
Université Paris-Saclay

École doctorale de mathématiques Hadamard (ED 574)

Mémoire présenté pour l’obtention du

Diplôme d’habilitation à diriger les recherches
Discipline : Mathématiques

par
Nguyen-Viet DANG

Microlocal analysis from quantum fields to hyperbolic dynamics.

Rapporteurs :
Christian GÉRARD
Gabriel PATERNAIN
Maciej ZWORSKI

Date de soutenance : 19 Février 2021

Composition du jury :

Nalini ANANTHARAMAN (Examinatrice)
Christian GÉRARD (Rapporteur)
Sébastien GOUËZEL (Examinateur)
Colin GUILLARMOU (Examinateur)
Stéphane NONNENMACHER (Examinateur)
Gabriel PATERNAIN (Rapporteur)
Maciej ZWORSKI (Rapporteur)





Bibliographie

[1] C. Brouder, N.V.Dang and F. Hélein, A smooth introduction to the wavefront set, J.
Phys. A : Math. Theor. 47 (2014)

[2] C. Brouder, N.V. Dang and F. Hélein, Continuity of the fundamental operations on
distributions having a specified wave front set, Studia Math. 232 (2016), 201–226

[3] Christian Brouder, Nguyen Viet Dang, Camille Laurent-Gengoux, and Kasia Rejzner.
Properties of field functionals and characterization of local functionals. Journal of
Mathematical Physics, 59(2) :023508, 2018.

[4] N.V. Dang, The Euler characteristic of a surface from its Fourier analysis in one
direction, Math. Research Letters, Volume 23, (2016) pp. 1263-1279

[5] N.V. Dang, E. Herscovich Renormalization of Quantum Field Theory on Riemannian
manifolds, Rev. Math. Phys. 31 (2019), no. 06, 1950017, 30 pp.

[6] Chaubet, Yann, and Nguyen Viet Dang. Dynamical torsion for contact Anosov flows.
arXiv preprint arXiv :1911.09931 (2019).

[7] Dang, Nguyen Viet. Renormalization of quantum field theory on curved space-times,
a causal approach. arXiv preprint arXiv :1312.5674 (2013).

[8] N.V. Dang, Extension of distributions on manifolds, a microlocal approach, Annales
Henri Poincaré. Vol. 17. No. 4. Springer International Publishing, 2016

[9] Dang, Nguyen Viet. Renormalization of determinant lines in quantum field theory.
arXiv preprint arXiv :1901.10542, to appear in Analysis and PDE.

[10] N.V. Dang, C. Guillarmou, G. Rivière, S. Shen The Fried conjecture in small dimen-
sions, Inventiones Math. 220 (2020), 525–579

[11] Dang, N. V., Rivière, G. (2018). Equidistribution of the conormal cycle of random
nodal sets. Journal of the European Mathematical Society, 20(12), 3017-3071.

[12] N.V. Dang, G. Rivière, Spectral analysis of Morse-Smale gradient flows, Ann. Sci.
ENS 52 (2019), 1403–1458

[13] Dang, Nguyen Viet, and Gabriel Rivière. Spectral analysis of morse–smale flows i :
Construction of the anisotropic spaces. Journal of the Institute of Mathematics of
Jussieu 19.5 (2020) : 1409-1465.

[14] Dang, Nguyen Viet, and Gabriel Rivière. Spectral analysis of Morse-Smale flows, II :
Resonances and resonant states. American Journal of Mathematics 142.2 (2020) :
547-593.

[15] N.V. Dang, G. Rivière, Topology of Pollicott-Ruelle resonant states, Annali
della Scuola normale di Pisa, DOI :10.2422/2036-2145.201804_010, preprint
arXiv :1703.08037 (2017)

[16] N.V. Dang, G. Rivière, Pollicott-Ruelle spectrum and Witten Laplacians, to appear
J. Eur. Math. Soc., preprint arXiv :1709.04265 (2017)

[17] Dang, Nguyen Viet, and Gabriel Rivière. Poincaré series and linking of Legendrian
knots. arXiv preprint arXiv :2005.13235 (2020).

[18] Dang, Nguyen Viet, and Bin Zhang. Renormalization of Feynman amplitudes on
manifolds by spectral zeta regularization and blow-ups. Journal of the European Ma-
thematical Society 23.2 (2020) : 503-556.

