(0,R) and v is the unit outward normal at S (0,R). We imme-
diately obtain that

H(B(O,R)) < f Fido,
S(0,R)
and, by applying Hélder’s inequality, we have

, 1/p
1(B(0,R)) <RUE-DP ( f |F|P da) :
S

(O,R)
ie.,
u? (B(0,R)) <
R@-1(p-1) ~ S(0,R)
Integrating in R this last inequality, we get

IFIPdo.

P BOR) - _ [® o
, R@D0-D dRNfR0 fS(O,R) |IFIPdodR = ”F”LP([Rd\B(O,RO))<OO’ (0.22)
for any Ry > 0.

We now observe that, since p <d’'=d/(d — 1), we have (d —1)(p — 1) < 1, and thus

© 1
Since u is nonnegative, we have that u(B(0,R)) = u(B(0,R())=0 for all R = Ry and

foo uP (B(0,R)) 1

o0
D -
o, R@ DD EZH (B(O’RO))fRO a4

1We thank to P. Mironescu for this argument.
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which together with (0.22) and (0.23) gives us that pu(B(0,R()) = 0. Since we can choose R
arbitrarily large, we get that =0 on R?.

To summarize, by the above argument we have obtained the following result:

THEOREM 0.8. Let 1 < p <d/(d —1) and let u be a nonnegative Radon measure on RE. If there
exists a vector field F € LP(R?,R?) such that div F = pon R?, then p=0.

The above result was proved by Phuc and Torres (see [24, Theorem 3.1]) by a different
method than the one given above. They have obtained Theorem by a direct application of
the Calderéon-Zygmund theory. They also proved that the exponent d/(d — 1) above is sharp. We
point out that this result treats only the case of nonnegative measures. In the more general case
of signed Radon measures the situation is more complicated and little is known in this direction.

2. Differential forms and Hodge systems in R? and in H"

General facts. Hodge systems in R%. A natural generalisation of the divergence equation
is a (underdetermined) Hodge system: given a [-differential form A on R? whose coefficients are
elements of some function space on R? we ask for the existence of an (I — 1)-differential form u
on R?, with coefficients in some “appropriate” function space such that:

du=A. (0.24)

Here, [ is an integer with 1 </ < d and du stands for the exterior derivative of u, defined as
follows. When 1<k <d, we write dx; = dx;, A... Adx;, for any increasing sequence i1 <...<ij in
{1,...,d}and I :={iq,...,iz}. With this notation, if

u:= Z urdxg,

Ic(l,...d}
[Il=1-1
then
du = Z Z aiuldxi /\dx[. (0.25)
I<{1,...,d}1<i<d
|I|=1-1

Since we will work in spaces of distributions, as in the case treated before of the divergence
equation, all the derivatives in (0.25) will be considered in the sense of distributions.

Let us quickly explain why, when [ = d, the system (0.24) is equivalent to the divergence

equation. We have exactly one subset of {1,...,d} whose cardinality is d; namely, the set {1,...,d}
itself. Hence, any d-form A can be written as

A=fdxiA...Ndxg, (0.26)

for some function f. We have exactly d subsets of {1,...,d} of cardinality d—1; namely {1,...,j - 1,7+ 1,...,d}
for 1 < j<d. Hence, any (d — 1)-form u can be written as
d

u= Z ujdxl A... /\dx]'_l /\dxj+1 N... /\dxd,
=1

for some functions u;. Using the definition (0.25), we obtain

d d
du = Z Z Oiujdx; Ndx1 A...ANdxj_1 Adxji1N...Ndxg
j=1i=1
d
= 6jujdxj/\dx1/\.../\dxj_l/\dxj+1/\.../\dxd 0.27)
j=1

= Z (—1)j‘16juj) dxiA...ANdxg,
Jj=1
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where we have used the fact that dx; A dx; =0. Combining (0.27) with (0.26)), we obtain that
in the case [ = d the system (0.24) becomes

d

Y (1Y toju;=f.

=1
Clearly, this is equivalent to a divergence equation with the source f.

As in the smooth case, we have d?u = 0 (this time in the sense of distributions), and thus in
order to be able to solve (0.24) we have to impose the compatibility condition

dA =0 in the sense of distributions. (0.28)

Note that, as long as we work on R?, the above compatibility condition is vacuous in the case
l=d.

If
= Y @idx; and ¢= >  ¢rdag
I<{1,...,d} I1<{1,...,d}
[I1=1 VE

are some [-forms in L2(R?%), formally, we write

W)= ¥ [ orgrdx.

I<{1,...,d}
111=1

The formal adjoint of the exterior derivative d will be denoted by d*. Hence, we have:

(dy1,y2) = —(y1,d"y2)

for all (I — 1)-forms v and [-forms 9 with smooth and compactly supported coefficients. It turns
out that we can compute d* explicitly, as explained below. For ¢ as above we have

d*o=) Y 0;p10;ldxs, (0.29)
|Il=l1<i<d

where the expressions 0;|dx; are (I — 1)-forms defined as follows.
Suppose I ={i1,...,i;}, where 1<i;<..<i;<d.Ifiel,and 1<k <! is such that i =i, then
we set
0;ldxr = 0;, |dxy := (D Ydwy, A Aday,  Adxg,, A Adx,.
Moreover, if i ¢ I, then 0;]dxy :=0if i ¢ I. (See [11, Example, (3.12)].)

By a direct computation we can verify that A =dd*+d”* d. In other words, for any differential
form ¢ with smooth coefficients we have:

Ap=dd p+d*de, (0.30)
where A acts on differential forms “component-wise”:

Ap = Z A@rdxg,
|I|=1

for any form

Q= Z (p[dx].
[I1=1

In a similar way one can define the action of A~! on differential forms with smooth compactly
supported coefficients:

A_l(p = Z A_l(p]dx[.
|I1=1

It is easy to see that A and A~! are commuting with the operators d and d*. If ¢ is a form
with smooth compactly supported coefficients, then from (0.30) we get

p=A"Ydd*o+ A do=dAd*p+d* A de. (0.31)
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Note that dA_ld*(p (respectively d* A~ 1d ) is a closed (respectively co-closed) form, i.e., we
have

d(dA™'d*¢)=0and d*(d* A" dp)=0. (0.32)

In view of (0.32), (0.31) asserts that any smooth compactly supported form can be decomposed
as a sum of a closed form and a co-closed form.

It is also possible to give an L?-version of li In the case of R?, we have the following
simple Hodge decomposition formula (see for example [27]):

v=dA 'd*v+d* A" dv (0.33)

for any [-form v with L? coefficients where 1 < p < oco.

Indeed, using and the explicit formula of d*, (0.29), it is easy to see that the operators
dA~1d* and d* A~1d are linear combinations of operators of the form R;R j» where R; are the
Riesz transforms on R?. Hence, each term in the right hand side of is well-defined and we
have

lda™td o]l p(gay S WlLpgey and  [|d* A7 ] 1y gay S 10lLp(ga)-

In some cases we can use the decomposition formula in (0.33) to construct solutions to Hodge
systems. We illustrate this by the following simple proposition (see for example [27]).

PROPOSITION 0.9. Let 1 < <d be an integer and 1 < p <oo. Suppose A is an l-form with
dA =0 and whose coefficients are L? functions on Re. Then, there exists an (I — 1)-form u with

WLP coefficients on R? and such that is satisfied.
Indeed, one can construct explicitly the solution
u=A"1d*A. (0.34)
To see, at least formally, that u solves (0.24), we rely on and find
du=dA'd*A=dA™'d* A+d* AT dA= A,

The expression (0.34) is very similar to the one in (0.5) used to explicitly construct solutions
for the divergence equation. As in the case of (0.5), using the Calderén-Zygmund theory, we infer
that each coefficient of u is a distribution in W1 (R?).

Knowing the nonexistence results for the divergence equation for p = 1 or p = oo, described
in Theorem and it is natural to ask if similar results hold true for more general Hodge
systems In other words, is it true that there exists an I-form £ on R? with L! coefficients
and satisfying df = 0, such that there is no (I — 1)-form u with W'! coefficients and satisfying
? The same question makes sense if we replace the space L! with L™ and W' with W1,
We will address these questions in Chapters[2] and

Hodge systems in R?. The case of critical function spaces. We have the following ana-
logue of Theorem [0.4] in the case of Hodge systems:

THEOREM 0.10. Let 2<l<d. If A € LAR?) is an I-form with dA =0, then there exists an
(I-1)-form ue L®°(R%) such that du = A on R%. Also, we can choose u such that

||u||Loo([Rd) S, |M”Ld([Rd)-

2Whenever X is a normed function space on R? we write, for all [-forms ®,

lolx:= 2 lorlx-

I<(1,...,d}
1=l

Usually, for the sake of simplicity, when each coefficient ¢; belongs to some function space X, we say that ¢ belongs
to X (and we write ¢ € X).
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Notice that the condition / = 2 in the above result is necessary. An analogue result for the case
[ =1 does not hold. Indeed, the case I = 1 corresponds to the gradient equation. Actually, if we
use the following standard identifications: a O-form u is a function, and its exterior differential
du is identified with Vu, a 1-form A is a vector field, and its exterior differential d A is identified
with curl A, then solving du = A for a 1-form A satisfying dA = 0 amounts to the following: given
a vector field A with curl A = 0, and whose components are L¢ functions, we ask if there exists an
L function u such that

Vu=A, on RY.

_Such a function u does not always exists. Clearly, if A := Vv where v is an unbounded function
in W4(R?), then u — v is constant and hence u is not bounded.

We mention that Theorem [0.10| is a direct consequence of Theorem below which was
obtained by quite complicated means. However, even the weaker Theorem |0.10|is interesting on
its own. The natural question here is whether there is a simple(r) proof for this weaker result.
In the case [ = d, where the Hodge system reduces to the divergence equation, this is a direct
consequence of Gagliardo’s embedding (see Theorem and its proof). In the case 2<1[ <d, we
can prove Theorem by following the idea in the proof of Theorem and the next estimate
(see [33), Theorem 3]):

THEOREM 0.11. Let 1 <! <d - 1. Suppose that f € C‘c’o([l%d) is an l- form such that df =0 and
Qe C‘ZO(IRd) isa (d—1)-form. Then,

URdfMP

where C is a constant independent of f and .

It turns out that Theorem is equivalent to Theorem (see [33] for details). The ad-
vantage of the statement of Theorem [0.11, as was shown by Van Schaftingen in [33], is that
(0.35) can be proved by much simpler means than Theorem The technique is based on
some embeddings for Morrey spaces. There is also a relative resemblance with the standard
method for proving the classical Gagliardo embedding. In fact, Theorem [0.11|implies the follow-
ing Gagliardo-type embedding for differential forms:

=C ”f”Ll(Rd) ”d(p”Ld([Rd)’ (0.35)

Nl gay S Idullpaay + |4 u | L1 ga)

for any I-form u, provided that 2 </ <d —2 and the result does not hold for [ =1,d — 1 (see [33]
for details). This result was also independently obtained by Lanzani and Stein in [19].

The technique in [3], used in the proof of Theorem was developed to a higher level of
generality by the same authors in [4]. The main tool in [4] is a new approximation result (see [4,
Theorem 11]).

THEOREM 0.12. Given & >0 and f € WH4(R?) there exists some F € L¥(RY) n W4 (R?) such
that, for all j=1,2,...,d -1,
”6] (f _F)”Ld(Rd) <6 ”f”Wl,d([Rd)
and
IF lyyraey < Cs Il f lyyragd)s
1E Nl ooy < Cs ||f||W1,d([Rd),
for a constant Cs that depends only on § and d.

This approximation result is sufficiently robust so that, using it in conjunction with an iter-
ative method, it is possible to prove existence results for more general Hodge systems than the
divergence equation. It can be applied even to other differential systems (see [33]]). We illustrate
how the argument works in the case of Hodge systems. Suppose A is an /-form (where [ = 2) on R¢
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with L? coefficients, satisfying d A = 0. Then, thanks to Propositionwe can find an (I — 1)-form
d
@ on R?,

p= ) rdxj,

I<{1,....d}
[Il=l-1

solving d¢ = A, such that ¢7 € W1 for each I. This ¢ can be chosen such that
|1l yr1amay S IAILagay, for all 1. (0.36)
Let § > 0. Using the approximation result given by Theorem and we can find, for
each I, a function F; € L°(R%) n W14 (R?) such that
||6j (o1 —F1) ”Ld(Rd) <6 M pd(gdy, for all j &1,
and

1F1llyr1ragd) < Cs I Ld @)y,
”FI ||L°°(Rd) = C& ”A”Ld(Rd)'
It is possible to apply here Theorem [0.12], thanks to the fact that / = 2. Indeed, since [ -1 =1,

each set I with |I| =1 —1 is nonempty. With no loss of generality, we may assume that d € I, and
then the existence of F; follows from Theorem [0.12

Note that, by definition,

d(p= Z Z ai(p[dxi/\dxl.
I<(l,...,d} 1si=d

Il=1-1

Let observe that in the above formula, the expressions like dx; A dxy are zero if i € I. Hence,
we can write

de= Y ) 0iprdx; ndxy.
Icl,....d) 1sisd

\Il=1-1 i¢l
If we set
F .= Z Fidxg,
I<{1,...,d}
[ Il=1-1

and we use the triangle inequality, we get
1A= dFllLagay = ||de - dF | aga

= Z Z ||al(p1 _aiFI”Ld([Rd)
Ic{1,...,dy1sisd

Ij=1-1 ¢l
<Ol pae)-

Note that we also have

IF lyyragay < Cs 1Al Laga)
”F”LOO([Rd) < Cé ”AHLd([Rd) .

Hence, if § is sufficiently small, we have
1
A - dF”Ld(Rd) = 5 |M||Ld(|]qu),

and

1Pl < C 1A g
”FllLoo(Rd) =C ”A”Ld([R{d)a

for some constant C depending only on d.
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Now we can use an iterative method. Let F° := F. Applying the above result for A — dF°
instead of A, we obtain an (I — 1)-form F! such that

1 1
”A_dFO - dFl”Ld(Rd) = 5 ”A— dFOHLd(Rd) = Z ”/l”Ld(IRd)a
and F! satisfies
C
”F1”W1,d(uqzd) = Py Il zdgd)
C
”FIHLOO([Rd) = E ||/1||Ld([Rd).
Now, as above we approximate A - dF°-dF" and we find an (! - 1)-form F* such that
1 1
|A~dF®—dF' ~dF?| aga) < 2 |A—dF°—dF| 4, < 3 1Mz
with
C
”F2 ”Wl’d([Rd) = Z ||)l||Ld(Rd),
C
||F’2 ”LOO(IRd) = Z ”A'”Ld([Rd) .

We continue this iteration scheme and we obtain a sequence of (I — 1)-forms Fg,F1,...,Fy,...
such that

1
[A=dF® = ...~ dF" | Lagay = oy Mlaca) (0.37)
and
C
|7 lvrage) < 5 WA lLacee), (0.38)
C
|7 | ey = 5 1Moy - (0.39)

We see that we can define the (I — 1)-form

u:=FC+F '+  +F"+...
Indeed, this series is absolutely convergent in L> (which is a Banach space) thanks to (0.39).
From (0.38), u also belongs to WLd(RY).
Quantitatively, we have

lwllyramdy < 2C 1A Lagdy s
lullpoomay < 2C 1Ml pa(ga) -
Also, implies that du = A.
To summarize, we have obtained the following (see [4]]).

THEOREM 0.13. Let 2 <l<d. If 2eL%R?) is a I-form with dA = 0, then there exists an
(I-1)-formue L®RY N WLE(RY) such that du = A on R%. Also, we can choose u such that

”u”Loo(Rd) + ”u”WLd(Rd) ,S ”ﬂ“”Ld(Rd)'

As we have already mentioned, this result implies in particular Theorem Similar results
holds for d* instead of d.

Observe that Theorem gives a result of approximation only for functions of differential
regularity one. A similar approximation result, for higher order Sobolev spaces was obtained by
Bousquet, Russ, Wang, Yung in [6] (2017). Following the ideas in [4], they were able to extend
Theorem @ to the more general case of the homogeneous spaces Fg/p P(R?) (see Section [5| for
their precise definition). More specifically, these authors have proved the following:
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THEOREM 0.14. Consider the parameters 1 < p,q < oo, a :=d/p and let k be the largest positive
integer with lk < min(p,d). Then, for every 6 > 0 there exists a constant Cs > 0 depending only on 9,
such that for every function f € Fg P(R?) there exists F € LOO(Rd)ﬂF:; P(R?) satisfying the following
estimates:

k
Y10 ~Flg-10(5, =0 I o ey
1=

1E N ooy + 1 F'll pop gy < Co I f o gy -

Note that, for « =1 and p = d, Theorem is exactly Theorem As a consequence of
Theorem [0.14] we obtain the following result, similar to Theorem|[0.13| concerning Hodge systems
[6, Theorem 1.2]:

THEOREM 0.15. Consider the parameters 1 < p,q < oo, a :=d/p and let k be the largest positive
integer with k <min(p,d). Let d-k+1<l<d. If L€ Fg_l’p(le) is an l-form with dA =0, then
there exists an (I — 1)-form u € L®(R%) an]X’p(Rd) such that du = A on R%. Also, we can choose u
such that

ety + 1oty S WAl -1 gy

Theorem follows from Theorem 0.14} by an iterative argument, in the same way Theorem
follows from Theorem

Hodge systems in H". The case of critical function spaces. The results obtained in the
Euclidean framework were generalized, to some extent, to the case of stratified homogeneous
groups. This class of groups is large enough to contain, for example, the Euclidean space R? and
the Heisenberg group H". One attempt of development in this context is due to Chanillo and Van
Schaftingen in [9]. A more elaborated approach was proposed by Wang and Yung [30]. We will
discuss their results in what follows.

In order to give a glimpse of the results in this framework of stratified homogeneous groups,
for the sake of simplicity, we focus on the case of Heisenberg group H", which arises quite often
in analysis. Its non-abelian character makes the group H" quite different from RY.

Before describing the results obtained in [9] and [30], we quickly recall some basic facts about
H". We follow [28, pp. 531-545].

Let n = 1 be an integer. Viewed as a set, we identify H" with
C"xR={[(,t] | (eC", teR},
with the usual additive operation. We endow H" with the multiplicative operation

[{,t]0n,s]:= [(+n,t+s+2Im((-7)],

@ »
[e]

given by

where

SR SUTR S SRS

We also define a dilation on H”, different from the one on R® x R* xR: if A > 0 and [{,#] € H"
then we set:

AL, 8] := (AL, A%E]. (0.40)

«©
o

The dilation is consistent with the operation “o”, in the sense that

A(IS, 810 [n,s]) = ALL,eDo (A [n,s]).

One can verify that H” endowed with the operation “o” is a non-abelian group, with identity
[0,0] and the inverse in given by the rule [{ ,t171 =[=¢,—t]. It also turns out that H” is a Lie
group. Its Lie algebra h” is generated by the following 2n + 1 left-invariant vector fields:

0 0 0

0
X;:=—+2y;—, Yji=——2xj—, for j=1,2,..
J ax] y_]at’ J ayJ xjat, OI'J 9 &y ’n7
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and
0

ot
Note that we have the commutation relations
(X, Xk =[Y;,Yz] =0, for j,k=1,2,..,n,
and
[Y;, X1 =46 1T,

where 6, =1if k= j, and 6, =0 if £ # j. Notice that, if we are allowed to take commutators of
vector fields and linear combinations, then the 2n vector fields X;,...,X,,,Y1,...,Y, are sufficient
in order to generate the full Lie algebra h”.

After introducing the above vector fields, we can now define homogeneous Sobolev spaces on
H" similar to the usual ones defined on R?. First, by identifying H” with the set R” x R* x R, any
function f defined on H" can be seen as a function on R" x R"” x R. With this identification, we will
say that a function f is Schwartz on H” if f is Schwartz on R” x R” x R. Similarly, by distributions
on H" we mean distributions on R” x R x R. Also, for each 1 < p < oo we let L? (H") be the usual
space L? (R" x R" x R). Next, we define the seminorm of the Sobolev space NL*»P (H™), where £ is
an nonnegative integer. For this purpose, we consider the subgradient on H" defined by

Vb = (Xl, ...,Xn,Yl,...,Yn).
Then, the NL? (H")-seminorm is given by (the possibly infinite quantity)

||f||NL1,p(|]-|]n) = ||be||Lp(|]-|]n)>
for any distribution f on H".
For k = 2, the NL*P (H")-seminorm is given by the recurrence formula

||f||NLk,p(|].|]n) = ||vbf||NLk—1,p(|]-|]n),
for any distribution f on H".

The function space N L*P (H") consists of distributions on R™ x R" x R for which the N L* (H")-

seminorm is finite. E.g., we have
NLYP(H"):={f e 2'(H") | Vpf € LP}.

In order to parallel the theory on R?, we next recall few facts related to differential forms
on H". We follow [28, pp. 594-595]. Let dz1,...,dz, be the basic (0,1)-forms on H", where
zji=xj+iy;. HI={j1,....Jq}, with 1 < j1 <...< j, <n, we write

dzy:=dzj N..AdZj.
Suppose 1 < g <n is given. An expression of the form
Y. fidzy,
lIl=q
where f7 are ‘some complex-valued functions on H", will be called (0, g)-form. We formally define
the operator 0 by the relation

55( > fldﬁ) =YY Z;(fndz; ndz,
lI1=q J=1lI1=q
where Z j are the left-invariant Cauchy-Riemann operators defined by

= 0 0
ZJ == lZ]—
0z j ot
Let 5; be the formal adjoint of ;. Thus 52 is characterized by the equality

(35f.2) = (f0)
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for any smooth (0, g)-form f and any smooth (0, (g — 1))-form g in L2(H"). Here, for any two (0, q)-
forms ¢ and v in L2(H"), their scalar product is defined by

(p,p) := Zf f f(pﬂﬁ[dxdydt
\Il=q n n JR

Let @ := 2n + 2. This number is the homogeneous dimension of H", and differs from the
dimension of H"”, which is 2n + 1. As we will see below, this homogeneous dimension plays, to
some extent, the role of the space dimension in the Euclidean setting.

To illustrate this, let us investigate the behaviour of the homogeneous space NL1® (H") under
the action of the group of dilations. Suppose e.g. that f is a Schwartz function on R” xR” xR = R2" x
R and A >0 is given. We define f) by

£, 8) = FAALL D) = £ ([AL, A%¢]).
We have

”f/l”gLLQ(Hn):_LanR'vb (f([A(:/lzt])”Qd(dt
=79 2,19
= fRanRbe([M,/l )% deds
:fwnfR|vbf([/1(”12t])|Qd(/1()d(ﬂzt)

_ f f Vo £(IC, IR didt,
Rzn R

ie., Ifallyrreem) = If I ypre@r)- The same type of invariance holds in the case of L*(H"). From

this point of view, the pair of spaces NLY (H") and L* (H") behave like their Euclidean counter-
parts: Wid(R") and L (Rd). We will see that this is not a coincidence.

We have the following analogue of Theorem [0.10, which can be deduced from the work [9] of
Chanillo and Van Schaftingen (see [32]).

THEOREM 0.16. Suppose n = 3 is an integer and consider @ :=2n+2. Let r be an integer with
1<r<n-1. Forany (0,r)-form ¢ in NLYQ (H"), there exists a (0,r)-form Y in L (H"™) such that

0,Y =0y
and

I o
1Y llLeoqn) S ||0p Lo

Note that, in the case of H", the critical homogeneous Sobolev space NLYQ (H") plays the
same role as W19 (R?) plays in the case of R.

Following the ideas in [4], Wang and Yung proved in [30] an analogue of Theorem for the
case of stratified homogeneous groupsﬂ Adapted to H", their result reads as follows.

THEOREM 0.17. Suppose J1,J2 c{1,...,n} are two nonempty sets such that |J1| +|J2| <2n —1.
Then, for any Schwartz function f on H" and any 6 > 0 there exists a function F such that:

> ”Xj(f—F)”LQ(u-un)"‘ > ”Yj(f—F)”LQ(n-un)55”vbf”LQ(H”)
Jed1 Jjedz

and
IFlLo@ny + IVeF Loy < Cs IV f Il La@n),

where Cs is a constant depending only on 6.

3The definition and some important properties of these groups, which include the Heisenberg group H”, will be
recalled in Chapter
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The iterative method used in conjunction with Theorem leads to the following improve-
ment of Theorem

THEOREM O..18. Suppose n = 3 is an integer. Let r be an intege_r with 1<r<n-1. For any
(0,7r)-form ¢ in NLQ (H"™), there exists a (0,r)-form Y in L (H") ANLYR (M) such that

5ZY = 52(;)
and

1Y Nz 1Y Dyyprogn S [350] g
Note that Theorem and Theorem [0.12| only concern functions of differential regularity

one. We will study in Chaper [5] higher order analogues of these results, in the more general
context of stratified homogeneous groups.

3. Short description of the main contributions of the thesis

This manuscript is based on the following articles:

1. On the existence of vector fields with nonnegative divergence in rearrangement-invariant spaces,
Indiana Univ. Math. J. 69, 87-104, 2020.
This will form the content of Chapter

2. On the representation as exterior differentials of closed forms with L'-coefficients, C. R. Math.
Acad. Sci. Paris, 357(4) :355-359, 2019.
This will form the content of Chapter

3. The divergence equation with L* source, accepted at Annales de la Faculté des Sciences de
Toulouse.
This will form the content of Chapter

4. Approximation of critical regularity functions on stratified homogeneous groups, accepted at
Communications in Contemporary Mathematics.
This will form the content of Chapter

5. Minimal BV -liftings of W11 (Q, Sl) maps in 2D are “often” unique, in press at Nonlinear Anal-
ysis.
This will form the content of Chapter
6. Chapters[3|and [6|are original contributions that will not be published elsewhere.

7. Chapter|8|is the basis of a manuscript in preparation.

Part I. Hodge systems with “pathological” source terms. In this part, we study under-
determined Hodge systems whose source terms are in L! or L™, or are nonnegative measures.
Many of the results that we obtain are negative results, concluding to the nonexistence of solu-
tions with the maximal expected regularity. We also present several positive existence results, of
slightly rougher solutions, that illustrate the sharpness of the nonexistence results.

Chapter (1. In this chapter, our goal was to generalise Theorem by replacing the L?
spaces with more general rearrangement-invariant spaces (r. i. for short). Without providing
here a definition of these spaces, we mention few examples of widely used function spaces that
are r. i.: the Lebesgue spaces L?, the Lorentz spaces LP? (1 < p <oo, 1 < q <o00) and the Orlicz
spaces ®(L).

Our first result is the following.
THEOREM 0.19. Let u be a nonnegative Radon measure on R, and X anr. i. space of functions

on R? such that |x|'~"%g: does not belong to X. If the equation divF = u has a solution F €
X(R,RY), then 1= 0.
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(Here, B¢ is the complement of the unit ball and 1p- is its characteristic function.)

Let us observe that in the case where X = L?, the condition “|x]| 1-dq Be does not belong to X” is
equivalent to the fact that 1 < p <d’, and thus Theorem [0.8| follows from Theorem Indeed,
we have

1-d p _ 1
fRd‘le ﬂBc(x)‘ dx—ch —|x|(d_1)pdx,

and this integral is divergent if and only if 1< p <d’'.

The proof of Theorem is elementary and uses only basic properties of the r. i. spaces. The
main argument relies on a decomposition of R? in dyadic shells and is similar to the argument
we presented above, leading to the proof of Theorem

Furthermore, we show that the condition “|x| 1-dq ge does not belong to X” in the above theorem
is sharp. Indeed, let ¢ be a non trivial nonnegative function in L?(Rd) and set y:= ¢m (where
m is the Lebesgue measure), so that u is a non trivial positive measure. If |x|1~?1gc € X, then we
prove that the equation divF = u has a solution F in X(R?,R%).

Next, we are interested in obtaining some explicit (i.e., we construct F') and quantitative (i.e.,
we estimate F') versions of Theorem In this direction, we obtain the following result.

THEOREM 0.20. Let X be ar. i. space of functions on R® such that 0 <ax<ax <l If has
a solution F € X(R*,R?), then I; 1€ X. Moreover, there exists a constant Cx > 0 only depending on
X such that

|T1ullx <Cx IFIx. (0.41)

Here, ay and ax are the Boyd indexes of X; their definition will be recalled in Chapter (1. We
mention that in the case X = L? both Boyd indexes of X are equal to 1/p. On the other hand, I
is the 1-Riesz potential, whose action is given by

du(y)
Tux) = f L
# Re Joc— y|?"
Note that (0.41) is a lower bound for F'.

The latter result is obtained by following the ideas in Phuc and Torres in [24]. In our case, we
rely on the Calderén-Zygmund theory for r. i. spaces. Formally, we have from (0.21) that

I1p=R1F1+...+R4Fy, (0.42)

where Rj1,...,Rq are the Riesz transforms on R%. The heart of the proof consists of justifying
(0.42); this can be achieved under the assumptions on F' and on the Boyd indexes.

We also establish a partial converse of Theorem [0.20

THEOREM 0.21. Let X be a r. i. space of functions on R? with the property that whenever y is
a signed Radon measure on R® with p = divF for a vector field F € X(R?,R?), we have that I 1j*,

Iiu™ are finite a.e., I1u€ X and ||Il,u||X < Cx |Flx for a positive constant Cx. Then 0 <ax <ax <
1.

The above theorem is quite technical and relies on the properties of the Calderén operator (for
a definition see Chapter [I).

A common difficulty related to the proofs of the results in this chapter is the lack of explicit
expressions for the r. i. norms.

Chapters 2|and [3] We consider the Hodge system
dA=f, in RY, (0.43)

where f and A are [ and (I — 1)-forms respectively, with f given and satisfying the compatibility
condition df = 0. We focus on the case where f has L! coefficients.
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In the case I = d, (0.43) becomes the divergence equation. It was first shown by Wojciechowski
in [31] that there exists g € L%(Rd), with zero integral, such that the equation divY = g has no
solution Y € W, (R%;RY).

In Chapters |2/ and [3, we prove a similar nonexistence result for all the Hodge systems for
which 1 < < d: there exists an I-form f € L1 with df = 0 such that there is no (I — 1)-form
S Wllo’i satisfying 1i Both proofs are based on reducing the problem to the case of the
divergence equation. Roughly speaking, we deal in both proofs with assertions of the following
form. There exists a subspace V of R? such that any g € L1(V) can be written as

divy =g+R,onV (0.44)

for some Y € Wllo’i(V) and a remainder term R. The idea is to show that this remainder is negli-
gible in some sense and eventually can be eliminated. In other words, we reduce (0.44)) to

divY'=g,onV

for some Y' € Wllo’i. After showing this, we can use the above negative result for the divergence
equation in order to get a contradiction.

The proof in Chapter [2|is elementary. It uses, as a key tool, the hypoellipticity of the Lapla-
cian. We show in this case that the remainder R is Cf. The proofin Chapteris less elementary,
however, it is more compact. It uses, as a key tool, the boundedness of the Calderén-Zygmund
operators on the homogeneous Besov spaces. In this case we show that a Besov norm of R is
small and by a limiting argument we conclude that R can be eliminated. (The Appendix of Chap-
ter 3| contains another proof of the same nonexistence result, which is more elementary than the
previous ones. The proof is based on a “compactness” argument which reduces the problem to its
easier version on T%.)

On the other hand, we mention that Bourgain and Brezis proved in [3] the following stronger
nonexistence result for the divergence equation: there exists g € L}:([Rd) with zero integral, such

that the equation divY = g has no solution Y € L% (Cd_l)(IR{d; R?). In view of the embedding Wllo’i —
L‘li; (cd_l), this improves the result of Wojciechowski ([31]).

We show in Chapter [2| that an analogous result in the case 1 <[ < d does not hold. More
precisely, if 1 <[ < d, then for any [-form f € Li with df = 0 there exists an ([ — 1)-form A € L‘li;c
satisfying (0.43). This result is a direct consequence of (0.35).

Chapter 4, In this chapter, we come back to the divergence equation. We give a new proof of
the following classical result of Preiss and McMullen: there exists g € L™(T%), with zero integral,
such that the equation divY = g has no solution Y € W1°(T%;R%). Our proof is based on the
Riesz products technique introduced by Wojciechowski in [31] for the study of the divergence
equation with L' sources. We show that his idea is also suitable, after minor modifications and
simplifications, in the case of L sources. Our proof is short, more elementary than the one in
[31] and yields a significant improvement of the above mentioned result of Preiss and McMullen,
which does not seem to be attainable with their respective methods.

More specifically, we introduce the function spaces S defined on T2 as follows:

su M <00
S0 A ’

where A :N — (0,00) is a given decreasing function such that A (k) — 0 when & — oco.

S, (T%):= {f € P'(T?)

Our result is the following.

THEOREM 0.22. Suppose A:N — (0,00) is decreasing to 0. There exists g € L™(T?) such that
there are no fo, f1, fo€S) (Tz) with 0sfs € L°(T?) and

g =fo+01f1+02f2.
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In order to give an idea about the meaning of this result, let us fix a small € > 0. We see
immediately that the Sobolev space H:(T?) is embedded in S, (T2) for A(|n|) = 1/(1+ |n|)¢. Our
result implies that even the weak regularity condition fo, f1, fo € HE(T?), 0ofo € L®(T?) rules out
the existence of a solution for the above equation with general L™ source g. Intuitively speaking,
we do not have, in general, a solution of this equation such that fj, f1 and f2 are even “slightly
better than L1”.

Part II. Hodge systems in critical function spaces. In this part we study underdeter-
mined Hodge systems for which classical regularity theory provides solutions in Sobolev spaces
which are “critical for the Sobolev embedding”, in the sense that they “almost” embed into L.
We show that in this case it is possible to obtain solutions that are both bounded and with the
expected Sobolev regularity. In the first chapter of this part, we study an approximation prop-
erty of functions on stratified homogeneous groups. This property implies the above mentioned
existence result for Hodge systems. In the second chapter, we prove the existence of bounded and
critically smooth solutions to Hodge systems with Dirichlet boundary conditions on Euclidean
domains.

Chapter |5l The purpose of this chapter is to find a common roof to Theorem and Theo-
rem |0.14]|and to give an affirmative answer to Open question 1.4 in [6].

Following closely the ideas in [30], we define some natural homogeneous spaces of Triebel-
Lizorkin type on stratified homogeneous groups. We mention that, in the non Euclidean setting,
it is common to have different, non equivalent definitions of function spaces. Spaces similar
to ours were already introduced in the literature (see, for example [16l]). However, our proofs
concerning the properties of these spaces are more elementary and also their construction is
more flexible than the previous one, and well adapted to our purposes.

Following the proof structure in [6], we were able to prove an approximation result very
similar to Theorem [0.14] in the context of stratified homogeneous groups and concerning the
Triebel-Lizorkin spaces that we have introduced. This generalizes both results of Theorem |0.14
and Theorem

The definition and some basic properties of stratified homogeneous groups will be given in
Chapter |5l For the sake of simplicity, we specialize here to the “concrete” case of the Heisenberg
group H".

To start with, we sketch our definition of homogeneous Triebel-Lizorkin spaces on H". Let
n =1 and let @ :=2n + 2 be the homogeneous dimension of H*. If A is a Schwartz function on H"
and j is an integer, we write A; for the function given by

Aj(x):= 2@ A(2/x), xeH".
Recall that here, 2/x is the group dilation of x with the factor 2/, i.e., if x = [{,¢] € H?, then
2/x = [2/¢,2%¢] (see ).
Fix s 2 0, p,q € (1,00). We define the space F”(H") as being formed by the tempered distri-
butions f on R” x R” x R = R?"*! for which the following seminorm
1/q
(0.45)

1 Ny = | | 2 29 ]AJ. f’
JjeZ Lo

is finite. Here, A! := (Al’“) scA 18 an adapted finite family of Schwartz functions on R27+1: jts

construction is part of the theory (see Proposition [0.23|below). The quantity ’Ajl f ‘ is defined by

]A}f’ ::EA ’AJl.’“f

)

where

A}’af(x) = f X fx Oy_l)A}’a(y)d%

R2n+
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for all a € A. In other words, AJl.’a f=fx A}’a, where “x” is the convolution on the group H".

The definition (0.45) is very similar to the definition of classical homogeneous Triebel-Lizorkin
spaces on R? via Littlewood-Paley decomposition formula. However, in our situation, the exis-
tence of a Littlewood-Paley decomposition having all the expected properties is a delicate matter.

The existence of the above family Alis a consequence of the following result.

PROPOSITION 0.23. Given m € N, there exist finite Schwartz families A = (A}®) A% =

(A%9) A3 =(A39) _, on R*"*L such that, for all a € A,

acA’

acA’

f ; lP(x)Al’a(x)dx = P(x)A%%(x)dx = f lP(x)A3’a(x)dx =0,
R2n+

R2n+1 R2n+

for all the polynomials P of degree <m and such that for all Schwartz functions f we have

F=Y 3 FaAt® s A% 5 A
jeZacA / I /

the convergence being in any LP(R2"*1) for any 1< p < oo.
When we define, via (0.45), spaces F;’p (H™) of regularity s = 0, Al is as in the above proposi-
tion, and m is any integer > s.

This leaves the possibility that these spaces depend on Al and m. It turns out that this is not
the case: any triple of families A1, A2, A? and any integer m > s as in the above proposition will
lead to the definition of the same space F;’p (H™).

Also, we mention that, whenever k£ is a nonnegative integer and 1 < p < co we have the
pleasant identity, reminiscent of the famous square function theorem in the Euclidean case:
FEP(H™) = NLEPH),
with equivalent seminorms. This is a key identity that permits us to view our approximation
result as a generalization of Theorem [0.17

The use of a decomposition formula with three convolutions, as the one above, turns out to be
very convenient. It enables us to handle the estimates required in the proof of our approximation
result.

On H"*, our main result reads as follows.

THEOREM 0.24. Let @ :=2n + 2 and consider the parameters 1< p,q < oo, a := Q/p. Suppose
J1,Jd9 < {1,...,n} are two nonempty sets such that |J1|+ |Js| < min(p,2n). Then, for any Schwartz
function f on H" and any 6 > 0 there exists a function F such that:

jgh ”Xj(f—F)”Fg—l,p(u-un)-'-j;h ”Yj(f_F)”Fg—Lp(Hn)SCSHbe”F:;,p(Hn)

and
oo ([HI” aa, ny < s ny,
”F”L (Hr) T “F”Fq P (Hn) C§ ”be”p‘q P (Hn)
where Cs is a constant depending only on 6.

Note that, if we let @ := 1 and p := @ in the above theorem, we recover Theorem [0.17]

In general, when proving Theorem apart from the difficulties that were already present
in the Euclidean case, the problems that arise are related to the noncommutativity of convolu-
tions and the noncommutativity of the vector fields.
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Chapter [6,. We prove a version of Theorem for the exterior differential operator with
Dirichlet boundary condition on smooth bounded domains. More precisely, we obtain the follow-
ing result.

THEOREM 0.25. Let Q be a smooth bounded domain in R®. Let 1 <1 <d —2 be an integer and
consider the parameters d -l < p <oo, 1 <q <oo, a:=d/p. Suppose y € C(0Q2) mBg_l/p’p(OQ) isan
l-formand veF g P(Q) is an I-form satisfying v Adv =v Ady on 0. Then, there exists an l-form
ueCQ) anIx’p(Q) such that

du=dv, onQ
u=y, on 0Q

Moreover, u can be chosen such that
Il ooy + Il pariy < 7 [ oo *+ ”Y”BZ_I/p’p(aQ) +lvlperq)-

Here, v is the 1-form on 0Q2 given by

d
V= Z dexj,
J=1

where the vector v = (v1,...,v4) is the outward unit normal to 0Q2.

We note that the compatibility condition v Adv = v Ady in the sense of distributions on 02 is
meaningful.

Theorem extends the result of Theorem [0.7|to other Hodge systems. The method we use
is adapted after the method used in [5, Section 7].

Part III. Miscellaneous. In the first chapter, we investigate the uniqueness of minimal
liftings of Sobolev mappings with values into the unit circle. We prove that, in 2D, minimal
liftings are “generically” unique. In the second chapter, investigate the properties of the Fourier
multipliers on the homogeneous Sobolev space W1,

Chapter (7, In this chapter we study the equation
u=e*on Q. (0.46)

Here, Q is a smooth, bounded and simply connected domain in R% and u € Wh! (Q, Sl) is given.
It is known that there exists a BV -lifting of u on Q, i.e., there exists ¢ € BV ({2, R) satisfying (0.46)
(for example see [8]). A BV -lifting with minimal BV -seminorm is called a minimal BV -lifting.

We are going to answer the following question raised in [8]: is the set of functions u €
w1 (Q,Sl) which admit a unique (mod 27) minimal BV -lifting, residual in W11 (9,81)?

We prove that more is true: roughly speaking, most of the functions u € Wh! (Q,Sl) with
a fixed number of singularities have unique (mod2m) minimal BV -lifting. More precisely, we
establish the following result.

THEOREM 0.26. Suppose Q is a smooth, bounded and simply connected domain in R2. Let
k be a positive integer. The set of vectors a = (a1,...,ar) € QF for which each u € WhHl (Q,§1) N
C(Q\{a1,...,ar}) admits a unique minimal BV -lifting is of full measure in QF.

