Université Claude Bernard Lyon 1 Année 2015-2016 Printemps 2016

Contôle Continu 2 (90 minutes)

Exercice 1 Soient $f, g : \mathbb{R} \to \mathbb{C}$ deux fonctions et $H = \mathbf{1}_{[0,+\infty[}$ la fonction de Heavyside.

1. Montrer que

$$(fH)*(gH)(x) = \int_0^x f(x-y)g(y)dy$$
 si $x \ge 0$ et $(fH)*(gH)(x) = 0$ si $x < 0$

(on admet que les intégrales existent).

2. Soit $a \in \mathbb{C}$ et $f_a(x) = e^{ax}H(x)$ et $s_{\omega}(x) = \sin(\omega x)H(x)$. Calculez

$$(a) f_a * f_a \quad (b) s_\omega * H$$

Exercice 2 Soit $a \in \mathbb{C}$ et $\mathbf{1}_{[0,1]}(x)$ la fonction indicatrice sur l'intervalle [0,1]. Calculez la transformée de Fourier des fonctions

(a)
$$f(x) = e^{ax} \mathbf{1}_{[0,1]}(x)$$
 (b) $f(x) = xe^{ax} \mathbf{1}_{[0,1]}(x)$ (c) $f(x) = \frac{\sin(x)}{x}$

Exercice 3 On définit F(x) par l'intégrale $F(x) = \int_{0}^{\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$.

- 1. En utilisant que $\arctan(u) \underset{u \to 0}{\sim} u$, montrer que l'intégrale est convergente pour $x \in \mathbb{R}$.
- 2. Montrer que $F'(x) = \int_0^\infty \frac{1}{(1+x^2t^2)(1+t^2)} dt$.
- 3. En déduire que $F'(x) = \frac{\pi}{2(x+1)}$ pour $x \ge 0$.
- 4. Déterminer par intégration $F(x), x \in [0, \infty[$.

Indications

- Le produit de convolution des fonctions
$$f, g : \mathbb{R} \to \mathbb{C}$$
 est $f * g(x) = \int_{-\infty}^{+\infty} f(x - y)g(y)dy$

– La transformée de Fourier d'une fonction
$$f: \mathbb{R} \to \mathbb{C}$$
 est $\hat{f}(p) = \int_{-\infty}^{+\infty} e^{-ipx} f(x) dx$

- La transformée de Fourier inverse de
$$\hat{f}: \mathbb{R} \to \mathbb{C}$$
 est $f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ipx} \hat{f}(p) dp$

- La décomposition en éléments simples permet d'écrire
$$\frac{1}{(1+x^2t^2)(1+t^2)} = \frac{1}{x^2-1} \left(\frac{x^2}{1+x^2t^2} - \frac{1}{1+t^2}\right), \ pour \ x \neq \pm 1$$

$$- On \ a \int_0^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}$$