[19] N.V. Dang, Wick squares of the Gaussian Free Field and Riemannian rigidity,
arxiv :1902.07315

3





Remerciements.

C’est la partie la plus importante du manuscrit, la plus émouvante pour moi. Je m’ex-
cuse par avance aux gens que j’ai pu oublier et de la longueur de cette partie. Tout d’abord,
je tiens à remercier mes trois rapporteurs Christian Gérard, Gabriel Paternain et Maciej
Zworski pour leur travail de relecture et l’intérêt qu’ils ont porté pour mon travail.

Christian Gérard a suivi mes travaux depuis la thèse, m’a toujours encouragé et soutenu
dans mes explorations en particulier en théorie des champs. Ses travaux pionniers sur les
résonances quantiques et sa collaboration avec Michal Wrochna sur les états d’Hadamard
en théorie des champs sur espace temps courbes sont pour moi une magnifique source d’ins-
piration. Gabriel Paternain s’est intéressé à mes récents travaux avec Gabriel (Rivière) et
m’a invité à Cambridge en faisant preuve d’une hospitalité extraordinaire. Nos discussions
mathématiques et ses conseils m’ont surexcités et vont m’occuper pour quelques années. 1

Merci à Maciej Zworski pour son intérêt pour ma recherche et pour l’invitation au MSRI,
ses travaux avec Semyon Dyatlov ont joué un rôle déterminant pour mes propres résul-
tats avec Gabriel sur les résonances de Ruelle. J’aimerais avoir l’occasion d’apprendre des
maths en discutant avec Maciej aux prochaines conférences lorsque la situation sanitaire
le permettra.

Je remercie les membres du Jury pour l’honneur qu’ils me font en acceptant de juger
mon travail : Nalini Anantharaman pour m’avoir invité à Strasbourg, ses travaux à l’in-
terface entre dynamique et analyse semiclassique sont une grande source d’inspiration et
donnent envie de faire pareil à sa propre échelle 2. Sébastien Gouëzel, pour sa gentillesse,
probablement la personne qui répond le plus vite avec une précision chirurgicale à toutes
mes question de systèmes dynamiques et avec une clarté d’exposition exceptionnelle 3. Co-
lin Guillarmou est la personne avec Gabriel qui m’a le plus inspiré en maths depuis la fin de
ma thèse, merci Colin pour t’être intéressé à mes travaux au tout début, pour ton soutien
et tes encouragements, pour ta passion des maths et ta façon de les partager avec moi.
J’espère qu’on pourra parler autant de maths dans le futur 4 et continuer à bien rigoler des
Guillarmou gaps et de l’opérateur Π de Guillarmou comme au tout début... Merci aussi à
Stéphane Nonnenmacher de t’être intéressé à mes travaux avec Gabriel au tout début 5 et
pour nous avoir soutenu. Ta culture en physique mathématique, en théorie quantique des
champs, ta puissance technique phénoménale, ton intégrité et ta rigueur m’ont toujours
impressionné.

Dans la communauté systèmes dynamiques, analyse semi–classique, je remercie Frédéric
Naud pour son amitié et sa confiance, j’essaie de bien écouter ses conseils mathématiques
et l’air de rien, ils m’ont toujours beaucoup aidé. Frédéric Faure m’a accueilli plusieurs
fois à Grenoble, merci pour ton hospitalité, tu m’as fait une impression marquante et
durable par ta compréhension profonde des choses, tes exposés et tes articles 6 sont une

1. Cambridge c’est incroyable, j’aurais jamais cru que ça m’arriverait. C’est comme dans Harry
Potter avec les inscriptions sur l’ADN sur le mur du bar, la tête de Newton et tout... J’étais un
peu comme les chinois qui vont visiter le Louvre pour la première fois...