We prove this result by reducing the problem to a geometrical one. For each u as above we
spot a set of “geometrical structures” that determine whether or not © has a minimal lifting.
Thanks to a sort of rigidity of these “structures”, they fail to be “good” only in few cases. In this
way Theorem [0.26] reduces to the following elementary looking fact:

PROPOSITION 0.27. Let Q c R? be an open set such that Q # ¢,R2, and k € N*. For almost all
X =(x1,...,xz) € Q% we have that the numbers dist(x;,0Q), 1<i <k and |xi -xj|, 1si<j<kare
linearly independent over Z and each x; has a unique projection on 0€2.
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The main idea that enters in the proof of this fact is to show that each nontrivial linear
combination over Z of the elements dist(x;,0Q2) and |xi —-x J-|, as above, cannot vanish apart from
a Lebesgue null set in Q*. Once we have this, we can obtain Proposition by using the fact

k
that ZV, where N := & + (2), is a countable set.

Chapter(8l We study the continuity of multipliers of some “pathological” homogeneous Sobolev
spaces. Suppose [ =0 is an integer and 1 < p <oco. A measurable function m : R — C is a Fourier
multiplier on W7 (R?) if there exists a bounded operator

Ty : WP (R) — WP (RE),
such that

Tnf=mf,
for any Schwartz function f on R%.

Bonami and Poornima [25] proved in 1982 that the only Fourier multipliers on W1-! (Rd ) which
are homogeneous functions of degree zero are the constant functions. More precisely, they proved
the following (see [25, Theorem 2.9]):

THEOREM 0.28. Suppose d =2 and let Q be a continuous function on R%\ {0}, homogeneous of
degree zero. If Q is a Fourier multiplier on WH1 (Rd), then () is a constant.

This result was generalized by Kazaniecki and Wojciechowski in 2013 as follows (see [17,
Theorem 1.1]):

THEOREM 0.29. Suppose d = 2. If m is a Fourier multiplier on W11 (Rd), then m € Cy, (Rd).

. We follow the ideas in [17] in order to prove a gener_alisation of this theorem for the case of
W1 (R?), where I > 1. We also deal with multipliers on W5 (R).

Our results are the following:

THEOREM 0.30. Suppose d =2 and [ = 1 are some integers. If m is a Fourier multiplier on
Wheo (Rd), then m € Cy, (IR%d).

- THEOREM 0.31. Suppose d =2 and [ = 1 are some integers. If m is a Fourier multiplier on
W1 (R?), then m € Cy (RY).

As in [17], our proof relies on Riesz products. However, our approach is more elementary than
the one in [17].

The methO(_ls we use here are reminiscent of those in Chapter For example, if m is a
multiplier on W', we prove that for any bounded continuous function f there exists functions
(8a)ja|= in L™ such that

NTmf =Y, V&,
la|=1
in the sense of distributions. In order to prove Theorem [0.31, we show that, if m is not a contin-
uous function, then there exists f as above for which this equation does not have solutions.

4, In short

In this manuscript, we study the existence of solutions to Hodge systems when the source
term belongs to various function spaces. The Hodge systems are in general underdetermined
and, in this framework, we mainly study two types of problems. First one is to decide whether
or not the Hodge systems admit solutions with the expected regularity when the source term
is “pathological” in some sense. By this we mean the situations in which standard Calderoén-
Zygmund theory cannot be applied. Secondly, we are interested in finding solutions more regular
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than the solutions provided by Calderon-Zygmund theory. Roughly speaking, when the stan-
dard theory provides a solution in a critical Sobolev space, we aim to obtain a solution which is
simultaneously in this critical Sobolev space and bounded.

One particular case of Hodge system is the divergence equation on the Euclidean space. For
this equation, the first problem addressed was the existence of solutions in Wllo’f , with p =1 or oo,
when the source is in Lfoc. The answer is negative both in L' (Wojciechowski, Bourgain-Brezis)
and in L* (Preiss, McMullen). We show similar results for more general Hodge systems. Also,
we obtain a substantial improvement of the nonexistence result for the divergence equation with
L° sources.

Concerning the second type of problem, the answer was known to be positive, in the Euclidean
case, for a large class of Hodge systems and critical Sobolev-type spaces. This was possible thanks
to a new type of approximation result of functions in critical Sobolev spaces. This approximation
result was proved by Bourgain and Brezis, for spaces of regularity one, and extended to higher
regularity spaces by Bousquet, Russ, Wang and Yung. The regularity one case was also settled in
the framework of stratified homogeneous groups by Wang and Yung. We prove a similar approx-
imation result in the general setting of stratified homogeneous groups for functions in critical
Sobolev-type spaces defined on these groups. For this purpose we define homogeneous spaces
of Triebel-Lizorkin type on stratified homogeneous groups that are similar to the classical ones
defined on the Euclidean space.

In a different direction, we study the existence of solutions F' of divF = u in rearrangement-
invariant spaces, when the source p is a nonnegative Radon measure. Our results generalize
previous ones of Phuc and Torres, obtained for L? spaces.

We also investigate the uniqueness of minimal BV -liftings of WH1(Q,S!) maps. Here, S! is
the unit circle and Q is a 2-dimensional smooth, bounded, simply connected domain. It is well-
known that each map in Wh! (Q,Sl) has BV -liftings. We prove that “almost all” the maps in
W11(Q,S') have unique minimal BV -liftings.

Finally, we study some properties of the Fourier multipliers on the homogeneous Sobolev
spaces W1 and Wio°.

5. Some notation concerning the function spaces used
Apart for some very common notation, we use also the following:
Cp (R?) is the space of the continuous bounded functions on R?.
C¥ ([Rd) is the space of compactly supported C* functions on R?.
LY (R?) (with 1 < p < o0) is the space of compactly supported LP functions on R?.

L

WkP(R?) (with £ = 0 is an integer and 1 < p < 00) is the homogeneous Sobolev space consisting
of those distributions f on R? for which V*f € LP(R?). The space W*P(R?) is endowed with the
following seminorm

. — |vE
||f||Wk,p([Rgd) = Hv f Lr(RD)

5. Consider a radial function ¢ € C%° (R?) such that supp¢p < B(0,2) and ¢ = 1 on B(0,1). For je Z
we define the operators P;, acting on the space of tempered distributions on R?, by the relation

——— & &) -
Pjf(&):= (90(5) ﬂP(ﬁ))f(f),

for any Schwartz function f on R?. We will also consider the operator P~ defined by
Poof ©:= 9O F ©

for any Schwartz function f on R?. The operators P<g, P; will be called Littlewood-Paley
“projections” adapted to R%. For any Schwartz function f we have that

f=> Pjf,

Jjez
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11.

12.

INTRODUCTION

in the sense of tempered distributions.

FyP (R?) (with 1 < p,q < oo and s a real number) is the inhomogeneous Triebel-Lizorkin space
consisting of those tempered distributions f on R? for which the following norm is finite.

1/q
IF 1522 ey = IP<of I Lp(gay + (Z 2% IPJ-fIq)
j=0 LP®RY)

A remarkable fact is that, if £ = 0 is an integer and 1 < p < co, then Fg’ P (RY) = WhP(RY)
with equivalent norms.

BZ’p (IR?d) (with 1 < p,q <oo and s a real number) is the inhomogeneous Besov space consisting
of those tempered distributions f on R? for which the following seminorm is finite.

1/q
— ' q
”f”B‘;’p([Rd) = ||P50f||Lp(Rd) + (;}25” ”ij”LP(Rd)) .
Fg’p (Rd ) (with 1 < p,q < oo and s a real number) is the homogeneous Triebel-Lizorkin space
consisting of those tempered distributions f on R? for which the following seminorm is finite.
1/q

17z gy = (Z 297 |P;f|°

JjeZ LP(RY)

A remarkable fact is that, if £ > 0 is an integer and 1 < p < oo, then Fg P (RY) = WhP(RY)
with equivalent norms.

ByP (RY) (with 1 < p,q < oo and s a real number) is the homogeneous Besov space consisting of
those tempered distributions f on R? for which the following seminorm is finite.

1/q
||f||BfI’P([Rd) = (%2”(1 ”ij”zp(u@d)) :
JE

One can also define Littlewood-Paley operators P; in the case of T?. For each j € N we define
the operators P;, given by

Pif(n):= Voi1cipy <ony(F (),

for any distribution f on T%¢. Here, |nly := maxj<j<q|n;|. The operators P ; will be called
Littlewood-Paley projections adapted to T¢. Notice that each P j 1s a genuine projection: PJZ. =
P;. We have the identity

f=2 Pif,
7=0
for any distribution f on T¢.

F7P (T9) (with 1 < p,q < oo and s a real number) is the homogeneous Triebel-Lizorkin space
consisting of those distributions f on T¢ for which the following seminorm is finite.

1/q

1l ey = (Z 2% IijI")
Jj=0 Lp(Td)
A remarkable fact is that, if £ > 0 is an integer and 1 < p < oo, then F§ P (1) = WhP(T9).

BZ’p (Td) (with 1 < p,q < oo and s a real number) is the homogeneous Besov space consisting
of those distributions f on T¢ for which the following seminorm is finite.

1/q
”f”BZ’p(Td) = (;}2sjq ”ij”g,p(vd)) :
j=

In what follows, Q is a domain in R?.
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13. C(Q) is the space of C* functions which are compactly supported in the domain Q.
14. W(If P (Q) (with £ 2 0 an integer and 1 < p < 0o) is the closure of CX(Q) under the WP _norm.

15. FZ’p (QQ) (with 1 < p,q < oo and s a real number) is the space consisting of restrictions to Q of
elements from F;;” (R?), normed with

1 g = inf{n gllpsr(ary | g€ FyP R, g = f on Q}.

16. BZ’p () (with 1 < p,q < oo and s a real number): is the space consisting of restrictions to Q of
elements from BZ’p ([R{d), normed with

”f”BfI’P(Q) = inf{”g”BZ’p(Rd) | g EBZ’p(Rd)> g=fon Q}

For more details, see [29].
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Part 1

Hodge systems with “pathological” source terms






CHAPTER 1

On the existence of vector fields with nonnegative divergence in r. i.
spaces

We investigate the existence of solutions of
divF =pu, on RY. (%)

Here, u = 0 is a Radon measure, and we look for a solution F € X (R%,R?), where X is a
rearrangement-invariant space.

We first prove the equivalence of the following assertions:
(i) (%) has a solution for some nontrivial y;
(i) the function x — lel_dﬂBc(x) belongs to X.

Here, B is the unit ball in R?.

We next investigate the solvability of (x) when u is fixed. A sufficient condition is that I;ue X,
where I;u is the 1-Riesz potential of u. This condition turns out to be also necessary when the
Boyd indexes of X belong to (0, 1).

Our analysis generalizes the one of Phuc and Torres (2008) when X = L?.

1. Introduction

We will study the existence of solutions in different function spaces for the divergence equa-
tion

divF =y, onR?, (1.1)

where p is a nonnegative Radon measure. Here, d = 2.

Our work is motivated by the following result of Phuc and Torres (see [4, Theorem 3.1]):

THEOREM 1.1. Let 1<p <d/(d—1)and let i be a nonnegative Radon measure on RZ. If there
exists a vector field F € LP(R?,R?) such that divF = p on R%, then we have that = 0.

The proof given in [4] uses the Calderon-Zygmund theory. More specifically, assume that (1.1)
has a solution F' in L?. It is shown first that the 1-Riesz potential I;u of i, defined by the formula

I10(x) :f c— yI" 4 du(y),
RE

satisfies the relation

Tp(x) =1~ d)lm% F(y)ﬁd,u(y)—cd ZR Fi(x), a.e. onR,

I-I>¢ | 1

where R are the Riesz transforms and c4 is a constant only depending on d. Now, since F € L?,
the Calderén-Zygmund theory ensures that Iy € LP, whenever p > 1, and that I u € L1, if
p = 1. However, since we have the trivial inequality

w(B(O,R))
(lx|+R)? 1’

we must have u(B(0,R)) =0 for all R > 0. Indeed, the function (|x| +R)1"9 is never in LY or an
L? space for p € (1,d/(d —1)]. Therefore u=0.

45

Iip(x) = for any R >0,
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Also, using functional analytical methods, in [4] is proved (this follows easily from Theorem
3.2 and Theorem 3.3 from [4]) that the constant d/(d — 1) in the above theorem is sharp, in the
sense that if d/(d —1) < p < oo then there exists an F € L? such that divF = 1gm. Here, m is the
Lebesgue measure and 1p is the characteristic function of the unit ball.

Rewriting the condition on p in an integral form, we can express these facts by saying that if
the divergence equation has a solution in L?, then the measure p is forced to be trivial if and only
if the function |x|1~?1g¢ is not in L? (here, Tgc is the characteristic function of the complement
of the unit ball). As we will see, this phenomenon still occurs in a more general context where
instead of the L? spaces we consider rearrangement-invariant spaces (r. i. spaces for short). Our
proof is quite elementary and does not use tools like the Calderén-Zygmund theory. It only makes
use of basic properties of r. i. spaces whose definition is recalled below.

Following the presentation in [1, Chapters 1 and 2] we define first the notion of the Banach
function space. Consider a measured space (Y,v) and the set

M*:={f:Y —[0,00]| f is v-measurable}.

We call function norm a mapping p : M* — [0,00] with the following properties:

P1) p(f)=01iff f=0v—a.e., paf)=ap(f) and p(f + g) < p(f) + p(g);

(P2)0<g<=<f v—a.e. implies p(g) < p(f);

P3)0=<fn1f v—a.e. implies p(f,) 1 p(f);

(This condition has an immediate important consequence called the Fatou property: if f,,f

are nonnegative measurable functions and f,, — f v—a.e., then p(f) < lim p(f}).)
n—o0

(P4) v(E) < oo implies p(1g) < oo;
(P5) v(E) < oo implies [ fdv < Cgp(f)

whenever f,f,,g€ M*, a =0 and E is a measurable subset of Y. Here, Cg > 0 is a constant only
depending on E.

The set of measurable functions f : Y — R for which p(|f]) < co is called the Banach function
space associated to p. It turns out that this space (in which we consider two functions equal
when they are equal v —a.e.) with the norm ||| = p(] - |) is a complete normed vector space (see [1,
Theorem 1.6, p. 5]).

Ar. i. space is a Banach function space associated to a function norm p with the property that
e(f ) = p(lg]) for every pair of measurable functions on Y with the same distribution function
Ar = Ag (we recall that A7(¢) = v({x € Y| |f(x)| > ¢t}) for all £ = 0). Here are few examples: the
Lebesgue spaces L?, the Lorentz spaces L?? (1 < p < 00), the Orlicz spaces ®(L).

In our case we will always have Y = R? and v = m will be the Lebesgue measure on R?. In
this setting, we will use the following version of Theorem 4.8 in [1], p. 61:

LEMMA 1.2. Let m be the Lebesgue measure on R? and let (E j) =1 be a sequence of measurable

pairwise disjoint subsets of R%, each with finite positive measure. Let E = R4\ i E ;. For each
measurable nonnegative function f on R%, we define

fE‘fdx) 1g;.

J

Af:f1E+§(

j=1\m (EJ)

Then A is a contraction on each r. i. space X over (Rd,m), that is,

IAflx <Iflx, forall feX.
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2. The main nonexistence result

We can now state the first result:

THEOREM 1.3. Let u be a nonnegative Radon measure on R, and X ar. i. space of functions
on R such that |x|'"%ge does not belong to X. If the equation divF = u has a solution F €
X(RY,R?), then pu=0.

PROOF. For each integer j = 0 we consider the set U; = B(0,27*H)\ B(0,27) and the function
@; € COYRY) defined by ¢;(x) = 1if |x| € [0,27), ¢ ;(x) = —27/|x| + 2 if |x| € [2/,2/*1) and ¢;(x) = 0 if
lx| = 2/*1. We consider also the weights g := p(B(O,Zj)).

Supposing that the equation divF = u has a solution in the space X, we estimate the weights
g; as follows:

1
gjsf (pjd,u:—f F-V(pjdxs—.f |Fldx forall j=0
Rd RY 27 Ju;

so that

8j
2@ = m(U )

f |F|dx forall j=0, (1.2)

where c is a positive constant depending on d. Now if A is the operator defined in Lemma
corresponding to the sequence of sets Uy, Uj,..., we have

m(U; )f o 'dx) i

and, by Lemma and axiom (P2), we obtain that
<2||F|lx <oo. (1.3)

X 1
IFIdx) 1U

Of course we always have g; = g9 and we can use (P2), (1.2) and (1.3) to write

AlF|=|F|1p + Z

00 o i
1-d 80 8j
gop(lxl" " “TIge) < p (JZO 9/d—1) lUj) =P (J;) od—1) lUf) <

where p is the norm function which defines the norm on X.
However, since p(|x|'~%1pc) = 0o, the quantity go must be zero. By a translation argument,
the measure u must be trivial. U

We saw that the condition
IV g ¢ X (1.4)

was used for proving the nonexistence of a solution F' when u # 0.
In order to obtain existence results we assume that condition (1.4) does not hold, that is

lx|1 g € X (1.5)

In this case we will prove the following

PROPOSITION 1.4. Assume and let u be a measure such that = ¢m for a nonnegative
function ¢ € LX(R?). Then has a solution F in X(R?,R?).
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The above result is an immediate consequence of the following two statements (which do not

require (1.5)):

PROPOSITION 1.5. Let ¢ € L‘Z"([Rid) be such that ¢ =0 and let p be the measure defined by
1= ¢m. Then there exists a constant C >0 only depending on u and d such that

I1p(x) < C(1p(x) + %/ pe(x)),  on R
(The proof of Proposition [1.5]is immediate.)

PROPOSITION 1.6. Let u be a nonnegative Radon measure on R® and let X be a r. i. space of
functions on RY. If I 14 € X, then there exists a vector field F € X (R%,R?) such that divF = W in the
distributional sense.

PROOF OF PROPOSITION[L.6l If p is the norm function defining the norm on X, we have
(using the property (P5)) that, for any x¢ € R? there exist a constant Cy, such that
f Ipdx < Cryp(I1 ) = Co, | T x < 00.
B(xo,1)

It follows that I;u must be a finite quantity a.e. on R?. Now we can fix a point x1 € R%, such
that I;u(x1) < oco. Using this property of x1, we find that:

f du(y) <C, ( f du(y) N f du(y)
Rd (yyd=1 ler-yl<1 ()¢ Jigy—yiz1 g — y|91 (1.6)

<Cy (u(B(x1, 1)) + I1p(x1)) < 00

for some positive constants C; and Cy. Here, (y) := (1 + |y|2)2.

If E is the standard fundamental solution of the Laplacian on R?, we define the vector field
F :R% — R? by the formula

Fi)= [ 0E@=-yduy), je (L., d).

We can easily see that F' is a.e. well-defined. Indeed there exist a constant C3 > 0 such that

[ -yl anm=cs [ |22 aue < Catauco,

|d

and thus |[F|<Cyliju<ocoa.e. In addltlon, since I is already in X, using the monotonicity of p
we get F' € X. Choosing a test function ¢ € C‘C’O(Rd) and using |D we get that

f f ()10 p(ldx < f L10,pldp<C, f
RY JRrd

Here, we have used the straightforward estimate

duly)
d( >d 1 <

|lx — yld

1
Liloipl(y) < Cp——.
J ¢ (y)d_l
We can now prove, using Fubini’s theorem, that F' solves (1.1):

~Y <Fj,0,9>= —ZfRd fRd 3,E (x— y)0;¢(x)dxd u(y) = med(ajE) £ (0;0)du
7 7 7

=ZfRd6§(E*cp)du=fRd<pdu=<<p,u>~
J

So divF = p in the distributional sense on R?. U
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REMARK 1.7. The above proof does not extend to the case of signed Radon measures. The
existence problem in this case is more difficult and seems to be unsolved even in the L? setting
(see [4), p. 1575] and the references therein).

3. The rearrangement invariant norm of the 1-Riesz potential

As we saw, in the L? case, the proof sketched after the statement of Theorem gives a
stronger conclusion when 1 < p < co, namely if we can find a solution F' € L? of equation (1.1
then, not only that the condition is satisfied, but the 1-Riesz potential of y must be in L?
too. In what follows we prove that we have a similar situation in the case of r. i. spaces, giving
a sufficient condition in terms of the Boyd indexes of the considered space. We recall some basic
facts which will be useful and the definition of these indexes, again following the presentation in

[1l:

Let X be ar. i. space over R? whose function norm is p. We can define the associate norm p’
of p by:

p’(g):sup{fdfgdxl feM", p(f)Sl},forg€M+.
R

It is known (see [1, Theorem 2.2, p. 8]) that p’ is a norm function whose corresponding Banach
function space, which is also an r.i space, will be denoted by X’. The following Hélder type
inequality is a direct consequence of the definition:

|, 1Feldx=1flx gy, when f <X, g X'

Let g* denote the nonincreasing rearrangement of a measurable function g : R% — R:
g"(s):=inf{t > 0] A4(¢) <s}, s>0.

We also recall the following inequality of Hardy and Littlewood (see [1, Theorem 2.2, p. 44])
that will be useful later. We have that

[ irgiax= [~ r@e s
R4 0
for all measurable functions f, g on RY.

The Luxemburg representation theorem (see [1, Theorem 4.10. p. 62]) provides a unique
rearrangement-invariant function norm p defined on the nonnegative measurable functions on
(0,00), defined by

ﬁ(h):sup{f h*g*dx| geM™, p'(g) < 1},
0

with the property that p(f) = p(f*). The corresponding r. i. space of p will be denoted by X. For
any 0 > 0 we can define the dilation operator Eg : X — X by the formula Egf(s) = f(0s) for all
feX. One may prove that each Ey is a bounded operator. The lower Boyd index and the upper
Boyd index are given by

R log | E 1] - ._inflogllEmll
=X 0<t£)1 logt ’ X 71 logt

respectively. Here ||[E .|l is the norm of the operator E ;. It turns out (see [1, Proposition 5.13, p.
149]) that we can actually take limits in the definition:

u :hmlogllEmll T = lim log |E 1/l
=X 20 logt ~’ X oo logt
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and that always 0 <ax < ax < 1. As an important example consider the spaces L?. In this case
both indexes are equal to 1/p. For the Lorentz spaces L?? (1< p < oo, 1 < q <o0) the indexes are
again both equal to 1/p.

In order to obtain the necessity of the condition I;u € X, we adapt the proof of Theorem
To do so, we will need the following lemma which is just a rephrasing of some ideas presented in
[1] and [3] (see, more specifically, the results of Calderén and Stein in section 3 in [3]).

Recall that a singular integral operator is an operator K of the form

Kf(x)= gli%1+ k(y)f(x—y)dy.

lyl>e

The kernel % is odd if £ is a function of the form k(rw) = r¢Q(w) for all r > 0 and all w € $¢71,
where Q € L1($%71) is odd.

LEMMA 1.8. Let X be a r. i. space of functions on R? such that 0 <ax < ax < 1. Then any
singular integral operator with odd kernel is well-defined and bounded from L?nX into X. In
particular, the Riesz transforms Ry,..., Rq : L? n X — X are well-defined and bounded.

PROOF. Let K, k be as above. It is well-known that the operator K is well-defined and con-
tinuous on LP(R?) for 1 < p < co. According to Theorem 3 in [3, p. 193], if f € L2(R?) then, for all
s >0, we have that

* 1 s * 1 o * . — S
Kf) ()= fo (KF) ()dt < ||Q||L1(S(0,D)(; fo f£*()sinh 1(;)dt).

Introducing the two operators

]_ s oo dt
Pg(s):;f0 g(t)dt and Qg(s):f g(t)T’

for g measurable nonnegative, and integrating by parts, we can write for all s > 0,

1 [ /s % PF*(¢) s PFA(t) © PF(¢)

- (¢ hl—dt:f —dt:f —  dt L dt

sfo frOsin (t) 0 Vs2+¢2 s2 +¢2 ’ s VsZ+¢2
<P%2f*(s)+QPf*(s),

concluding that there exist a constant Cj, > 0 such that for all s >0 we have

(Kf)*(s)<Cr (P?>+QP)f*(s). (1.7)

Theorem 5.15 in [1] guarantees that the operators P, @ are well-defined and continuous from
X into X in the case where the Boyd indexes of X are in the interval (0,1). Under this assumption,
the inequality implies that there exist a constant Cj, x > 0 only depending on k2 and X such
that, for all f € L? n X(R?) we have

IKflx <CrxIflx,
and we obtain the conclusion. O
THEOREM 1.9. Let X be ar. i. space of functions on R? such that 0 <ax<ax<lLl If has

a solution F € X(R* ,R?), then I; 1€ X. Moreover, there exists a constant Cx > 0 only depending on
X such that ||Il,u||X <Cx|Flx.
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REMARK 1.10. In particular, Theorem applies to all L? and, more generally, LP-? spaces
with 1 < p <00, 1 < g <oo. Also the theorem applies to all reflexive Orlicz spaces.

PRrROOF. First we observe that, using Fubini’s theorem and the monotone convergence theo-
rem, we can rewrite the 1-Riesz potential of a Radon measure v on R?, for which I1|v| < oo a.e.:

o 1 .
I1v(x) = lim f min(z — y*~, 6 dv(y) = (d - 1) lim ( f B(x’—d)(y)dr)dv(y)
Rd \Jo r

=(d-1) limf Mdf:(d—l)f v(B(x,r))dr
5 d 0 ~d

6—0% r

(1.8)

Suppose has a solution F € X. Consider a standard radial bump function ¢ € C‘go(Rd)
with 0 < ¢ <1, suppp SB(0,1), | ¢| ;1 e, = 1 and some ¢ € C(R?) with 0<p <1, ¢ =1 on B(0,1).
For any 6,e > 0 we define ¢, and ¢y on R? by the formula ¢.(x) = e %p(x/e) and ¢g(x) = P(Ox).
Fixing an € > 0, the smooth functions Fy := F * ¢, and . g := (,u * <p5) g + F. - Vg, clearly satisfy
div (cngE) = le o . Asin [4], we can now use the Gauss-Ostrogradskii theorem and to compute
I1pep(x) for all x in R?, in terms of PoFe:

Ipep(x) =(d —1) hm f gbgF) ndodr
S(x,r)

s rd
=(d-1) hm[ fs( (poF: (y) |d+1d0(y)dr
) 4
=(d-1)1 F -—d )

The last expression equals cq) ;R (poF: ;) (x) a.e. in x. Thanks to Lemma and noticing

that ¢gF, ; € C?([Rid) c L?, we have that there exists a constant Cx > 0, only depending on X,
with

[ T1te0|x < ca

2 Rj(¢poFe,)

J

SCXZ||¢9FE,j||X SCXZ”FE,]’”X, foralle>0. (1.9)
b'¢ J J

It is not hard to see that, if f € X, we have

) szdp(lf(-—sy)ltp(y))dy

_ f p(IF (= enD(dy
Rd

p(|f *oel) =p (URd fC—ey)p(y)dy

(we just consider an increasing sequence of nonnegative continuous functions converging point-
wise to the function |f| and then we apply (P3) to reduce the problem to the case of continuous
functions, case which can be handled using Riemann sums and the property (P3) as before).
Since f and |f(-—e€y)| have the same distribution function and X is a r. i. space, we get that
Jra FC—€ey)p(y)dy belongs to X and its norm is bounded by | fllx. This fact combined with
gives us

Iipeglly <Cx IF|lx <oo, for all 6,e>0. (1.10)
1 1pe0] x

It remains to show that this implies I; 1 € X and the expected estimate. We have that I'1p. g =
I (uepo) + 11 (Fz-Vepp), where . := p* .. When 6 — 0, for the second term we can write for each
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xERd,
|Fe(3)-Vp(0y))| f |[Fe(y/0)- Vop(y))|
I (F.-V <0 dy= d
|1( € <P6)(x)| R |x—yld-L Y e |0x—yld
Vo Vo
<IEvFelx | ———=| =<IEwllFelx|——
IE e EHXH G | IE ol EllX‘(l—lexl)d_l .

<2 E1pll I Fellx | V| 5 < 20521 Flix | V|| 5 — O

The dominated convergence theorem gives for the first term that I; ((bg ,ug) — I, pointwise
when 6 — 0. From these two observations, (1.10) and the Fatou property of p (which follows from
(P3)) we conclude:

1116 || 5 <lim | T1pe0]|x < Cx IFllx < 0o, for all &> 0. (1.11)

E—

We now let € — 0 in (1.11). For each x € R? and r > 0 we can write:
te(B(x,r)) = f fd @e(z—y)du(y)dz = fd @e * 1B, n(Y)d u(y).
R R

B(x,r)

It is not hard to see that, taking € — 0, ¢, * 1p(x »(y) — 1 when y € B(x,r), ¢¢ * 1p(,r)(y) — 0
when y ¢ B(x,r) and ¢e * 1(x,r)(y) — 1/2 when y € 0B(x,r). Moreover the function ¢, * 1p )
is bounded by 1 and has its support contained in B(x,r + 1) when ¢ is small. The dominated
convergence theorem yields

pe(B(x,r)) — (B x, 7)) + %u(aB(x,r)), when & — 0

and hence, forany / > 1,

!
u(B(x,r))dr -

[ !
: - w(B(x,r)) dr+ 1 f w(0B(x,r)) dr
r 1

1 mw rd /1 rd
) U e(B(x,r))

th —ddr
e—=0J1/1 r

The inequality from (1.11) and the Fatou property of p will give

l .
f pe(B( ,r))drH
1 b

(d-1)
n rd

l .
f &d’r»dru <(d - 1)lim
I r X e—0

<lim |I1p||x =Cx IFlx

e—0

and we can finish the proof by using the Fatou property and (1.8), taking [ — oco. Ul

The above result covers the case of L? spaces when 1 < p < co. However, even in the L?
setting, the fact that the equation (1.1) has a solution in X does not imply that the 1-Riesz
potential of the measure belongs to X. More specifically, we have the following classical result
(see [4]):

THEOREM 1.11 (Theorem 3.3 in [4]). Let u be a nonnegative Radon measure on R:. Then the
equation has a solution FeL®(R? — R%) if and only if the measure u is (d —1)—Frostman,
i.e., there exist a constant M only depending on u such that

wW(B(x,r)) < Mré=L for all x € R and r > 0.

In order to prove Theorem let © be a Radon measure. The fact that there exists a
solution FeL for the equation divF = u is equivalent to the fact that u belongs to the dual of the
space w'!. Here, wl! is the closure of C(R?) under the norm ||-]|,,11, where [ul, 11 := [Vl 1,
u e C‘C’O(IRd). Now, for nonnegative measures this condition is equivalent to the fact that u is
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(d —1)—Frostman. This result is due to Meyers and Ziemer (originally appearing in [2]; see also
[5, Lemma 4.9.1, p. 209] for a proof of a more general statement).

Clearly, there exist (d — 1) —Frostman nonnegative measures whose 1-Riesz potential is un-
bounded. Take for example the measure y defined by w(E) = mg4-1(E N {x1 = 0}) for all Borel sets
E < R%. Here, my_1 is the (d — 1) —dimensional Lebesgue measure on the hyperplane {x; = 0}. For
this y, the quantity ;° r~¢ w(B(x,r))dr is infinite for all x € R? and then, by , I is infinite
everywhere.

Note that the Boyd indexes of L*° are 0 and thus the example obtained in the previous para-
graph does not contradict Theorem

The case of the space L! is also a pathological one, the Boyd indexes being equal to 1. However
we cannot find a counterexample for the assertion of the Theorem in the case of nonnegative
measures. Indeed, by Theorem the measure p will be trivial and then I;u =0 € L!. Neverthe-
less, we can give a simple example of a vector field F € L! and of a signed Radon measure u such
that divF = u, but the 1-Riesz potential, I;u, does not belong to L. The construction of F and p
relies on the following observation. Consider y € C2°(B(0,1)). When |x| is large we can write, for
r =|x|, v = x/|x|, that

Ly(x) = f Y (y) 1 f y(y) d
! r1 Jpo1) lw — y/rd 1 T 74T Jpo 1) 11— 2y - wir + |yl2/r2d- 2 Y

1 d-1 1
=3 f Y(y)dy+——w- (f yw(y)dy) +— f w(yh(r,y)dy,
r B(0,1) r B(0,1) r B(0,1)

where £ is a smooth bounded function on (1,00) x R, Thus,

A b-x 1
ILy(x)= M= + NS +O(|x|d+1) as |x| — oo, 1.12)

where

A::f v(y)dy and b::f yy(y)dy.
B(0,1) B(0,1)

’

The right hand side of (1.12) belongs to L' if and only if A =0 and b = 0. In conclusion,
y € CP(B(0,1)) has the property that Iy € L' if and only if

f w(y)dy :f yjw(y)dy =0 for all je{1,...,d}.
B(0,1) B(0,1)

We can now construct our example. Let ¢ € C°(B(0,1)) be such that fB(O,l) p(y)dy # 0, and set
F =(¢,0,...,00e L! and p = (01¢) m. Clearly, we have

f y1010(y)dy = —f py)dy #0
B(0,1) (0,1)

s H

and, by the above observation (with v = d1¢), I1u does not belong to L.

These examples show that, at least in the case where the measure is signed, we cannot expect
for the pathological LP spaces, namely L' and L®, to have the property stated in the above
Theorem This is also the case in the more general context of r. i. spaces: as long as at least
one of the Boyd indexes of the space X is equal to 0 or 1, we can always find a signed Radon
measure which is the divergence of a field F' belonging to X, but whose 1-Riesz potential does
not have the norm in X controlled by the norm of F. It is not hard to observe that, after minor
modifications in the proof, the conclusion of Theorem [I.9|remains true in the case of signed Radon
measures. With this in mind, Proposition [1.12]below is a sort of converse.
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PROPOSITION 1.12. Let X be ar. i. space of functions on R® with the property that whenever
is a signed Radon measure on R? with u=divF for a vector field F' € X (R%,R?), we have that I 14",
Iy~ arefinite a.e., I1p€ X and ||I1p] x < Cx IIF || x for a positive constant Cx. Then 0 <ax <@x <
1

Proposition is a consequence of Lemma below, which is a d—dimensional version of
Proposition 4.10 p. 140 in [1], with essentialy the same proof. To state Lemma|1.13| consider the
operators P and @ defined in the proof of Lemma and let S be the Calderén operator defined
by the formula:

Sf(s)=Pf(s)+Qf(s)= f@dt @dt—f f(t)mln(% —)dt s>0,

S

initially for nonnegative measurable functions f on (0,00) (see [1, p 133 and 142]).

LEMMA 1.13. Let X be ar. i. space of functions on R® and f € X. Consider the sets
T= (O,oo)d, C = (—oo,O)d
and the function G : R? — [0,00], G(x) = f*(vdlxld)lc—(x), where vy = m(B(O,l))/2d. Then G
and f are equimeasurable functions, the Riesz transforms R1G,..., RyG of G are well-defined as
functions on C* and there exist a constant cq > 0 such that:
((RlG + ... +RdG)lc+)* (S) = CdS(f*)(S), fOT‘ all s > 0. (1.13)

Moreover, if (R1G+...+R4G)1¢c+ € X forall f € X then 0 <ax < ax < 1. In particular, the same
conclusion holds if the sum of the Riesz transforms is a well-defined operator from X into X .

PROOF OF LEMMA [1.13l Consider for simplicity the function g : (0,00) — [0,00] with g(s) =
F*(vgs?). Note that g is nonincreasing, and thus g* = g. It is easy to see that, since G(x) =
g(lx)1c-(x) and since g is nonincreasing, we have Ag(¢) = vd/lg(t) for all ¢ > 0. Hence, a simple
computation gives us G*(s) = g*(v;l/dsl/d) = g(v;l/dsl/d) = f*(s) for all s > 0, which shows the
equimeasurability of G and f. Taking now a j€{1,...,d} we can write, for x € C*:

y;

xX;+y; X
R;G(x)=c} f TN (yhdy =ch f —L—g(lyDdy +c} f ——g(lyDdy
c+ |x+y|d+1 Cc+ |x+y|d+l c+ |x+y|d+1

1 1 1 1
2 . .
Ecdxjfmml (|x|d+1 P |d+1)g(|y|)dy+cdf yjmm(um’mm)g('y“dy

3 Xj f
o3 gllyDdy + ¢ f g(lyDdy.
@ 1x19+1 JBo,[xhnC 4 JBe(o,1xhnC Iyld+1

Summing up these inequalities yields

d
X1+...+xg 3 yit+..tyd
§jR-G(x)2c3—f glyhdy+c f a1 &lyhdy
/ 4 xld+l o ppnct 4 Jpeopnet lyldtl

J=1
>l 1f g(yDdy + f L etynd
>ch—— yhdy+c yDdy
4 |x|9 JB(0,1xhnC 4 Jpe(o xpnc |y12

1 fH ~gr)
5
> (r)dr+c
dl |4 ‘g ) T

g 1 [rak® 6 [ 1)
=2cy aix |df f (t)dt+cdfv ,

dlxl

Since S(f*) is a nonincreasing function, we can see as above that the nonincreasing re-
arrangement of the function x — S(f *)(vglx|%)1c+(x) computed in s > 0 is equal to S(f*)(s). Hence,
we have proved the inequality (1.13).
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To prove the next claim, observe that the inequality under the assumption that (R1G +
...+R G)1¢+ € X gives us that, if f € X, then we must have S(f*) e X.

Let us note that we have S(|f]) < S(f*). This can be easily seen by applying the Hardy-
Littlewood inequality to |f| and the nonincreasing function ¢ — min(1/s,1/t) when s > 0 is fixed:

oo 11 oo 11
S(Ifl)(s):f If(t)lmin(—,—)dtSf f*(t)min(—,—)dt=S(f*)(s).
0 s’ t 0 st

Up to now we have that, if f € X and (R1G +... + R G)1c+ € X, then S(|f]) (—:X. Aiin the
proof of Theorem 1.8, p. 7, [1] we suppose by contradiction that the operator S : X — X is not
continuous. Then we can ﬁnd a sequence (f,),>; of nonnegative functions in X with | full+ x=1

and such that [|S(f,)lgx=n 3 for all n = 1. The series ¥,,»1 f»/n? being absolutely convergent in X,

it defines a function f € X, hence S(f) € X. However since all the functions f, are nonnegatlve
we have f = fn/n and consequently S(f) = S(fn)/n which implies IIS(f)IIX IIS(fn)IIX/n >n for
all n =1, obtaining a contradiction.

Having that S is a continuous operator, we can use Theorem 5.15 in [1, p. 150] to obtain the
statement about the Boyd indexes of X. Il

PROOF OF PROPOSITION[1.12l To prove the Proposition consider a function f € X and
the field F = (G,...,G), with G constructed from f as in Lemma Suppose first that f*
is compactly supported. Note that u:= divF is not always a Radon measure (we can compute
explicitly u* and u~ to see that these measures are not always locally finite), but is of course a
distribution. With the notation from the proof of Theorem we have that u* ¢, and F * ¢,
are smooth compactly supported functions. In particular, y * ¢, is a compactly supported signed
Radon measure on R?. Since u * ¢, = div (F = ¢¢) and, as in the proof of Theorem ||F * (g || x =
IF|lx, we must have then, that ||I1 (u*¢.)||x = Cx |F * ¢¢| x = Cx IFlx for all £ > 0. As above,
the formula and the Gauss-Ostrogradskii theorem give us that:

I (p* @e) (x) = (d — 1) lim F % @u(y)- mdy for all x € R?, (1.14)

6—0" Jix—y|>6 |
Fix r > 0 and take € € (0,r). The support of F is contained in the closure of the set C~. Hence
F x ¢, is supported in the closure of C~ + ¢B. We can write, for all x€ C) :=(r,...,r)+ C™, that

. xX—y xX—y

lim F x (y)-—dy:f Fx@(y) —=—dy

6—0% Jix—y|>6 Ve | — y|d+1 C-+¢B Ve |lx — y|d+1
-y

x
> F * ——dy.

Since the integrand of the last term is nonnegative, one can use Tonelli’s theorem to change
the order of integration, and find that

x-) x—y
Fxp(y) ———dy= F(y—g&) ——<
fc_ *e(y) |x_y|d+lci3v fRd( . (y—€9) |x_y|d+1dy)<p(6)d6

= [ ([ gty-een B2 gy g
c+\Jc- | =yl

The fact that the function g is nonincreasing enables us to see that for a fixed { € C* we
have g(|ly —&é]) < g(ly —€'é]) for all y € C~ and for all 0 < €’ < £. Hence the monotone convergence
theorem gives us

(1.15)

X1—yY1+..+Xqg—Yqa X1—yY1+..+xg—Y4
Iy —e2))- ay— [ gl dy,
fcgly ¢l PRpWFES y Cfglyl papwTE y

when € — 0. With the help of Fatou’s lemma and the above calculation we have
Y1+...t%d —Yd

1i F « 7Y 4 Af FLZNT. dy,
o Jo- B e ey = A ) T e
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where A = [, p(&)d¢ > 0. Using (1.14), (1.15) we obtain

. X1 — +...+txqg —
lim s (o ge) ()2 (@~ DA [ gllyl). 2Tt 2
£—0 C- |x_y|

for all x € C;| and all » > 0. Since (d — 1) A do not depend on r, this inequality can be rewriten as
lim (I7 (u* @e)) 1o+ = cqg(R1G+...+ R4G) 1¢+ = 0,

e—0

dy=0,

and consequently by the Fatou property of X, we get
I(R1G+...+ Ra@®) 1c+lix < Cx lim | I1 (1 ¢¢) |
e—0
which implies [[(R1G +...+R3G)1¢c+llx < Cg( IFllx, and by using inequality li from Lemma
1.13, we get that
IsF)lz=Cxlf Iz (1.16)

whenever f € X and f* is compactly supported. Now, if f € X and f* is not necessarly compactly
supported, from we have ||S(f*1(0,n))||)—( < C% ||f*1(0’n)||}—( for all n = 1. By the monotone
convergence theorem and the Fatou property of X we get, taking n — oo, that (1.16) is true
whenever f € X. Since as in the proof of Lemma we have S(|f|) < S(f*), we get now that
||S(|f|)||)—( < Ci ||f||)—( for all f € )T, obtaining that S is bounded from X into X.

The conclusion follows now as in Lemma O
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CHAPTER 2

On the representation as exterior differentials of closed forms with
Ll-coefficients

Let N=2. If g€ L(lj([RZN ) has zero integral, then the equation divX = g need not have a solution
X e W2 ®Y;RY) (Wojciechowski 1999) or even X € LYV~ (gN;RN) (Bourgain and Brezis 2003).
Using these results, we prove that, whenever N =3 and 2 </ < N —1, there exists some /-form
fe Li(IRN;A[) such that df = 0 and the equation d A = f has no solution A € Wllo’i(lRN;Al_l). This
provides a negative answer to a question raised by Baldi, Franchi and Pansu (2019).

1. Introduction
We consider the Hodge system
dA=finRY, (2.1)

where f and A are ¢ and (¢ — 1)-forms respectively, f being given and satisfying the compatibility
condition df = 0. We focus on the case where f has L' coefficients.

To start with, let us recall some known facts about the cases / =N and ¢ = 1.

In the case ¢/ = N, reduces to the divergence equation. It was first shown by Woj-

ciechowski [6]] that there exists g € Li([R%N ), with zero integral, such that the equation divX =g
has no solution X € Wllo’i(RN :RY). On the other hand, Bourgain and Brezis [2] proved, using a
different method, the following: there exists g € Li([R{N ) with zero integral, such that the equation
divX = g has no solution X € LZZ\; /C(N VRN :RY). In view of the embedding Wllo’i — LJZ\(]) /C(N _1), this
improves [6].

In the case /=1, reduces to the following “gradient” equation

VA=Ff, (2.2)

where f is a vector field satisfying the compatibility condition Vx f =0 and A is a function. Unlike
the case ¢ = N, this time (2.2) has a solution 1 € Wllo’i([RiN ). Actually, any solution of (2.2) belongs
to Wllo’i and, moreover, if f is compactly supported then we may choose A € Wh-1.

The question of the solvability in Wllo’i of the system |D with datum in L' in the remaining
cases, i.e., 2< ¢ < N — 1, has been recently raised by Baldi, Franchi and Pansu [1]. Our main
result settles this problem.

THEOREM 2.1. Let N = 3. Let 2 < ¢ < N — 1. Then there exists some f € LL(RY;A’) such that
df =0 and the equation dA = f has no solution A€ Wllo’i(lR{N;Aé_l).

The proof of Theorem we present is a simplification, communicated to the author by P.
Mironescu, of the original one. This simplified version has the advantage of being relatively
self-contained and elementary.

2. Proof of Theorem

We start with some auxiliary results.

LEMMA 2.2. Let 1<k <N-1and f € L RN;A® be such that df = 0. Then there exists some
weL! (RN;A*™), forall 1< q < NAN -1), such that dw = f.
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PROOF. Let E be “the" fundamental solution of A and set n:= E xf. Let w:=d"n. First,
ne WZIO’Z(RN) (by elliptic regularity) and thus w € L‘ZIOC(IRN), 1<q<N/N-1). Next,dn=Ex*df =0.

Finally,
do=dd*n=dd"+d*d)n=An=f.

Hence, w has the required properties. Il
A similar argument leads to the following.

LEMMA 2.3. Let 1<r<oo, keN. Let 1<x <N -1. Let fEch’r(IRN;AK) be such that df = 0.

Then there exists some w € W;Zl’r([RN;AK_l) such that dw =f.

We next recall the following “inversion of d with loss of regularity”. It is folklore, and one pos-
sible proof consists of using Bogovskii’s formula (see for example [4, Corollary 3.3 and Corollary
3.4] for related arguments).

LEMMA 2.4. Let 1<x <N —1. Let Q be an open cube in RY. Then there exists some integer
m = m(N,«) such that if f € Cf(Q;AK) (whose coefficients have zero integral), with k € {m,m +
1,...}u{oo}, satisfies df =0, then there exists some w € Cf‘m(Q;AK_l) such that dw =f.

Combining Lemmas [2.242.4] we obtain the following

PROPOSITION 2.5. Let 1<k <N —1. Let @ be an open cube in RN. Let f € L:;(Q;A") (whose
coefficients have zero integral) be such that df = 0. Then there exists some w € LL(Q; A1), for all
1<q <N/N -1), such that dw = f.

PROOF. Set fo := f. We consider a sequence ({;);>0 in CZ°(Q;R) such that {o = 1 on supp fo
and, for j =1, {; =1 on supp(;_1. We let 179 be a solution of dn¢ = fo, constructed as in Lemma
We set wq :={ono, so that wy eLI(Q;AN* 1), 1<qg<N/N-1)and

dwo=d{oAno+{odno=dloAnoe+{ofo=dloAno+fo.
——
-f1

Let us note that df; = —d?wo+dfo =0 and that f; € LUQ;A¥),1<q <N/N -1).

Fix some 1 <r < N/(N —-1). By Lemma there exists some 7; € Wllo’z([RN;AK‘l) such that
dni = f1. Set w1 :={1m1. Then w; € Wcl’r(Q;A"‘l) and, as above, fo := f1 —dw; satisfies dfs =0
and fz € WC1 "(Q; A¥). Applying again Lemma we may find 72 € leo’Z(IRN ) such that dng = fo.

Iterating the above, we have

wo+-+w; e LIQ; A", 1=q <NAN-1),
d(wo+-+-+wj)=fo—fj, with df; =0 and fJEW({,r(Q;AK).

Let now j be such that W/4(Q) — C™(Q), with m as in Lemma Let & € CAQ; A*™1) be
such that d¢ =—f;. Set w:=wg+---+w; +¢. Then w has all the required properties. U

Let us note the following consequence of hypoellipticity of A and of the proofs of Proposition
and Lemmas and [2.3] (but not of their statements).

COROLLARY 2.6. Assume, in addition to the hypotheses of Proposition that f € C°U) for
some open set U c Q. Let s € N. Then we may choose w such that, in addition, w € C*(U).

PROOF OF THEOREM [2.1l We write the variables in RN as follows: x = (x/,x"), with x' € R’
and x” e RN,

Pick some g € L}:((O, 1)!;R) with zero integral, such that the equation divX = g has no solution
X e LD (R RY) (see [, [2]). Clearly, for any G € C2((0,1)%;R),

loc

the equation divY = g+ G has no solution Y € Lfé(f_l)([R{z;Ré). (2.3)
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Let v € C°((0, 1)V=%) be such that ¥ = 1 in some nonempty open set V < (0, V=l Set @ :=
0,1V and n := g(x")p(x")dx' € LL(@Q; AY). We note that dn = g(x)dy(x") Adx' € LYQ; A’™). Let
us also note that dn =0 in R’ x V. By Corollary with U = (0,1)! x V, there exists some w €
LUQ;AY), 1<q<N/N -1), such that dw = dn and w € C2((0,1) x V).

Consider now the closed form f :=n-w € L%(Q;A( ). We claim that there exists no 1 € Wllo’i
(RN; A1) such that dA = f. Argue by contradiction and let A; denote the coefficient, in A, of
dxiAdxg--ANdxj_1 Ndxji1 AN+ Adxe,1<i</. Let wy denote the coefficient of dx’ in w. Then, in
R? x V, we have

4 .
Z(—l)”lai/li(x',x") = g (x") — wo(x',x") = g(x") — wo(x, x"). (2.4)
i=1

Hence, for a.e. x" € V, the following equation is satisfied in 2'(R?):

[ .
_Zl(—n”lam; =g -y, (2.5)
1=

with
Ari= 2,27 e WELRY) and wf = wo(-,2") € C((0,1))). (2.6)

The above properties (2.5) and (2.6), combined with the embedding Wllo’i([R{g ) — L=DRY,
contradict (2.3). O

REMARK 2.7. We have actually proved the following improvement of Theorem Let N=3
and 2 < ¢ < N —1. Then there exists some f € L%([R%d;A[ ) satisfying df = 0 and such that the
system d A = f has no solution

1 €L1 (R(N—f);L[/(f—l)(Ré;Af—l))'

loc loc

REMARK 2.8. A similar question can be raised in L. We have the following analogue of
Theorem 2,11

THEOREM 2.9. Let N =3. Let 2< ¢ <N —1. Then there exists some f € LL(RYN;A?) such that
df =0 and the equation dA = [ has no solution A € Wllo’(;O(RN;A[_l).

The proof of Theorem [2.9|is very similar to the one of Theorem 3. The main difference is the
starting point, in dimension ¢. Here, we use the fact that there exists some g € L‘gO(IR[ ), with zero

integral, such that the equation divX = g has no solution X € WZIO’CC’O(IR[ :RY) (see [5]).

3. Solution in LY V- when1<¢/<N-1

As mentioned in the introduction, when ¢ = N, the system with right-hand side f € L!
need not have a solution A € LZX) /(fN D In view of Theorem and of Proposition , it is natural
to ask whether, in the remaining cases 1 </ <N —1, given a closed ¢-form f € L_, it is possible
to solve with 1 € L% /(fN ~U_ This is clearly the case when ¢ =1 (by the Sobolev embedding

Wllo’i — L% /C(N -y, Moreover, we may pick A € W1, The remaining cases are settled by our next
result. In what follows, we do not make any support assumption on f, and therefore the case

where ¢ =1 is also of interest.

PROPOSITION 2.10. Let N =2 and 1< ¢ <N —1. Then, for every f € LX(RN; A%) with df =0,
there exists some A € LN'W-D(@®RN: A?~1) such that f = dA.

PROOF. Suppose f € LY(R®RY; A1) with df = 0 as above. According to Bourgain and Brezis [3]
(see [3, Corollary 20] for a very similar statement; see also [7, Theorem 3]), we have

[P S0P eyl v e 0250, @7
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Consider the functional
N. Al
Lr:S={d"y; weCPRY;AN—R, Lr(d™y) :=fd (w,f).
R

Here, S is endowed with the LY -norm. The inequality l) shows that L ¢ is well-defined and
bounded. By the Hahn-Banach theorem, there exists an extension L f LNRN; A S R of L f
with |L¢| = | L. Hence, there exists an (¢ — 1)-form A € LN'™V-D(®RN; A*~1) such that

fRNW’”:Lf(d*W)=if(d*w):fRN<d*w,A>:fRN<w,dA>

for all ¢ -forms y € CPRY; AY).
This implies that A € LN'WV-D(RN; A?~1) satisfies d A = f. O
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CHAPTER 3

Hodge systems with L! sources

Let d = 2. In [3], Bourgain and Brezis proved that there exists g € L%([R%d) with zero
integral, such that the equation divX = g has no solution X € Wllo’:;([Rd), and actually not even

in LY (RY). Using this result, we prove that whenever d =3 and 2 <1/ < d,. there exists some
G € LL([R?; A!) such that dG = 0 and the equation dF = G has no solution F € WH1(R?; A!=1). This
was originally proved in [6] by completely different methods, and answers negatively a question
in [1].

1. Short introduction

Our goal is to prove the following:

THEOREM 3.1. Suppose d =2 and I € {2,...,d}. There exists an I-form G € L} on R with

dG =0, whose coefficients have zero integral, and such that there is no (I — 1)-form F € W1 on R?
with G =dF.

This was essentially proved in [6] (providing a negative answer to a question in [1, p. 6]) by
reducing the problem to the study of the divergence equation on a lower dimensional subspace of
R?, and then using the nonexistence result from [3]. More exactly, in [6] ( see also Chapter [2) it
was shown that, if Theorem fails to be true, then, for any g € L% (IRZ) with zero integral, there

exists a vector field Y € Lé/(fc_l) (Rl,[RZl ) and a sufficiently smooth (C? and compactly supported)
remainder G, such that divY = g +G. (The smoothness of G was established by using the hypoel-
lipticity of the operator A.) However, the existence, for each g € L1, of such Y and G contradicts
the nonexistence result in [3), Section 2.1].

In this chapter, we prove the above result via a completely different approach, that may be
useful in more general problems. More specifically, we reduce the problem to the study of the
divergence equation in R? (here, the dimension is two for every value of /). On the other hand,
instead of proving the smoothness of the remainder G (which will be different and with a different
role) we prove its smallness in some appropriate Besov norm. The key property that we will use
is the boundedness of the Calderon-Zygmund operators on the homogeneous Besov spaces, even
for the “limit” parameter p = 1 (see Lemma [3.4).

2. Proof of Theorem [3.1]
We will need several lemmas.

LEMMA 3.2. We have]
1mdy vir—2,1/md _p-Llmnd
(L'®H,W2RD) =B MR,

s

Here, for a positive integer m, W>1(R?) is defined as being the space of those distributions
f on R? for which there exists a family of functions (F @)|a|=m 1N LY(R?) such that

f= ) VF,.

lal=m

1Here, BIl’l is the Banach space obtained as the closure of the space of Schwartz functions in the norm of BIl’l.
This definition does not coincide with the definition of the homogeneous Besov spaces given in the Section [5| of the
Introduction Chapter. However, for simplicity we keep this notation throughout this chapter.
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The space W "1(R?) is endowed with the following norm:

f=> V“Fa}.

lal=m

”flIW—m,l:inf{ Y IFalizs

lal=m

In particular, the elements of W~"1(R?) are distributions of order < m.
PRrROOF. We adapt the method in [2, p. 143]. To obtain the embedding
(LI’W_2’1)1/2,1 ‘_’BILI’ (3.1)

we use the K-method.

We recall that for a compatible couple (Ag, A1) of Banach spaces, the K functional is defined
as follows (see [2, Chapter 3]):

K(f,t,Ap,A1):= ; lfnf (Ifollag + 2l /1l A,),

=Jjot+
for any f € Ag+ A1 and ¢ > 0. For any constant u > 0, the norm of the space (Ag,A1)g , x (Where
6 €(0,1) and 1 < g <o) satisfies the equivalence (see [2, Lemma 3.1.3])

1/q
—uv0
1N A0A1p g ™ Y 27HOIR (£,2HY A, Ay)
veZ

In what follows, we let p=2.

We now return to (3.I). Consider a distribution f € L' + W21 and a decomposition f = fo + f1
with fo e L' and f; e W21,

There exists a family of functions f, € L such that

fi= ), Ve with Y Ifalzr <20f1ly-21,

la|=2 la|=2

and therefore we have

1Pifilis Y IVOPifallin S2% Y |Pifallpn S2% Y Wfallp S2% fillyp21,  (3.2)

la|=2 la|=2 la|=2

where P; are the homogeneous Paley-Littlewood “projections”. For the second inequality in (3.2),
we have used the “direct” Nikolskii’s inequality

ID*fliLe SR*If e if supp f < {I¢] < R} (3.3)

for any 1< p <oo0.

For further use, let us also note the “inverse” Nikolskii’s inequality
ID*fllLs = R* I liL» if suppf < {R/2 < || < 2R) (3.4)
For and (3.4), see e.g. [4, Lemma 2.1.1].
From (3.2) we have, for all j€ Z,
2 |Pif | =277 (IPifoll o+ 1P £l ) S 277 (IPsfollr + 2% W fally-2a )
which gives
277 |Pyf | S2TVK(F, 2%, L W
and hence, by summing up,

If1 fu<22 2R (£,2% LL W2 < I lygak -

To obtain the embeddmg
._1’1 72,
B» = (LL W), (3.5)

we use the J-method.
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We recall that for a compatible couple (Ag,A1) of Banach spaces, the JJ functional is defined
as follows (see [2, Chapter 3]):

J(f>t,AO7A1)::max(”f”AO,tllf”Al),

for any f € AgnAj and ¢ > 0. For any constant y > 0, the norm of the space (Ag,A1)g 4,7 (Where
6 €(0,1) and 1 < g <o) satisfies the equivalence (see [2, Lemma 3.2.3])

1/q
£ a0 a1y, ~ i0E| X 27099 (uy, 2, Ao, A1)

veZ

Here, the infimum is taken over all the representations

f= Z u., with convergence in Ag+ A1,
veZ

where u, € AgnAj for all v € Z. In what follows, we let u=2.
We now return to (3.5). For f € BIl’l, we have

110 S Y. 272020 gp,f,2% LY W~2h), (3.6)
J

Let v be the Schwartz function satisfying Pog = g *wg, Vg € &'. Consider a Schwartz
function ® with 0 ¢ supp® and such that ® = 1 on suppyo. Then, clearly, we have P igx®;=P,g
for all j and any Schwartz function g. Here, ®;(x) := 2/4®(2/x). Therefore, the function ¢ := A~ 1D
(noticing that $(£ )= —|&|72®(¢)) is Schwartz and we have

1P Lo = It # @ las = [BoF  (80), o, =22 P = 250, e
2 AP a1 S AP D21 =27 [Py .
Therefore, we have J(ij,22j,L1,W_2’1) < ||ij||L1. Combining this with (3.6), we obtain
12,10 S ;Tj 1Piflz: < g,

whence the conclusion of the lemma. U
The following consequence of the above lemma will be used in the proof of Theorem

LEMMA 3.3. Let ¢ € (0,1) and define the operator T. by T.p(x) := € 2¢p(x',ex"), for ¢ € CP (Rd),
where x' €R2, x" € R%2 qnd x = (x',x") € R%. Then,

1Tl 5-11 p-11 < —
¢'B; " —B, E

for some 0 < C < co.

PROOF. We see that

1Tellz1p1=1. (3.7
Consider now ¢ € W~2! and write
o= Y VAVE Fe (3.8)
aeN?, feNd—2
lal+|pl=2

where the functions Fyp € L1 satisfy the inequality
2 NFapllpa=2loll-21-

aeN2,BeNd 2
lal+|p1=2
From (3.8), we have
Tep) =l 2p@ exy = Y vV, (E‘H_'ﬁ 'F aﬁ(x’,ex”)),
aeN2, feNd -2

lal+I81=2
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and thus
_ 1 2
ITeplyn= X ePFaplp=s ¥ [Fapllpi= ol
aeNZ,BeNd 2 aeN?,BeNd -2
la|+1Bl=2 lal+1B1=2
We obtain
2
1T llyir-21 21 < 2 (3.9)

From this, (3.7) and Lemma [3.2) we get

. . < i7r— 7 —
”TE”BII’1—>B11’1 = C ”TEH(LI([Rd),W Z,I(Rd))l/Zl_,(Ll(Rd)’W 2,1(Rd))1/2’1

12 12 1
S C ”T‘g“Ll—»Ll ||T£|IW,271qw,271 S Cz,

whence the claim. O

We will also need the following well-known result concerning the boundedness of the Calderén-
Zygmund operators (see Section (1| of the Introduction Chapter for a definition) on the homoge-
neous Besov spaces (see [7, Corollary 6.7.2, p. 96]):

LEMMA 3.4. Suppose K is a Calderon-Zygmund operator and s € R, 1 < p,q < oo are given.
Then, for any Schwartz function f on R* we have

||Kf||3f1,p < ||f||33,p.
Combining the “lifting property”
I e ~ IV Fllgs-ve

(which is a straightforward consequence of (3.4)) with the above lemma applied with s =0, p =
g = 1 for the Calderén-Zygmund operator VA~1d* (again, see see Section [1| of the Introduction
Chapter), we obtain that for any (I — 1)-form v with Schwartz coefficients, the following inequality
holds

|a~td"v| B0~ l(va~td*)vl| g S vl (3.10)
In order to prove Theorem it suffices to prove the following fact:

PROPOSITION 3.5. Let r > 0. Suppose d =2 and | € {2,...,d}. There exists an l-form G €
L}; (B(0,r)) with dG = 0 and whose coefficients have zero integral, such that there is no (I —1)-form
Fe W' (B(0,3r)) on RY with G = dF.

(Here Li(B(O, r)) is the space of L-functions which are supported in B(0,r) and Wc1 ’1(B(0, 3r))
is the space of Wh! functions which are supported in B(0,3r). Note that the main difference
between Theorem and Proposition is that Proposition involves the inhomogeneous
Sobolev space, while Theorem involves the homogenous space.)

PROOF THAT PROPOSITION [3.5] IMPLIES THEOREM [3.1l We prove that, assuming Theorem
is false, then Proposition 3.5 must be false too.

Suppose Theorem is false. Then, for any closed [-form G € L%(B (0,r)) whose coefficients
have zero integral, one can find an (I — 1)-form F € Wb! such that dF = G. By using the open
mapping theorem, we can choose F such that

dF =G and |VF ;1 SIGlzr. (3.11)

Fix a closed I-form G € L' as above and with supp G < B(0,r) (for some r > 0) and let 1 €
CX(B(0,2r)) be a function such that n=1 on B(0,r). Decompose the form F' given in (3.11) as

F= Z Frdx;.
I1=l-1
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By considering regularizations with convolutions, we can assume without loss of generality
that G and F are smooth. We define a new (I — 1)-form F!:= 1 (F — c¢) where the multiplication is

considered component-wise and ¢ = (cy)|7=;—1 is the vector with ( ) components defined by

Cct ::f F[.
B(0,2r)

From Poincaré’s inequality, (3.11) and the properties of 1, we find that F'! satisfies

-1

[FH s+ IVF S IGL, (3.12)
supp F1 < B(0,2r), (3.13)
dF'=d(n(F -¢))=nd(F-c)+G' =G +G?, (3.14)

where G! is an [-form whose coefficients are linear combinations of products between the coeffi-
cients of (F' — c¢) and the derivatives of 7. As in (3.12), we have

[GH L+ VG |1 S G- (3.15)
Note that G1 € Wcl’1 (B(0,2r)). Thanks to Gagliardo’s embedding we get Gle L‘fl (B(0,2r)) and,
using (3.15),
|G Lo SIGL1.
By an inspection of Bogovskii’s formula (see [5, Corollary 3.3 and Corollary 3.4]) one can find
a compactly supported (I — 1)-form F2¢ Wcl’d (B(0,3r)) satisfying dF? =G and such that
172y S 16 o S 1G5

Now, if F' := F1~F2, then, from (8.14), we have dF’ = G. Since W% (B(0,3r)) — W1 (B(0,3r)),
we have

1E o STF s+ 1F o S1GL-

To summarize, as claimed, we have proved that for each compactly supported I-form G € L1,

whose coefficients have zero integral, there exists an (I — 1)-form F’ € Wcl’l(B (0,3r)) such that
dF’ = G. This completes the proof. O

Now, we are going to prove Proposition We argue by contradiction. If Proposition[3.5|does
not hold, then we have the following consequence (that we will later disprove, in order to obtain
a contradiction).

LEMMA 3.6. Assume that Proposition does not hold for some d =22 and [ € {2,...,d}. Let
r>0. Then for any l-form G € L%(B (0,r)) with dG = 0 and whose coefficients have zero integral,

there exists an (I —1)-form F € Wcl’1 (B(0,3r)) on R? with G = dF. Moreover, we can choose F such
that

IF 11 = CIG L1, (3.16)
where C is a constant independent of r.

Indeed, this follows from a scaling argument. Suppose e.g. that Proposition does not hold
for r = 1. Than one can use the open mapping theorem in order to chose F satisfying (3.16), with
a constant independent of G. To see that the constant C remains the same when r changes, it
suffices to note that, for any r > 0, we have d (rF(x/r)) = G(x/r) and

_ —pd
e ()], =161
and
. 4 ‘
[P ()]0 =7 1
Hence (3.16) is dilation-invariant.
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PROOF (BY CONTRADICTION) OF PROPOSITION [3.5] We observe that it suffices to consider
only the case where d > 2. Indeed, when d = 2 the only possible Hodge system to which Proposi-
tion (3.5]applies is the divergence equation; as we mentioned above this case was already settled
in [3].

Let g € C(R?) and a nonnegative vy € C‘c’o([Rd_z) satisfying the conditions

fRzg:O’ fRd—zw:L

Via a standard explicit construction, we may find 4, k € C‘C’O(Rz) such that
g =01h + 02k on R2. (3.17)

Consider now the [-form on R:

d
Ge:=(g®w:)dxi Adxg A Ad +(-1) Y (h®d;we)dxa Adxs A... Adxy Adx;

i=l+1

p (3.18)
+(-D' Y (k®0;iwe)dxi Adxg ... Adxg Adx,
i=l+1
where y¢(x") := €2 2y(ex"). Here, if g1 is a function on R? and g9 is a function on R?~2, we write
£1® g9 for the function
(g1®89)(x):=g1 () ga(x"), x=(x,x")eRExRI2
Computing dG, by using (3.17), one obtains:
dG:.=(-1" Y (g®0;y°)dx1 AdxaA... Adx; Adx;
l+1<i<d
d
+(=D"* Y (01h®0;y°)dxy Adxa A ... Adxg Adx;
i (3.19)
+(=D"* Y (02k ®0;9F)dx1 Adxg A ... Adx; Adx; + R,
i=l+1
=(—1)l Z (g—alh —62k)®6i1//£ dx1 AN dxz VARAY dxl AN dxi +R, = Rg,
l+1<i=d

where R, is an (I + 1)-form whose coefficients are linear combinations of terms of the form A ®
ajlailwg and & ®6j26i2w£, with 11,J1,19,J2 € {{+1,...,d}.

We next note that R, € BIl’l(Rd) and we have, using Lemma
IReNg-11=<C [h & V2, ”311’1 +C ke V2, ”BII’I

ke (VZy)"

:ng h® v2// ¢ . +C£2 )
H ( x w) 0311’1 B 3920
=Ce? | T, (h®V2,y) ”Bil’l +Ce? | Te (k ® V2,) ”Bil’l

<C'e|he V|11 +Cle |k ®Viy|yri = Chpye.
Since dR, =0, the I-form w, := A"1d*R, satisfies (see )
e € BY (R, dwe =R, and ol o1 < CIRel 410 < Chye,
from which we get
lwellpr < IIngIB;),l <Chpyt. (3.21)

To justify (3.21), we first observe that R. is a smooth compactly supported function. Therefore,
we have

R.=) PR, (3.22)
JjezZ
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in the sense of distributions. By applying on both sides of (3.22) the operator A~1d*, we find that

We = Z Pjw,, (3.23)
Jjez
in the sense of distributions. Using (3.10) we obtain that, for any j€ Z,
|Pjwellpr S277 | PiRe] 1,
and, since R, € B Il’l (R?), we get that the sum in li is absolutely convergent in L'. Therefore,
we have w, € L' (R?). From the triangle inequality and (3.23), we obtain (3.21).

Suppose Proposition is false. We show that, in the above construction, w. can be replaced
by a compactly supported form still satisfying an estimate of the form (3.21). For this purpose,
we use the following lemma that follows from Lemma 3.6

LEMMA 3.7. Assume that Proposition does not hold. Let r >0 and R be an (I +1)-form
in C(B(0,r)) whose coefficients have zero integral and such that there exists a smooth l-form
w e L' (R?) with do =R and

lwlpr = ClIR| 4-11
1
for some fixed constant C.
Then there exists an I-form o' € L1(B(0,6r)) such that
do'=R and |01 <C'IRl 411, (3.24)
1

where C' depends only on C, but not on w.

PROOF OF LEMMA [3.7] Suppose first that r = 1. Consider a function n € C°(B(0,2)) such
that |17| <1, |V17| <1and n=1onB(0,1). Setting w' := nw, we have that

o1 < llwlz = CIRI PRLE (3.25)

The I-form w! is supported on B(0,2) and
do'=ndw+R'=R+R!, (3.26)

where R! is an (I + 1)-form whose coefficients are linear combinations of products between the
coefficients of w and the derivatives of . Hence,

IR 1 S IVl ot r S et 1 < RN s

Clearly, the form R! is closed and (by (3.26), the fact that w! is compactly supported, and the
assumption that the coefficients of R have zero integral), its coefficients have zero integral.

On the other hand, R is compactly supported in B(0,2). Lemma implies the existence of
some w? € Wcl’1 (B(0, 6)) satisfying dw? =R and

lo® 21 = @l S 1R L S C MR (3.27)

Hence, if we set ' := w! — w?, then we have o' € L1(B(0,6)), do’ = R and thanks to (3.25),
B2,

||w'||L1 5 C IR ”le,1 <C’ IR ”BIM .

To obtain the statement for a general r, we use the same dilation argument as above: for any
r >0, we have d (ro'(x/r)) = R(x/r),

R(i)o = P9 R ao1a
H r BIM B,

ro’ ()] =7

Hence (3.24) is dilation-invariant. O

and
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PROOF OF PROPOSITION [3.5| COMPLETED. As we observed above, the coefficients of R, are
sums of second derivatives of compactly supported smooth functions (see (3.19)), and one can
easily check that R = R, satisfies the hypotheses of Lemma 3.7, Thanks to the Lemma and
(3.21), we can find a compactly supported /-form w. such that dw, = R, and

gl < Chpye, (3.28)
where the constant Cy, 1, ;, does not depend on &.

We have d (G¢—w.) = dG.— R, = 0 and hence, from (3.18) and (3.28), we can find (using
Lemma an ([ — 1)-form F, € Wc1 1(R9) such that

Ge=w,+dF;, (3.29)

IFellyyin <C||Ge— 0|11 = ClIGellp + Chpwe < Cliglps + Chppe. (3.30)
By identification of the coefficient dxy := dx1 Adxs A--- Adx; in (3.29), we see that

gou* =G = (0l), + [@F,);. (3.3

Consider now a nonnegative function ¢ € C‘C?"(IR{2 ) with the integral equal to 1. Set
Pf () =2 p(x'), V&' € R2.

Taking in the convolution with
Pf oyt =g oyt(x,x") = e (poy)(ex,ex’) = £ (p @ ¥) (ex)

and integrating in x” on R%2, we obtain that

g = fd ) (w)); * (¢ @ y°) (-,x")dx"+fd ,(@Fe)r (o ®yf) (,x")dx". (3.32)
Re- Re-
(Here, we have used the fact that [pe2y®=1.)
Setting

foci= [, @)y (0 0v%) 0d,
Rd—Z
we find, using (3.28)), that

I foell 1 (mey < |we | L1y < Chope. (3.33)

On the other hand, we note that the second term on the right hand side of (3.32) can be
rewritten as

fRd_z (dFo)r * (9 @ y®) (,2")dx" = 011 + 02f 2,

for some [, foc € WCI’I(IR2) such that

”flEHWl’l(le?) + [ f2e 11y < I Fe lwiigey < Cliglpr+Chpye. (3.34)
Since f1. and fa. are compactly supported, we get by (3.34) and Gagliardo’s embedding that
I f1ellLemey + 1 foelLemey < Cliglipr + Chpye. (3.35)

(Note that the above constants do not depend on €.)

Using the estimates (3.33), (3.35) and the Banach-Alaoglu theorem in L?(R?), we can pass to
the limit € — 0 (possibly up to a subsequence) in the identity

g * ¢° = foe + 011 + Oafac (3.36)
and obtain the existence of some fi, fo € L2(R?) satisfying
g=01f1+02fo and llfill 2+ lf2ll2<Cliglg:. (3.37)

This implies the existence of a solution in L2(R?) for the divergence equation on R? with
LY(R?) source terms. However, this was disproved in [3]. This contradiction achieves the proof of

Proposition O
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REMARK 3.8. Warning: at the end of the day, we know that Lemma [3.6] and Lemma [3.7 are
wrong.

REMARK 3.9. By following the above proof, with minor modifications, one can prove:

THEOREM 3.10. Suppose d =2 and [l € {2,...,d}. There exists an l-form G € LY on R with

dG =0, whose coefficients have zero integral and such that there is no (I — 1)-form F € W on R?
with G =dF.

Theorem [3.10| can also be obtained by adapting the argument in [6].

3. Appendix: Yet another proof

We give here a sketch for another proof of the main result. This proof is mainly based on a
“compactness argument” (see Lemma below) which enables us to reduce the problem on R?
to its analogue on T¢. (Here we identify T¢ with [0,1)¢.) The problem in this last case can be
immediately solved by using the nonexistence result for the divergence equation in [3].

According to [3, Section 2] one can choose a function g € L! (Tz) with zero integral which is not
the divergence of a Wo! vector field. Now, consider on T¢ (assuming d > 2) the following -form:

G:= (g® 1)dx1 ... /\dxl.

It is easy to see that G € L! (Td) is closed and has the coefficients of integral zero, and still is
not the exterior derivative of a W1-! form on T¢. In fact, it is not possible to write G as G = dF'—R’
for some (I — 1)-form F' € W11 ('I]'d) and an [-form R’ € L (T9). Indeed, by looking at the coefficient
corresponding to I = {1,...,1} and integrating in xs,...,xg (on T%2), we get that g = divf —r on T2
for some vector field f € W1 (T?) and a function r € L% (T2). Since the integral of r is zero, r
is the divergence of a vector field in Wh?' (T2) — W1 (T2). Hence, g is the divergence of a W'
vector field. This contradicts our choice of g.

We now explain how the problem on R? reduces to its analogue on T¢.

Let k1,kz,... be an enumeration of the elements of Z¢ and consider the family of cubes (@) =1
defined by Q; := kj+(0,3/2)d, for j = 1. There exists a family (nj)jzl of functions with n; € C°(Q;),
|V17J-| <1 for each j =1, and such that n; +n2+...=1on R,

We extend the above G by periodicity to R? and we observe that

supllGliLig,) =:Ca < oo.
j=1

For each j > 1 we choose a vector c; € R (with N = (‘li)) such that the coefficients of (G —c;)n;
have zero integral. It is easy to see that |c j| < Cg. We have

d((G-c;)n;)=@G)n;+Gndnj=GndnjeLe(Q)).
There exists G} € L‘Z’ (®;), whose coefficients have zero integral, such that dGJl. =G Adn; and
HGJ1 < Cg (see the proof of Lemma . Hence, (G —cj)n; - GJl. is closed and its coefficients

Ld/ ~Y
have zero integral.
If Theorem m is false, then (see Lemma there exists an (I - 1)-form F € wht (3Q;) such

that dF; = (G —c;)n; -G} and

<Cg. (3.38)

-

F; <I(G=c;)n; -Gt
’ J
” J”Wllw H( J)771

Let X be the completion of the space of Schwartz functions on R? under the following norm:

1115, 3= 5D 17 111(q,) + IV I3 )
j=
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In a similar way we define the space X9 of the L‘li(;c functions for which the following norm is
finite:

1Fllx, == S]}_gll)llf”Ld'(Qj)'
Define F := F1 + Fa + .... Thanks to (3.38), we easily see that |[F|x, < Cg. Also,
dF =G+R, (3.39)

where

j=1

In order to transfer the problem on T? we need the following lemma.

LEMMA 3.11. Let u € X1 ( u € Xg) and consider the sequence

1 Y ul(x+y),

IBnl X€Zd

Up:

where B, := B(0,n)NZ%. Then, there exists a function u' € BV, (Rd) (u' € X5) which is component-
wise 1-periodic and u, — u', up to a subsequence, in the sense of distributions.

This lemma can be proved on the same lines as Lemma from Chapter (8

From (3.39), we have dF, =G +R,, for all n = 1. Letting n — oo, and applying Lemma [3.11
we get that dF' = G + R’ for some component-wise 1-periodic forms F’ € BV, (R?) and R’ € X
with

”F,”BV(Td) SIGlzyray and ”R,”Ld’(vd) SIGlLicrey-
(Note that, since G is component-wise 1-periodic, we have Cg ~ |Gl 1(tq).)
By a standard regularization with convolution and a limiting argument, we can replace the

space BV(T%) with W-1(T%). Now Theorem follows from the discussion at the beginning of
the Appendix. Theorem |3.10|can also be proved on the same lines.
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CHAPTER 4

The divergence equation with L*° source

A well-known fact is that there exists g € L™(T?) with zero integral, such that the
equation

divf=g (%)

has no solution f = (f1, f2) € WH°(T?). This was proved by Preiss ([4]), using an involved geomet-
ric argument, and, independently, by McMullen ([2]), via Ornstein’s non-inequality. We improve
this result: roughly speaking, we prove that, there exists g € L* for which (*) has no solution
such that dof2 € L™ and f is “slightly better" than L. Our proof relies on Riesz products in the
spirit of the approach of Wojciechowski ([6]) for the study of (*) with source g € L. The proof we
give is elementary, self-contained and completely avoids the use of Ornstein’s non-inequality.

1. Introduction

In this chapter, we improve the following result of Preiss ([4]) and McMullen (Theorem 2.1 in
[20):

THEOREM 4.1. There exists g € L™(T?) with zero integral, such that there are no f1, fo €
WLoo(T2) with

g =01f1+02fs.

The proof in [4] is “geometric”, the one in [2] relies essentially on Ornstein’s non-inequality

([3D).

Note that, in the above statement, the conditions on f;, fo are isotropic, i.e., we require
01f; € L>®(T?) for all ,j = 1,2. In what follows, we will prove that, under some mild regular-
ity assumptions on fi, fo, the above requirements can be weakened to anisotropic conditions.
Namely, it is enough to impose 95 f5 € L®(T?). In order to state this more precisely, we introduce
the following spaces of distributions.

Suppose 1 :N — (0,00) is a decreasing function such that A(k) — 0 when 2 — oco. To such a
function we associate the Banach space of those distributions whose Fourier transform decays at
the rate at least 1. More precisely, consider the space

|f ()| }
sup <oo ¢,

nez2 A’(|n|)

endowed with the norm given by

|f(”)| 2
Ifllg, :=sup ——, feS)(T7).
flls, SUD 2 mD) feSa(T?)

To mention only few examples, we note that, for any m € N*, W™1(T?) — S, ('[I'z), with A(|n]) =
1/(1+|n))™ and, if s > 0, the fractional Sobolev space H*(T?) is embedded in S, (T2) for A(|n|) =
1/(1+|n|)s.

With this notation, we can formulate our result.

S, (T?%):= {f € 2'(T?)

77
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THEOREM 4.2. Suppose A :N — (0,00) is decreasing to 0. There exists g € L°(T?) such that
there are no fo, f1, fo € Sy (T2) with dafz € L°(T?) and

g =fo+01f1+02fa.

We can easily observe that Theorem implies Theorem Indeed, if f1, fo € WHo(T?)
then dafs € L°(T?) and, as we mentioned above, we have f1, fa € Sy (T?) for A(In]) = 1/(1+|n)).
Also, even the weaker regularity condition fo, f1, fo € HE(T2), d9fo € L™(T?) (¢ > 0, a small fixed
number) rules out the existence of a solution. Intuitively, f € S, ('[F2), with A slowly decaying,
means that f is “slightly better" than L!. The above result asserts that solutions with such
regularity satisfying 02 f2 € L°°(T2) need not exist.

Finally, we discuss the most important aspect, which is the proof of Theorem Our proof
completely avoids the use of Ornstein’s non-inequality. It is an adaptation of the Riesz products
based proof, given by Wojciechowski in [6], of the fact that there exist L! functions which are not
divergences of Wh1 vector fields. We follow the general structure of his proof making the needed
modifications in order to handle the L*° case. While the proof in [6] relies on a relatively difficult
lemma (Lemma 1, in [6]), in our case, the role of this lemma will be played by Lemma below,
which is elementary and easy. Another aspect of our proof is the presence of the function A. This
allows us to quantify the regularity that we impose to the solution and to improve the result
described by Theorem The approach based on Ornstein’s non-inequality does not seem to be
suited for obtaining this improvement.

We also mention that the proof given below of Theorem is self-contained and elementary.

2. Proof of Theorem 4.2

Before starting the proof, we recall first the following well-known elementary fact (see [5)
Lemma 6.3, p. 118]):

LEMMA 4.3. Suppose z1,..., zn are some complex numbers. Then, there exist 01,..., oy € {0,1}
such that

N
Z Opzp| =
k=1

Q=

N
PEAT
k=1

PrROOF. We follow [5]. View z1,..., zy as vectors in R?. For a given 0 € [0,2n], let rg :=
(cos@,sinf). If Hy is the half-plane given by

Hpy:={z€eR? (z,rg) =0},

we have
L s L[S ey ao=3 = [ tejre)*
on zp|d0 = —— zj,rg) do=) — zi,ro) do,
21 0 k=1,z;,€Hy 27 0 j=1 ! j:127'[ 0 J

and we easily see that, for all j,

L[ ey o= & [ costyao =L
o )y (ET0 =leilg, ), (cos =zl

Using the above inequality, we complete the proof of Lemma |4.3| via a mean value argument.
O
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We will also need few facts concerning the trigonometric polynomials.
Fix a finite sequence (a E)k=1N INn 72. For each finite sequence (a1,...,an) of complex numbers
we have the following expansion rule:

N N .

[T@+arcositar)=1+) Y (H ﬁ)ei<t"’31‘7‘1+“'+‘€k“’“>.

k=1 k=1ey,...,,€{—1,0,1} \¢;#0 2

e 70
Suppose, moreover, that (az),-1 y is component-wise lacunary, i.e., there exists a constant

M > 3 such that |az+1 (D)|/lar (1) > M and |lap.1(2)|/lar(2)l > M for all 1 <k <N —1. Then, all the
expressions €1a1+...+€xay in the above formula are distinct and nonzero. Hence, if a1,...,ay and
B1,..., BN are complex numbers, by using the above formula and the relation between convolution
and the Fourier transform, we obtain

N N N akﬁk
[T@+arcos¢,ap) = [](1+ Preos(ar)) =[] |1+ cos (-,an)|. 4.1)
k=1 k=1 k=1

We will also use the following standard algebraic identity:

N N k-1
[T@+c)=1+> cr [] (1+¢)) (4.2)
k=1 k=1 j=1

for any complex numbers c1,..., cn.