2. et pour m’avoir dit en me voyant que je lui donnais envie de Bo Bun
3. je me souviens des partitions de Markov de Ratner
4. aussi merci d’avoir soutenu autant le resto de mes parents et fait de la pub, ça a beaucoup

touché ma Maman
5. je me souviens de la discussion jusqu’à 1h du matin à Peyresq sur les ensembles nodaux
6. Faure–Roy–Sjöstrand a permis à une petite communauté de monter un business, j’adore tes

surveys

5



grande source d’inspiration. Alejandro Rivera m’a aidé en une conversation à comprendre
un papier d’Harvey-Lawson, Maxime Ingremeau, Thibault Lefeuvre, le maestro Yannick
Bonthonneau qui est d’une fulgurance exceptionnelle et Malo Jézéquel m’ont tous expliqué
des choses qui m’ont ensuite beaucoup aidé par la suite. Merci à Matthieu Léautaud pour
les discussion sur les fonctions de fuite et pour m’expliquer la 2nde microlocalisation et
pour ton humour qui dépote... Un merci spécial à Yann Chaubet, membre de la Guillarmy,
pour son énergie et sa puissance mathématique qui m’ont permis de continuer la recherche
alors que je venais d’être papa. C’est toujours un plaisir de voir, discuter et rigoler avec
Viviane Baladi, Mihajlo Cekic, Clotilde Fermanian–Kammerer, Damien Gayet, Luc Gos-
sart, Dietrich Häfner, Marco Mazzucchelli, Hamid Hezari, Frédéric Paulin, Françoise Truc,
Yves Colin de Verdière, Shu Shen, Emmanuel Schenck, Fabricio Macia, Alex Strohmaier,
Andras Vasy, Amir Vig, Tobias Weich, Steve Zelditch et aussi de partager un repas dans
un resto Vietnamien, meilleure cuisine du monde.

Dans la communauté QFT et renormalisation, je remercie tous les membres du GDR
Renorm pour leur gentillesse, en particulier Pierre Clavier qui a toujours accepté de par-
tager sa piaule avec moi et qui a un parcours que j’admire, j’aimerai un jour pouvoir
retravailler avec lui, Sylvie Paycha pour son intérêt constant pour mes travaux, Bin Zhang
un maître devenu ami et collaborateur qui est un modèle d’intégrité pour moi, Jan Dere-
zinski pour son hospitalité à Varsovie, ses conseils géniaux et son intérêt pour ma recherche,
Estanislao Herscovich, Dorothea Bahns, Michal Wrochna et Kasia Rejzner sont parmi les
seuls en AQFT à garder le lien avec moi et je les remercie beaucoup de leur générosité.
Merci encore à Michal pour ta collaboration et enfin merci à Ismael Bailleul qui me fait
l’honneur de collaborer, pour m’apprendre des probas et qui fait preuve d’une patience à
toute épreuve face à ma lenteur.

Les personnes suivantes ont également joué un rôle déterminant dans mon parcours
scientifique : Frédéric Hélein en m’acceptant en thèse, en me transmettant son savoir–faire
et je le remercie encore pour son infinie patience, sa gentillesse sans limite. Quand j’ai des
doutes, j’essaie de me rappeler des directions mathématiques qu’il m’a indiqué. Je lui dois
toujours un article sur les équations d’ondes. Christian Brouder mon deuxième papa de
thèse, pour m’avoir appris la théorie quantique des champs, pour ses conseils avisés et son
soutien, ses encouragements, son écoute. Après la thèse, je remercie la famille du Poisson
pour m’avoir recueilli en postdoc à Penn–State : Ping Xu, Mathieu Stiénon puis après
Camille Laurent–Gengoux avec qui j’adore partager des maths et en particulier Ping pour
son humour, sa patate et pour m’avoir montré son art de faire des mathématiques alors
que je n’avais pas le niveau de collaborer. Laura Desideri, Stefan de Bièvre m’ont sauvé
en m’aidant à trouver un postdoc à Lille, Alexandre Jollivet a partagé des pauses bien
agréables avec moi et je remercie encore Stefan de m’avoir présenté à Gabriel.

Merci à Gabriel Rivière avec qui j’ai démarré en 2015 une collaboration qui aura changé
ma vie. Merci pour ta générosité, ta vision, ta puissance technique exceptionnelle, ta culture
mathématique, ton savoir–faire, ta patience et ta volonté de partager la science avec moi.
Je te remercie pour tout ce que tu m’as appris et tous les progrès que j’ai pu faire en
travaillant à tes côtés. Tu es top en tout, des maths à la gestion du facteur humain 7...
Excuse moi pour tous les inconvénients qu’il peut y avoir à travailler avec moi. J’espère
qu’on va continuer à bien rigoler ensemble.