PROOF OF THEOREM [4.2]. Suppose that the assertion of Theorem is false and fix a func-
tion A as in the statement. Then, by the open mapping principle, there exists a constant C > 0
such that for any g € L°°(T?2) there exist distributions £y, f1, fo € S1(T2), satisfying g = fo+01f1 +
0af2, with the properties that dsfs € L®(T?) and

Ifolls, +Ifills, + I falls, + 192fallpe < Cliglpe. (4.3)

Let N be a large positive integer such that InN > 257C and consider the functions on T2

N

: N
gn(t):= l_[ (1+ écos(t,ak)) and Gy (t):= H (1+cos{t,ap)),
k=1 k=1

where the finite sequence (az),-; x in (I\I*)2 is defined below.
Using Lemma |4.3], applied to the sequence of complex numbers

A 2]

(here and after the product over an empty set is by convention equal to 1), we can find a sequence
01,..., on €{0,1} such that

N k-1 .
giee
1k j=1 2j

1k i
2p = — H (1+—) fork=1,...,N,
j=1

1N1k—1 1 1/2 1N1 1
>— — 1+ — >— —>—InN. 4.4
22y 214 gs) 2yl pz,M (4.4)

k=

Now we impose the sequence (a);-1 n to satisfy the following properties:

(i) (@r)p=1, is component-wise lacunary;
(i1) If o, = 1, then

ak(1)+ Z ejaj(l) ﬂ(

1<j<k-1
(iii) If 03 = 0, then

1
ar@+ ) Ejaj(2))<4—Nforallsl,...,sk_l€{—1,O,1};
1<j<k-1

ar@)+ Y €a;(2) )L(

1<j<k-1

1
arM+ ) Ejaj(l))<4—Nforallel,...,ek_l€{—1,O,1}.
1<j<k-1

(By convention the sum over an empty set is equal to 0.)
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Such a sequence can be easily constructed by induction on k: if a1,..., ap_1 are chosen, then
we choose a;(2) much larger than a(1), or az(1) much larger than a;(2), depending on whether
o, =1 or o = 0 respectively. Since A is decreasing to 0, we can satisfy in this way the conditions
(i1), respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem Note that

N 1/2
lgnlize =[] (1+k—2) <e™2 <3 and also Gy =0 and |Gy llp1 = 1. (4.5)
k=1

Using (4.1) and (4.2), we get

-1

N : .
Gn*gn®)=]] (1+Lcos(t ak)) 1+ Z cos(t ar) l_[ 1+—cos<t aj)l. (4.6)
r=1\ 2k 2j

Consider the sets

N
A= U {e1a1+... +epagl €1,...,6,€{—1,0,1}, € # 0},

k=1
Ukzl

N
B:= {e1a1+... +epayl €1,...,e5 € {—1,0,1}, g, # 0}.

Since the sequence (aj),-;y is component-wise lacunary, we have ({0} x Z)n(AUB) =
(Zx{0Hn (A UB) =@ and A NB = &, while clearly |A UB| < 3". In particular, |A| < 3", |B| < 3V.
Using now (4.6) and (4.4), we obtain

(5

where P4 is the linear operator on trigonometric polynomials, satisfying Pge“™ = e if n € A
and Pyelt™ =0 otherwise.

On the other hand, according to our assumption and , we can find fo, f1, fo € SA(T?),
satisfying gn = fo + 01f1 + 02f2, with the properties that dsfs € L™(T?) and

Ifolls, + 1f1lls, +1f2lls, + 102f2ll L < 3C.

Let us note that

lO'
IPAGy * gn(0)] = "

1
>—InN, (4.7
27

PAGn+xgN=PAGN *fo+PaGN %011+ PAGN * 02 f5. (4.8)
We next estimate each term on the right hand side of (4.8).

For the second term, we have:

IPAGN *01f1llp =IIGN * PA01f1lpo < IGN 1 1PAO1 100 = IPAO1f1I L0
< |A|max‘ﬁ(n)’ = IAImaxln(l)I |f1(n)]
IAImaXIR(l)I/l(InI)||f1||sA IAImaXIn(l)Ift(ln(2)|)IIflllsl
<3V4N3C < 3C,

where we have used (ii).
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For the third term, we have:
IPAGN * 02f2llp0 =GN * 02f2 —PBGN * 02fall Lo < |GN * 02f2ll 0 + IPBG N * 02f2ll 1.
<IGnNlp1102f2liLo + IGNI 1 IPBO2f2llf00 = II02f2ll 1,0 + IPBO2f2 Il 1,00

<3C +|B|max ‘a/gﬁ(n)( =3C + |BImax|n(2)| | fa(n)|
neB neB
S3C+3NI£1&X|n(2)|A(lnl)lllelsl <3C +3Nm&X|n(2)|/1(|n(1)|) If2lls,

<3C+3N4N3c <60,

where we have used the identity Gy = PAGpy + PGy + 1 and (iii).
Finally, the first term is easier to handle. We have:

IPAGN * follpeo =GN * Pafollpeo < I1Pafollpe < |A|I£1£4X|}?o(n)|
= |A|I£1$i/1(|n|)||follsl = |A|Ir€1$<|n(1)|/1(|n(2)|)||fo||sl
<3V4N3C < 3cC.
These estimates together with give us
IPAGN *gN ;0o =3C+6C +3C =12C,
which contradicts (4.7), since InN > 257zC. O

REMARK 4.4. (1) Similarly, a closer look to the proof in [6] gives the following analogue of
Theorem in the case of L1.

THEOREM 4.5. Suppose A :N — (0,00) is decreasing to 0. There exists g € LY(T?) such that
there are no fo, f1, f2o€S) (T2) with 0sfs € LY(T?) and

g =fo+01f1+02fa.

(2) The d-dimensional case, with d = 3, can be easily obtained from Theorem More pre-
cisely, we have

THEOREM 4.6. Let d = 2. Suppose A:N — (0,00) is decreasing to 0. There exists g € L(T%)
such that there are no fo, f1, fo,..., fd €2’ [Td) with fo, f1, f2€ 82 (Td), Oaf2 € L°°(T%) and

g=/fo+01f1+02fa+...+04fq.

Indeed, consider a g’ € C*®(T?) and v € C*°(T?~2) such that 0 < <1 and fra—v = 1. If the
above result were not true, we could find fo, f1, f2,..., fd4 €2’ (Td) such that

g ey =Ffo+01f1+02fo+...+04fq

and
Ifolls,(ray + I f1llg,ray + I f2lls,(ray + 102 f2ll ooy < C |8 || oo vy -

Without loss of generality, we can suppose that fy, f1, f2,..., f4 are smooth. Integrating this
equation in the last d — 2 coordinates, we reduce the problem to the 2-dimensional case: g’ =
fo+01f] +02f, where

f;(t):: Adzfj(t,r)dr, for j=0,1,2,
satisfy
Ifolls o2y + | Fills,ozy + 1 fallsycrzy + 1025 ] poogrzy < C |8 ooy -
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Here, we have used the fact that, for all n’ € 72,

F1()] = 175 (2 0) = A0 0D 15 ooy = () 1 s oy

(3) Using Lemma |4.3 and adapting the technique in [1], we can obtain similar anisotropic
Ornstein type inequalities adapted to the L™ case. We give below an example. For any £ > 0,
there exists a trigonometric polynomial f on T2, depending on ¢, such that

e[|0505f || oo = 01 || oo + [19705f || oo + 10105 F oo + 1031 | o -
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Part 2

Hodge systems in critical function spaces






CHAPTER 5

Approximation of critical regularity functions on stratified
homogeneous groups

Let G be a stratified homogeneous group with homogeneous dimension @ and whose
Lie algebra is generated by the left-invariant vector fields X1,...,.X4,. Let 1< p,q <oo, a:=Q/p
and 6 > 0. We prove that for any function f € F;””(G) there exists a function F € L*(G)nF,*(G)
such that

k
Y NXif ~Plgg-10, <01 Irgric).

1F Nz + I I par gy <Cs 1 f | per gy

where k is the largest integer smaller than min(p,d;) and Cj is a positive constant depending
only on §. Here, Fg "P(@) is a homogeneous Triebel-Lizorkin type space adapted to G.

This generalizes earlier results of Bourgain, Brezis [4] and of Bousquet, Russ, Wang, Yung [6]
in the Euclidean case and answers an open problem in [6].

1. Introduction

Let B cR? (d = 2) be a Euclidean ball. It is well-known that, if f € LfOC(B,IR) with 1< p <oo,
then the equation divY = f has a solution Y € Wllo’f (B,R%). When p =d, this Y “almost" belongs

to L‘l’gc(B,Rd). A striking result obtained by Bourgain and Brezis (in [3]) asserts that is possible

tofind Y € Wllo’f(B,le) mL‘l’ZC(B,IRd), solving divY = f . Their argument relies on a new type of
approximation results.

This seminal work has been followed by a number of approximation results of similar type
(4], 5], [13], [6]. Our work is primarily motivated by two types of developments of the results in
[13]], [6] concerning functions in critical Sobolev spaces that barely fail the embedding in L.

The first of these results ([13, Lemma 1.7]) deals with the extension of the approximation
result given in [4, Theorem 11] in the Euclidean case, to the more general case of stratified
homogeneous groups. Somewhat informally this reads (see Section [2| for definitions):

THEOREM 5.1. Suppose G is a stratified homogeneous group whose homogeneous dimension
is @ and let X1,...,X,, be a minimal family of vector fields generating the Lie algebra of G. Then,
for any Schwartz function f on G and any & > 0 there exists a function F such that:

ni—-1

Z 1X:(f —=F)llLe@) <6 IVoflLeg)s
i=1

IF L)+ IVaF L) <Cs ”vbf”LQ(G):

where Cgs is a constant depending only on 6.

Here, Vyf = (X1f,..,Xn,f). Theorem 11 in [4] corresponds to the Euclidean case.
On the other hand, it was proved in [6, Theorem 1.1] that Theorem 11 in [4] remains true,
in the Euclidean case if we replace the critical Sobolev space W14(R%) by more general critical

spaces such as F;ﬂp P(R?). More precisely, we have the following:

87
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THEOREM 5.2. Consider the parameters 1< p,q <oo, a :=d/p and let k be the largest positive
integer with lk < min(p,d). Then, for every § > 0 there exists a constant Cs > 0 depending only on 9,
such that for every function f € Fg P(R?) there exists F € LOO(Rd)ﬂF:; P(R?) satisfying the following
estimates:

I
Zl 10:(f = F)ll pa-1.0 gay <O Nf Il pp ety
1=

”F”Loo([Rd) + ”F”F(‘;’P([Rd) 505 ”f”Fg;P(Rd).

Note that here we have a somewhat unnatural technical condition on k, which does not seem
to be optimal. Namely, we impose k < min(p,d) instead of only imposing k < d. (See [6] for a
discussion on this assumption.)

The purpose of this chapter is to find a common roof to Theorem and Theorem and
to give an affirmative answer to Open question 1.4 in [6]. Our generalisation is an adaptation
of Theorem above to the stratified homogeneous groups context of Theorem In this case
the role of the Euclidean dimension is played by the homogeneous dimension @ of the group and
the critical regularity becomes, in this case, @ = @/p. The role of the derivatives is played by the
vector fields that generate the full Lie algebra of G.

The statement of our main result is:

THEOREM 5.3. Consider the parameters 1< p,q < oo, a := Q/p and let k be the largest positive
integer with k < min(p,d1). Then, for every § > 0 there exists a constant Cs > 0 depending only
on 8, such that, for every function f € F g P(G), there exists F € L*°(G)nF g P(G) satisfying the
following estimates:

k
; 1X;(f —F)”F;!—LP(G) <6 ”f”Fg’p(G)’
1=

IFl o) + IFll par gy <Cs I f I o ()

We will give in Section 2 precise definition of the function spaces we consider on G. For the
time being, let us mention that we cover the case of the more familiar anisotropic homogeneous
Sobolev spaces NL™P defined informally as containing the functions f on G for which Vi f eLP.

Despite the fact that we also have the unnatural restriction k < min(p,d1), as in the Euclidean
case, this suffices for some applications to divergence-like systems. Basically, all the applications
to such systems presented in [4] can be easily adapted to the stratified homogeneous group setting
and higher order Sobolev spaces. We give one example, formulated for simplicity for spaces of
integer regularity.

THEOREM 5.4. Let m < @ be a positive integer. Suppose f € NL™ L™(Q) and there exist
functions v1,...,vq, € NL™Rm™(@Q) such that

Xivi+... +Xd1vd1 = f
Then, there exist ui,...,uq, € L(G) NNL™™(Q) such that

AX1LL1+...+)(dlud1 = f

The chapter is divided into two parts. The first one (Section [2) deals with the construction of
the Triebel-Lizorkin spaces on stratified homogeneous groups. We mention that the Euclidean
analogues of these spaces coincide with the classical ones and that in the general stratified ho-
mogeneous group setting, they also satisfy similar interpolation and duality properties as their
classical analogues.

Spaces of a similar kind were already defined and studied for example in [1], [10] and other
works (see also [9] for a construction of inhomogeneous spaces in the more general context of Lie
groups of polynomial volume growth). Our construction is very similar to the one given in [10] (it
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turns out that our spaces essentially coincide with the ones introduced in [10], as a consequence
of our Proposition [5.18). While the construction in [10] is based on spectral decomposition of
sublaplacians, our construction is based only on the relatively elementary technique developed
in [13]] for obtaining a Littlewood-Paley decomposition for functions defined on the group. (We
also notice that our purpose is not to explore the properties of these spaces, but rather to prove a
minimal number of their properties, required in the proof of Theorem [5.3])

While in [13] Littlewood-Paley decomposition is obtained by a Calderén reproducing formula
with two convolutions, we will also need similar reproducing formulas with three convolutions
(we will prove that all the definitions of the spaces with two or more convolutions coincide).
This allows us to prove the full analogue of the Littlewood-Paley inequality as well as other
inequalities needed in the proof of Theorem

The second part (Sections[3|and4) is devoted to the proof of Theorem|[5.3] We follow closely the
proof in [6]. Several relatively minor modifications were made in order to simplify the exposition.
Some more substantial adaptations were required in order to bypass the lack of commutativity
of the vector fields. In some cases the arguments are easily adapted to the group setting, and in
these situations we only sketch the arguments or refer to the proofs in [6]. In the Appendix we
recall the Calderon-Zygmund theory on stratified homogeneous groups in order to give a direct
proof of an inequality (Proposition whose Euclidean analogue was proved in the Appendix
of [6]] by similar but more complicated means.

2. Function spaces on stratified homogeneous groups

Basic facts on stratified homogeneous groups. Here, we follow mainly Folland and Stein
[8] and Stein [12]. We also present some auxiliary results, possibly known to experts, that we will
need in order to develop the Littlewood-Paley theory of function spaces on stratified homogeneous
groups. We will consider homogeneous groups as defined in [12, p. 618]. For such a group G, we
write the following decomposition of its Lie algebra g:

g:V1€BV2€B...€BVg, (5.1)

where V1,...,V, are vector spaces of left-invariant vector fields such that

(1) [Vi,Vj] < Vi4; (making the convention that V; is not trivial and any V; with j > ¢ is triv-
ial),
(it) V1 generates the whole algebra g (this is the so called Hormander condition).

Dimension. We let d; :=dimV; and set d :=d; +... +d/; the number @ :=d1+2dz+...+0d,
is called the homogeneous dimension of G. As sets, we identify G with R?. In view of this

identification, we consider the following dilation rule: if x = (x4,...,x4) € G and A1 > 0, then Ax :=
(A%xq,...,A%x4), where

a:=(@i,....ag)=01,..,1,2,...,2,...,¢,...,0) (5.2)

is the vector of the homogeneities, each j € {1,...,¢} appearing d; times. The dilations are known
to be automorphisms of G and, with respect to them, the following “norm" on G is homogeneous:

L
201

! 201
lxllg := Z Z loci| 7 . (5.3)
J=ldi+..+d; 1<i<di+..+d;
We have also the quasi-triangle inequality

lx-yllg Sllxllg +1ylg, for x,y € G.
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Subgradient. We write X1,Xo,...,X 4 for the left-invariant vector fields forming the standard
basis of g, with X;,Xb,...,X4, forming a basis of V;. We will call full gradient and subgradient
respectively the following operators

V.=X1,X9,...Xg3), Vp:= (Xl,Xg,...,Xdl).

Note that, whenever f is a sufficiently smooth function on R? with V;/f = 0 then, thanks to
the Hormander condition, we get Vf = 0. Hence, in a sense, the subgradient encodes all the
differential information about f. We will always be concerned with the subgradient of functions
rather than with the full gradient. We will consider for example the Sobolev-type space NL19,
which informally is a space of functions on G whose subgradient is in L?. Note that this space is
not the same as W€ on G seen as a manifold.

Similar considerations hold for right-invariant vector fields. We will write Xf for the right-
invariant analogue of X;.

An important aspect is that, with the identification G = R?, we have that x - y is a polynomial
in x,y and (x-y), = x3 + y;, for any x,y € G as long as 1 <k < d;. Also we have x~! = —x for all
x € G (see for example [13, Section 2]).

Balls and the maximal function. We consider balls on G defined by the quasimetric p on G,
given by
plx,y):= [y xllg
for x,y € G. The open ball centred at x and of radius § > 0 is the set
B(x,0) := {y eG | ply,x)< 6} ,

whose Lebesgue measure is |B(x,d)| ~ 69. For all balls B = B(x,6) and A > 0 we will write AB :=
B(x,10).
We also consider the Hardy-Littlewood maximal function M on G, defined by

1
Mf(x) = sup— f Fldy,
B>3x |B| B

for all functions f € Llloc(G)’ where the supremum is taken over all balls B < G containing x.

Often, the maximal operator will be used to bound convolutions. For two functions f € LY(G)
and g € L*(@G), their convolution on G is defined by

£ x pla) = f Fbly - x)dy = f Fx-y Ve dy.
Rd Rd

REMARK 5.5. Throughout the chapter, we will often use the simbol “<" in order to compare
two nonnegatve quantities. Namely, if A1,As = 0 are some variable quantities, “A; < Ay" will
mean that there exists a constant C > 0 such that “A; < CAy". In the case where the constant C
will depend on some parameters si,sg,...,Sp, we will sometimes write “A1 g, 5,5, A2

We recall the following classical facts (for proofs see [12, Chapter 2]):

PROPOSITION 5.6. (i) If ¢ is a nonnegative decreasing function on [0,00), such that C, :=
Ja@Uylg)dy < oo and ¢ is a measurable function on G such that |(,b(y)| < @(lyllg) on G, then

|f*(/)| SCyMf on G,
for any Schwartz f.
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(it) M is of weak type (1,1) and of strong type (p,p) for all 1< p <oo.
(iii) (the Fefferman-Stein inequality) Consider a sequence of Schwartz functions (f;) jez* Then,
for 1< p,q < oo, we have

[17,1, 175l

,Sp,q
Lpr Lp

Vector fields and polynomials. We remind the following elementary formula (see [12, p. 621]):

of (x-y)

Xif(x):=
Yj

=0;f () + Y q;p@)0kf () (5.4)

y=0 k>j

where y :=(0,...0,5;,0,...0) and g » are homogeneous polynomials of degree a; —a ;.

Another elementary fact is that the integral of the functions of the form X;f, where f is
a Schwartz function is, as in the Euclidean case, equal to 0. Here is a proof of this fact. For
any y =(0,...0,5;,0,...0) € G, with y; # 0, using the fact that the Lebesgue measure on R? is a
bi-invariant Haar measure on G ([8, Proposition (1.2), p. 3]), we have

de: 1 (f f(x-y)dx—f f(x)dx) =0.
s y] yJ Re RrRe

Using now the formula (5.4), the classical mean value theorem in the (Euclidean) R? and the
dominated convergence theorem, we can pass to the limit when y; — 0 in the above formula to
obtain

f Xf(x)dx=0.
s

A similar formula holds for right-invariant vector fields. As an immediate consequence of this
and the Leibniz rule we get the formula (see [8, p. 21])

fd (Xf)gdx= —fd f(X;g)dx (5.5)
R R

whenever f and g are Schwartz functions or one of them is Schwartz and the other one is poly-
nomial.

Before going to the next step let us fix some notation. For a real valued function f suffi-
ciently smooth on G and a positive integer m, we write V;'f for the vector valued function whose
components are

VIf = (XY}XY% Xﬁ”)(XY%XY% Xﬁ“) (XYTXY? Xygll) f (5.6)
b - 1 2 cee dl 1 2 cee dl cee 1 2 LY dl .

listed in the lexicographic order given by y = (y%, '"’7’¢111""’7’T’ ...,y;"l) e N%1 x ... x N% (m times)

with |y| =Y, ; yj. = m. Note that by the embedding N9 x ... x N1 in (I\Idl)N, we can define sz by

the above formula whenever |y| < co.

We will use many times the notation V" -¢ where ¢ := (oy) is a finite family of Schwartz

lyl=m
functions. This has the following meaning

Vieg:= ) Vi (5.7)
ly|=m
Also, we will often deal with vectors of Schwartz families. If ¢ := (cpl,...,cpN ) is a vector of
Schwartz families (where ¢/ := ((p{,)l | ), we write, with an abuse of notation,
y|=m

Vi = (VZL-(pl,...,VZ‘-(pN). (5.8)
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Sometimes the situation can be more complex and we need to apply gradients to expressions
like me -¢p above. In this case we write, again with an abuse of notation,

ViL(VR2 ) = ViR, (5.9)

Since only the number of derivatives and their nature (left or right invariant) will be impor-
tant for us, such conventions (which will be clear in the context) will be harmless.

Let us see that high powers of the subgradient are able to annihilate low degree polynomials.
More specifically,

PROPOSITION 5.7. Suppose p € R[x1,...,x4] is a polynomial and consider m € N*. Then V}'p is
a vector valued polynomial with degV,'p < ¢ degp—m. In particular, if m is such that m > ¢ degp,
then we have that Vi'p = 0.

The similar assertion for the right-invariant subgradient also holds.

(Here, we recall that ¢ is defined by (5.1).)

PROOF. It suffices to prove the statement when p is a monomial. Suppose p(x) = x% = xfl...xgd

for some a = (a1,...,aq) € N% and consider the function q:= VZL p. We can see from the formula

(5.4) that ¢ is a vector valued polynomial on R?. Writing Ax for the group dilation of x € G with
the parameter 1 > 0, we immediately see from the definition of the subgradient that VZ” (p(Ax)) =
A"V p(Ax). Also, we have

p(Ax) = (A%1x) ... (1%4x) 3% = 1“9 p(x),

where a =(a1,...,aq) is given by (5.2).
From this we conclude that, for all x € G,

q(Ax) = (V]'p) (Ax) = AV (p(Ax)) = A4D MY p(x) = A @D Mg (x).

If cx? is a monomial (¢ # 0) of maximum degree in g, as before we get (Ax)P = A8aB) 1P for all
A > 0. Choosing from these monomials one for which (a,) is maximum, we get by the above
formula that (a, ) = (a, @) — m and hence degq = || < (a,B) < ¢|al - m. O

Let us next recall a fundamental formula that makes a connection between the derivatives on
R? and the vector fields from g. More specifically, for any 1 <i < d we have ([8, p. 25])

d
0; = ) PpiXp, (5.10)
k=1

where P}, ; are homogeneous polynomials of degree a;, —a;.
We will also need the following.

PROPOSITION 5.8. We have that
di
0;=) XiDj (5.11)
k=1

where the operators Dz’i are the adjoints of some operators of the form )., pyV£ , for appropriate

polynomials p, and multi-indexes y in a finite subset of N9,
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PROOF. Since the vector fields X1,X3,...,X4, are generating the full Lie algebra of the group,
we can write each X; in terms of X1, X5, ..., X4, using commutators, which are linear combinations

of expressions of the form Vz = VZ X}, for some 1<k <d; and some indexes v,y € (I\Idl)N. Keeping

the last vector field from such an expression and using (5.4) to express Vz in terms of derivatives
on R and polynomials, we can rewrite (5.10) as

di
0; = ) Dy Xy, (5.12)
k=1
where each operator Dy, ; is of the form }_, pyV?F; . for some polynomials p, and y in a finite subset
of N¢.

Now, if f and g are arbitrary Schwartz functions we can write (see (5.5)):

dl dl
0; dx:—f 0;f)gdx=— D, ;X dx = X, |D; .gldx
fRdf i& L, 0i)g k; o DriXif)g k; . ¢ (D} 2]
and hence, by identification,

di
0; = ZXkDZ,i’
k=1

which proves the Proposition (5.8 Il

PROPOSITION 5.9. Let m e N and [ be a Schwartz function.

W If f =V;"¢ for a family of Schwartz functions ¢, then for any polynomial p with degp <m/¢
we have [, pfdx=0.

(ii) There exists an m' € N depending only on m and G such that if we have [;pfdx =0 for
any polynomial p with degp < m/, then there exists a family of Schwartz functions ¢ such that
fF=Vy-o.

The same is also true in the case of the right-invariant subgradient.

REMARK 5.10. (1) Since the assertion of (ii) in the above proposition remains true for any
integer larger than m’, when applying this part of the proposition, we will assume for technical
reasons that m' > m¢.

(2) In particular, Proposition [5.9]gives the following (informally speaking): if ¢; is a Schwartz
family, then there exists another Schwartz family ¢9 such that:

(Vf)m,'% = V' - @2.

This property will be used several times.

PROOF. Part (i) follows from Proposition and by a repeated application of the formula
(5.5). Part (ii) will be proved by induction on m. The case m = 0 is trivial (we take by convention
"=0). Fix m =1 and suppose we have the statement of (ii) for m — 1. Consider the number
m':=(m—-1)+M +2, where M is the maximum degree reached by a polynomial p, entering in
the expression of the operators Dy, ; that occur in . If [, pfdx =0 for any polynomial p of
degree at most m’, then we can use the well-known fact that in the Euclidean case there exists a
collection of Schwartz families (¢;),_,_, such that
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Using now formula (5.11) we can write:
d » d di »
— m — _ * m' —
F=y0i (Vi)=Y Y XDy, (Vi)
=1

i=1k=1 (5.13)

dy d 1 dq N
=2 Xk (ZDZ,N%_ '</>i) =) Xpdr,
=1 \iot |

where ¢, are the Schwartz functions ¢y, := Y% D* iVﬁ‘d’_l -¢;. It is easy to see that [z pdrdx =0

for all polynomials p of degree at most (m —1)'. By the induction hypothesis, we get that for each
k there exists a family of Schwartz functions ¢, such that ¢, = VZ‘_l -@p. From this and formula
(5.13), we get the conclusion. O

Convolutions. We recall that, for two Schwartz functions f, g their convolution is defined by
the formula:

F e (o) = f F»gly - x)dy = f £y Dgy)dy.
R4 R4

It can be verified directly that the convolution is associative.

Concerning the interaction of vector fields with the convolution, it is known that (see [8, p.
22]):

PROPOSITION 5.11. For all Schwartz functions f,g we have:

X;(f9)=f+(X;g), XF(fre)=(XFf)xs,
and

(X;f)+g=F+(XFag). (5.14)
We have also the following elementary fact.

PROPOSITION 5.12. If ®1,®5 are two Schwartz functions, then ®1 x ®g is also Schwartz.

PROOF. We can easily observe that, since each component of x -y is a polynomial in x and y,
we can find a large number ng € N* such that

T+x-y S@A+ )™ +]1yDh"e, (5.15)

for all x, y € R%. This implies that, for example, we have
N -1 N -1
sup(1+ |x)" |1 * D(x)| ssuprd (1+|x-y7 ' y])7 [@ala-y™ )| 1Dl dy
X X

Ssup fR (1 ey ) @ae y D] A+ DV Da(pl dy
X

S fR A+ 1DV [Dy(y)ldy < oo.

More generally, the estimate of sup, (1+ LN |6ﬁ (D * ®2)(x)| is reduced to the above calcu-
lation using the connection between the derivatives and the vector fields on G via (5.10) and
(5.4). O
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The Littlewood-Paley decomposition. We introduce the following notation. Whenever A
is a Schwartz function on G and j is an integer, we write A; for the function defined by A(x) :=
27Q A(27x). Also, if f is another Schwartz function, we write A ifi=f*A;

PROPOSITION 5.13. Given m € N, there exist Schwartz families A1, A2, A2 on R? such that
Jra P)AY(x)dx = fpa P(x)A2%(x)dx = [pa P(x)A3(x)dx = O for all the polynomials P of degree <m’
(with m' as in Proposition 5.9) and such that for all Schwartz functions f we have

=Y FxAj« AT+ A= ZA?A?AJ (5.16)
Jjez
the convergence being in any LP(R%) for 1< p < co.

In particular, accotding to Proposition (i), there exist families of Schwartz families ¢;, ¢;
(i=1,2,3) such that A\* = V7 -¢; = (Vf)m -p; for each i =1,2,3.

REMARK 5.14. Some explanations are in order. The proposition literally states that there
exist three finite Schwartz families A* = (A"*),_, (A is a finite set), i = 1,2,3, such that all the

moments of order up to m’ of each A»® are zero and

f sz Ala*A2a*A3a_ZZA3aA2aA1af

Jj€ZacA JEZa€EA

The last assertion means that there exists 6|A| Schwartz families ¢, 4, ¢; , such that

Ai,a_ m_ .. _ Rm. )
_vb Pia= vb bia

for all a € A and i = 1,2,3 (see (5.7)). Since the use of the family A leads to heavy notation, we
prefer the form of the above proposition which turns out to be more convenient in the calculations
that follow. This can be compared with the summation convention in geometry. We also note that
the absolute value of expressions like A;f , where A = (Ay)4e4 is a Schwartz family, will have the
following meaning:

‘A}.f‘ ;:EA‘A}’“f .

Similarly, we set

241 i 2,0 A La
‘AjAjf‘.— y ‘Aj AF|,
acA

and so on.

These conventions, together with (5.7), and (5.9), will enable us to estimate expressions
involving Schwartz families as if they were functions. We will also abuse the notation in other
situations, where the distinction between functions and finite families of functions will be clearly
irrelevant (see also the conventions in [13]).

PROOF. This proof follows the lines of Proposition 5.5 in [13]. We consider a radial Schwartz
function W with ¥ = 1 on Bga(0,1) and supp ¥ < Bga(0,2) (here Bga(0,1) and Bya(0,2) are Eu-
clidean balls). We need now the easy argument used in the proof of Proposition 5.1 from [13]
which we reproduce below for the convenience of the reader.

LEMMA 5.15. Let ® be a Schwartz function on R? such that Jpa @dx =1 and fix some 1< p < co.
Then, for any Schwartz function f, we have
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F=) f*(@;-®j_y),

JjeZ

the convergence being in LP.

PROOF. We have, for any N € N*,

Y [#(@i-®; )=f+Dy—f+D_y_1.
ljI=N

Hence it remains to see that f *®y — f and f *®_y — 0 in L when N — co. In order to prove
the first claim we write, using Minkowski’s integral inequality,

If w0yl =| [ (fee-@ 07 w) oay

Ly

< fR ) H fa- @Yy h - fla)

L1 PIdy —0.

This can be seen by using the dominated convergence theorem, since || fx- 2Ny H-Fflx) || P
is uniformly bounded and converges to 0 when N — oco. Indeed, fix y € G. We have

|fe-@epH-r@| , <] eV, +1r@ie =21f1L,

hence ||f(x (27 Ny 1y - f(x)||L§ is uniformly bounded.
Using we have, for all x € G,

(1+ |x-(2‘Ny)|)1/nG
1+|27Ny)|

Ly

1+x| 2

>

and we get (x — x- (2 Vy)™1)

(1+|x))!ne

1+ |2 Ny

Using this inequality and the fact that f is Schwartz, we get

|Fee-@ V- F@)| < [fa-@ V™| + 17 @)

1+ ‘x-(2_Ny)_1‘ e

—(d+1)
oo ey

(d+Dng
J 7 A )T ()T S (11D,

S(1+|@ )

Hence, for any fixed y € G, |f(x-(2‘Ny)_1)—f(x)|p is dominated by an L! function. Also,

| fx-@ Ny H-rf (x)| — 0, when N — co. Using the dominated convergence theorem, we get
|f - @ Ny) ™= f@)||» — 0, when N — oo.

In order to prove the second claim, again by Minkowski’s integral inequality we have
If %@ nlize < Il 1D Nlige =27 N VP £y — 0,

proving the lemma. U

Proof of Proposition [5.13] continued.
The above Lemma applied to ® =W « W « V¥ (see Proposition [5.12) yields

F=) Fe((PsP*P);—(PoqxP1xP_1))=) fx(PxPx¥V-V_1xV_ 1 x¥_q);
JeZ Jjez
:Zf*(‘l’*‘P*(‘P—‘I’_l)+‘I’*(\I’—‘P_1)*‘P_1+(‘P—\I’_1)*‘I/_1*‘I’_l)j,
Jjez
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(5.17)

the convergence being in LP(R?%) with 1 < p < co. Since we have ¥ —¥_; = 0 in a neighborhood
of 0, the function ¥ —W_; is orthogonal to all polynomials. By applying Proposition (i) we

/

can find a Schwartz family ¢ such that ¥ —¥_; = (V%?)gn2 -, with ng :=(2n1) where ny:=(m’).
Using (5.14) we can write in short, abusing the notation,

n2

2
YW (¥ -W ) =W x W (VE] = W VW s (VF)
2n1 . ni nz

=W (VE) T (VE) = v w s (VR B (VE) g,

where VW is a Schwartz family such that (Vf)%l‘i’ = VZ“P; this can be seen to exist thanks
to Proposition (see Remark (2)). The other terms in (5.17), namely ¥ « (W -W¥_1)* ¥_; and
(W-¥_1)*¥_1*¥Y_1 can be handled in,a similar way. We ﬁnd/that each one of them is a finite sum
in which each term is of the form Yl(m’) b1 * Yz(m’) g * y{m) -¢p3 where ¢; are Schwartz families
and Y; is Vy or Vf. This implies (5.16) via Proposition (i), once we note that (m’)' >m'l (see
the Remark (1) after Proposition 59) Ul

REMARK 5.16. (1) We will use sometimes the function A =¥V «¥V«¥Y-¥Y_;«¥Y_1x¥Y_q for
which, as we can see in the above proof, we have the estimate |A if | < ‘A?A?Ajl. f ) for all integers
j and all Schwartz functions f. From (5.17), we have

f=Y Ajf inLP, 1<p<oo.
Jjez

In short we write A = A3A2AL. We will also consider its weaker analogue,

Al:= AZAL (5.18)

(2) It is easy to see that we can obtain decompositions of the form

f :jEZZAf....AfAﬁAJl.f,
with arbitrary 2 =1 and Al,..., A* as in Proposition It turns out that, for the estimates we
need in this work, convolutions involving 2 = 3 terms are in some cases very convenient. Note
that a decomposition formula as above with £ = 2 convolutions implies a decomposition with 2 —1
convolutions. In this respect we note that even if in most cases a decomposition formula with two
convolutions suffices (to define Triebel-Lizorkin spaces and to prove several of their properties),

the proof of Theorem relies on decomposition formulas with three convolutions (this will be
used, for example to prove the Bernstein type inequalities (5.25)).

Definition of function spaces on stratified homogeneous groups. Let se R, p,q € (1,00)
and fix m > |s| and some Schwartz families A, A? whose moments up to order m' are zero (see
Proposition [5.13| and the Remarks after) and such that we have the following decomposition
formula with two convolutions:

f=Y AT,
jez
for any Schwartz function f. _

We define the spaces Ffl’p and BZ’p as being the spaces of tempered distributions f on R?

whose (semi)norms, respectively defined as:

1/q

1l = (Z 29 |ALf[*

JjeZ

LP
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1/q
q
Lp ’
are finite.

We notice that at first sight these definitions seem to depend on the families A',A%. We will
show however (Proposition , that the definition of F' Z’p (and of BZ’p ) does not depend on Al,
A2. We will also show (Proposition i that, as expectedf the space Fg '’ with n a nonnegative
integer, is the same as the more “classical" Sobolev space NL™?.,

and

IF 1o == (Z 274 | A}f
JjeZ

Independence of the definition. We will need the following simple lemma:

LEMMA 5.17. Consider a sequence (fi),cz of Schwartz functions such that all but a finite
number of them are zero. Consider also an s € R, an integer m > |s| and two finite Schwartz
families A and © for which all the moments up to the order m' are zero. Then, for 1 < p,q < oo, we
have:

q\l/q

e

1/q
A 0;f; S (Z 2ska Ifqu) . (5.19)
] % o

LP

PROOF. From the assumptions on ® and A, and Proposition [5.9, we know there are some
Schwartz families ¢ and ¢ such that ® =V;"-¢ and A = (V]l‘;z )m -¢. With compact notation (using

(5.14)),

0% Ap = (0% Apj), = (V) px Apj), =2"*) (¢> x ((vf)m A)k_j)j,
hence,
@ % Ap =2"* D¢y ((vf)m/\)k. (5.20)
In a similar way, we get
©; % Ap = 2"V (V)" ©); * . (5.21)

Note that, if g, ¢ and ¥ are Schwartz and j, £ are two integers, then

lg*pjxyr| SM(gx¢p)) SMMg,

where the implicit multiplicative constants only depend on ¢ and . Using this observation and

(5.20), (5.21), we can write
|ALO;f| S 2™ T MMF;.
Choosing € (0,1) such that fm > |s|, and using Holder’s inequality, we can write:

q
Zzskq §228kq (Zz_mlk_JlMMfJ)
k k j

J

q

ZAk(ajfj
J

q
— Z 9skq (Z 2—(1—ﬁ)m|k—jlz—ﬁmlk—leij)
k J

5%2squ2—qﬁmlk—jl |Mij|q = Z (%‘QSqu—qﬁmlk—jl) (Mij)q ,
J J
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where we had used, in the third line, the fact that

(Z 9~¢'(1=p)mlk=jl
j

We have now, for all j € Z,

!

<1.

q/q

Y gskagrabmik-i =y LY =% 9sqJg(s=pm)qk Y 9s¢ig(s+pm)ak _ 9sjq
k k=j k<j k=0 k<0

and, as a consequence of the above inequality,

(Z 2°* q)l/q S (Z 2% (Mij)")Uq-

> AO;f;
k J J

Applying twice the Fefferman-Stein inequality (Proposition (iii)) we get (5.19). d

Now we can see that the above lemma implies the independence of the definition of the spaces
of Triebel-Lizorkin type with respect to the choice of A, A2. (The following statement is similar
to Theorem 7 in [10].)

PROPOSITION 5.18. Given the parameters s € R, p,q € (1,00), the space F;’p does not depend
on the auxiliary functions A1, A2.

PROOF. Indeed, let s € R, p,q € (1,00), and m1,mg > |s|. Consider, as in the definition of the
Triebel-Lizorkin spaces, two couples of functions A!, A2 and ©!, ®? corresponding to m1,ms
respectively. We can construct, using the first and the second couples of functions, the spaces
(Fg"), and (Fg”) respectively. Using Proposition and Lemma for A=A, ®=02? and

fi= G)Jl. f for a Schwartz function f, we get, after a limiting argument that:

1/q

q\Vq
kq| Al 2 (@l kg @l p|9
I gy, = (ZZS 7|A} 3 0% (0)f) ) < (223 7|01 = 1F e, -
k J k
Lp Lp
Note that in a similar way we can obtain the converse inequality. Hence, by density, we have

that (Fg”), = (Fg”)g with equivalent norms. O

REMARK 5.19. (1) The same type of independence can be proved, in a very similar way, for
the Besov spaces BZ’p . In this case the analogue of Lemma is

LEMMA 5.20. Consider a sequence (f1)cz of Schwartz functions such that all but a finite
number of them are zero. Consider also an s € R, an integer m > |s| and two finite Schwartz
families A and O for which all the moments up to the order m' are zero. Then, for 1< p,q < oo, we
have:

q \Vq

1/q
(Z 9skq S, (Z 9skq I £% ||Zp) .
k k

Akz(ajfj
J

LP

Note that here we allow the values p = 0o, ¢ = co. This is due to the fact that the Fefferman-
Stein inequality is no longer needed.
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(2) Lemma [5.17| can also be used to prove real and complex interpolation results for the
Triebel-Lizorkin spaces with the same retraction method as for the classical spaces In this
case, the extension and retract operators E : F;” — LP(I{) and R : LP(I{) — F* are defined by
Ef := (Allef)kez and R (fi)pez := Ljez A?fj. Lemma is used to prove that R is well-defined
and bounded, while these properties are obvious for £. Similarly for Besov spaces, relying on

Lemma [5.20

Inspecting the above proof of Proposition [5.18, we can see immediately that, by a very similar
reasoning, we get the following:

COROLLARY 5.21. Consider some parameters 1 < p,q < oo, s € R. Also consider an integer
m > |s| and a Schwartz family A such that all its moments of order up to m' are zero. Then, for
any Schwartz function f, we have:

1/q
(ZZSkq |Arf|? S lgse.
k

Lp

The lifting property. Let us now see how Corollary implies the lifting property for the
spaces FZ’p (the following statement is similar to Corollary 21 in [10]).

PROPOSITION 5.22. For any Schwartz function f, we have
IVo fllgsr ~ ||f||FZ+1,p.

PROOF. Consider some Schwartz functions A}, A? for which all the moments of order up to
m/' are zero (s € R and the integer m > |s| being fixed) and such that
f=3 NS,
jez
for any Schwartz function f. Combining the definition of the Triebel-Lizorkin spaces, Proposition

and Corollary |5.21], we have

; q . q
||be||pgvp ~ (Z 254/ ‘(be) s AJII (Z 9saJ )f « (VfAjl.)‘
JjezZ Lp Jjez I
q\ Ve 1/q
ety e
Jjez J i jez .

5 ||f||F;+1,p ’

where Al:= VfAl.
For the opposite inequality, using Proposition and the independence of the definition

(Proposition [5.18), we can assume that Al = Vf(b where ¢ := (Vf)m w for some Schwartz function
v, and then we have:

g =[Sz mlren’) | =[S (ot [
q JeZ Ip Jjez J L
Vq 1/q
= ZquJ‘f*vR ‘ ) - (Zzqu|be*¢J|q)
JeZ L jez L
1/q
= Zqujl(pj(vbf)rI) SHbeHFCSI,p.
Jjez b
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Hence, for all Schwartz functions f we have ||V, f || PP~ £ fsLpe Il
q

The identification Fg P = NL™P. The following statement is a generalisation of Proposition
5.7 in [13]].

PROPOSITION 5.23. Fix an m € N* and consider Schwartz families A1, A2 corresponding to m
as in Proposition Then, for any Schwartz function f we have

1/2

2
1
. AJf|
JEZ

~ ”vzf”Lp’
Lp

for all ne N with n<m—1and 1< p <oo. In other words, we have F;’p = NL™P with equivalent
norms.

PRrROOF. We follow the lines of Proposition 5.7 in [13], which proves a similar statement in the
case n = 1. The estimate “<" easily follows by writing A! = (VE )n+1 - for a Schwartz family ¢
and then applying Proposition 5.4 in [13], whose statement is reproduced below in a simplified
form (see also [12, Chapter 13, section 5.3]):

LEMMA 5.24. If D is a Schwartz function such that [;Ddx =0, then for a fixed 1 < p <oo and
any Schwartz function f we have:

1/2
(Z |Djf|2) S lzs.
LP

JjEZ

Using this we immediately obtain (using also (5.14)):

b -l

0\ 1/2
. LICO N
JjEZ p JjeZ

Lp

2”jA1f‘2
J

For the reverse estimate we need to observe that, according to the proof of Proposition 5.5 in
[13], whenever we have a decomposition of the form f =3 ;f x A;j*©; with A and ©® Schwartz and
having zero integral, we get for any Schwartz function f that

1/2
> A

JjEZ

Il < (5.22)

LP

Before going further, we sketch, for the convenience of the reader the standard duality argu-
ment to prove (5.22). For all Schwartz functions g write, using Fubini’s theorem and the above
Lemma [5.24]

1/2

1/2
2
<f,g>:Z<®jAjf,g>=Z<Ajf,®jg>5fG Y Inff (Z‘@)}g‘ ) dx
J J J J
1/2 9 1/2 1/2
<[ X |a;f? > |o%g <X asr]? gl
JjeZ 1p Jjez 70 Jjez 1p

Here, (-,-) denotes the standard L? scalar product and G);f (x):=0 j(x_l) on G.
We obtain (5.22) by taking, in (4.2), the supremum over g such that llgll;, < 1.
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Using (5.22) with A := Al and © := A?, replacing f by VZ f and using (5.14) together with
Corollary 5.21] we obtain:

9 1/2
Vil < (z VZf*A}() _ (z

JjeZ JjEZ

1/2

fe((v)" )

Lp Lp
i o\ 1/2 o\ 12
- (Z 2/ f +((VE]" AY). - (Z 21"]\}10)
jez J I jez p
)\ 12
Sl ~ (_Z 2" Al | ) :
Jj€Z o
where Al:= (VF )" AL. This proves the proposition. O

3. Estimates of the auxiliary functions

Remark concerning the approximations. Following [6l], our purpose is to prove the ap-
proximation property stated in Theorem In the remaining part of the chapter we will use
decomposition formulas with three convolutions, as in Proposition [5.13]

It suffices to prove this approximation property for functions of a special form:
fr= ) AINAGf = 3 A,
ljl=d ljlsd
where A}, A?, A? and m > a are fixed. (This particular form of the functions f,; will ensure, as we
will see, that some expressions involving infinite sums and products are well-defined.) Indeed,

suppose that f is a fixed Schwartz function and for each positive integer J we can find an Fj
satisfying the estimates:

k
Y IXi(fy ~Flga-re <61 fosllper,
i=1

IF gl + I sl gon <Cs 1 £l g

Note that Lemma [5.17| immediately implies that ||f —fsll For = 0 when J — oco. By the se-
quential Banach-Alaoglu theorem, we can choose a subsequence (J;),~1 such that F;, converges
weakly star in L™ to a function F' € L*°. Together with the last estimate and the above observa-

tion, this easily implies that F € Fg P as follows. For any positive integer N and any compact set
K <G we have

( Z 2“qj‘A]1-FJk
lJ/IsN

¢ 1/q
) <Cs || fallper s 1 lpar,
LP(K)

where by <s; we indicate that the implicit multiplicative constant may depend on §.

Since, ||FJk ||L°° <s IIfIIFg,p we get ”A}FJ,z Lo <6 ||f||Fg,p for all j. We also can see that

A}FJk (x) — A}F(x) for every x € G. Hence, the above inequality and the dominated convergence
theorem imply that

( y 2"“”‘A}F)q

ljlsN

1/q

Se lf ljer
LP(K)

and from this we get the claim. Also we obtain that

IF N oo + IE 1 pr Se ||f||pgyp
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and, in a similar way,

k
D IXi(f = F)lga1o S 81 flper.

i=1

From now, we consider ¢/ is a fixed positive integer.

Definitions and properties of some auxiliary functions. This subsection is inspired by
the approach in [4], and its variants in [13], [6].

For a real number ¢ and x € G we will write x, := (27%x1,...,27 %X}, X)41, ..., Xg). Consider the
functions S,E : G — R defined by:

S(x) := min(1, IIxII(_;Q_l) and E(x) := exp( (1+x U||2”)1/2”) _
We will also consider the functions

Sj(x):=2/98(2'x), E (x):=2/9E(©2'x)

and set S;f := f *S;. With this notation we introduce the new functions (where A was defined

in (5.18)):

) ) 1/p
wj(x) = ( fR ss]air])enEe -(2Jx))]pdr) ,if |j| = J and 0 otherwise.

Consider a smooth function ( : [0,00) — [0,1] such that { =1 on [0,1/2] and { = 0 on [1,00).
Following [13], we define the functions (; as follows:

2ajwj ) . k
if o 2% wr, #0
j:= ((qu,kzj(modR)zakwk 1 Lk k= jmod ) k70,
0, otherwise,

where R is a large positive integer that will be chosen later.
Using the (;’s, we decompose a finite sum f; =3 ;<sA;f as follows:

fJ—ZAf Z(l (j)Af—I—Z(JAf Zh +Zg]_h+g

ljl=d ljl=d ljlsd
where
h:=) hj, with hj:=(1-{;)A;f if |jl<J and 0 otherwise,
J
g ::Zgj, with gj:={;A;f if |jl<J and 0 otherwise.
J
Then we let

h: Zh [[A-U;», with U;:=(1-{jw;,
T

g 1= Z Z 8j H (1-Gj), with G;:= Z Q_C”twj_t.

¢=0 j=c(modR) j'>Jj t>0
j/EC(mOdR) tEO(mOdR)

The heart of the proof of Theorem consists in establishing the fact that F;:= A+ 5 is a
“good approximation” of fy=h +g.
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Point-wise and integral estimates on w;. Here we collect several useful estimates on w; in
which we will see an instance of the role played by the critical condition on the exponents: ap = Q.

In what follows we will need the following elementary approximation property proved in [13]
(Proposition 3.6):

PROPOSITION 5.25. For any 0 € R and x,0 € G we have:
lIx-0)slg = llxsllg|<CllOlg and |16 x)sllg—lxslc|<ClOlg.
In particular,
lllx-Ollg = lxllgl =ClOlg and |16 -xllg—llxlgl<Clblg-

PROPOSITION 5.26. Let 0 > 0. With the above notation we have:
(i) w; SE;S; ‘Ajl.f’ < 2Q"MM(A]1.[”) for all j€Z;

(i) |Ajf| Swjforall jeZ;

(id) ;| oo S 2571 f I e for all jE Z;

(i) |Uj| oo S 2 Nf e for all j € Z;

© |[12%0jl| <2971 gy

PROOF. It is not hard to see that there exist measurable pairwise disjoint sets M1, Mo, ...
covering G, such that we have B; € M; < (3C)-B; for some balls B; of radius 1/3 in G, where
(3C) - B; is the ball of the same center as B; and of radius 3C. (Here C > 1 is a constant such
that p(x,y) < C(p(x,2)+ p(z,y)) for all x,y,z € G.) Indeed, let (x,),>; be a C-net in G. That is,
the balls (B (xp,,C)),>1 cover G, and p (x;,x;) = C for all i # j. We note that, if i # j, then the balls
B(x;,1/3) and B (x,1/3) are disjoint. Now we put B; := B(x;,1/3) and M7 := B(x1,C)\ (U;x1B,),
and M}, := (B (xz, C)\(M1U...UM}_1)\ (U B;) for all & = 2.

We observe that Proposition implies that, for each x,0 € G with [|0]¢ < 1 we have E(x-6) ~
E@-x)~ E(x) and S(x-0) ~ S(@-x) ~ S(x). It follows, that

sifajrleo=2 [ |sir|os (/) (2] (20)) ar
20 [ [atrios () () s
=s;|alf|@,
for all x € G, provided [0llg < 277,
If r; is the center of B;, then for all r in 2B;, and hence for all r in M;, we can write r =

r; -0 for some 6 depending on r with |0l < 2. Now, considering the above estimates and the
decomposition G = J; M; we can write, since |M;| ~ 1,

w;(x) = (f 5 (s;]aif|@7nEC @) dr)l/p
i=1 i

0o . - 1/p
(Bt
i=1
=Y’ s, Al @ roEGT - @x) .
=1
~ f S; (A} f‘ QI MEGC (2 x)dr
i=1YM;

:stj |Alf| @ nEC @ e)dr = E;S; AL (o).
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Next we note that E(x) < E(x) := exp(—1127%x||¢) and therefore (using Proposition
5,8, |83 < 5,5, |abr| < B[l | < 18 vt [l | s 2%onam |ty G20
We obtain (i), from (5.23) and (5.24).

Now we prove (ii). By the change of variables s

1/p
w;(x) = (Zf ‘A f‘ x-(2” Js))E(s_l)) ds)

~1 = ,~1.(2/x) we can write, as above,

([, (s/]a3f] (o) B D) ds)l/p -85 |akf| .
To conclude we observe that, for all j € Z,
* A;"

|Ajf|s‘A?A3AJf‘:‘(A?A}f)*A?)s‘A? !

+S;=5;|akf],

1
3| <[ajr

where we used the fact that, since A2 is Schwartz, we have |A3| < S and hence ‘Aﬂ SS;.
In order to prove (iii) we observe that, since ap =@,

2
J

!

|57, < s 3], = . 525

S lper
Sl

which together with (i), the fact that ||E j || S 2%9 and the Young inequality (see [8] Proposition
1.18]) gives the estimate.

Item (ii7) and the definition of U; immediately imply (iv).

In order to prove (v), we observe that

<9aj

aj a2l
I H“f«pH ,
L Tk (5.26)
2% A; = If lpee,
sllznsrl ], -
which, again, together with (i) and the Fefferman-Stein inequality, gives the estimate. U

REMARK 5.27. Items (i), (ii) and (v) do not use the fact that @ = @/p. In contrast, (iii) and (iv)
require @ = Q/p.

PROPOSITION 5.28. For o large, we have |[sup;cz 2% wj|,, < 027 Ifllpar.

PRrROOF. We follow the proof in [6] of Proposition 4.7. We have (with the change of variables
-1.¢9Jj -1
r-2x)—-r7):

sup2%w (x) ’ =sup f (297s;|alf| @ nEG! (@)’ dr
jez jez JrRA
s [ o5, i o

SfRdEp(r_l)(sup2“JS ‘A f)(x ( fr)))pdr

Jjez
< f EP(r 1)
Rd

2075 Al | cx- (2777

p
4 dr.
J
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’"‘

< ( | Ere e ||r||G)dr) 1120
Rd q

D

We note that, according to (5.2

ajal
2% ALf

N Al FOPs and hence, using Proposition [5.48

q
Lillpe

(see the Appendix) we get

p
dr

2978 ‘A}f‘ (x- (2_jr))

sup2w;
Jjez

q

jllgp

p
< f EPGr )
IRd

Lp

By a change of variables, we can write
dep(r_l)lnp(Z +lirlg)dr = z'kafd exp (—p(1 + ||y||g“)1/2”)1np(2 +y-ollg)dy.
R R

We can estimate this as follows. We have, for all y € G,

In? 2+ ly—5llg) S1+InP 2+ 27 [y1] +... + 27 |yi] + [yical + ... + 1yval)
<1+In27 2+ |y1l+ ... + |ya])) S 0P +InP (2 + |y1] +... + |yq ).

Now, clearly
dep(r_l)lnp(Z +lrlg)dr < (of +1) 257 < gPoke,
R

and we get the claim. O

To make the notation more compact we introduce the functions I,,(x) = 14, (x), where

Am::{yEIRd

1
2w (y) > = Y 2% w1, (y) } meZ.
2 k<m, k=m(modR)

With this we have:

PROPOSITION 5.29. For o large, we have 0 ||2“mwm[lm||lgn

ko
<Ro27r A0,
LS IF 1o

PrROOF. Fix a j €{0,1,...,R —1}. Since w,, = 0 for all but a finite number of m € Z, we can
choose for each x € G, the largest integer m, = j(mod R) with the property that x € A, , in partic-
ular, 29, (x) > %Zk<mx, kme(modR)Z“kwk(x). Using this, we can write

29 1)y () () <29 0, () + Y 27 0y, (x)
m=j(modR) k<my, k=j(modR)

<329, (x) < 3sup2™ wp(x)
m

and hence,

R
<
Lp

<3R
Lpr

Z 2" W mlm
m=j(modR)

sup2*”w,,

12 b u

ZZ“mwml]m
m

<
P

-1
L j=0 Lp

By using Proposition |5.28| we get the claim. U

REMARK 5.30. Proposition and Proposition do not use the fact that a = @/p.
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Estimates involving derivatives. Consider a function u on G, smooth on R\ {0} and homoge-
neous of degree 1. If a =(1,...1,2,...,2,...4,..., ) is the vector of the homogeneities of G defined in
(5.2) and y is a multi-index, then we easily see that

VY (w(Ax)) = A9 (V1) (Ax)
for any A > 0 (where x — Ax is the group dilation). Since u is homogeneous of degree 1, we have
A(Viu) () = Vi (Au(x) = V) (u(Ax) = A" (V] 1) (Ax)
and hence
(Viu)(Ax) = A7 (V)w) (x), for all x € G and A > 0. (5.27)
Thus, for all x # 0, writing x = Av where A := ||x|lg, v:=x/|x|g, we get by (5.27) that
(Viu) @)= A" (Viu)(v),
which implies in particular that if |x|l¢ = 1 and |y| = 1 then

IV u@)| <y el ™ <5 1 (5.28)

Let us also note that if 7 :R — R and v : G — R are some smooth functions, then
XiGw@)=7T@wx)Xv) foralll1<j<d.
Iterating this, we get

|7l k
VI @] Sy k; ‘T(k)(v (x))‘ Y 1 VY (x)

Yi+...+Yr=Yi=

) (5.29)

for all multi-indexes y € (I\Idl)’\J with |y| < oo.

These observations are the basis for proving the following proposition.
PROPOSITION 5.31. For every y' € (N¥ x {O}‘Jll_“‘)'\I and y € (I\Idl)N with |y|+|y'| < oo (see ),
we have
‘Vzﬂle‘ <y 272U,
PRrROOF. Replacing G with RxG, and considering

! | 1
u(t,0) = 8,0l = (22 + ) 2HV2,

we get by observation (5.28) above, with ¢ = 1, that |VZ(1 + ||x||éa)l/2”| <1 for all finite y € (Ndl)N,
Y # 0 as above.
By (5.29) we obtain

Vz exp (—p(l + ||x||é€!)1/2£!)) <exp (—p(l + IIxIIg!)U%!)

and as in [6, Proposition 4.4], we get from this that,
VZ+YIEp(r_1 . (gjx))‘ < 9/lrlgu-alY I gp 1. (2jx)).

Consequently we have

vzw’wﬂ < 2j|7|2(j—0)|Y’Iw§’ (5.30)

and by writing w; =7 (wf ), where 7(¢) := tP, we can conclude the proof of Proposition [5.31| by
using (5.29). We give below the argument. Firstly, we can suppose without loss of generality

that y € ({0}* x I\Idl_"‘)N. Clearly, if ¥; +...+7), =y +7' for some multi-indexes ?&‘,...,?k € (l\ldl)N
then, we can write y; = y; +y; for each 1 <i <k, where yq,..,y € ({O}"‘ x I\Idl_"‘) and )f’l,..,y;e €
(N¥ x {O}“ll_'k)'\I are such that y1 +..+y; =y and y| +..+7} =Y. From the definition of w; we see
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that if wj(x) = 0 for some x € G, then w; =0 on G. Suppose this is not the case, i.e., w; >0 on G.
Using (5.29) and (5.30), we get

Y
Y"’Y

RS S E( % I (L

k=1 Vit typ=y+y i=1

[r[+]7'] 1-ph rilgd-oml],

- J|Y o0)|Y;
S @ 2 HZ 12
k=1 Yt AYp=y+yi=

w; <2/ llgu=olly,,
k=1

|Y| Y'l
Y glrlgu-oly]

This concludes the proof. U

PROPOSITION 5.32. For every y' € (N¥ x {O}dl_"")N and y € (I\I"ll)'\I with |y|+|y'| < oo, we have
Y, lYloG-aly'
‘vb C]’SY,Y' 2]|Y|2J g |Y|_ (5.31)

PROOF. Since the proof of follows very closely the similar estimate in [6, (Proposition
4.5)], we only sketch the argument.

We suppose (; # 0 and write {; = ((Z“jwj/vj), where v; := Zk<j,k5j(mOdR)2“kwk. From Proposi-
tion|5.31| we get

‘VZ”IUJ-‘ < 2j|7|2(j—0)|7/'|vj_ (5.32)

Since V)" (v;/v;) = 0, the Leibniz rule gives us,

/ ]_ /_ 1
e B bl
J p=y+y’ J
|Bl<lyl+ly'] (5.33)
_ Z ’v(?’ B1)+(y' /32) ‘ Vﬁ1+ﬁ2( 1) _
B1=y.B2=y' vj

|B1l+B2]<[y[+]Y']
The inequality (5.33) used in conjunction with (5.32) leads by a straightforward induction on

.]

< 9ilrlgG-oly1 L.

Using this, Proposition |5.3 1| and (]5.29[) for the functions ¢ and 2% w i/v;, we can conclude as in
[6, Proposition 4.5]. U

4. Estimates of the approximation function

Estimates of the L™ norm. In this subsection we are going to verify that the functions &
and g are well-defined and, under a smallness condition on | f]| For 1D below), obey the L™
estimates:

1A, <1, 18l <R. (5.34)
In the remaining part of the chapter we assume that f satisfies

£l per <, (5.35)

where 1) is a sufficiently small number (depending only on o, R and ) that will be chosen later.
We also assume that R > 1/a.
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In order to obtain the bounds (5.34), we will need the following observation. If (az),c7 is a
sequence with finite support, then we have the identity (see [6, Lemma 3.2]):

Yoajy [[ A-am+]][A-a;n=1. (5.36)
J>i J<i’<j’ J'>j
An immediate consequence of this equality is that, whenever aj € [0, 1], we must have, for all
Js
Yoay [] A-a;m=<1. (5.37)

7> J<j'<J

The boundedness of h. First of all we easily see that 7 is well-defined (as a consequence of the
fact that only a finite number of functions 4, w; and U; are nonzero). Recalling the definition of
h;j and using Proposition (i), we can write:

|h| 1 (J |Af| (1- (J w;=Uj.

If f satisfies (5.35) with small 7 then, by Proposition [5.26 5.26] (iv), we get U; € [0,1] for all j € Z
and hence, by using (5.37) and the definition of 4, we get the estimate:

|| < Z|h|H(1 U)<ZU [Ja-U» <1

J'>j ' J'>j

The boundedness of g. Let us see first that g is well-defined. We have that all but a finite
number of the functions g; are identically zero, hence it remains to discuss the nature of the
products of the form

[Ta-G. (5.38)
7>

Following [6], we show that these products converge uniformly. Indeed, we have w; =0 for all
J>d. For small n in 1i by Proposition (iii), we have |w j| <1 and thus we can write:

min (27%F, 2700~
0<G,< ) 2%< ( — )
t>0, t=j—o 1-2
t=0(modR)

a(j—dJ)

If j is large, then we have G; Sg 2~ which proves the uniform convergence of |D

Now we estimate the L° norm of §. When R > 1/a, from the above inequality we get G € [0, 1]
for all j. By the definition of {;, we see that ;(x) # 0 only if

2%wi)s Y 2%w(x),

k<j
k=j(modR)
Hence,
lgj@)| S S ). 29k=D gy, (x) = G,
k<j
k=j(modR)

and by using (5.37) and the definition of g we obtain,

RE-1 R-1
B<Y Y el [T a-6mnp<sY Y G [I a-Gp<R.

¢=0 j=c(modR) j'>j ¢=0 j=c(modR) J'>j
j'=c(modR) j'=c(modR)
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Estimating % — 2. Our goal in this subsection is to prove the following estimates:
PROPOSITION 5.33. Suppose 1< p,q <oo, @« =Q/p and k are as in Theorem Then, we
have

LS : k 1

. ~ - ko 1-a,0)+(1 = |k

@ Y | Xith =) pa-r SRa*27 IO £ g + Ro2gomex1-a0)+(Lilal ) NN s
i=1 q

d1 K 1

. > ko 1-a,0)+(1 L)k

(ii) 3 | Xith =) pa-10 SRO®27 Ifllpes + Ro27™0 e ey ez,
=1 q

(Here, [a] stands for the integer part of a.)

Before starting the proof, we note that, writing:

Vi= Y hy ] a-Up,

J<j o J<y"<y
and by using the definition of / together with the identity (5.36) (as in [13} p. 19]), one obtains
h—h=) V;U;. (5.39)
J

In order to obtain Proposition |[5.33} we first collect some estimates satisfied by U; and V.

LEMMA 5.34. For every y' € (I\I"‘ X {O}dl_“‘)’\J and y € (I\Idl),\I with |y|+|y'| < oo, we have
i) ‘Vzﬂ’ Um‘ < 2m|y|2(m—a)|y'|wm[|m;
(i) |ViUn| S 2mM2ke )i f) For-

PROOF. As in [6, Lemma 5.2], this follows from Propositions [5.26| [5.31|and [5.32] O

LEMMA 5.35. Forall meZ, ye (Ndl)N with |y| < oo we have
[Vhhmll oo <27 0 F g

PROOF. This is a direct consequence of the definition of 4,,, (56.31) and of the Bernstein type
inequality (5.25), since we have

|85 e = |W3037 | < |a3f |, S 1FUgen, (5.40)
for all j. Il

LEMMA 5.36. Under the smallness assumption (5.35), we have

(D) [Vl <1,
(ii) for all y € (NI)" with |y| < oo,

A S gmlylgolylk 1l

e

PROOF. We just follow the proofin [6, Lemma 5.4]. Item (i) follows directly from the construc-
tion and by using (5.37). The arguments are very similar to the ones used to prove (5.34). Item
(i) is also proved in [13] (the inequality (6.6)).

We prove now item (ii). By induction we can write (see [6] or [13, Section 6])

ViVi= Y Vi — Y ¢y, VUV V| T] Q=Upnn. (5.41)

m'<m 0<p=y m/<m''<m

This can be seen as follows. Suppose (A;,),ez and (By;),ez are two sequences of smooth
functions on G, such that for all integers m we have

An=Y Bn [] A-Uwn (5.42)

m/'<m m'<m’'<m
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(also we assume “good" convergence properties for all the derivatives).
Then, if X is a left-invariant vector field from the Lie algebra of G, we can write

XAp=) XBn) [] Q-Uu»

m/<m m/<m!'<m
- Y Bn Y XU, [] Q=-Un) [] Q-Un»
m' , Vv m/<m/'<v v<m''<m
m/<m m <v<m
=) (XBn) [] 1-Un)
m'<m m/'<m’ <m
-Y XU, ) By [l Q-Uwp) ] @-Up»
v!m r,n’ m/<m’’'<m v<m''<m
m/<v
= Z (XBp) H A-Upr) - Z (XU)A, H A-Upn)
m'<m m'<m'’’<m V<Vm v<m''<m
= Z (XB,) l_[ 1-Upr) - Z XU A l_[ 1-Upn),
m'<m m'<m'’ <m m'<m m'<m’"<m

and hence, we get
XA,= )Y (XBn)-XUn)Ap) [] @-Upw».

m'<m m/<m/'<m
We observe that this equality is of the same form as (5.42); in the sense that, if we now define
Al :=XA,, and B}, :=(XB,)-(XUn)An,
then

A=Y B, [l Q-Uw.

m'<m m'<m'’'<m

Applying this iteratively, using the definition of V,,,, we get (5.41).

By Lemmas and 5.34], we have

HVZV"‘ ”L°° S (||Vthr ”Loo"'o > HVQU'”'HL«» “vz_ﬁv’"'HLw)
<y'sy

m/<m

<y (2’”'|Y|+ Y omlblgke vg‘ﬁVmIHLm)llflng,p

m'<m 0<f<y
and by induction on |y| we get the inequality in item (ii). (Recall that we work under the small-
ness assumption (5.35)).) O

We are now in position to complete the proof of Proposition [5.33

PROOF OF PROPOSITION [5.33] We prove (i) in detail, following closely [6, Section 5]. As in
[6], for all 1 <k <Lk, we write

2(a—1)mA;1Xk(h _ﬁ)

BT

lq

m

2 VjUj)

JjezZ

LP

=2 AL X

LmllLe

= 2(a_1)mA;1Xk (Z Vr+mUr+m)

reZ

Lo

3
reZ

We split this last sum in three terms Y .~ ,, > r<0, 20<r<o-

|2 AL XUy s Vi)

lle
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(I) Estimate of )_,-,. Following [6, Subsection 5.1] and using (5.14), we have:

H ()2‘“‘1>mA},LXk<Ur+mVr+m) = HZ(“‘D"‘(Ur+mVr+m) * XEAL

L llLe I llLe
[l ) ]
<l MW Vel |,
s[li2e @ emVeimdlis |, < 125" Trimllis |,
=9~ ||2“’”Um||131 .
(5.43)

Recalling that U; = (1 -{;)w; and using Proposition we get,

12Ul

Szl ||, S RO2<P 1 f 00,

and summing up,

Y S Y (27 Ro2P | flyar) SRO2THER | £ pa

r>o0 r>o0

(II) Estimate of ¥,<o. If a :=[a] then, as we have already seen, we can write Al = (Vf)a P

for a Schwartz family ¢, and then A,ln =27ma (Vf )a -¢m. Hence, if X}, is a vector field in a “good"
direction, i.e. 1 <k <k, we have

- H2<“—1)mz—'”“Xk(Um+er+r) * (Vf)a “Pm

| 1262 AL Xk @i Vi

Lp

e

||2(0“1)m2—ma (ViXrUmsr Vinsr)| * Om ||zg,

LP

< ”z(a—l)mZ—maMVng(Um+,~Vm+r)”lzl -
< ”z(a—l)mz-mangk(Um+,Vm+,)||l31 .
52—(a—l—a)r ”2(a—1—a)mvthk(Ume)”lq L

where we have used the Fefferman-Stein inequality in the third line.
As in [6], using the Leibniz rule and Lemmas and [5.36], we obtain

a
|ngk(Ume)| 5 |Vm (szkUm” + Z ‘véUm‘ vg+1_le’
=0
a
<gmagm=oy, 1+ Z (gmlwmﬂm) (zm(a+1—l)2[k(a+1—l)a ||f||Fa,p)
=0 7

§2m(a+1) (2—0 + 2Ik(a+1)a ”f”Fg’p) wmum
Now we get, via Proposition [5.29]

52—(05—1—(1)7‘ (2—0 + 2[I<(a+1)a ”f”Fg’p)

|12 AL X0 Wi Vi 125" @b

Lpr Lp

ka —(a—1— -
SRO2¥ | lgar 2771707 (277 4+ 2K DT )
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and, summing up,

ko
25 (Z 2‘(“‘1‘“”)12027 IFllggo (277 + 252 f e

r<0 r<0

—otke kla+1+1
gRa(z O’+p ||f||F((11,p +2 (a+ +p]0’ ”f”%a,p).
q

(I1I) Estimate of Y g<r<,- This is similar to the preceding estimate. Here, instead of taking a
to be the integer part of a, we consider a = 0. As above we conclude that

ko —(a— _
H ”2(a,_1)mA;1Xk(Um+er+r)”lﬁln o ,S R02 p ”f”Fg’P 2 (@=Dr (2 g + 2[k0 ||f||Fg,p) ,

and by summing up,

_g+ ko kl1+1
Y ...gca(a)Ra(z o ||f||an,p+2 ( +p)” ||f||12¢'g’p

O<r<o

where Cp(0)~1ifa>1,Cu(0)~ o ifa=1and C,(0) ~20799 if g < 1.

With this we have proved (i). The proof of (ii) follows the same lines as the one of (i). The
main difference is that since we are no longer restricted to the case of derivatives in “good"
directions, we have to use, instead of Lemma (1) applied with |)/’ | =1 (as in (II) and implicitly
in (IIT) above), the weaker statement for the case |)f’ | = 0. This will produce almost the same

ko
estimates, the difference being that the coefficient 27°" » of ||| o in the corresponding parts

(I), (I) becomes 2 7 . O

Estimating g — g. Our goal in this subsection is to prove the following counterpart of Propo-

sition 5.33]

PROPOSITION 5.37. Consider 1 < p,q < oo and a = Q/p. Also consider a, € (0,a] such that
ag=1ifa=1 We have
Vo=@ ., S 2P RO | ] gy + 201 DR REGTIIRLACIR 112, ,

La—-1p ~
Fq

We recall the definition of G :
Gj = Z 2—atwj_t.
>0
t=0(modR)
The starting point is the identity (similar to (5.39))
8~ g = ZG_]H 5
J

where

Hj= ) gy [l a-aGm
J<) J<i'<)
Jj'=j( modR) Jj"=j(modR)

andgj:(jAjf.

LEMMA 5.38. ForallmeZ, ye (Ndl)N with |y| < oo,
VGal S, 2% Y 2oyl f)

t>0
t=0(mod R)
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PROOF. By the definition of G, and Proposition [5.31]
—at ~at ~t
ViGn|s Y 2% Von|< Y 2 ebl;mb,,
t>0 t>0
t=0(modR) t=0(modR)
Note now that, according to Proposition [5.26|
1
wm-t S22TMM|AL_f],

whence the estimate. U

LEMMA 5.39. Forall meZ, ye (I\Idl),\I with |y| < oo,
[Vyem| <y 21" |AL f].
PROOF. By Proposition and the Leibniz rule, recalling the definition of g,,, we have

Vign| S X 2 Im|) (A% (ALA)| S T 2 Im| (AL« vy AL

O<y'<y O<y'sy
<y 2|Y-Y'|m2|Y'|mM|A’1nf| §y2|Y|mM|Ar1nf|
O<y'<y
(since |y —y'| = |y| - |y'| when 0 <y’ <y). O

LEMMA 5.40. Forall meZ, ye€ (Ndl)Nwith |y| < oo, and under the smallness condition (5.35
on f, we have

(@) Hpl S 1,

(1) [V} Hin| S 21197 %400, 1m0 moary 2V OMM |AL,_,f].

PROOF. Item (i) follows directly from the construction. Also, it is proved in [13, Section 11].
Item (ii) is obtained following the strategy in [6, Lemma 6.5]. The proof is similar to the one

of Lemma It is done by induction on |)f| and using Lemmas Il

PROOF OF PROPOSITION[5.37]. As in the estimate of & — &, we can write

1V5 (& = &)l -1 < Y 2 ™ALV (GrimH rim)

reZ

LhllLe
Recalling that

— —at
Grim:= Z 27" 0rym-t,
t>0
t=0(modR)

we get

H z(a_l)mAiqvb(wr+m—tHr+m)

”Vb (g —g)lngq,p < Z 2_‘” Z .

t>0 reZ Lpr
t=0(modR)
- Y 2@y 4 Y 2@y .y ga §
t>0 r>aqt t>0 r<0 t>0 O<r<aqt
t=0(modR) t=0(modR) t=0(modR)
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(I) Estimate of ¥ ;-q,; Using the fact that |Hp,llL~ < 1 and Proposition we have (as in
(5.43)):

H |2 ALV @rim-Hram) S 2709 |

S 9-a(r=1) H ”2amwm ”lZT

I lLe Lp

Summing up we get:

Z 2—at Z 5 Z 2—at Z 2—a(r—t) 2QU ”f“Fg’p

t>0 r>aqt t>0 r>aqt
t=0(modR) t=0(modR)

— Z Z 2—0,’7‘ ZQU ”f”Fg’p

t>0 r>aqt
t=0(modR)

S Y 2702 pep S270R 2R £ gy

~Y

t>0
t=0(modR)

(II) Estimate of ¥.,<o. Let @ =0 be an integer. As in the estimate (II) for 2 — 4 we obtain

H 02(0!—1)mAIIan(wr+m_tHr+m) S 2_(a_1_a)r

Lp

H 2(a—l—a)mvtg+1(wm_th)

I

I Lp.

(5.44)

In order to estimate the right hand side we recall that the following estimates hold (see Propo-
sition [5.26| Proposition and Lemma [5.40):

Wm-t S2V MM}, f),
‘véwm—t‘ Sz(m_t)lwm—t,
|H | <1,

|V, H | <2197 Y 2 MM A}, f]
t>0

for all [ e N. Using the Leibniz rule, we get:

|Vg+1(wm_th)| gz(m—t)(aﬂ)wm_t
(a+1)Qo a ' -t ola+1)(m—t") 1 . .
+2 Y Y 2¢2 MM (AL _ f)MM (AL, f).
t'>01=0

Using (5.25), we estimate the double sum from the right hand side as follows:

a !/ !/ /
Y Y L Siflger | Y 2@TVTOMM (AL £)+ Y 2¢O (AL F)
t'>01=0 “ \o<t'=t t'>t
SWflgae 3 2D OMM (A, f).
O<t'st

Going back to (5.45), we obtain

Vi @metHm)| S 270 D+ 2R flpan Y 2D OMM (A)f)
O<t'st
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is bounded by

and hence, the term H ||2(“_1_"‘)’”V?)‘Jrl(a)m_th)||lg1 i

2(a—l—a)t 2a(m—t)

Wm—t

#2001 s B[ |2 MM (85,1 g
p

Lz Lp

Sl 8 g 5

Wm ”l?n Ip

2072 f g + 24D £ pap Bo @) | 1297 A f |1

Lr
20720 f | g + 24 DIB ()1 I
q

where B, o(2) 1= Y o<p<s 2(a-1-a)'  Here, we have used the Feffereman-Stein inequality to pass

from the first to the second line, Proposition (v) and (5.26) to pass from the second to the
third line. Hence,

o,

S22 flpaw + 2B oI Ias . (5.46)
Lr q

Finally, from (5.44) and (5.46) we obtain

H |2 ALV @rim - Hram)

p 52—(a—1—a)r2Q02(a—1—a)t ”f”Fg’p
mllLP (5.47)
+2—(a—1—a)r2(a+1)Q0Ba’a(t) ”f”}%.a,p .
q

If we choose now a = [a] and we observe that in this case we have B, () < 1, then, using
(5.47) we can bound the term

MRS

0z(a_l)mAhvb(wiwm—tHiwm)

L

t>0 r<0 Lp
t=0(modR)
by
2QO’ Z 2—at Z 2—(a—1—a)r2(a—1—a)t ”f”Favp +2((1+1)Q0' Z z—at Z 2—(@—1—(1)7‘ ”f”%‘
£>0 r=0 7 >0 r=0
t=0(modR) t=0(modR)
Since
Z 2—at Z 2—(a—l—a)r2(a—1—a)t — Z 2—(a+1)t Z 2(a+1—a)r 5 2—(a+1)R
t>0 r<0 t>0 r<0
t=0(modR) t=0(modR)
and
Z 2—at Z 2—(&—1—&)?‘ 5 z—aR,
t>0 r<0
t=0(modR)
we obtain

Z 2—&1,‘ Z S 2Q02—(a+1)R ”f”F'g’p + 2(a+1)Q02—aR ”f”%—wg,p .

t>0 r<0
t=0(modR)

a.p -
q
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(III) Estimate of ¥ 0<r<q,+ Using the estimate (5.47) above with a =0, we get

)3

H 2(Oc_l)mArlnVb((l)r+m—tI—Ir+m)

S A0 (2272 If s +29°Boo(® 1 s ),

lq
O<r<aqt m || Lp
where
20-Maat jf ¢ < 1, 1 ifa<l,
Ayt) SK aqt ifa=1, andBou(t)<Sq ¢ ifa=1,
1 ifa>1, 20—k if g1,
Now summing up we get three possible bounds:
(D if @ <1, we have ay < 727 and
Z 2—at Z g 2Q02—R(1—(1—a)aa) ”f”ng + 2Q02—R(a—(1—a)aa) ”f”%‘(‘;ﬁ :

t>0 0<r=<aqt
t=0(modR)

(2)ifa=1, wehavea, =1 and
Yoo Y L S2%R2 7R fllpar + 22 RP27R 120, ;
>0 O<r<agqt 7 g
t=0(modR)
B3)ifa>1, we havea, =1 and
o2 Y L5207l pen + 29727 | f R
>0 Osr=aqt 7 q
t=0(modR)
Now from the above estimates, since 0 <a, < a, we have
Z 2—(11,‘ Z 5 2Q0R2—Rmin(1,aaa) ”f”F(‘;’p + 2Q0R22—Rmin(1,aaa) ”f”;vf;,p .

O<r=<aqt

t>0
t=0(modR)
Toghether with (I) and (II), this gives Proposition |5.37 Il

Proof of Theorem 5.3, Now we can estimate the Triebel-Lizorkin norm of f,; —F; = (h—h)+
(g — &). By Proposition (i) and Proposition [5.37, we have

k

k k
S IXi(fr =FPllga1o Y | XiCh = 2)| 1o + Y 1Xi(g = @ o1
i=1 a i=1 a i=1 a

—omi ko —mi
S (Ro22 7m0 4 9R7 o min(aaeR ) £ oy + D g £ 1200,
q

where Dp  is a large constant depending on R and o.
As in [6], Section 7], for o € N, we set

100Q
min(1,aa,)
If 6 > 0 is fixed, then it is easy to see (using the fact that k/p < min(1, a)) that for a o large
enough, we have
Ro22 ™nbat 5 54 and 9@ogg-minlacaR < 5/

Hence, for a large D5 we have

R =R, :=

k

g 2
i:z1 1 Xi(f —FJ)IIFg—l,p =3 I£ I zar +Ds IIfIIF»g,p,

f"md since we assumed that ||| FoP is small (see ), then we may take Ds ||f |l FoP < 6/2 obtain-
ing

k
Y NXi(fy =F )l 1o <5 1f e (5.48)
=1
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In a similar way, using Proposition (i1) and Proposition we get

dq d1 B di
Y NXi(Fr—Fpl et S Y || Xi(h =) pate * Y 1Xi(g - poto
i=1 i=1 i=1

I " 2
SDR o I lgzr + D 1 e

and hence, as above,

di

2 NXilfy =Flpa-ro S 1 gz, (5.49)
i=1

provided that || f|| PP is small enough. From li and the lifting property (Proposition D of
the Triebel-Lizorkin norm, we get

di
1F gl per < W7 =FDlpar + 1l par ~ Y IX(f —F)llpg—l,p +1f 1l e Se RZEE (5.50)
i-1

Now (5.48) and (5.50) together with the L™ estimates (5.34) give Theorem under the
smallness assumption on | f|| FoP (observing that the bounds proved do not depend on J and

taking J — 00). We complete the proof of Theorem via the homogeneity of the norms.

REMARK 5.41. (1) Following the same lines, it is also possible (and easier) to prove a version
of Theorem [5.3|for the Besov spaces introduced in Subsection 2.3:

THEOREM 5.42. Consider the parameters 1 < p <oo, 1<qg <oo, a=@Q/p and let k be the
largest positive integer with lk < min(p,d1). Then, for every 6 > 0 there exists a constant Cs > 0
depending only on 0, such that for every function f € Bg’p (G) there exists F € L*™°(G) mBg’p @
satisfying the following estimates:

k
Zi ”Xl(f _F)“Bg—l,P(G) <6 Ilf"Bg’p(G)’
1=

IF o) + IF I ger gy <Cs 1 f I ger gy

(2) To mention one application of Theorem we state the following generalisation of Theo-
rem 1.8 in [13[] concerning the Hodge systems on the (2n + 1)-dimensional Heisenberg group H".
Note that in this case d =2n+1, d1 =2n and @ =2n + 2.