Je suis éternellement reconnaissant à l’équipe de Physique Mathématique de Lyon
1 de m’avoir donné une chance en me recrutant MCF. En particulier à Fabien pour son
amitié, sa générosité, pour nos discussions passionnantes sur la renormalisation, la physique
statistique, la résurgence, le déménagement, les couches, les ninjas, les bébés, les bons–
brutes–truands, et pour ton aide pour tout vraiment... J’espère qu’on arrivera à écrire
un truc ensemble un de ces jours. Je remercie aussi les autres collègues de l’ICJ avec qui
je prend énormément de plaisir à partager de tout : Nicolas Vichery qui m’a beaucoup
aidé en théorie de Morse au début avec qui toutes les discussions en géométrie m’ont
toujours motivé, Kenji Iohara pour ses conseils et sa culture mathématique extraordinaire,

7. en passant par les couches, la gestion des ninjas

6



Vincent Borrelli pour son écoute, son amour des étudiants et de l’enseignement qu’il aura
essayé de me transmettre, j’espère un jour avoir les qualités d’enseignant et de pédagogue
exceptionnels de Vincent (qui ont bien sûr un impact en recherche) et aussi pour son
recul sur la vie en particulier de labo, Jean Yves Welschinger qui m’a débloqué de manière
magistrale un de ces trucs que le lecteur est invité à savourer dans le dernier chapitre,
Christophe Garban l’un des seuls rang A qui veut bien parler de maths avec moi et avec
qui c’est un plaisir de discuter de théorie des champs, Simon Masnou pour son grand
professionalisme et pour m’avoir aidé à monter des dossiers qui est une des activités vitales
de notre métier 8, Frédéric Lagoutière pour sa gentillesse et son côté relax et enfin Yohan
Dabrowski a été un modèle pour moi par son impressionnante culture en maths et son
attitude et intégrité exemplaire. Enfin, j’aimerais mentionner Alessandra Frabetti, Serge
Parmentier, Klaus Niederkrüger, Elise Fouassier, Christophe Poquet, Francesco Fanelli,
anh Tuan, Jean–Marie Stéphan, Léon Matar–Tine, je leur dis merci ainsi qu’à tous les
autres collègues que je n’ai pas la place de nommer ici...

Merci au personnel administratif de l’ICJ : Maria Konieczny, Christine le Sueur, Nabila
Manoubi, Lydia Barlerin et les super ingénieurs informatiques Laurent Azéma, Vincent
Farget et aussi le secrétariat qui déchire de Grenoble pour leur aide indispensable au
fonctionnement du labo, leur sourire, le côté humain quoi !

Je remercie ma mère et mon oncle pour avoir traversé la mer dans un bateau de fortune
en quête de liberté et d’un avenir meilleur, de m’avoir fait comprendre la chance que j’ai
d’être né ici. J’admire le courage extraordinaire de mes parents d’avoir tenu le restaurant
Saveur Lointaines pendant 5 ans alors que Papa a 78 ans et Maman 62, leur dévouement
et courage sont un exemple pour moi. Maman et Tonton travaillent depuis qu’ils ont 14
ans 9. Leur sacrifice est là pour me rappeler à quel point j’ai de la chance, je n’ai pas le droit
de me plaindre même si c’est une de mes activités préféré, héritée d’une longue tradition
ancrée dans le terroir Français. Merci Papa pour ta patience, ton honnêteté, ton sens de
l’humour, j’espère avoir tes qualités un jour. Merci Papa, Maman, Tonton pour m’avoir fait
garder le Vietnamien, je mesure l’importance de ce choix et grâce à eux, je peux essayer
de mieux comprendre ma place dans tous ça. Con rat yeu Ba Me, Cau, Mo va con xin cam
on, va cong nhan nhung cong suc va tinh yeu Ba Me va Cau da danh cho con va Bac Thi,
de nuoi tuoi con thanh nguoi. Merci à mes professeurs et instituteurs : Patricia Viot, René
Bizot, Michel Wirth, Gilles Alozy et Nicolas Choquet qui m’ont donné le goût du savoir et
des sciences. Merci à Bac, Thi, Vincent, Mo Dao, Vo An, Bang, je vous aime trop, vous me
manquez et je me rappelle de tout ce qu’on a partagé, j’aimerais vous voir plus souvent et
partager avec vous un de ces bons film d’action, de Hong–Kong (John Woo, Johnnie To,
phim kiem hiep) ou bien ces super séries américaines tellement captivantes. J’espère qu’un
jour avec Bac et Thi on va écrire un papier de maths ensemble. Cam on nhung nguoi ban
Viet Nam : chi Ha, chi Tham, Phuong, Lam, Bang, coloc Thu da lam cho cuoc song minh
va vo minh thoai mai va vui ve o Lyon.