THEOREM 5.43. Suppose n =3 is an integer. Consider 1< p,q <oo, a :=(2n+2)/p and let r be
an integer with 1 <r <min(p/2,n —1). For any (0,r)-form ¢ in Fg’p (H™), there exists a (0,r)-form
Y in L*®°(H") ﬂFg’p (H™) such that

0, =0,

and

Y zoomy + 1Y Nl pap gny < || Op FANP )

We recall here the meaning of 0, and 9, following [12, p. 594-595]. Let dZ1,...,dZz, be the
basic (0,1)-forms on H"”, where z; =x; +iy;. If I = {jl,...,jq}, with 1<j1<...<j;<n, we write
dzy:= dEjI VANRAY dqu.
Suppose 1 < g <n is given and for each I with |I| = q, some smooth complex-valued functions f7
are given on H". Then,

55( > fzdgz) =YY Zi(fndzjndzy,
J=1I1=q

l=q
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where Z j are the left-invariant Cauchy-Riemann operators
- 0 0
Zi=——izj—.
1z, Pt
An expression like
Y. fidzg,
lI1=q
will be called (0, g)-form on H".
The operator 52 is the formal adjoint of ,. We have <5; f ,g> = < f ,5bg> for any (0, g)-form f

and any (0,(q —1))-form g on H".

Theorem is proved by using Theorem to approximate in an efficient way the coef-
ficients of the form ¢ and then to conclude by using an iteration argument. Since the proof is
very similar to the one given in [13]] and its Euclidean analogue in [6, Theorem 1.2], we omit it.
Theorem can be proved following the same lines.

5. Appendix

We collect here some facts related to the Calderén-Zygmund theory on stratified homoge-
neous groups for vector-valued functions. These results (Lemma [5.44] and Theorem [5.45) are
well-known. However, since it is hard to find the exact statements in the literature (see for exam-
ple [2] for a Euclidean version, or [7] for similar considerations on spaces of homogeneous type),
we have chosen to present them here.

Consider a Banach space A. In what follows we deal with functions from the space Li =
LP(G,A) where 1 < p <oo.

A first result is a Calderon-Zygmund decomposition of fuctions on G (see also [7, Théoréme
2.2, Chapitre 3]), obtained via the weak (1,1) estimate for the maximal operator:

LEMMA 5.44. Consider a function f € L}{ and a number A > 0. Then there exist a countable
family of measurable sets ({2,),=1 which are pairwise disjoint and a decomposition f =g+b =
g+ ,b, where g,b,b, € L}q for all n =1, and such that:

i) lglze S s

(ii) suppb, € Qp, [bu(x)dx =0 and IIanIL}{ < AQ,| for all n;

(iii) ¥ 1Qu) S 7 1F Nz

PROOF. We adapt the standard proof in the Euclidean case. Consider the open set Q :=
{x eEGIMIflyx)> )L}. For each x € Q we consider a ball B(x,r,) centered in x and such that
B(x,r,)cQ, but 2-B(x,ry) G Q (recall that, if ¢ > 0 and B is a ball in G centered in xp of radius
Rp, then c- B is the ball in G of center xg and of radius cRp). Notice that, by Proposition

~ 1
BGe,rl = |0 < 717Nz

and hence, the balls B(x,r,) have uniformly bounded radii. Using the Vitali covering lemma
(which has the same proof in G as in the Euclidean case), we can find a countable subfam-
ily of balls (Bg);>1 of the family (B(x,rx)),cq, Which are pairwise disjoint and such that Q=
U,eaB (x,72) €Ur=1C - By, where C > 2 is an absolute constant depending only on G.

We set

Q1:=(QnC-B1)\ (UBJ)
j#1
and inductively we define

Qp = ((QﬂCBk)\ U Qi)\
l<i<k-1
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for all £ = 2. We see immediately that for all £ =1 we have B, € Q; < C-B;, a}nd this also give us
that |Qz| ~ |Br| ~ |C - B|. By definition the sets (2, are pairwise disjoint and Q =J;>1 Q. We can
define the functions:

| f), ifxeQ
g(x)'_{ ka, ifxEQk
and by, := (f - fo,) 1o, for all & = 1. Here, fq, := |Q|7" [, fdx.

To prove (i), we see that if x € ), we have

1
— _ <
lg@llg = ||Fa, || 4 < T fQ k IfFMllady <

(5.51)

1
|C - Bp|
whe~re xo is a point in C - B \Q. (Such a point exists since 2- By, G Q and 2-B;, < C-B;.) For ae.
x ¢ Q, by the Lebesgue differentiation theorem (which is a consequence of the weak estimate for
the operator M), we have [|g(x)llg <M | fll4(x) < A.

To prove (ii) and (iii), observe that by the above inequality we have

f 1F D lady < MIFl4 (o) < A,
C-By,

1
||||bk||A||L1s|£2k|(mfQ IFDlady + | foulla | =211 | Farll 4 S 19412, for all &,
k

and, using the weak estimate for M,

- 1
<|Q| < 1Al

Y IS Y IBrl= | B
% k=1 k=1

We can also see from these inequalities that

Y Mbwlir SAY QI SHF Nl (5.52)
% A % A

This proves in particular that the series defining b is absolutely convergent in L}A and that
b,g €L satisty gl + 16171 SIfllg:. m

THEOREM 5.45. Suppose A1 and Ag are two Banach spaces and K € Llloc(G\ {0} — £(A1,A9))
has the following properties:
(i) there exists a constant ¢ > 0 such that fllxllazcllyllg ||K(x) —-K(y™! x)|| dx<1forall yeG;

(ii) the operator Tf := f % K is well-defined and bounded from LZI to Lqu for some q € (1,00).
Then, T :L}AI — Li’;o is well-defined and bounded. By real interpolation and duality we get
that T :Lg1 — ng is well-defined and bounded for any p € (1,00).

(Here £(A1,A2) stands for the space of the bounded linear operators from A to As.)

PROOF. We adapt again the proof in the Euclidean case. Using Lemma [5.44] we can write,
for a given f € L1(A;) and A > 0, the decomposition at height A: f = g+b. We next note that
HITFll4, (%) > 22} < {IITgll4, () > A}| + [{IITbll 4, (x) > A}|. The size of the set {[Tgll 4, > A} can
be bounded using (ii) above and the Markov inequality:

1T lay @) > A} <27 1Tl 2, <27 g, I, =277 e,
<A77 Igla, o =AM gy SATIF Ny

11

To estimate the size of the set {IITbII Ay (%) > /1} we proceed as follows. Consider the sets Q;,
from the proof of Lemma for each such (), we denote by yg, the center of the ball By, < (),
and we set QO :=(C1+C)-Bj, >, where C; >0 is a large constant depending only on G and c.
We write now
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[{ITblla, () > A}| <

+ {xeG\UQ;;| ||Tb||A2(x)>7L}
k

Tflgy A [ ATl

\Up Q;
and it remains to estimate the last term. For this purpose, we note that if x € G\, and
¥ €y, then p(x,y8,) = |y} x| , = (C1+ O)Rp, = CTHC1+C)ply,98,) = C71C1 | y5L-5] , (with
Rp, the radius of Bj) and thanks to the quasinorm property of |-G, we find a constant Cy > 0
: -1 _ |y -1 -1 -1
depending on G only, such that ||y x||G = Hy "B}V, xHG = Co HyBk xHG - ||y “YB, ”G >

(C7iCc1Ce-1) ‘ 1= _g on G. If C; is sufficiently large,

o where we used the equality a
-1

we deduce ||y x|z =c|y ™t ys, g =c H (y71-x) (yB?; x) . As a consequence,
G

dx
Ao

f K(y™ - 2)bn(y)dy

ITDll 4, (x)dx <
fG ey Z G\Up

B ;»[G\Uk Q;
<
N

=y f 16n sy dy Sl
I, A

where we have used the condition (i) above and (5.52). O

dx
Ag

| (K6 0-Ko5! - 0) by

Ky '-x)-K(yg' x)" dx) 162 (Wla, dy

REMARK 5.46. We see from the proof that if [|T'|| L

re =1 then we have ITNge —rn Sp L

A Aq 2

Hence if the quantity in (i) is bounded by a number >0 (1nstead of 1) and also || 7] LY L <8,
2

—L

then we have |Tll;» _;» Sp B
A1 TAg

LEMMA 5.47. Suppose ¢ € LX(G) and:
@ fiyip=r loW)|dy SR™! for any R = 1;
(i1) fRd |qo(x_1 -y)—<p(y)| dy < lxllg for all x € G with ||xlg < 1.

If for r € G we define k j(x) := (pj(x~2_jr), where @ (x) := 2JQ(p(2jx) forall j € Z, then, there exists
a constant ¢ >0 depending only on G, such that we have

f 2 ki@t ) = ki) dy SpIn@+ Irle).
Iyllgzclxla jez

PROOF. We follow the proof in [6]. We decompose the sum under the integral as follows:

Y |lkja -k = Y o+ Y kY L=I+II+IIL

Jjez 2/||xllg=<1 1<2llzllg<2+Irl 2/|xllg=2+Irlc

We now estimate each term. Using (i), we can estimate the first term as follows

f|y||G>c||qu = fG 2J”x”G<12jQ “P((zjx_l) ' (2jy) )= <p((2fy) : r)‘ dy

[ X | p-ewldss ¥ 2islest
G 9j|xllg=1

2/llxllg=1
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For the second term we have:

II < 2[ k'(y)dy:Z
fllyugzcnxua p> ML

1<2xllg<2+lrig

f lp(y)|dy

1<21||x||(;<2+||r||G
and this is bounded by
[{logs 1/ llxllg < j <logs ((2+ I7llg)/ Ixle)}| SIn@+ 7).

Using the quasinorm property of ||| we can find a constant c1 such that ||y; - yallg <c1llyillg+
c1lly2llg for all y1,y2 € G. Assuming that c is sufficiently large we can estimate the third term as
follows.

f I11<2 f |kj(»)|dy
lylgzclxllg 2 xlg=2+Irlg Y 1¥la=ezlxle

=2 f (y-r)|d
j Z Iyllg=27calxllg |(P ' | '

2lxlaz=2+Irla

=2

2/ xlg=2+Irlg

S X fewldy
2|zl g=2+Irlg Y 1V lez2 eslxla
1 < 1

< Y , <
2J”x||G22+”r”Gz ”an 2+||r||G

f ' ()| dy
ly-r=tllg=2/calixllg

>

where co :=(c—c1)/c1 and c3:=(cg —c1)/c1. Here, we have used (i) to pass from the fourth to the
last line.
Summing up these estimates we get the claim. Il

In what follows we will need to apply the above lemma to the function ¢ := S, where we recall
that S(x) = min(1, IIxIIC_;Q_l). It is easy to verify that the function S satisfies the conditions (i) and
(ii) required by Lemma Indeed, by a change of variables, we can write for all R = 1,

[ isdy=R[ i@ tay~R,
lylgzR lyllg=1

which proves that (i) is satisfied. To verify (ii), we recall that ||6-allg — llallg]l < C bl for all a,b €
G (see Proposition i and note that if [lyllg < 1-C llxllg < 1, then ||9c_1 -y||G <lylg+Clxlg=<1.
In this case S(x™-y)=S(y) = 1. Also, if [lyllg =1+ C llxlg, then |x™*-y| s = lyllg —Clxlg = 1. In

this case S(x~1-y) = ||x_1 -y||(_;Q_1 and S(y) = IIyII&Q_l. Hence, if ||l x||g < 1, we can write

[ Isan-swlay= SG1-5) - S(y)|dy

1-Clixllg=lylg=1+Clxla

n f IS@1- )~ S| dy
lylg=z1+Clixlg

1 1
Slxllg + f - d
T Diig=1ecizig PR Y
Q+1
e o518 -1y
Ilg=1+Clalg | [x1-y]| & IIyIIg+1

Shal + el [ _dy S lxlg.

lylg=1+Clxlg IIyIIg+
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PROPOSITION 5.48. Suppose p,q € (1,00). Then, for every sequence (fj)jez in LP(G,19(Z)) and
for every r € G we have

“)ijj(x-(Z‘jr))Hl? y ||fj||zg w

PROOF. As we already saw, the function S satisfies the requirements of Lemma Let &
as in Lemma [5.47|with ¢ = S. We see directly that, for any Schwartz function f, we have

f*kj(x)= fR fWS oy tx-@rNdy =S f(x- (27 r).
Let K be the kernel given by K :=(k;);jcz. We consider

T(f})jez(x) = (f))jez * K(x) = (fj * kj)jez(x) = (S;f (x- (277 ) ez,
the operator T' being initially defined for a sequence of Schwartz functions (f;);cz. Considering
the Banach spaces A; = Ag = 19(Z) we can see that the statement of the Proposition |5.48] is
equivalent to the fact that the operator T :Lﬁ"f&1 — ng is continuous, with its norm bounded by

In(2 + [|7|lg). This can be obtained as follows. Consider a sequence a in the unit sphere of [9(2Z).
We have that:

r§Jp,q In(2 + ”r”G)

1/q’
(K@x)-K(y w0y =Y (ki) -y x))a, < (Z |k j(x)—kj(y™x)|?
JjeZ JjeZ
<Y ki@ -kiy x|,
jez
for all x,y € G. Hence |K(x)-K(y ™' x)| = X ez|kj(x)—k;(y ' x)| and thanks to Lemma we
get (using the same notation):

f” oy JE@ K 0] d < f 3 |k(0) — iy 10| dx < n@+ 7).
xllgzclylg

lxla=clylg jez

Also we can easily see that T :LqA1 — L?42 is bounded and of norm 1. These two last observa-
tions together with Theorem Al and the Remark after, give us the claim. Il

REMARK 5.49. Proposition is reminiscent of an inequality due to Bourgain (see for ex-
ample [11, Section 5]).
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CHAPTER 6

Hodge systems on smooth bounded domains

We consider the Hodge system

du=dv, onQ
. (%)
u=y, on 02

Here, Q is a smooth bounded domain in R? and
v e FIPP(Q), ye C(OQ)NBYP PP (50)

are given [-forms satisfying a natural compatibility condition. When 1</<d-2,d-l<p <oo
and 1 < g < oo, we prove that (*) admits a solution

ueCQQNFIPP(Q).

1. Introduction

We start by recalling the following existence result for Hodge systems on R? ( see [3, Theorem
1.2], also Theorem [0.15|in the Introduction Chapter):

THEOREM 6.1. Let 1 <l <d —2 be an integer and consider the parameters d —1 < p < oo,
l1<qg<oo, a:=d/p. If pe Fg’p(le) is an l-form, then there exists an l-form u € L®°(R%) ﬂFg’p([RZd)
such that

du=deg, on RY.
Also, one can choose u such that

el ooay + Nl e ey S ”‘P”F;”"(Rd)'

In what follows we focus mainly on the case 1 </ <d —2 and we thus assume assume d = 3.
We establish an analogue of the above theorem on smooth bounded domains when a Dirichlet
condition is prescribed.

First, let us fix some notation and mention some conventions. Suppose that u is an /-form on
some smooth bounded domain Q. For simplicity, let us assume that « is smooth on Q. If

u= Z urdxy,
[I1=1

then, on 002, we have

ulon =Y urlsadxr,

1=l
where u|yq is the restriction of u on 6Q2. Hence, even if expressions of the form
y= ) vidxy,
1I1=1

where Y1 are functions on 02, are not differential forms on 002, such expressions naturally appear
as traces on 0Q) of forms on Q. In this chapter, by an abuse of terminology, expressions like y’s
above will be denoted as [-forms on 0.

We introduce an 1-form on 02 given by

d

V= Z dexj,
J=1

127



128 6. HODGE SYSTEMS ON SMOOTH BOUNDED DOMAINS

where the vector (v1,...,v4) is the outwagd unit normal to Q2. We will often use the notation vA ¢
where ¢ is a smooth /-form defined on Q. By convention v A ¢ is an (I + 1)-form on 02, defined by
the formula

d
VAD:= Z Z vquIanxj/\de.
=

The compatibility conditions that we will impose are in the style of the following theorem.

THEOREM 6.2. Let Q be a smooth bounded domain in R®. Consider the parameter 1< p < oo
and let r =2 and 1<1 <d -2 be two integers. For any l-form v e WP (Q) satisfying vAdv =0 on
0Q), there exists an l-form u € W"P(Q) such that

du=dv, on(Q
{tru =0, onoQ’
Moreover, u can be chosen such that
lwllwrr) ,S lvllwrr@)-

Theorem can be easily deduced from the global regularity results of Dacorogna [4] (see
[4, Theorem 11] for a Holder spaces version of the above theorem, and [4, Introduction] for the
arguments leading to Sobolev spaces versions).

Let us discuss the compatibility condition “v A dv = 0 on 0Q2” in the above theorem. Suppose
for simplicity u and v are smooth up to the boundary and Q =@ := (-1, 1)3-1x (0,1). The “lower
face” of Q is 0@ :=(—1,1)%71 x {0}. Note that, on this lower face, we have v = —dx,;. Hence,

vAdv=—-dxg A Z Z 0;vp)ladx; Ndxr = —dxg A Z Z 0;vp) laqdx; Ndxr

[Il=l1<i<d [Il=l1<i<d-1
de¢l

and the condition “v A dv = 0” becomes, on the lower face of €2,

Y Y dvr(x,0)dx; Adxr=0 (6.1)
|(11|:Illsisd—1
¢

for any x' € (-1, 1)%-1, One can see now that, if we define the “genuine” /-form

V(x):=) ) wvr(«,0)dxs
[I1=l1<i<d-1
dg¢l
in (-1, 1)d'1, then 1i reads dv’' =0 in (-1, l)d'l, i.e., v’ is closed in (-1, 1)4-1 In general, using
a pullback (see Section [2{below), one can interpret the condition “v A dv = 0 on 0Q2” as follows.
We will use the following notation. For an /-form
u= Z urdxy,
111=l
on @ we write
Tu:= Z urdxy and Nu := Z urdxg,

1|=1 11|=l
del del

for the “tangential” and the “normal” component respectively. The same conventions apply to
[-forms that are traces on 0;Q. Note that,

u=%u+Nu.

Let xo € 0Q and let F : W — Qn B (here, B is a ball centred at xo and W < R?) be a diffeo-
morphism such that F~1(0Q N B) c R~ x {0}. Then “v Adv =0 on QN B” has the meaning that
the trace on R%~! of TF*v is a closed form in F~1(0Q N B). (In what follows forms like TF*v will
always be enough regular in order to consider such traces in the sense of distributions.) It is easy
to see that this property of v is local and does not depend on the parametrization. In order to see
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this, consider two diffeomorphisms F;: Wi — QnB and Fq : Wo — Q2N B as above together with
a diffeomorphism G : Wo — W1 such that Fo = F10G. We have tr SFgv =tr SG*F{v = G|n§d71t’“
SF]v. Hence, if tr TF v is closed, then tr TF,v is closed. In general, the condition “v Adv =0
on 0()” means that after covering 0Q2 with a finite number of balls By,...,B, as above, we have
“vAdv=0o0n0QnB;” for each j. This property of v does not depend on the covering of 6Q2.

REMARK 6.3. If v is smooth, then the condition “v A dv = 0 on 0Q)” can be interpreted in the
classical sense.

We prefer to work with source terms of the form dv, i.e., we work with exact forms, instead
considering closed forms, in order to avoid imposing additional compatibility conditions which are
related to the topology of the domain Q (see [4, Remark 16]). Recall that on contractible domains,
e.g. on balls, exact is equivalent with closed.

Our result is the following:

THEOREM 6.4. Let Q be a smooth bounded domain in R%. Let 1 <1 <d —2 be an integer and
consider the parameters d —1 < p <oo, 1 <q <oo, a :=d/p. Suppose y € C(62) ﬂBg_l/p’p(OQ) isan
l-form and v € Fg’p(Q) is an l-form satisfying v Adv =v Ady on 0X). Then, there exists an [-form
u € C(Q)NFP(Q) such that

{du =dv, on(Q

. (6.2)
u=y, on 02

Moreover, u can be chosen such that
lwll L) + ”u”F;”"(Q) S ”Y”Lw(ag) + ”Y”Bg—lfpvp(ag) + ”U”Fg"”(ﬂ)'
REMARK 6.5. The condition d — I < p in Theorem [6.4]is a relic of the use of Theorem

Here, the condition “v Adv = v Ady on 6()” means “vAd(v—7F) =0 on 002", where 7 is any
continuous extension of y to Q2. It turns out that this condition do not depend on the extension
¥ neither v, but only on y and ¢r v. This is apparent from the preceding discussion on the
compatibility condition. We will write this condition as vAd(v—7y) =0 or even as vAd(tr v—y) =0.

A statement similar to Theorem [6.4]in the case I =d -1 (for 2 < g < p < 00) which corresponds
to the divergence equation, was already treated in [2, Section 7] (see also Theorem [0.7). (The
full statementﬂ corresponding to the case [ = d — 1 can be obtained by following the strategy in
[2, Section 7] and using Theorem instead of [2, Theorem 1.1].) Note that if v is a sufficiently
regular (d — 1)-form, we have v Adv =0 on 0Q) regardless the choice of y. Here, the compatibility
condition we have to impose is of a different type:

fdv:f (y,vido.
Q 0Q

For simplicity, in what follows we do not treat the case [ =d — 1.

Few words concerning the proof of Theorem We prove our result via a sophistication of
the techniques in [2, Section 7] and an application of Theorem More specifically, we use the
methods in [2, Section 7] in order to obtain the conclusion Theorem up to a higher regularity
“error term”. Then we use Theorem in order to deal with this “error term”.

2. Some useful facts

We briefly recall below some facts from [2, Section 7] that will be useful later.

Reflection operator. Consider o > 0. Let % be the integer part of o and consider the Vandermonde
matrix
{1/ ni-1
A= (( 1) )1si,jsk+1 )

1i.e., for 1< p,q <oo.
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Since A is invertible, we can introduce a vector a € R**1 by the formula
a=(a1,...ap+1) = Al (1,...,1)%.

Let @ := (-1,1)¢71 x (0,1). For a function f € Fg’p(Q), we define its “reflection” Rf on Q' :=
(-1,1)% 1 x(-1,1) by

&, xq), ifxg=0
/ .
Rf(x',xq) := > ajf(x',—x—?), ifxg<0-
1<j<k+1 J

As shown in [2, Section 7], we have

”mf”an’P(Q/) ,S "f”Fg’p(Q) (63)

(We note that it is easy to see that (6.3) holds when ¢ = 2 and o is an integer. In this case, the
space Fg P reduces to a classical Sobolev space, and then (6.3) is well-known, see e.g. [1, Theorem

5.19].)
Extensions and traces. Consider o > 1/p and a function p € C° (Rd_l). We write p; for the function
defined by p.(x') := t1=% p(x'/¢), with ¢ > 0. Given a function f € Bg_l/p’p([Rd_l), one can “extend” it

to R~ x (0,00) by setting
F(x',xq):=f % py,(x"), V(x',2q) € R41 x (0, 00).

In addition, assume in what follows that supp f < (—1,1)?"1. Then, we have (see [2, Lemma
7.3])

||F||Fg,p(Q) g ||f||Bg—1/p,P((_1,1)d_1)- (6-4)

When the integral of p on R?~1 is 1, the function F extends f, in the sense that trF = f on
R?~1 x {0} that we identify with R?~1. When the integral of p on R?-1 is 0, we have trF =0 on
R-1 (see [2, proof of Lemma 7.2]).

One can also see directly that, if f is continuous on [—1, 1]d_1, then F is continuous on R% 1 x
[0,00), and we have

||F”L°°(Q) 5 ”f”LOO([—l,l]d_l) . (65)

Besov spaces on 0Q). Let 0 >0, 1 < p,q < oo be some parameters and suppose (2 is a smooth
bounded domain in R?. Then, there exist open sets V7, ..., V,, covering 0Q such that each VinQ
is isometric with a smooth epigraph. Hence, for each j there exists a bounded domain I'; RA-1
and a diffeomorphism y;:I'; — V;nd€). Let f be a smooth function defined on 9. We define

n
I Iz 0y = 2 IF owjllgerr
Jj=1

Different coverings yield equivalent norms (see [7, Section 3.3] for details). The space Bg’p (0Q)) is
the completion of C*°(0Q2) with the respect to the above norm. It is well-known that if F' € Fg Q)

and o > 1/p, thentr F € Bg‘””’p(aﬂ). Conversely, given f € Bg‘l/”’p(a(z), there exists F € F;"”(Q)
such that ¢r F = f on 0Q2 (see e.g. [7, Section 3.3]).

Pullback. We quickly recall here some basic properties of pullbacks following [8]. Suppose Q; <
R and Qs = R%2 are two smooth bounded domains and let F : Q; — Qo be a smooth function. The
pullback F*¢ of an k-form ¢ on Qs is the k-form on Q; defined by

F*¢p:= Y (proF)dF;)A...A(dF;,),
|I|=k

where {i1 <...<ip} =1 in the above sum. We have the following properties:

F*(p1 A p2) = (F*p1) A (F* o),



3. PROOF OF THE MAIN RESULT 131

for any two forms ¢1,¢2 on Qg (see [8, p. 75]);
F*(d¢p)=dF*(¢p),

for any form ¢ on Qg (see [8, p. 76]).
If Q3 < R% is another smooth bounded domain and F': Qg — Qg is smooth, then

(F'oF)*¢p=F"F" ¢,

for any form ¢ on Q3 (see [8, Exercise 1, p. 81]). As a consequence, when F is a diffeomorphism,
F Y F*p=¢,

for any form ¢ on Qo.

Similar properties will be used also in the case where the forms are defined only on boundaries
of domains.

Before preceding to the proof of Theorem let us note that, the condition “vAdv=vAdy
on 0()” is necessary for the solvability of (6.2). This can be easily deduced from the following
proposition, by using some of the above facts.

PROPOSITION 6.6. Suppose 1 < p,q <oo and s > 1/p are given and let 1 <l <d -2 be an
integer. If u € Fg’p (Q) is an l-form such that du = 0 in the distributions sense in Q, then vAdu =0
on 0€).

PROOF. It suffices to prove that, for each x € 0Q), there exists a number r, > 0 such that
vAdu =0on 0QnNB(x,ry). Fix xo € 02, and consider a number r,, > 0 such that for B := B(xo,,)
the set QNB is a piecewise smooth, simply connected domain. By standard regularity theory there
exists an (I — 1)-form ¢ € F;H’p (QNnB) such that u = d¢ on QNB. Consider now a diffeomorphism
F:V — B (here, V c R% is an open set) such that I' =F10QnB)cR¥ 1 x{0}. Vi:=F1(QnB)c
V. Since F*u € F;’p (V1) (see [6,, Proposition 6, p. 16]), we easily see that the trace on I' of TF*u

is a genuine form on I' whose coefficients are in B;_l/p P (T'). It remains to show that the trace on

I'of ¥F*u is closed on T.
We have

F'u=F*d¢p=d¢’,on Vq,
where ¢ :=F*¢ € F;H’p (V1). Writing
¢'= ) pday,
\I=1-1
we get
tr SF*u=tr ) ) 0i¢rdx;=dga(tr T¢') onT,
I|=1-11<i=d-1
de¢l

where dpa-1 is the exterior derivative considered only in the coordinates x1,...,xg-1.
This concludes the proof of Proposition O

In what follows we will use several times Proposition

3. Proof of the main result

From now on, we let a := d/p. Also, [ is an integer such that 1 </ <d -2 and p is such that
d — 1 < p <00, unless otherwise mentioned.
First, we can easily see that Theorem [6.1|implies the following local version.

THEOREM 6.7. Suppose Q is a bounded piecewise smooth domain in R%. Let 1<l <d—-2bean
integer and consider the parameters d -l <p <oo, 1<g<oo, a:=d/p. If p € Fg’p(Q) is an l-form,

then there exists an I-form u € C(Q)NF g P(Q) such that
du=deg, on Q.
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Also, one can choose u such that
” u ”LOO(Q) + ” u ”Fg’p(Q) 5 || (p ||ngP(Q) .

Note that the above statement does not involve any boundary conditions, and is obtained by
extending ¢ to R?. In order to handle the boundary conditions, we will use the following result:

LEMMA 6.8. Let Q be a smooth bounded domain in R%. Let 1 <1 <d -2 be an integer and
consider the parameters d—1 < p <oo, 1 <q <oo, a:=d/p. For any l-form y € C(OQ)OBZ_I/p’p(éQ)
satisfying v Ady =0 on 0Q), there exists an l-form u € CQ)nF g P(Q) such that

du=0, onQ
u=y, onoQ’

Moreover, u can be chosen such that
lullzeoy + lullperq) S ”Y”Lw(ao) + ”Y”Bgflfw(ag)'

Theorem is a direct consequence of Theorem and Lemma Indeed, suppose y and
v are given as in the statement of Theorem According to Theorem there exists an /-form

u' € CQQ)NFIP(Q) such that du’ = dv in Q. Since tru’ € C(OQ)NBS PP (0Q) and vAd (y —tru') =
0 on 0L (see Proposition , Lemma implies the existence of some u” € C(Q) r‘qu P(Q) such
that du” =01in Q and tru” =y —tru’ on 0Q. We find that u := v’ + u” satisfies the conclusion of
Theorem [6.4] (estimates included).

PROOF OF LEMMA 6.8l We note that, thanks to the open mapping theorem, it suffices to
prove only the existence part. Following the strategy in [2, Section 7] we start with the case
of a cube @ :=(-1,1)%"1 x (0,1) and its lower boundary 0;Q := (—1,1)?"1 x {0}. More precisely, we
consider systems of the form

{du:O, inQ

. (6.6)
u=y, ondzQ

In most of the cases we identify ;@ with (—1,1)¢~1. We will also use the notation x = (x',xq) €
Q' :=(-1,1)%"1 x(-1,1) where x' € 04Q and x4 € (-1, 1).

PROOF OF SOLVABILITY OF (6.6). Step 1. Consider an I-form y € C(04Q) mBZ'l/p’p(adQ), of the
form

Y= ) yr(x)dxr,
=
et

with dxg Ady = 0 in the sense of distributions on ;6. Note that in this case, thanks to the
special form of y, the condition dxy Ady = 0 reads dpa-1y = 0 (here, we indentify y with a genuine
form on (-=1,1)¢"1 and “dpa-1” is considered only in the variables x1,...,x4—1.) In order to apply
the results in Section[2] we assume that supp y < 94Q. (However, this hypothesis is not necessary
for the final result and can be easily removed.)

It can be seen immediately that there exist an /-form u’ € C(Q) ﬂFg P(@) and an I-form w €
Fy ~LP(Q) such that

{du'zdx(i/\w, in @ (6.7)

Tu' =1, on 0,Q

Indeed, consider a function p € C°(04Q) with
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and define an /-form by

u' = Yr¥ peg = ) VI * Pxgd,
1=l
|d|¢1
where p;(x') = 179 p(x'/t) for x' € 03Q and t > 0. According to (6.4) and (6.5) we have that u' €
c@Q) an’p(Q) and Tu’ =y on 04Q (see also [2, Section 7]). We now compute du’. By using the
fact that dy =0, we obtain:

du'=)" Y (8iy1) * pxgdxi Adxr+ Y 0q(y1 * pxy) dxa Adxr

1=l 1<i=d-1 =1
del del (6.8)

=px, ¥ (dy)+dxg ANw=dxq ANw,
where w is the [-form

w:=Y dqudxr e FEP(@Q). (6.9)
1=l
ldlel

Step 2. In order to eliminate w from (6.8), we rely on the following lemma.

LEMMA 6.9. If w € Fg_l’p(Q) is an l-form such that Tw is closed in Q, then there exists an
[-form w € C(@)ﬂFg’p(Q), satisfying

dw=dxg Nw, inQ
Tw=0, on 04Q

PROOF OF LEMMA [6.9] We assume for simplicity that @ > 1. In what follows, R is the reflec-
tion operator defined in Section [2for 0 := a—1>0. (When a < 1, the argument has to be modified
as was done in [2, Section 7, Proof of Theorem 1.3, case 1)].)

Since, Tw is closed in @, one can easily check that dxg A Rw is closed in @'. By standard
regularity theory, we can find an [-form ¢ € Ff]x ?(Q") such that d¢ = dxg ARw in Q'. Hence, by
using Theorem we obtain an [-form { € C(Q) an P(Q"), such that d{ = d¢ = dxg ANRw, in Q'.
Let us observe that, by decomposing { as

(=) (rdxr= ) {rdxp+ ) {rdxp,

|1I1=1 |\I|=1 |1I1=1
de¢l del

we get
d( = Z 04Crdxg Ndxy+ Z Z 0;{rdx; Ndxp + A,

1=l Il=l1<i<d-1
del del

where A is a form whose terms do not contain dx, as a factor. Since we have d{ = dxqg A Rw, the
form A must be identically zero. Hence,

dxg NRw =d( = Z 0q4Crdxg Ndxg+ Z Z 0;{rdx; Ndxj. (6.10)
[I|=1 lI|=11<i=d-1
d¢l del

We now construct a new [-form w as follows. First, one can check (see [2, Section 7]) that
there exist real numbers f9, fs, ..., Br+2 such that

B1+Pri2a1=1and B+ Pri2a;=0,forany 2<j<k+1, (6.11)
and

k+1

Y JBj—Br+2=0. (6.12)

j=1

(See Section |2/ for the definition of the a’s.)
We now define w by
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. k+1 . , xg ,
w',xg):= Y [ Y JBiC1, =) = Braalr(x', —xq) | dxr
=1 s=1 J

k+1 . X ,
+ ) X B, =) + Braal1(x', —xq) | daxr.
[I1=1 \j=1 J
del
Clearly, w € c@) me; P(®) and thanks to lD we have Tw =0 on 04Q. Let us see now that
dw=dxg Aw, in . Indeed, we have,

k+1
dw(x',xg)=), ), (ZJ,BJO {1, —) Br+20;(1(x, _xd))dxz Ndxg
chiletlll<l<d 1\j=1

k+1
+ ) (Z Bi0alr(x, )+,3k+20d(1(x —xd)) dxg Ndxg
|I| l J

k+1
+ Z Z (Z B;0; {1, )"',Bk+2a {1, —xd)) dx; Ndxj.

\I|=l1<i<=d-1\j
del

Changing the order of summation, we get

, _k+1. . ) X, -
dw(x',xq) = Z]ﬁjﬂ(x 7 )= Br2AMx’, —xq)
j=1
k+1
+) Bil X 0alr(x, —)dxd/\dx1+ Yoy e, _)dxi/\dxl
j=1  \I=t I1=1<i=d-1

del del

+Brea| Y. 0al1(x,—xg)dxg Adxr+ Y Y 0i{r(x',—xg)dx; Adxp |.
[I1=1 [Il=l1<i<d-1
del del

Using (6.10) and (6.11) we get that, in @ we have

k+1 Xg
dw(x',xq) =dxq N (Z B, 7) + Brr2Rw(x, —xd))
j=1
k+1 k+1
ded N (Z ,ij(x )-l- ,Bk+2 Z a]w(x —))
j_
k+1
=dxq A Y (Bj+ Bre2aolx’, - )
j=1

=dxg Ao(x',xq),
which concludes the proof of the lemma. Ul

Step 3. In order to obtain u satisfying the boundary condition on 0,46, we rely on the following
result.

LEMMA 6.10. Consider an l-form y € C(04Q) ﬂBg_l/p’p(adQ) such that

Y=Y yr(x)dxy.
1=
ldlel
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Then, there exists u € C (@) mF;r P(Q) such that

du=0, inQ
u=y, on 04Q

PROOF OF LEMMA[6.10l One can assume that supp y < 3;@. Considering the function p; as
before, we define on @ the form

wi=(D Y Y 0i(%a (Yiuw@ * pxg)) dxi Adxr = (=17 d (g (v * py)) -
[I1=l-11<i<d
de¢l

Note that, thanks to ti and lb , we have u € C(Q) ﬁF;r P(Q) and also we can check that ¢r

0; (x4 (Y1uid) * Px,)) =0 on 4@ whenever 1 <i<d -1 and tr d4 (x4 (YIuw) * Pxy)) = YIviay o 04Q
(see also [2, Lemma 7.2]). As a consequence we get that the trace of u on 0;Q equals y:

tru=-D"" Y yiuadrgndrr=y.
1I1=1-1
de¢l
Since the form u is exact, we must have du = 0 in . This completes the proof of Lemma
6.10 0

Step 4. Thanks to the above results, we can now handle the case where the trace has both
tangential and nontangential components.

LEMMA 6.11. Consider an l-form y € C(adQ)ﬂBg_l/p’p(ddQ) such that vAdy =0on 04Q. Then,
there exists an l-form u € C(@) N Fg P(Q) satisfying

{du:O, in @

: (6.13)
u=y, ondsQ

PROOF OF LEMMA[6.11l We decompose y as y = Ty +91y. The condition dxq A dy = 0 reads
dgi-1Ty = 0. Thanks to StepI (see (6.7)), there exist an /-form u' € C(Q) an;’p(Q) and an /-form
w € F?(Q) such that

du'=dxgAw, inQ
Tu' =Ty, on 04Q

This w automatically satisfies Tw =0 in @. According to Lemma we can find an /-form
welC@) mFg’p(Q) satisfying

dw=dxg ANw, In@Q
Tw=0, ondgQ

It follows that

du'-w)=0, inQ
T(w'-w)=Ty, ondsQ"

We can now apply Lemma to the trace form —¢r ‘ﬁ(u' — w) + 91y in order to obtain the
existence of an /-form uq € C(Q) mFg P(Q) such that

du1:O, inQ
ur=-Nu'-w)+Ny, ondQ

To conclude the proof of Lemma it suffices to set u :=u' —w + u;. O
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PROOF OF LEMMA [6.8] ON A SMOOTH EPIGRAPH. Consider a function v € C°((—-1,1)"!) and
the corresponding domain @ together with its “lower boundary” 0;@ defined by

Q= {(x’,xd) e(-1, D xRl yx) <xg <1 +1//(x’)},
04Q = {(x’,xd) e (-1, D% xR y(x) :xd}.

(By an abuse of terminology we will call a domain like Q above an epigraph and we will say
that ddais its graph.)

The function F : @ — @ with F(x,xg) := (x',xq —w(x')) is a diffeomorphism. We observe that F
naturally extends to an diffeomorphism (also denoted by F') from the closure of Q to the closure
of @. Also, the restriction of F' to ada(again denoted by F) is a diffeomorphism from 0036 to 04Q.

Now suppose y € C(Od@nBZ_l/p P (6dQV) is an /-form with the property that vAdy =0 on 6d§
If F* is the pullback of F', then dxg A dF*y =0 on 04€ (equivalently, TF*y is closed on ;Q). We
also have (see [6, Proposition 6, p. 16]) that F*y e C(0;Q) nt_l/p’p(OdQ).

This enables us to use the case of the cube to find an /-form u € C(a) melx (@) that solves the
system

du=0, iinQ@
u=F*y, onod Q

Now, choosing @ := (F~1)" u we get dii = (F™1)"du=0in @ and triz = (F~1)" F*y =y on 04Q.

Also (see [6, Proposition 6, p. 16]) we get u € C(Ev) mFg P (Qv). Hence, we have obtained a solution
of the system

dii =0, in§~ 6.14)
u=y, onadQ' '

Gluing the pieces.
Now we find a global solution. Suppose that Q is a bounded smooth domain. It is easy to
see that there exist some open sets Vy,...,V,,V/,...,V, such that V; c VJf, 0QcViu..uV,, and

each VJf N2 being isometric with a smooth epigraph (whose corresponding graph is VJ’ NnoQ). We
choose a family of functions ¢1,...,¢, € CP(R?) with supp¢p;jcV;and ¢p1+...+¢, =1on Q. Asin
6.14), we can find for each j € {1,...,n} an [-form u; € C(VJf ﬂQ)an’p(VJ{ N ) such that du; =0
in VJ{ NQand uj=7on VJ’ N0S). We extend each u; by 0 outside V]f NQ and we define the /-form
u:=@rut+ ...+ Ppu, on R, Clearly, u € C(ﬁ)ﬁFg’p(Q) and

{du:L, in Q 6.15)

u=vy, onoQ’
where L = L(u1,...,u,) € Fg P(Q) is an (I +1)-form. Note that the differential regularity of the
source term L is a > a — 1. This will be used in what follows.

In order to complete the proof of Lemma[6.8| we need to apply the following version of Theorem
adapted to the scale of the Triebel-Lizorkin spaces.

THEOREM 6.12. Let Q be a bounded smooth domain in R®. Consider the parameters 1< p,q <
oo, s> 1 and an integer 1<l <d —2. Suppose v € Fg’p(Q) is an l-form satisfying v Adv =0 on 0€.
Then, there exists an l-form u € Fg’p (Q) satisfying

du=dv, on()
tru=0, ondQ’
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Moreover, u can be chosen such that
”u”FZ’p(Q) 5 ”U”F;’P(Q)-

SKETCH OF PROOF OF THEOREM [6.12] Notice that, by the same method as above we can
obtain an analogue of || for the “noncritical” case. Namely, for a given /-form g € B;_l/p P(00Q)
satisfying v Adg =0 on 0Q2, we have

{d¢:L1, in Q

. (6.16)
tro=g, onoQ

for some [-forms ¢ € Fg’p([R%d) and L1 e F;P(Q).

Fix 1 < p <oco. At this moment we know that, thanks to Theorem the above the statement
of Theorem is true for any integer s = 2 and q = 2. For any pair (s, qg) of parameters, consider
now the following assertion

A(s,q): “Theorem[6.12)is true for s and q.”

We show that (6.16) and A (s,2) for all the integers s = 2, are sufficient in order to conclude
A (s, q) for all the real numbers s >1 and all 1 < g <oo.
Let1<o<s<o+1. We show that

A(o+1,2) implies A(s,q) (6.17)
for any 1 < g < co. Indeed, since o < s we have F;”(Q) — F, "’ (Q). Since, L1 € F, *(Q) there exists
a compactly supported (/ + 1)-form Li€ Fg’p(IRd) such that L1 = L1 on Q. Let ¢y = d*A 1L, €
Fy *LP(Q)). We observe that

vAdpi=vALi=vAddp=vAdg=0on Q.

By applying A (o +1,2) one can find an [-form ¢ € Fg *LP(Q) — F;’p (Q2) such that

dpa=d¢p1=L1=d¢in Q,
and ¢r ¢o = 0 on 0Q. If we define ¢g3:= ¢ — g € F;”(Q), then, using , we get

{d¢3 =0, inQ

. (6.18)
tr¢ps =g, on 002

Now, suppose an [-form v € F”(Q) is given such that v Adv = 0 on 9. Applying (6.18) to
g :=tr v, we obtain an /-form ¢ € F;’’(Q) such that

dep=0, in Q
tro=trv, onoQ’
It suffices now to set u := v — ¢ and we obtain A (s, q) and hence (6.17) is proved.

As we mentioned above, thanks to Theorem we have A(s,2) for any integer s = 2. This,
together with give us that A (s,q) for any real s > 1 which is not an integer and any 1 < g <
oco. By applying once again together with this last result, we obtain the full statement of
Theorem [6.12] O

PROOF OF LEMMA [6.8/ COMPLETED. We extend the (I + 1)-form L from to a compactly
supported (I + 1)-form L € F;”P (R?) and we write L = d¢ for some [-form ¢ € F, *LP(Rd). In par-
ticular, we have d¢ = du in Q and thanks to Proposition vAdp=vAdu=vAdy=0on
0Q. Hence, by Theorem @, there exists an [-form ¢; € Fy LPQ) — C(Q) NF,P(Q) with ¢r
¢1 =0 on 0Q and such that d¢; = d¢p = du in Q. Notice that, it suffices now to redefine u as
u—¢1€CQNF;P(Q). O

The proof of Theorem [6.4]is complete. O
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Miscellaneous






CHAPTER 7
Minimal BV -liftings of W'!(Q,S') maps in 2D are “often” unique

Let Q be a smooth, bounded and simply connected domain in R? and % a positive
integer. We prove that the set of vectors a = (ay,...,ar) € QF for which each u € Wi1(Q,S!) n
C(Q\{a1,...,az}) admits a unique (mod 27r) minimal BV -lifting is of full measure in Q. (Here, S?
is the unit circle.)
In particular, this implies that the set of those u € W1 (Q,S!) that admit a unique (mod27)
minimal BV -lifting is dense in Wl! (Q,S!). This answers a question of Brezis and Mironescu.

1. Introduction

Suppose Q is a smooth, bounded and simply connected domain in R2. It is known (see [4}
Section 6.2], [3], [6] and [2, Theorem 2.4]) that for each u € W1 (Q,S?) there exists a BV -lifting
of u on Q, i.e., there exists ¢ € BV (Q,R) such that u = ¢'¥ on Q. Clearly, ¢ is not unique; if ¢ is a
BV -lifting, then so is ¢ + 2kn, k € Z. We say that ¢ is a minimal BV -lifting of u if

|olgy = i_nt;P |#l5v
u=e
where

|¢lpy = ||D¢”M(Q,R2)'
Clearly, the above infimum is attained. In general, the minimal lifting is not unique, even
(mod 27). For example, the following functions have more than one minimal BV -lifting (mod 2rx):
a) u(z):=2z/|z|, on Q = B(0,1) (the unit disc);
b) u(z):=(2z-1)"1122 - 1|2z +1)[2z + 1|7, on Q = (-1,1)2.
(See Remark below.)

In order to simplify the presentation, in what follows, uniqueness of liftings is meant (mod 2r).
We do not specify this anymore.

We are going to answer the following question raised in [2]: is the set of functions u €
W11(Q,S!) which admit a unique minimal BV -lifting, residual in W11 (Q,S1)?

The answer is positive. More specifically, we have the following result.

THEOREM 7.1. Suppose Q is a smooth, bounded and simply connected domain in R2. Consider
the set

U:={ue whl (Q,Sl) | u has a unique minimal BV -lifting}.
Then, U is a G dense subset of W11 (Q,S?1).

This will be proved by using the geometrical description of the minimal liftings given in [2]
combined with some “generic” geometric properties of k-tuples in QF, where % is a positive in-
teger. In fact, our proof will give a somewhat more precise result. Consider u € Wh! (Q,Sl) N
C(Q\{a1,...,ar}), where ai,...,a; are distinct points in Q. It is easy to see (see Remark be-
low) that whether or not © admits a unique minimal BV -lifting, depends only on the vector of
singularities a = (a1,...,az) € Q" and the vector of degrees d = (d1,...,d), with d; := deg(u,a;)
(the degree of u on a small circle around a;). We have that in “almost all cases” the minimal
BV -lifting of u is unique:

143
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THEOREM 7.2. Suppose Q is a smooth, bounded and simply connected domain in R2. Let
k be a positive integer. The set of vectors a = (aq,...,ar) € Qk for which each u € Wh1 (Q,Sl) N
C(Q\{a1,...,ar}) admits a unique minimal BV -lifting (regardless the choice of d1,...,d} € Z) is of
full measure in QF.

It is easy to see, using the results in [1], that Theorem implies Theorem (see Lemma
below).

2. “Generic” properties of k-tuples in QF

In this part, Q is an open subset of R? such that Q # @, R2.
We start by fixing some notation. Given a point x € 2, we will denote by P, its set of projections
on the boundary of Q, i.e.,

P,:={yeoQ | dist(x,002)=|x—yl}.

We say that x € Q2 has a unique projection on 02 if P, contains only one point. Also, given a
set A c R? we denote by diam A its diameter.

For the convenience of the reader we mention some elementary geometric facts.

Fact 1. Consider r > 0. Suppose P is a point in the open ball B(O,r) c R?, which is not its center.
Consider a € [0,27] and let @, € 0B(0,r) be such that the angle {POQ, equals a. Then, the
distance |PQ,| is a strictly increasing function of «a, for a €[0,n].

Fact 2. Suppose P is a point in the open ball B(O,r) c R%, which is not its center. Consider a < f3
two angles in [0,7]. Suppose @, is as above and Q;i e R2\B(O,r) is a point such that that the

angle A{POQ'ﬁ equals B. Then, |IPQ,| < ‘PQ'ﬁ).

Fact 1 is a direct consequence of the cosine formula. Fact 2 is a direct consequence of Fact 1
and the cosine formula. Indeed, with the above notation, we have from Fact 1 that |PQ,| < |PQ ﬁ|.

Now, since the function x — x? — 2x|OP|cos f8 is increasing on (|OP|,00) and ‘OQ%’ > |OQﬁ| =r>
|OP|, we have

‘PQ'ﬁ = )OQ}s 2—2‘0% |OP|cos  +|OP
>|0Qs|* ~2|0Qp|IOP|cos p+10P|?
= |PQs|* > 1PQI.

Using these facts we prove the following geometric lemma.

LEMMA 7.3. Let Q be an open subset of R? such that Q # @,R%. Suppose that B(xq,r) < Q.
Then, for any € > 0, there exist two numbers a, 6 > 0 depending only on €, and a cone C, of angle
a, with vertex xg, such that for any x € Co, N B (xg,0r) we have diam P, < .

PROOF. Choose x1 € P,,. We can suppose without loss of generality that r = |x1 — x¢|. For each
0 < B < 27 we consider the open cone Cg of angle § with vertex x¢ and axis determined by the
vector x1 —x¢. Let 0 < @ < /4 be an angle that will be chosen later. Fact 2 implies that

B (x,|x —x11) \B(x0, 0 — 1]) € Caq (7.1)

for any x € C,. Indeed, suppose by contradiction that there exists y € B(x,lx—x11) \B (x0, lxo — x1])

such that y ¢ Co.. In particular, we have y € R2\B (xo,r) and
|£(y — x0,%x —x0)| > a/2 > | £(x1 — X0,%X — X0)|.

Fact 2 gives now that |y — x| > |x1 — x|, which contradicts the fact that y € E(x, lx —x1]).
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Now, for any &' > 0 there exists a § > 0 depending only on &', such that, if |x — x| < 67, then
B (x,|x —x11) < B (x0, (1 +€) lxo — x1). (7.2)

Fix ¢ > 0 and choose § > 0 as above. From (7.1) and (7.2) we get that, for any x € C, with
|x —x¢| < &r, we have the inclusion

B(x,|x—x11)\B (x0,|x0 —x1)) © Ag e, (7.3)
where
Ageri= (Ezcz N B (x0,(1+¢) lxo - xll)) \B (%0, |x0 —x1]).

If x’ € P,, then |x - x’| < |x —x1], and hence P, < B(x, |x — x1|). Also, we have P, < 3Q, and since

B(xg,|xo —x1]) contains no point from 0(2, it follows that P, < B(x,]x —x11) \B (x0, |xo — x1]). Hence,
thanks to (7.3), we get P, c Ay .
It remains to observe that, if a and ¢’ are sufficiently small, then diam A, o < e. This implies

diamP, <diamA, <&

for any x € C, N B (xg,67). O

Using the above lemma we are able to prove the following (possibly known) proposition con-
cerning the smallness of the set of points with nonunique projections on the boundary.

PROPOSITION 7.4. Let Q c R? be an open set such that Q # @,R2. If M is the set of the points
of Q which have unique projection on 02, then M° := Q\M is a Lebesgue null set.

PROOF. First we note that

(0. 0]
M = () M, where M,,:={x€ Q| diamP, < 1/n}.
n=1
We will show that each M, contains a Lebesgue measurable set of full measure and hence the
exterior measure of each My, is 0. This will show in particular that each M,, is measurable, M is

measurable and
o0

m(M) <) m(M:)=0.
n=1
Fix n = 1. With € = 1/n, let a and § be as in Lemma If B(xg,r) c Q and @ is a square
centred at x¢ and such that @ < B(x(,6r), by applying Lemma |7.3| we can find a cone C of angle
a with vertex x¢ such that Cn@® < M,,. Note that

m(Cn@)
> 4
m(Q) = 74

where 0 <7 <1 only depends on a and hence it only depends on n.
Consider a nonempty open set V < Q). We claim that we may write

V=@
=1

with @; essentially disjoint squares such that, for each j, there exists some ball B(x;,r;) < Q
(where x; is the center of @ ;) with @ ; = B(x;,6r ). Indeed, it suffices to consider first the Whitney
decomposition

V=@
k=1

9£ V, then cut each ka into a finite number of squares of size < 6rg, where r is the distance from
Qr to 0Q).
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Applying lb we get a collection of cones C*, C2,... such that C/' NQ j are essentially disjoint
and m(C’/ N Q;) =nm(Q;) for all j = 1. Now, for « := U;>1(C/ NQ ;) we have

00 ) 00
m()=Y m(C'nQj)=nd m@;)=nm(V).
j=1 J=1
Note that, since each C/ N Q@ j is included in M,, we have «f < M,,. This implies that, for any
nonempty open set V < Q (of finite measure) and any 0 > 0, there exists a closed set AcVnM,
such that

m(A)
——=n-0. 7.5
) n (7.5)
We now introduce the following quantity
A
R := inf sup ma)

VeQacp, v m(V)’

where inf is taken over all nonempty open sets V < Q2 and sup is taken over all closed sets
AcVnM,. By (7.5), we have n < R < 1. We show that R =1.

Let V be as above. Choose 0 < 8 < R. We can find a closed set Ag < V n M, such that
m(Ag)/m(V) > R —0. The set V\A( is nonempy and open. Hence, by we can find A;
c(VN\Ap)n M, such that m(A1)/m(V\Ay) >R —60. We have that AguA; <V nM, and

m(AgUAy) :m(Ao) N m(Ay) S m(Ay) Y(R-0) m(V\Ay)
m((V) m((V) m((V) m(V) m(V)
mA) [ mA) o mA))
=) +(R 0)(1 (V) ) =(1-R+06) m(V) +R-0

>(1-R+0)(R-60)+R-0.
Since 6 can be chosen arbitrarily small, we get
R=(1-R)R+R.

Hence, we have R =0or R =1. Since R =21 >0, we get R = 1.
This shows that M, has full measure in (2, concluding the proof of the Proposition (7.4 U

A shorter proof of this proposition can be given by using Rademacher’s differentiation theo-
rem. The following proof was suggested to the author by P. Bousquet.

ANOTHER PROOF OF PROPOSITION [7.4]. Consider the function ¢ : Q — R defined by ¢(x) :=
(dist(x,0Q))%. Choose x € Q such that @ is differentiable in x. Fix v € R2. If x' € P, then

px+tv) < |x +tv —x'|2 = |x—3c'|2 + 2t<v,x —x') + 12 |v|2
=(x)+ 2t (v,x —x') + % |v|?,
for any t € R with x + tv € Q. Hence, if ¢ > 0 is as above, we get
p(x +tv) — p(x)
t

and letting ¢ — 0, we obtain (Ve(x),v) < 2(v,x —x'). By a similar argument (considering ¢ < 0) we
get (Vo(x),v) = 2(v,x —x'). Since v is arbitrary, we get V(x) = 2(x —x’). In particular, we obtain
that P, = {x'} (x has unique projection on 0Q). (This argument is taken from [5, p. 14].)

Since ¢ is locally Lipschitz, the set of points x € Q such that ¢ is differentiable in x is of full
measure in Q. By the above observation we get Proposition U

S2<v,x—x'>+t|vl2,
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LEMMA 7.5. Suppose d1, ds € N* and K < (0, 1)%1 x (O, 1)?2 is a closed set with m(K) > 0. For
any y €(0,1)% define
K, := {x € (O,I)d1 | (x,y)eK}.
Then, there exists a measurable set A c (0, 1)%2 x o, 1)d2, with m(A) > 0, such that for all the

pairs (y1,y2) €A, m (Ky1 meQ) > 0. In particular, there exists a point P = (y1,y2) € A such that all
of its 2dg coordinates are pairwise distinct and m (K, nK,,) > 0.

PROOF. For (y1,y2) € (0,1)%2 x (0,1)%2 we write
m(Ky, NK,,) =f Ik, )1k, (X)dx=f Tx (x,y1) I (x, y2)dx.
0,191 1 2 (0,1)%1

Integrating on (0,1)%2 x (0,1)%2, and using the Cauchy-Schwarz inequality, we get
f f m (Ky, nK,y,)dyidys =f (f I (xayl)dyl) (f T (x,y2)dy2 |dx
(0,172 J(0,1)%2 0,11 \J(0,1)%2 (0,1)%2

2
_ f ( f ﬂK(x,y)dy) da
(0,0%1 \J(0,1)%2

2
> (f f Ix (x,y)dydx)
(0,1)%1 J(0,1)%2
=(m(K))% >0,

whence the first claim.

To get the second claim we observe that the set of the points in (0, 1)?2 x (0,1)?2 for which at
least two of the 2dg real coordinates coincide, is contained in a finite union of hyperplanes, and
hence is a Lebesgue null set. Hence, its complement is of full measure and intersects A. U

Now we use the above lemma to prove the following.

LEMMA 7.6. Let Q c R? be an open set such that Q # @,R2, and k € N*. Consider some real
numbers a;, 1<i<k, a;j, 1<i<j<knotall zero and c € R. Almost everywhere on QF we have

Z a;dist(x;,00Q)+ Z aij|xi—xj|7éc.

1<i<k 1<i<j<k

PROOF. Consider the function f : Q% — R defined by

fX)= Z a;dist(x;,00Q)+ Z a;j |xi —xj| R
1<i<k 1l<i<j<k
where X = (x1,...,x3) € QF.
Suppose by contradiction that the set M := {x e Q| fX)= c} has nonzero measure. Since
f is continuous, M is closed and by applying Lemma we can find some Y; = (x%,...,x%),Yg =
(x%, ...,xz) € Q%1 such that the elements x%, ...,x,i,xg, ...,x,% are pairwise distinct and m (MY1 N MYQ) >
0. We have that, for any x € M' := My, n My, c Q,

k

aldist(x,OQ)+Za1j‘x—x}’:cl, (7.6)
j=2
k

aldist(x,09)+2a1j‘x—x?‘202, (7.7)

j=2
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where c1 and cy are some constants. By subtracting the above equalities, we get for any x € M’,
k

ZalJ‘x x‘ Zalj‘x sz‘—63

j=2
for some constant c3. The function g : Q\ {x;, xé,x2, , X d} — R defined by
glx)= Zah’x X ‘ Zalj‘x x“ ‘
j=2

(which is real analytic) is constant on M’. Since m(M') > 0, it follows that g = c3 on Q.
Suppose now that aq;, # 0 for some jo = 2. We can write

k k
1
ajo %~ | = Z alj’x xt ‘ Zalj‘x x= ’-I—Cg (7.8)
J=2 Jj=2
J#jo

on Q2. However, in a neighborhood of le.o, the right hand side of is a C! function, while the
left hand side is not. Hence, we must have a1; =0 for all j = 2.

By a similar argument we get that all the coefficients a;; are zero.

The relation reads now as a1dist(x,002) = cq1 on M'. Suppose a1 # 0 and consider the set

={xeQ|dist(x,00)=ci/ai}.

Since M' ¢ #, the set .# has positive measure. Hence, there exists a Lebesgue point xg in .%,
i.e., some xq € ¥ satisfying
< NB(xg,
lim 7L 0B@0.1) (7.9)
r—0  m(B(xp,r))
Let x1 € 0Q2 such that |x¢ —x1| = dist(xg,0Q2). Using the notation from the proof of Lemma|7.3|
we have that Co,3 N NB(xg,|x9—x11) = @. Indeed, if x € Coy3NB(xg, |x0 — x11), then dist(x,0Q) <
ci/a1. Hence,

lim m (¥ NB(xg,r)) lim m (& NB(xg,r))\Cay/3) - 2n —27/3 _ g
r—0 m(B(xg,r)) r—0 m (B(xg,r)) 21 3’
which contradicts (7.9).
Hence a1 = ¢; = 0. By a similar argument we get also that all the coefficients a; are zero,
obtaining a contradiction. U

With this results we can easily prove the following

PROPOSITION 7.7. Let Q c R? be an open set such that Q # @,R2, and k € N*. For almost all
X = (x1,...,xz) € Q% we have that the numbers dist(x;,0Q), 1<i<k, |x xj|, 1<i<j<kare
linearly independent over Z and each x; has a unique projection on 0€).

(We will say that a point X as above has the property (P).)

PROOF. Let v1,v9,..., be an enumeration of the set ZV¥\ {0}, where N := k + (g), and for each
X =(x1,...,x) € Q% consider the vector

AX) = ((dist (s, 00 1izp» (1% = 45])1;jy ) € RY.

Let A, := {X € QF | (v,,AX)) = 0} for n = 1. By Lemma we have that m(A,,) = 0 for all
n = 1. Hence, the set

A:={X € Q" | there exists v e 7\ {0} with (v, AX)) =0} = | A

n=1
is Lebesgue null.
This fact combined with Proposition gives the result. U
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REMARK 7.8. It is easy to see that Lemma Proposition Lemma [7.6| and Proposition
remain true in R? for d > 3. The adaptations of the above proofs are obvious.

3. Geometric properties of liftings in 2D

From now on we suppose that Q is a smooth, bounded and simply connected domain in R?.
We are going to apply the Proposition in order to obtain the prevalence of the set of those
u € Wh1(Q,S?), with a finite number of singularities, that admit a unique minimal BV -lifting.
We will use the conventions and several facts from [2, Chapter 3] to describe the minimal liftings
(and the minimal configurations) of a given u € W1 (Q,S!) with a finite number of singularities.
We quickly recall these conventions and facts.

Consider a function u € Wh1(Q,S!) nC(Q\{ay,...,ar}) where ay,..., ar € Q are pairwise dis-
tinct points. To the vector of singularities a = (a1,a9,...,a;) we associate the vector of degrees
d =(d1,dg,...,d;) where d; := deg (u,aj) is the degree of u computed on a small circle around a .
We consider a fictitious point aj 1 € 002, of degree

k
dri1=-— Z dj.
j=1

We split the family of points a1,a9,...,az,ar,1 in two disjoint parts: the family of “positive
points” whose degree is positive and the family of “negative points” whose degree is negative. We
omit the points of zero degree. The points from the first family will be denoted P; and those from
the second family N;. With these points we create a list {P;,N;}1<;<,, by repeating |d J-| times
each point of degree d;. It is easy to see that there are as many positive and negative points, and
therefore these points can be matched in pairs.

We introduce the following pseudometric on Q:

dists(A1,As):=min{|A; — Asl|, dist(A1,0Q)+dist(Ag,dQ)},
for A1,A9 € Q.

With this we define the quantity:

m
L(a,d):=min ) _dists(P;,Noq))- (7.10)

O€Sm =1

We recall that ([2, Chapter 3, Lemma 3.4]) we can further add points from 0Q to the collection
{P;,Ni}1<1<m, to obtain a possibly larger collection {P;,N;};<;<,, satisfying the properties:

n k n k
Yop,=Y dida, Y.0n =Y dide, in2'(Q), (7.11)
=1 j=1 =1 j=1
d;j>0 d;j<0
and
n
L(a,d)=)_|P;-Njl. (7.12)
=1

We will say that a collection of oriented segments (P;,N;)1<;<, (counted with multiplicities)
formed with points satisfying (7.11) and (7.12) is a minimal configuration associated with (a,d).
Note that, in general there is more than one minimal configurations for a given u.

A connection associated with (a,d) is an R2-valued measure @ on Q of the form

o0
p=Y v (SinQ),
=1

where S; are Borel subsets of C! oriented curves in R? of normal vectors v;, with

Y #M(SinQ) < oo,
=1



150 7. MINIMAL BV-LIFTINGS OF w11 (Q,Sl) MAPS IN 2D ARE “OFTEN” UNIQUE

and satisfying

k
curlp=)" djba;-

j=1

A minimal connection (associated with (a,d)) is a connection u (associated with (a,d)) such
that ||,u||ﬂ =L(a,d).

It is known (see [2, Chapter 3]) that there is a one-to-one correspondence between the minimal
connections and the minimal liftings of a given u € W (Q,S1) n C(Q\{ay,...,ar}). (Recall that,
by our convention, two minimal liftings are equal if they differ by an integer multiple of 27.)

REMARK 7.9. The above one-to-one correspondence between the minimal liftings and the
minimal connections gives us that the property that u € Wl-! (Q,gl) NnCQ\{ay,...,ar}) admits a
unique minimal BV -lifting depends only on the vector of singularities a = (a1, ...,az) € QF and the
vector of degrees d = (d1,...,dp).

REMARK 7.10. Let us discuss the examples, presented in the introduction, of maps having
several minimal BV -liftings.

a) In the case of u(z) := z/|z|, on Q = B(0,1), we have one singularity at the origin, of degree
+1. The minimal configurations are given by the pairs (P1,N71) where P; = 0 and N; is any
point on 0D(0,1) (considered with the degree —1). Hence, there are infinitely many minimal
configurations. Each one of these configurations corresponds to a minimal connection, hence we
have an infinite number of minimal BV -liftings for this w.

b) In the case of u(z) :=(2z2-1)"1|122 - 1|(2z + 1)|2z + 1|71, on Q = (-1,1)?, we have two singu-
larities, a1 = —1/2, respectively ag = 1/2, of degrees di = +1, respectively do = —1. We have in this
case exactly two minimal configurations. One configuration is given by the collection of oriented
segments (P1,N1), (P2,N2), where P; := —1/2 (of degree +1), N7 := —1 (of degree —1), Ng := 1/2
(of degree +1), Py :=1 (of degree +1). Another minimal configuration is given by the oriented
segment (P1,N9) (the same notation). Each one of these configurations corresponds to a minimal
connection, hence we have two minimal BV -liftings for this u.

REMARK 7.11. In order to prove Theorem|7.2] we will use a property weaker than the bijective
correspondence between the minimal connections and the minimal liftings. More specifically, we
rely on the fact that there is a surjective correspondence between the minimal configurations and
the minimal liftings of a given u € W1 (Q,S$1) n C(Q\{ay,...,ar}). In particular, if there exists
only one minimal configuration for u as above, then, there exists only one minimal lifting of u.
(See [2, Chapter 3, Remark 3.8].)

We need to introduce some new notation. Let u € W1 (Q,S1) n C(Q\{ay,...,az}) and (a,d) be
given as above, and suppose the vector a = (a1,a9,...,ar) € Q" has the property (P) described in
Proposition namely, the numbers dist(a;,0Q2), 1<i <k, |ai —aj|, 1<i<j<k are linearly
independent over Z and each a; has unique projection on 0€). Let P be a positive point and N a
negative point as above. We observe that one and only one of the following may happen:

(i) dists(P,N)=|P—-N|;

(ii) dists(P,N) = |P —N’|+|P’ —N| for some P',N' € 0Q with dist(P,0Q) = |P —N’| and dist(N,0Q) =
|P' - N|. Thanks to property (P), the points N’ and P’ are unique.

Indeed, the definition of d ensures that the pair (P,N) is in at least one of the above cases.
Also, thanks to the fact that |P —N|, |P -N' |, |P’ -N | are linearly independent over Z, we have
that only one of the above situations is possible.
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Consider the set of oriented segments
M :={(P;,N;)| 1<i,j<m, (P;,N;) is in case (i)}
U{(PN}) I 1=i,j < m, (Pi,N,) is in case (i)}
U{(P},N;)I1<i,j<m, (P;,N;) is in case (i)},
respectivelly the set of numbers
Mg :={|P;-Nj|I1<i,j<m, (P;,N,) is in case (i)}
U{|Pi=Nj| 1 1=i,j = m, (Pi,N;) is in case (i)}
u{|P!-N,|I1<i,j<m, (P;,N;) is in case (ii)}.
Clearly, the function 6 : M — M, defined by 6 (P,N):=|P — N|, is a bijection.

Fix 0 € S,,. Consider the sum
m
Ly:=) dists(P;,Nyu))- (7.13)
=1

Note that, thanks to the definition of dists, this is a sum with elements from M. Proposition
[5.37 allows us to define the set

¢y :={(671(r),n)| (r,n) € Mg xN, r appears exactly n times in }
If
Co={(671r),n1), s (67 (rp) s mp)}
let C, be the collection
?‘1(rl),...,5_1(r12,...,§_1 (rp),ert (rp).

J/

M v
n1 times np times

Thanks to Proposition [5.37, we immediately see that if 01,09 € S,, are such that L,, = L,,,
then C;, = C,,. If 0 is minimal, i.e, L, = L(a,d), then C, is a minimal configuration. In par-
ticular, it follows that there is only one minimal configuration. Hence, we get Theorem (see

Remark [7.11). O

REMARK 7.12. Consider a connection u associated with (a,d) as above. We can associate with
1 a unique 1-rectifiable current given by
o0
€:=Y 1.7 (SinQ),
i=1
where 7; is obtained from v; by a rotation of —7/2 (hence 7; is tangent to the C! curve that
supports S;). We have

k
06 =73 d;b,,. (7.14)
j=1

Also to each 1-rectifiable current satisfying we can associate a unique connection y. In
case where u is a minimal connection, € is a mass minimizing 1-rectifiable current.

In the language of geometric measure theory, Remark[7.9/and Remark[7.11] give the following:
if there exists only one minimal configuration for (a,d) as above, then, there exists only one mass
minimizing 1-rectifiable current (i.e., “least length curve”) with (measure geometric) boundary

k
Z djbq;. (See [2, Chapter 3, Section 3.9.4] for details.) Thus the proof of Theorem implies
j=1

the following: for a.e. (ai,...,a) € QF, and for every (di,...,d;) € Z*, there exists exactly one
k

least length curve with boundary Z djba;.
j=1
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Now we show how Theorem (7.2 implies Theorem From now on, we consider domains )
which are bounded, simply connected and smooth.

Fix k € N. Let d = (dy,...,ds) € (Z\{0})* and consider the set W, of those u € Wh! (Q,sY)
for which there exist some distinct ai,...,a; € Q such that u € Wh1(Q,S!) n C(Q\{ay,...,ar})
and deg(u,a;) =d; for all 1 < j <k. The set Wy is a metric space with the norm induced by
wll(Q,sh).

It is easy to see that each u € Wy can be written as u = uge’¥ with a = (ay,...,a;) as above,
with u, given by the formula

k
Uy (2):= (
1'1:[1 |Z _“j|

and v € WH1(Q,R).
This can be proved as follows. From [2, Chapter 3], we have

z—aj

d;
) ,2€Q),

k
JWw)=d(ug)=m) d;éq,
j=1

where o (u) := curl(u A Vu)/2. Hence, if v := u;'u = u,u, then v e WH1(Q,S?) and
JW)=J(uy)+J(w)=—-J(uy)+J(u)=0. (7.15)

Combining (7.15) with and from [2, Chapter 2, Lemma 2.8], we find that there exists some
w e WHL(Q,R) such that v = e'¥.

We have the following.
LEMMA 7.13. Fix k €N. For each d € (Z\ {0})k, the set Ug :=UNW, is dense in W.

PROOF. Let £ >0 and u € Wy. From the above observation, we can write u = uge'¥ for some
a=(ai,...,ar) € QF and (/&S WLL(Q,R). If @’ € Q% and the distance |a —a’| is sufficiently small,
then |[V(ug —ug)lz1 < €/2 and

[ 1wa=wa[Vuldw <@+ 2] Vo).
For u' := u eV we have
||V(u —u')”Ll < ||V(ua —ua/)||L1 +L Iua _ua’l |V1//|dx <e€.

Note that Theorem allows us to choose a’ € QF as above and such that u’ € Uy admits a
unique minimal BV -lifting. U

Note that, since the set of those u € W11 (Q, Sl) with a finite number of singularities is dense
in Wi1(Q,S?!) (see [1), Lemma immediately implies that U is dense in W1 (Q,S?). This
gives the density part in Theorem

To complete the proof of Theorem we show that U is a G5 set in W1 (Q,S?). We present
below the argument.

For each u € Wh1(Q,S?), we consider the set £ () of all minimal BV -liftings ¢ of u satisfying

1
—_ (x)dx
m(£2) fQ(P
We endow % (u) with the L metric and we consider p:Z(u)x £ (u)—[0,00) defined by

<. (7.16)

o (p1,92) = }cg lo1— @2 +27k|1, (p1,02) € LW)x LW).



3. GEOMETRIC PROPERTIES OF LIFTINGS IN 2D 153

Define
diam, £(u):= sup p(¢p1,¢2), (7.17)
¢1,h2€ L (1)
and consider the sets
D, :={ueW"(Q,S)| diam, £ (w) < 1/n}, n>1.
We easily check that U = n,>1D, and hence it suffices to prove that each D, is open in
wil(Q,st).
For this purpose we start by establishing some useful properties.
First, let (wm)m>1 be a sequence in W1 (Q,S?) converging to some u € Wh1(Q,S!), and let
(¢™),.~1 be a sequence in BV (Q,R) such that ¢™ is a minimal lifting of u,, for each m = 1. If ¢™

converges to some ¢ € BV (Q,R) in the L1 norm, then ¢ is a minimal lifting of u.
Indeed,

[ =)

When m — oco. It follows that u,, — e'¥ € BV (Q,§1) in the sense of distributions and hence
u=e?, ie., @ is a BV-lifting of u.
Using [2, Corollary 2.4], we have that

Z(um)=|um AVum -Do™| ,, (7.18)
where X (v), for v e Wh1(Q,S1), is defined as being the quantity

2(v):= <peBi\I/l(fQ,R) ||v AVu —D(/)”M.

o
=|le!? —e'?
LY(Q)

LYQ) = ”(pm - (p”Ll(Q) - 0,

In order to show the minimality of ¢, it suffices to show that
||u/\Vu—D(p||ﬂ < ||u/\Vu—Dw||M,

for any v € BV (O, R) (see [2, Corollary 2.4]).
Fix v € BV (2,R) as above. By (7.18) we have, forall m > 1,

||um/\Vum—D(pm||M§ ||um/\Vum—D1//HM. (7.19)
Since um, AVu, — u AVu in L1, we immediately see that
||um AV, —Dw”ﬂ - ||u AVu —Dw”ﬂ.
Also, Dp™ — D¢ in the sense of distributions and hence, from we get
|lunVu-Do| , < lim |umAVun-D¢™| ,<|uArVu-Dy| ,.
m—oo

A second observation is that the supremum in (7.17) is attained. Indeed, by the above ob-
servation, £ (u) is compact in L1(Q). Since L (u) x L (u) is compact in L1(Q)x L1(Q) and p is
continuous, there exist ¢1,¢2 € £ (u) such that

p (p1,92) = diam, £ (u). (7.20)

Going back to the proof Theorem it remains to prove that Dj is a closed set. We have
that:

Dt ={ue W' (Q,s")| diam, £ (u) = 1/n}.

Suppose that (,,),>1 is a sequence in D; converging to some u € w1 (Q,Sl). From (7.20),
there exist two sequences (¢7*) _., (¢3') _, with ¢T*,¢} € £ (uy,) for all m = 1, such that u,, =
e?1 = e!%% and

p (¢, ¢5) = diam, £ (un) = 1/n. (7.21)

Since (m)m=1 is bounded in W1 (Q,St), we get ||(p’1" ”BV’ ||<p;” ”BV S llumllyir < 1. Hence,
there exist @1,z € BV (,R) such that ¢T* — @1, 93" — @2 in L', possibly up to a subsequence.
According to our observation, ¢; and @9 are minimal liftings of u. We have from (7.21) and the
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continuity of p that p (¢1,92) = 1/n. Also, @1, @2 satisfy (7.16). We get that u € D,
The proof of Theorem [7.1]is complete.
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CHAPTER 8

On the continuity of Fourier multipliers on W’! (R¢) and W>* (R¢)

Suppose d = 2. Kazaniecki and Wojciechowski proved in 2013 ([3]) that every Fourier
multiplier on WhH1 (Rd ) is a bounded continuous function on RY. This is a generalization of an old
result of Bonami and Poornima concerning homogeneous multipliers of degree zero. We further
generalize the result of Kazaniecki and Wojciechowski. We prove that, given an integer [ = 1,
every multiplier on W’ (R?) or on W’ (R?) is a bounded continuous function on R?. We obtain
these results via a substantial simplification of the Riesz products technique used in [3]. Another
feature of our approach is that it does not rely on transference theorems.

1. Introduction

In this chapter, we study the continuity properties of functions which are Fourier multipliers
on the homogeneous Sobolev spaces W/ (R?) and W/ (R?), where I > 1 is an arbitrary integer.

Given a nonnegative integer [ and a parameter 1 < p < oo, the space WP ([R%d) consists of those
distributions £ on R? for which V’f € LP (R?). This space is endowed with the seminorm given by

I1F lyytogasy = | V'

LP(Rd) = I|2|a=)l( ”Vaf”LP([Rd) :

Given a function m € Llloc(IRd ), we say that m is a Fourier multiplier on W’? (R%) if, for each
Schwartz function f € #(R?) the distribution m ]? is temperate and if, in addition, the following
estimate holds:

1T f o < Clif e, ¥ f € SR, (8.1)

for some constant C < oo, where T, is defined by the relation
Tf =mf, ¥V f e PRY.
The least constant C in the above inequality will be called the norm of m and will be denoted
by |IT,, || (which is a quantity depending on p and /).
The Fourier transform that we work with is given by the following formula

7o) = f 0 fdz, v @D,
R

Some classical examples of multipliers on WP (Rd) in the case 1 < p < oo (for any [), are
the functions m;(¢) := ¢;/[¢|, defined for ¢ € R\ {0} and any j =1,2,...,d. In this case we have
T, =Rj, where Ry,...,Rg are the Riesz transforms on R?. Let us observe that the functions m j
are homogeneous of degree zero, i.e., m;(A{) = m;({), for all ¢ € R\ {0} and any A > 0. Also, m;
are not continuous at zero.

If p = 1, the situation is different. When / = 0, the m’s fail to be multipliers on WOl (Rd) =
L' (R?), since the R’s are not bounded on L!(R?). In fact, if m is a multiplier on L' (R?), then
it is easy to see that m is the Fourier transform of a finite measure and hence m € Cy, ([Rd). The
case of the multipliers on L™ (R?) is similar.

Suppose d = 2. Then there exist Fourier multipliers on W1-! (Rd) which are not Fourier trans-
forms of finite measures (see [[7, Proposition 2.2]). In fact, the proof in [7] concerning W1 (IR%d)
applies to all the spaces W'? (R?), with /=1 and 1 < p < oo.

Let us illustrate this when d =2 and [/ = 1, via a simple example from [7]. As a consequence
of Ornstein’s L! non-inequality (see [6]), there exists a distribution u, supported in the unit ball,
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such that dfu, afu are L! functions on R% and 4105u is not a finite measure. We define m := m

Clearly, m is not the Fourier transform of a finite measure, however m is a multiplier on W17 (R2).
Indeed,

Twf =0102u*f,

for any Schwartz function f.
Hence,

VT f = (0%u * 0of ,03u * 01 f)
and thus, by Young’s inequality,
IVT o flize < |03 2 102F e + |05 L1 101 £ 1lLs = (||0Fu |11 + |05 || L) IVF Lo -

Using Ornstein’s L! non-inequality, Bonami and Poornima proved in 1982 that the only
Fourier multipliers on Wi1 (IRd) which are homogeneous functions of degree zero and continu-
ous outside the origin are the constant functions. More precisely, they proved the following (see
[1, Theorem 2]).

THEOREM 8.1. Suppose d = 2, | = 1 are two integers and let ) be a continuous function on
R\ {0}, homogeneous of degree zero. If Q is a Fourier multiplier on W1 (Rd), then Q is a constant.

When [ =1, this result was generalized by Kazaniecki and Wojciechowski in 2013 as follows
(see [3, Theorem 1.1]).

THEOREM 8.2. Suppose d = 2. If m is a Fourier multiplier on W11 (Rd), then m € Cy, (Rd).

Since any function homogeneous of degree zero that is continuous on R? has to be constant, we
see that Theorem [8.2]implies Theorem [8.1] when / = 1. In order to prove Theorem Kazaniecki
and Wojciechowski used Theorem[8.1]and some Riesz product technique reminiscent of [10]. Also,
for technical reasons, some classical results concerning multipliers, as for example de Leeuw’s
transference theorems, were involved in the argument. The central role is played by the Riesz
products technique, a key tool being a relatively difficult lemma of Wojciechowski (see [9, Lemma
1], [10, Lemma 1]) concerning the L'-norm of some trigonometric polynomials.

We follow the ideas in [3] in order to prove a generalisation of Theorem for the case of
Wil (Rd), where [ = 1. The proof is also based on the Riesz products technique and the construc-
tions we use are very similar to those in [3]. However, rather than using Wojciechowski’s lemma
we rely on much easier facts instead (see Lemmas [8.14] and [8.16| below). The other ingredient
is Theorem We do not use transference theorems and, apart from Bonami and Poornima’s
result, the proofis quite elementary. Another advantage of our approach is that it also applies to
multipliers on W (R9).

Our results are the following.

THEOREM 8.3. Suppose d =2 and I > 1 are integers. If m is a Fourier multiplier on W5 (RY),
then m € Cy, (Rd).

THEOREM 8.4. Suppose d =2 and I = 1 are integers. If m is a Fourier multiplier on W1 (IRd),
then m € Cp (RY).

REMARK 8.5. In fact, what we prove in these theorems is that m is a.e. equal to some bounded
continuous function.

The proofs go as follows. First, following the idea in the proof of Lemma 3.1 in [3] we show, by
simple arguments, that, whenever m is a multiplier on W% (R?) or on W (R?), we need to have
m e Cy (IRd\ {0}). (More specifically, as a preliminary step in our analysis, we define a function
which equals m a.e. on R and is continuous and bounded on R?\{0}.) Next, using this conclusion,
we prove that, if m is a multiplier on W1 (R?) or on W (R?), then m has to be continuous at
the origin. For this part of the proof, we use constructions based on Riesz products.
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While the proofs of these facts are similar, we start by studying the multipliers on W5 [Rd),
since the proof is simpler in this setting. For this purpose, we adapt and simplify the ideas in
[8] to the case of W/ (R?), with the help of Lemma below. Next, we study multipliers
on W1 (Rd). We show by a duality method that the boundedness of T, implies the existence
of bounded solutions for some underdetermined differential equation. We conclude that such
solutions do not exist if m is not continuous. Here, the technique is similar to the one in [2],
which was in turn inspired by the one in [10].

2. Continuity outside the origin

Suppose that m is a multiplier of W%? (Rd) for some 1 < p <oo and [ = 0. Let us notice that
the norm of T, is invariant by dilations and isometries. More precisely, if 1 € R\ {0}, respectively
R € 0(d) and we set m (&) := m(AL), respectively mE(&):= m(R¢&), VEeR?, then

| T, | = 1 Twll @and | Tz || ~2,a 1 Tl (8.2)
where the [T, || is the norm of Ty, : WP (RY) — WP (RY).

Let us justify this when m € L1(R?); the general case is obtained by approximation. For any
d x d real invertible matrix A and any Schwartz function f on R?, we have the following identity:

PA oy _ a1
FAO= a9,
where f4(x) := f(Ax) for any x € R?. Via a change of variables, we find that
- : > CD™ [ ieat A
— d i(x,) — i{x,A71&) 1
Tosf @=@n) [ SOm@nF@de= T | A Om o F (A7) de

~(2m) f ) AN () FA ) de = T A ((A7))'x) forae. xere.
R
When, A = AI, we get that T, f = T}, f1(-/1). We obtain

[v' Tt |, =2 [ (Y Tnta) ], =272 VT,
SITRl A2 V| = 1Tl [ V£ -
Hence, |TmA || < [Ty, |l for any A # 0. This gives the first equivalence in (8.2)).

When, A = R, where R is orthogonal, we get T, rf = T, f R (R-). Since the absolute value of
each entry of R is bounded by 1, we obtain

AR ] (et (L] P L
<ITll|[V'FR| , Sea ITmll |['F -

Hence, H T,k || S1,d 1T || for any orthogonal d x d matrix R. This gives the second equivalence
in (8.2).

Let us first observe that the multipliers of W/!(R?) and the multipliers of W’ (R¢) are
bounded and continuous on R%\ {0}.

LEMMA 8.6. If m is a multiplier on W5 (R?), then m € Cyp, (R%\ {0}).

REMARK 8.7. Actually, the statement means that m has a bounded continuous representative
on R%\ 0.

PROOF. We recall that [ = 1. We essentially follow the argument in [3, Lemma 3.1]. We first
prove that m has a continuous representative on R% \ {0}. Indeed, let p be any Schwartz function

such that p(¢) #0, V¢ (e.g. a standard Gaussian). Set a’ = (62 1)1<p<d, Where 62 is the Kronecker

delta. Since O“j(Tmp) e L1, we find that m ji=@¢ )"‘j m is a continuous bounded function, and

(&) m©) p&) = m (&) for a.e. & e R, (8.3)
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Set, for ¢ #0,
m ;($)
FHEIN
It is not clear if the above definition is correct, since the result may depend not only on ¢, but
also on the choice of the coordinate ¢;. However, (8.3) implies first that this definition is correct
for a.e. ¢, next, using the continuity of m ;, the definition is correct for every ¢ and that, in addition
m is continuous. Clearly (from (8.3)), we have note that m =m a.e. and
(i& ) (&) p(&) = m (&) for every & e R\ {0} (8.4)

Using the fact that each m; is bounded, we find from (8.4) that m is bounded on the unit
sphere $S¢~1. More specifically, we have

&) = if & #0.

%ﬁ"f'm‘f)' STl (8.5)
Combining (8.5) and (8.2), we find that 7 is bounded. O

LEMMA 8.8. If m is a multiplier on Wioo (IRd), then m € Cy, (Rd\ {O}).

PROOF. As in the proof of Lemma we first prove that m has a representative which is
continuous on R\ {0}. Set m' defined by m'(¢) := m(-¢&). Clearly, m' is also a multiplier on
Wi (R?), with the same norm as m.

It follows that

HallT’”“PHLoo(Rd)

for any ¢ € C° (R2).
Consider now the normed subspace

<ITnl| Vo )’ (8.6)

V= (T 1 pecs(v)) < (co(r])”

endowed with the norm induced by (Cy (I]Qd))ﬁ, where f:=#{aeN? | |a| =1}. Let p be as in the
proof of Lemma We consider the linear functional L, : V — R defined by

L, (Vl(p) = <p,alle/(p> , VpeC¥ (IRd).

Thanks to , L, is well-defined and bounded on Vand ||Lp || <\ Twl ||p||L1(Rd).

Using the Hahn-Banach theorem, we obtain a bounded extension L, of L, to (Co (Rd))ﬁ )

Moreover, we can choose L, € ((CO [Rd))ﬁ )* = (M (Rd))ﬁ such that its norm equals |L,||. Let
(Ka) q=s € (M (Rd))ﬁ be an element representing L ,. We have that

lttall prggay < 1Tl | o] £1gay (8.7)
for any multiindex a, with |a| = . Also, we have
(0 Tmp,0) =1} (p, 01 Trp) = (-1 L, (V') = (-1 L, (V'9))
=1 Y (1a. V)= Y (Vharp),
lal=1 =1

ie.,

ATmp=Y Vg, (8.8)

lal=1
in the sense of tempered distributions on R?.
Taking the Fourier transform in (8.8)), we obtain

(&) m@©pE = Y (1) @a(®) :=m (&) a.e. on RY. (8.9)

lal=l
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Similar identities hold for the partial derivatives ai.Tm f,J7=2,...,d. Noting that each i, is a
continuous function (since p, is a finite measure), we continue as in the proof of Lemma and
find some 717 € C(R? \ {0}) such that m =77 a.e.

The boundedness of m is obtained exactly as in Lemma O

REMARK 8.9. In the case where 1< p < oo, it is not true that if m is a multiplier on W7 (R%),
then m € Cp ([Rd\{O}). For example if m(¢) := sgn(¢q), then T, is the Hilbert transform on the
first coordinate and hence m is a multiplier of any space W? (Rd), with 1 < p <oco. However, m
is singular on the whole hyperplane {{1 = 0}.

Also, if p = 2, any bounded measurable function is a multiplier. Hence, in this case, the
multiplier may be even less regular.

It remains to study, in W>! and W%, the continuity of the multipliers at the origin.

3. Almost radial limits

Following [3], Section 2], we will say that a function f : R% \ {0} — C has almost radial limits at
the origin if the following condition is satisfied.

If (Vy)n=1,Wyln=1 < R\ {0} are two sequences converging to 0

(D

Un Wnp

and lim f(v,)# lim f(w,), then liminf
n—.oo n—.oo

n—oo |Un| |wn|

Note that, if (I) does not hold for f = m, which is bounded, then there exists a sequence
(V)n=1 <RI\ {0}, converging to 0 and such that

% —v eSS m(vg,) — b1, m(vans1) — be, With by,bg € C, by # ba.
Un

By considering the possible limits (up to subsequences) of (m(-vg,)) and (m(-vg,+1)), we ob-
tain the following. If m : R%\ {0} — C is a bounded function which does not have almost radial
limits, then there exists a sequence (v,),>1 < R\ {0}, converging to 0, and such that (at least) one
of the two happens:

U

" veSh mvan) — b1, m(—van) — b1, m(vons1) — bo,
[Unl (IIs)
m(—vgu+1) — ba, with b1,b2 €C, by # b,

or
v

ﬁ —VE §d_1, m(vn) — b1, m(—vn) — bz, with bl,bg eC, b1 #bs. (ITa)
Un
We will refer to the first case as the symmetric case, and to the second as the asymmetric case.
The plan of the proofs of Theorems and consists of establishing the desired results
separately in cases (I), (IIs) and (IIa). In case (I), the proof relies on Theorem or on its Wi
variant, Theorem below.

4. Proof of Theorems and in case (I)

The case of W1 (Rd). First, as in [3ll, we observe that a bounded function having almost
radial limits at 0 also has (genuine) radial limits at 0, and therefore we may define the function

Q&) := r}il’{)lom(é/n). (8.10)

Clearly, the function  is homogeneous of degree 0. Now, one can easily see that ( is a
multiplier on W1 (Rd). Indeed, let f be a Schwartz function and let 1 be an arbitrary Schwartz
function with ||w|| 10 = 1. Thanks to || we have, for any multiindex a with |a| =/ andanyn =1,

[V Ty £ 0] S I Tl 1f Nl -
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On the other hand, the dominated convergence theorem gives, with ¢ =cq g4 := ol @m)-e,

(V Ty, frw) =c fR LETmEmFOT©ds—c fR LEMQOF ©OF©dE = (V" Taf v),
and hence,

(VTof )| < ITmll I f Il -

By Lemma we have that Q € C (R?\{0}). We are now in position to apply Theorem
and obtain that Q is constant. From this and condition (I), we deduce that m is continuous at the
origin. U

The case of W/ (R?). As above, we conclude that the function Q defined by (8.10) is a

multiplier on W/ (R¢). In particular, by Lemma we have that Q € C (R?\{0}). In order
to complete (as above) the proof in this case, it suffices to establish the following analogue of
Theorem [8.11 O

THEOREM 8.10. Let d =2 and | = 1 be some integers and let Q€ C (IRd\ {0};C) be homogeneous
of degree zero. If Q is a multiplier on W (IRd), then Q is a constant.

PROOF OF THEOREM [8.10l. We adapt the arguments from [5]. As in the proof of Lemma [8.8]
for any Schwartz function p whose integral is 1, one can find some finite measures p, such that

O Tap= Y Vo, (8.11)

lal=l
where Q' (&) := Q(=¢).
Now, if ¢ € & (R?) and ¢(x) := ¢(ex) for some & > 0, then
(01 Tape) @) =¢' (0 Tap) (ex), (8.12)

since (2 is homogeneous of degree zero.
Combining (8.11) and (8.12), we find that

gl f p(x)(allTQ(p)(sx)dx:zsl y f (V) (ex)d pr (). (8.13)
R4 R4

lal=1

Since () is bounded, OllTQr(p is the inverse Fourier transform of an L' function and hence,

dllTQr(p is continuous and bounded. Dividing both sides in 1D by ¢! and taking € — 0, we get
by the dominated convergence theorem,

(01 Tap) @ = mz—z 1a(RY) (V) (0),
for any p € & (Rd). This implies that
(01 Tap) ) = %—z 1a®) (V¥9) (x),
for any ¢ €. (R?) and any x € R%. Hence, by taking the Fourier transform, we get
SO P©)= Hzluamd):“a(f),
al=

and we have

&)=Y pa®HE =:p1(d).
la|=1

We can write

Q(é):plz(é)
S1

) (8.14)
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as an equality of two continuous functions in the domain where ¢; # 0. Similarly, there exists a
homogeneous polynomial p; of degree [ such that

pa(s)
l
Sa
as an equality of two continuous functions in the domain where ¢; # 0. From (8.14) and (8.15),
we get

Q)=

) (8.15)

rfilpl )= rfllpd (¢) everywhere in RY. (8.16)

By identifying the coefficients in (8.16), we see that p; must be a multiple of Ell, thus a con-

stant multiple of cfll (since p1 is of degree ). Going back to (8.14), we find that (2 is constant in
the region {{1 # 0}. Similarly, Q is constant in the region {{; # 0}, and thus constant. |

From now on, we investigate cases (IIs) and (IIa), which are more involved.

5. Proof of Theorem [8.3|

We argue by contradiction. We assume that m is not continuous in 0 and we show that
does not hold. The following easy lemma will enable us to replace some estimates involving
Schwartz functions with similar estimates involving instead functions which are linear combi-
nations of some exponentials. This last type of functions will be used to explicitly construct a
sequence of functions violating (8.1).

LEMMA 8.11. Let m be a multiplier on W>® ([Rd) for some integer [ = 0. Consider the set of
functions

Py, = { i Cjei<"qj>

=1

neN*, gi,....qn €RIN{O} and c1,...,cp € C}.
Let T}, : Py, — Py, be defined by

T,’n Z Cjei<~,qj>) = Z ij(qj')ei<"qj>,
j=1 j=1

for any neN*, q1,...,qn € R\ {0} and c1,...,c, €C.
We have that

| T f lyirtogay < 1Tl 1f lyit.co(may; (8.17)
for any function f € Py,.

REMARK 8.12. Note that, since the exponentials ei0:45) are linearly independent and P,, is
formed only with (finite) linear combinations of these exponentials, the definition of 7', is correct.

PROOF. We note that at this point we know that m is continuous and bounded on R%\{0}.
This will be used in the proof below.
Consider a function n € C° (R?) whose integral is 1. Fix ¢ € R%\{0}. For any small ¢ > 0, we

set g (8) = et tO7(et) on RY. Since ¢ is a Schwartz function, we have
Torn@f (€)= mOPE (O,

in the sense of tempered distributions on R%. A direct computation gives
0o —i(tE-q) s 1 —ie )
£ — l(t,s q) - G £
¥q (&) fRde n(ed)dt o Jou n(t)dt
(f—q) _ (2n)dn(q—€)

€ ed €

1
ed

=)
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Hence,

d _
IGE m(é) 27 (q - ‘f), (8.18)

Note that, since m € L°°, the right hand side of (8.18) is L!; we obtain using the Fourier
inversion formula,

: 1 (q=¢ g
€ — i(t,8) i(t,q—¢d) _
T (0g) ) = fR L€ mO5n ( . ) §= fR e mlq - eOn(O)de, (8.19)

in the sense of tempered distributions. We naturally identify 7', ((pfl) with the right hand side of
(8.19).
Now we can prove (8.17). Let f € P,,, with

f)= i cjet{bas),

j=1
Using (8.19) we have
n ) n
v/ Z cjf m(qj— sf)el<t,qj—86>n(§)df =|v!T,, (Z cj(pgj) (2)
Jj=1 R? L Jj=1 L

In other words, for every multiindex a € N¢ with |a| =1,

—£6)%mlqj — e6)eBUEI n(E)d¢

¢j

<ITwll (V@)D +e1Tnl Cry,
L !

where Cy , is a finite constant depending only on f and 7. Letting ¢ — 0 we find that:

n .
3 ch;).‘m(qj)e“t’qf)

j=1

n .
Ve Z ij(Qj)el<t’qj>
j=1

< Tl | V'] .
Ly Ly
Here, we use the fact that 7j(0) = 1 and the obvious fact that

(vl f(t))A <11m1an (v f(t)) n(st)“

The proof of Lemma 8.11 is complete. O

REMARK 8.13. For simplicity, from now on, we will denote both operators T, and T, by T},.
We keep this convention even in the case where p = 1. As we will see this will turn out to be
convenient in some computations.

The symmetric case, (IIs). In what follows we suppose for simplicity that d = 2. Also, we
suppose without loss of generality that 61 =1, b9 =0 and v =(1,0). This is possible thanks to the
rotation and dilation invariance we have discussed.

We will need the following simple lemma (see the Appendix).

LEMMA 8.14. Fix N e N*. There exists a finite sequence (01)1<p<n i {0,1} such that

(i

> —1nN (8.20)

Suppose N € N* is fixed and o71,...,0n5 € {0,1} are some fixed numbers such that inequality
(8:20) holds. We construct, by backward induction on %, a sequence (a);<p<y in R? satisfying the
following properties:
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(P1) for each 2 €{1,..., N} we have

m(skak+ Z ejaj)—ak

1<j<k-1

1

<4—N,

for all €1,...,e5 € {—1,0,1} with € #0;
(P2) for each k€{1,..., N —1} we have

4lar(Dl <lap+1(DI and 4lar(2)| <lar+1(2)l;

(Here, a(1) and ar(2) are the two coordinates of a. )
(P3) for each 2 €{1,..., N} we have

0<

b

ar(M+ ) ga;(l)
1<j<k-1

ar(2)+ ). ga;j(2)<1,
1<j<k-1

for all £4,...,e5_1€{-1,0,1};
(P4) for each k€ {1,..., N} we have

|ak(2)+zlsjsk—1 Ejaj(2)| 1
lar(D+L1cjzp-1€ja,;(D] 4N’

for all £4,...,e5_1€{-1,0,1}.

(A similar construction appears in [3, Subsection 2.2] and in [10]].) The construction goes as
follows. We first modify the sequence (v;),>1 in (IIs) such that v,(2) # 0 for all n = 1. This is
possible, since m is continuous on R?\ {0}. At each step we choose aj, to be a term in the set
{v, | n=0(mod2)} or {v, | n =1(mod2)} if 0 = 1 or g, = 0 respectively. It remains to see that
at each step the term aj; can be chosen sufficiently small in order to satisfy the above condi-
tions. Since v, — 0, we can choose a vector a; with both components nonzero and such that
Im(epar) —op| < (1/2)47N, for any €, € {—-1,1}. Since m is continuous outside the origin, there
exists r; > 0 such that [m(&)—oy| <47V for any ¢ € B(ay,rz) UB(—ay,r;). Hence, if aj_1,...,a1
are sufficiently small, then (P1) is satisfied. We have that v =(1,0), and hence if a; = v,, for n
sufficiently large, and aj_1,...,a1 are sufficiently small, then (P4) is satisfied. It is easy to see
that the remaining conditions can be satisfied too.

Consider the set

N
AN = { Z Erap

k=1

£1,....,éN €{—1,0,1}, not allO}. (8.21)

Thanks to (P2), for each q € Ax the representation

N
q= Z epay, for some €1,...,ex € {-1,0,1},
k=1

is unique. Let us also observe that, for each g € Ay we have (from (P3) and (P4)),

0< gD, lg@) <1 (8.22)
and
@ 1
1 8.23
D) = 2N (8.23)

Define the function

N .
Ry@):=-1+ H (1+écos(t,ak)), teR2. (8.24)
k=1
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By (8.57) (see the Appendix),

RN(t) _ Z Z ( 1_[ 2L) ei(t,£1a1+...£kak) — Z qui<t’q>, (8.25)

k=1¢€1,...£€{-1,0,1} \e;#0 4J geAN
ep#0

for some coefficients ¢, with |cq| < 1. Thanks to (8.22) we have that q(1) # 0, for any g € Ay. This
allows us to define the function

A=Y (f—:))lei“’q), on RZ. (8.26)
geAn \q
We claim that
l
hy HLOO(W) <4, (8.27)

Indeed, we have

s

N
= ”RN||L00(R2) <1+ H (1+ —
k=1

Lo(R2) k2

(8.28)
N 2 2
<1+ J]eV® <1+e" M%<,
k=1
On the other hand, if /1,/9 are nonnegative integers with /1 + 19 =1 and /1 <[, we have (using

(8.22), (8.23)),

H ool hNH 5 (qg@))2 e

lg(2)]"2
S _
oF (@) 0 2

|l—11

LOO([RZ) LOO([RZ) qeAN |q(1)

2)\%
=y (M) < Y a4V <pya N <3V N <1,
geiy I 4eRy,

We are now going to estimate || T,,An ||W1,OO(R2). Since by (8.26), hn € P,,, with P,, as in Lemma
8.11, we may define T,,hy via Lemma (see Remark [8.13). More specifically, we will prove
that

1
”Tth”Wl"’o([Rz) = ;lnN -1. (829)
In order to see this, it suffices to prove that
1
|3 T “Lm( =, N -1 (8.30)
We have
l l _
Ty =]y = s
Using (8.25) and (8.57), we obtain
TRy (t)= Z Y merar+ ...Ekak)( I1 i.) el {bE101TERaR) (8.31)
=1¢1,....,6,6{—1,0,1} €j#0 2j
ep#0
Introducing the function
Z(t) Z Z o ( l_[ L) ei(t,81a1+...8kak>, (832)
=1€1,...,64€{—1,0,1} €;#0 2j
e #0
we have (by the identities (8.57) and (8.59) in the Appendix),

k-1

N . .
AGEDY Wchos(t,ak) I (1+§cos<t,aj>).

k=1 j=1
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Lemma yields
1
1Z1l Loo(m2) = 1Z(0)] = glnN. (8.33)

Also, using the property (P1), together with (8.31) and (8.32), we get
ITmRN = Zll () < IAN147N <8Va N <1, (8.34)
Using (8.33), (8.34) and the triangle inequality, we arrive at

1
||T RN”LOQ(RZ) ”Z”LOO(RZ)_”T RN Z”LOO(RQ)Z_IHN 1

concluding the proof of (8.30). _
By taking N — oo, (8.27) and (8.29) give us that m is not a multiplier on W (R2). O

REMARK 8.15. To deal with the case d > 2 we may suppose that v =(1,0,...,0); we consider

constructions like Ry ® 1, where Ry is defined as above on R? and the constant function 1 is
defined on R%~2.

The asymmetric case, (IIa). This case is very similar to the previous one. We again suppose
without loss of generality that 61 =1, b9 =0 and v = (1,0). In a similar way we construct a
sequence (ap)1<p<n satisfying the above properties (P2)- -(P4) and (P1’) below:

(PY1’) for each k €({1,..., N} we have

1+¢
m(£kak+ Z £jaj)——0k <
1<j<k-1 2

1
4_N’

for all €4,...,e, € {—1,0,1} with € #0.

With this new sequence (ak)1<k< N We deﬁne Ap as in (8.21). We again have (8.22 . We
also define Ry and Ay as in (8.24) and (8.26) respectively. The inequality (8.27) holds in th1s case
too and it remains to show that

1
! _
|3 T N“LOO(RQ) = ITnRy (e 2 ~InN ~ 1. (8.35)
Using (8.57), we have
TRy (@)= Z Y m(eial + ...skak)( I1 i) eHte101 - Erah) (8.36)
Tle1,menei-1,0,1) £j#0 2]
ep#0
Introducing the function
1+ |
Z(t) _ Z Z Ep o ( l_[ L.)el(t,é‘la1+...£kak), (837)
=le1,..,e5€{~1,0,1} 2 €;#0 2j
e #0

we observe that, by (8.57) and (8.59), we have

N o k-1 :
Zh =Y %e’“’““ I1 (1+ §c05<t,aj>).

k=1 j=1
Lemma gives us that

1
1Zl(s2) = 1Z(0) = ~InN. (8.38)

The property (P1°), together with (8.36) and (8.37), give
ITmRN — Zll () < IAN14N <8Va N <1, (8.39)
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Using (8.38), (8.39) and the triangle inequality, we get
1
TRl 7002y = 1 Z 17 co(r2y — I TmBN — Zlloom2y = —InN — 1,
1T, N”L (r2) | ”L (r2) ITmRN ”L (R2) - n
concluding the proof of (8.35). (For the case d > 2, see Remark ) Il

6. Proof of Theorem

We prove now Theorem Suppose m is not continuous in 0. As in the preceding section,
we may assume that m is in one of the cases (IIs) or (ITa). Again we work under the hypothesis
d=2,b1=1,by=0and v=(1,0).

The symmetric case, (IIs). We need the following analogue of Lemma (see the Appen-
dix):

LEMMA 8.16. Fix N e N*. There exists a finite sequence (01)1<p<n i {0,1} such that
N k-1 ;
> 2] (145
=12k jo 2j
In what follows (az);<z<y is a sequence in Q? satisfying the properties (P1)- -(P4) for the

sequence (0%)1<p<n from Lemma above. It is easy to see that such a sequence exists. Using
this sequence we construct the function Ry as in (8.24).

1
>—InN.
27

Suppose that m is a multiplier on W1 ([Rz). Then m' defined by m’'(¢) := m(=¢) is also a
multiplier on W’1 (R2?) with the same norm as m. It follows that

HallT"‘"p‘ Li(R2)

for any ¢ € C° (R2).
Consider now the normed subspace

V= {Vl(p | peCP (Rz)} c (Ll (Rz)]2l ,

< 1Tl | V0|

Ly (8.40)

l
endowed with the norm induced by (L! (Rz))2 . We consider the linear functional Ly : V — R
defined by

Ly(V'p) = (BN, 0\ T ) = fRZ RN Tp()dt, @€ CP(R2).

Thanks to (8.40), Ly is bounded on V. Using the Hahn-Banach theorem, we get that there
~ [ ~ Iy *
exists a bounded extension Ly of Ly, on (L! (Rz))2 . Moreover, we can choose Ly € ((L1 (Rz))z ) =

14
(L (IR2))2 such that its norm equals ||Ly|. Note that, by (8.28),
ILNI < ITmIHIBN Iz omey < 41Tl

l ~
Let (wq)jq)=; € (L™ (Rz))z be the element representing L, where a € N? are multiindexes. We
have that

luallpomey <41Tmll, (8.41)
for any multiindex a, with |a| = . Also, we have (see Remark [8.13)
(3 TRy, ) = (-1 (BN, 0\ Trwp) = (-1 Ly (V') = (-1 Ly (V)
=(-D' Y (ua, V)= Y (V'ua, ),
lal=l la|=l

ie.,

O\ TRy =Y V'u,, (8.42)

lal=l
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in the sense of distributions on RZ2.

As in (8.31) we have
TRy (@)= Z Y m(eial + ...£kak)( I1 i) eHbE101 - Erah) (8.43)
=1e1,....ex€{~-1,0,1} €;#0 2j

ep#0

For each N we fix a positive integer M = M(N) such that Ma;, € Z2 for all 1 <% < N. From
(8.43) we get that T,,Rxy is a component-wise 2nM-periodic function. Hence, T,,Rn (Mt) is
component-wise 27-periodic.

We will show that u, in (8.42) can be chosen to be component-wise 27 M -periodic. In order to
prove this we need the following easy lemma.

LEMMA 8.17. Let A > 0 be a real number and suppose u € L™ (IRZ) is given. We consider the
sequence of functions

Z u(t+A)(), tEIRZ, n=1,

un(t):=
" |Bn| XEBn

where B,, := B(0,n)NZ2. Then, there exists g € L™ (Rz), component-wise A-periodic, with &l zoo(mey <
llze]l Lo(R2) and such that u, — g up to a subsequence, in the sense of distributions.

PROOF OF LEMMA [8.17] Since lnllLoo(me2) < llwll Loo(me) for any n = 1, by the sequential Banach-

Alaoglu theorem, there exists g € L (R?) with | g|| Loo(®2) < 1wl foo(mey such that u, — g in the w*-
topology of L*° up to a subsequence. (For simplicity we denote the subsequence also by (z,),>1.)
In particular, u, — g in the sense of distributions. Also, we easily get that g is component-wise
A-periodic. Indeed, for ¢ € C2° (Rz), and any yo € 72, we have

fun(t+A)(0)<p(t)dt:f u, () (t—Ayxo)dt
R2 R2

—>[R2g(t)<p(t—Axo)dt (8.44)
:jl;zg(t+Axo)(p(t)dt.
Also,
f un (t+Ayo)pt)dt = Z u(t+A(x+xo0))e@®dt
R2 anl xeB,
! f (t+Ax)p@)dt
= u
|Bn|X€B +XO [RZ X (p
Z u(t+Ay)e@®dt+r,
:f u,e)dt+ry,,
RZ
where
1
Iy = f u(t+Ayx)p@®)dt- f u(t+Ay)p@®dt.
Bl 1e(Br+x0)\Bx R2 Bl 1B \(Br+x0) R?

Since |(B,, + xo0) 2\ (Bn+x0)| Sn and |B,| ~ n? we have r,, — 0. Hence,

lim | u,(t+Axo)@®)dt= lim f2un(t)<p(t)dt,
n—oo R

n—oo Jp2

which together with (8.44) concludes the proof of Lemma [8.17 O
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Now, since 611 TRy is component-wise 21 M -periodic, we have (OlleR N)n = GlleR n for any
n=1. From (8.42) we get
TRy = (alleRN)n =Y Vuq),,
la|=1

for any n = 1. Taking n — oo and applying Lemma |8.17, with A :=27M, we get
O\ TwRN =) V'gq, (8.45)

la|=1
for some component-wise 27 M -periodic functions g, € L™ ([R%2) such that
I8allLo(mey <41 Th (8.46)
(from (8.41)).

From now on, for each function v on R?, we write y for the function v (¢) := w (M?).
Consider the function

N
Gy (t):=-1+ [] (1 +cos(t,ar)), t e RZ.
k=1

Notice that G% is component-wise 27-periodic. (We recall here that each Maj, belongs to Z2.)
Also, (T, Ry)M and each gﬁ’[ are component-wise 27-periodic. From li we get
O (TR = Y Vg,
la|=1

in the sense of distributions on R? and hence in the sense of distributions on T2. Taking convolu-
tion (on the torus T2) with G¥, we get

o (TnRNM «GY) = ¥ v (gl + GN). (8.47)
lal=l

It is easy to see that the spectrum of each gé‘f * G% and the spectrum of (T, Ry)Y * G% , as

functions on the torus TZ, are included in M Ay and therefore do not touch the set {0} x Z (see
(8.22)). Hence, we can apply the operator GIZ in ti to obtain

(TR +GN = Y. vooy! (g + GX).

la|=1
Hence,
(TR« GM < v*o;l (gM « gY : (8.48)

H mitN N HLO@(W) l{);:l' L (g“ N) HL"O(TQ)
We claim that

[veort (g2 <X ()Lm(m <8 Tnl, (8.49)

for any multiindex a with |a| = . This estimate is similar to (8.27).
Indeed, for @ = (/,0) we have, using (8.46),
La-l( .M ~M M, AM M M
|00 (g2« GV ) oy = N8+ ON | ey = [ | oy 16 (8.50)

<2/gallLomz) <8l Thll.
Here, we have used the fact that ||GAN’[ || Li(T2) < 2. This can be justified as follows. We have

N
[T @ +cos(t,Ma))=0
k=1

and hence, thanks to (8.57) and (P2), we obtain

=1.
L1(T2)

N
[]@+cos(,Mag))
k=1
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We now turn to the proof of (8.49) for a # (Z,0).
Writing
g «G )= Y cel®MD,
qeAN

we get that (note that c; is a Fourier coefficient):

M M
ey < |« GY Hm(m <8ITnl,

for all g € An.
Hence, if a = (l1,12), with [1 +l9 =1 and /1 <, we have (using (8.22), (8.23)),

_ (Mq(2))"
H( 1 2) 1 ( @ N)HLOO(W) (I‘;N (Mq(1))\™ €q® Lo(1%)
lg(2)]" (|q(2)|)l2
<8ITwll Y ———— =8| Tl =
" q§N| @ q§N lq(D)]
<8ITmll Y, 4 V2 <8 TylllANI4™Y <8IITHII8N47Y
qeEAN
<8 Tl

(8.51)

We see that (8.50) and (8.51) imply (8.49).

We next obtain a contradiction. The starting point is the left-hand side of (8.48). We claim
that

H(TmRN)M*G%HLOO(Fz) —lnN 1. (8.52)

The method applied to obtain thls estimate is similar to the one used to obtain (8.30).
By using (8.57) and (8.58) (see the Appendix) we have:

N : .
(TmRN)M*G%(t): Z Z m(£1a1+...8kak)( H f)el<t,61Ma1+...+6kMak>. (853)

k=lé1,....e5€{-1,0,1} €;#0 =J
ep#0
Introducing the function
Z(t):= Z ) ok ( I1 )el“ eiMartereMar) oy T2 (8.54)
=1e¢y,...,ep€{-1,0,1} €;7#0 4.]
Ek?f
we observe that, by (8.57) and (8.59), we have
Z(t) = % il —cos{t,May) H (1+—cos<t Ma ; ))
2k 2j I
Lemma [8.16] gives us that
1
Zlzeo(r2y=1Z(0)] = —InN. 8.55
I Z 1 Loo(r2) = 1Z(0)] on D ( )
Also, using the property (P1), together with (8.53) and (8.54), we get
M, M _ -N _qN/4-N
| @B G ZHL‘”(TZ) <|Ayl4 N <3V4 N <1, (8.56)
Using (8.55), (8.56) and the triangle inequality, we obtain
M, M _
| @By = G HL (W) > |12l oe(r2) — (T B )™ + GY - ZHLoo(m 5o InN-1,

concluding the proof of (8.52).
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Now, (8.48), (8.49) and (8.52) allow us to write

1
— InN-1<8|T,,| 2.
2

Since N is arbitrary, the last inequality implies that m is not a multiplier on W% (R2). O

The asymmetric case, (IIa). This case is very similar to the previous one and we skip the

. . . . . . - l,l 2 .
proof. We can again suppose by contradiction that m is a multiplier on W*! (R*) and use this
result to obtain a representation result similar to the one in (8.42). The only difference is that
now we have to follow the “asymmetric case” as in the proof corresponding to multipliers on
Wheo (IRQ). The functions Ry and Gy will be constructed as above, starting, as in the case of
Wi (R?), with a sequence (a;) <<y in Q2 satisfying the conditions (P1), (P2)—(P4). O

7. Appendix

Some useful identities. We quickly recall here some elementary facts and formulas con-
cerning some trigonometric polynomials on the torus.

Fix a finite sequence (a3)1<p<n In Z%. For each finite sequence a1i,...,ay of complex numbers
we have the following expansion rule:

N N .
a .
H (1+apcos{t,ap))=1+ Z Z ( H _J) el<t,£1a1+...+£kak). (8.57)
k=1 k=1e€1,...,,€{-1,0,1} \¢;#0 2
Ek;!fO

A sequence (ag)i-1 y in 7% will be called dissociated if the only solution to the equation
£1a1+...+ENaAN = £'1a1 +...+ EEVaN,

with €1,...,eN,€],...,€5 € {=1,0,1} is the trivial solution &1 = €],...,ex = ). For example any se-
quence (a3);<z<y in Z¢ which is lacunary on at least one component is dissociated. If (az);<p<n
is dissociated and a1,...,ay and f4i,..., BNy are complex numbers, by using and the relation
between convolution and the Fourier transform, we obtain that

N N N an P
[T@+arcos¢,ap)* [](1+Preosar)) =[] |1+ cos{-,ap)|, (8.58)
k=1 k=1 k=1

as functions on the d-dimensional torus.

The following identity is also useful. We have

N N k-1
[TA+c)=1+) cr [](1+¢)) (8.59)
k=1 k=1 j=1

for any complex numbers c1,..., cn.
A selection lemma. The following interesting fact is taken from [8] (Lemma 6.3, p. 118).

LEMMA 8.18. Suppose z1,..., zn are some complex numbers. Then, there exist 01,..., o € {0,1}
such that

N 1 N
Y orzr| ==Y lzl.
k=1 Tr=1

The proof is elementary and we skip it (see [8, Lemma 6.3]).

Let us define two sequences (22 and (z;) by the expressions

)lsksN 1<k<N

B 1 A=l I
FHER /S P
2Pk ;3 2P

where f=0,1 is an index. Here, the product over an empty set is by convention equal to 1.
It is easy to see that, using Lemma |8.18| applied to the sequence (22)15k5N we get Lemma

Similarly, using Lemma [8.18| applied to the sequence (zi)lS p<y We get Lemma m
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Remarks on Wojciechowski’s inequality. We discuss here some inequalities from the fam-
ily of Lemma [8.14] and Lemma Wojciechowski was the first one to use such inequalities in
the proof of non-estimates. In particular, he obtained in [9] the following relatively difficult esti-
mate (see [9, Lemma 1], [10, Lemma 1]):

LEMMA 8.19. There exists a constant C > 0 such that, for any integer N = 2 there exist M =
M(N) and a sequence 01,..., on € {0,1} such that

k
=CN, (8.60)

L1(T4)

(1+cos(-,a;))

N -1
Y orcos(,ap)
k=1 j=1

whenever the sequence (ay)i<p<n in Z% satisfies
laps1l > Mlagl, for Ll<k<N-1.

This lemma was already used in conjunction with the Riesz products technique in [10], [3l,
[4]. Lemma was used in [L10] to prove that there exists g € L! (1T2) such that there are no
fo, f1, f2 € WL (T?) with

g = fo+01f1+02fo.

It was also used in [4] in order to prove some anisotropic Ornstein-type non-inequalities and in
[8] to study the continuity of the multipliers on W11 (R?).

Here we want to point out that, in the above applications, a weaker form suffices: we only need
to know that the lower bound in goes to co when N — oco. (In the case of the application
of Lemma [8.19| given in [10], this was observed by Wojciechowski [10, Remark 1].) This weaker
version can be achieved by much cheaper arguments than the ones used to obtain Lemma [8.19
In this direction we mention the following.

LEMMA 8.20. For any integer N = 2 there exists a sequence 01,..., oy € {0,1} such that
N k-1 1 N

Y orcos(,ap) [] (1+cos(-a;)) > —1\/—

k=1 j=1 L1(Td) 2m\ e

for any dissociated sequence (ay)1<p<p in Z2.
1<k<N

PROOF. The proof follows the ideas in [2]]. By applying Lemma to the sequence (21)1<z<N>
where

1 ( i )k—l
2y = 1+ fork=1,...,N, (8.61)
2VN\ 2VN
we obtain a sequence (0)1<;<n in {0,1} such that
N k-1 1 N 1 ‘N
y (1+ : ) L1y L VN (8.62)
m12VN U 2VN 21 ;o VN 2w
Suppose (a1)1<z<y is a dissociated sequence in Z%. Consider the functions
I+ M
gn(t):= (1+—cos(t,ak)) and Gy (t):= (1+cos{t,ap)),
k=1 \/N k=1
defined on T¢. Note that, by (8.58), we have
gn*Gy (@) ﬁ(u " cost >) (8.63)
N N()= COS\Z,afr/ |- .
k=1 2VN
Also, we consider the set
N
A= U {e1a1+...+epagl €1,...,6,€{—1,0,1}, € # 0}
k=1

O'k:].
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and the projection P4 defined by P/A? (n)= f (n)ifn e A and ﬂ? (n) = 0 otherwise, for any trigono-
metric polynomial f on T¢. Observe that, (8.59) and (8.63) give

N o k-1 i
Pao(gn*GN)(@) = cos(t,ar) 1+ cos(t,a;)|,
PN T grmeeste)
and thanks to (8.62),
VN
|IPs(gn *GN)(0)] = —.
21
Since,
1 N/2
lenlimeay = (14 37) =V
we obtain

\/E”PAGN”LI(Td) 28N lIpeo(ray IPAGN g1y = KN, PAGN)|

N
=|Pa(gn *GN)(0)] = g

It remains to observe that,

N k-1
PAGN ()= ) opcos(t,ap) [ (1+cos(t,aj)),
k=1 j=1
which concludes the proof. U

REMARK 8.21. In fact, it is possible to prove Lemma [8.20| without using Lemma [8.18] Indeed,
the sequence (z1);<;<y defined in has a quite simple form: the argument of z;, is (k —1)0y
(mod 27), where Oy := arctan (1/2\/N ). One can choose the sequence (01)1<;<y explicitly: o =1,
if —n/4 <(k—1)0n (mod2n) < 7/4, and o =0, otherwise.



Bibliography

[1] Bonami, A., Poornima, S., Nonmultipliers of the Sobolev spaces Wkl (Rd). dJ. Funct. Anal. 71(1), 175-181, 1987.

[2] Curca, E., The divergence equation with L™ source. hal-02472332f, 2020.

[3] Kazaniecki, K., and Wojciechowski, M. On the continuity of Fourier multipliers on the homogeneous Sobolev
spaces Wi! (R?). Annales de linstitut Fourier. 66. 10.5802/aif.3036, 2013.

[4] Kazaniecki, K., Wojciechowski, M., Ornstein’s non-inequalities: Riesz product approach. arXiv preprint
arXiv:1406.7319, 2014.

[5] de Leeuw, K., Mirkil, H., A priori estimates for differential operators in L* norm. Illinois J. Math. 8, 112-124,
1964.

[6] Ornstein, D., A non-inequality for differential operators in the L' norm. Arch. Rational Mech. Anal., 11:40—49,
1962.

[7] Poornima, S., On the Sobolev spaces wk.1 ([Rd). Harmonic analysis (Cortona, 1982), Lecture Notes in Math., vol.
992, Springer, Berlin, p. 161-173, 1983.

[8] Rudin, W., Real and Complex Analysis, 3d ed., McGraw-Hill Book Company, New York, 1987.

[9] Wojciechowski, M., On the strong type multiplier norms of rational functions in several variables, Illinois J. Math.
42, no. 4, p. 582-600, 1998.

[10] Wojciechowski, M., On the representation of functions as a sum of derivatives. C. R. Acad. Sci. Paris Sér. I Math.,
328(4) :303-306, 1999.

175



	Acknowledgements
	Résumé
	Abstract
	Introduction
	Overview
	1. The divergence equation
	2. Differential forms and Hodge systems in Rd and in Hn
	3. Short description of the main contributions of the thesis
	4. In short
	5. Some notation concerning the function spaces used

	Bibliography
	Part 1.  Hodge systems with "pathological" source terms
	Chapter 1. On the existence of vector fields with nonnegative divergence in r. i. spaces
	1. Introduction
	2. The main nonexistence result
	3. The rearrangement invariant norm of the 1-Riesz potential

	Bibliography
	Chapter 2. On the representation as exterior differentials of closed forms with L1-coefficients
	1. Introduction
	2. Proof of Theorem 2.1
	3. Solution in LN/(N-1) when 1N-1

	Bibliography
	Chapter 3. Hodge systems with L1 sources
	1. Short introduction
	2. Proof of Theorem 3.1
	3. Appendix: Yet another proof

	Bibliography
	Chapter 4. The divergence equation with L source
	1. Introduction
	2. Proof of Theorem 4.2

	Bibliography

	Part 2.  Hodge systems in critical function spaces
	Chapter 5. Approximation of critical regularity functions on stratified homogeneous groups
	1. Introduction
	2. Function spaces on stratified homogeneous groups
	3. Estimates of the auxiliary functions 
	4. Estimates of the approximation function
	5. Appendix

	Bibliography
	Chapter 6. Hodge systems on smooth bounded domains
	1. Introduction
	2. Some useful facts
	3. Proof of the main result

	Bibliography

	Part 3.  Miscellaneous
	Chapter 7. Minimal BV-liftings of W1,1( ,S1) maps in 2D are "often" unique 
	1. Introduction
	2. "Generic" properties of k-tuples in k
	3. Geometric properties of liftings in 2D

	Bibliography
	Chapter 8. On the continuity of Fourier multipliers on Wl,1( Rd) and Wl,( Rd) 
	1. Introduction
	2. Continuity outside the origin
	3. Almost radial limits
	4. Proof of Theorems 8.3 and 8.4 in case (I)
	5. Proof of Theorem 8.3
	6. Proof of Theorem 8.4
	7. Appendix

	Bibliography