Con cam on ba Hoi, me Ngoc da don tiep con va gia dinh con mot cach rat nhiet
tinh luc ve Viet Nam, con rat cam dong truoc tinh thuong ba me danh cho con. Merci à
mes deux princesses, Hoang My et sa Maman Hoang Thi Ngoc Tho pour le sens qu’elles
donnent à ma vie, merci à Tho pour ton amour et ton humour, ton soutien constant, ton
sens du sacrifice, tes sourires et tes passions, merci à ma fille pour ses baba oi qui font
bondir mon coeur de joie.

8. merci aussi pour les Laplaciens discrets
9. Ma mère jusqu’à 70 heures par semaines pendant la période restaurant, depuis la crise, il

arrive que mon oncle travaille de 7h à 23h dehors pour un seul client !

7





Introduction.

1. Introduction en Français.

La théorie quantique des champs est une théorie qui a pour object de décrire les in-
teractions entres particules élémentaires. De façon analogue, la mécanique quantique est
apparue comme une théorie décrivant la physique atomique. La mécanique quantique a
été un moteur pour le développement de plusieurs domaines des mathématiques comme
les équations aux dérivées partielles, les algèbres d’opérateurs, l’analyse fonctionnelle et la
géométrie. Mais il semble que la théorie quantique des champs nécessite plus de complexité
mathématique. En théorie des champs, le calcul perturbatif de n’importe quel processus
physique induit un processus de sommation sur une infinité d’états intermédiaires qui gé-
nère des quantités divergentes, donc produit de façon naturelle des infinis. Les divergences
en théorie des champs perturbative sont directement liées aux singularités à courtes dis-
tances des fonctions de corrélations qui ont une structure hautement non triviale, elle
proviennent de l’existence d’une infinité d’états à plusieurs particules.

Dans un sujet totalement différent tirant son origine de la “mécanique classique”, les
systèmes dynamiques, pour décrire les propriétés fines du comportement à grand temps
des systèmes dynamiques hyperboliques dits Axiom A [171, 21, 61], il est nécessaire de
quitter le monde des fonctions pour considérer des distributions de régularité de Sobolev
négative. Ils apparaissent de façon inévitable car la dynamique contracte dans certaines
directions et dilate dans d’autres directions.

De part la nature physique de ces deux problèmes, un point commun entre les deux
sujets sont les singularités des objets étudiés : d’une part, les fonctions de corrélation en
théorie des champs sont des fonctions (et même des distributions en théorie des champs
sur les espace–temps lorentziens)

〈φ(x1) . . . φ(xn)〉 sur l’espaces de configuration {(Rd)n \ toutes les diagonales}

qui deviennent singuliers quand |xi−xj | → 0 (le long des cônes de lumière plus la diagonale
en Lorentz puisque la métrique n’est plus positive définie). D’autre part, les corrélateurs
dynamiques des systèmes Axiome A peuvent être exprimés en fonction des états résonants
de Pollicott–Ruelle qui sont des distributions singulières. Par exemple, quand V est un
champ de gradient Morse–Smale sur une variété compacte, nous montrons avec Rivière
(voir le chapitre 1) que〈

Ψ2, e
−tXΨ1

〉
=

∑
a∈Crit(X)

〈Ψ2, Ua〉 〈Sa,Ψ1〉+ o(1)

où les Ua, (resp Sa) sont des courants au sens de de Rham qui ont des singularités ani-
sotropes : lisses (resp singulières) dans les directions instables et singulières (resp lisses)
dans les directions stables. De plus la notion de déterminant apparait dans les deux sujets
sous des formes variées : sous forme de fonctions zeta dynamiques pour compter les orbites
périodiques de systèmes dynamiques, de fonctions de partitions de fermions chiraux comme
nous le verrons dans le chapitre 2 en théorie des champs. Dans le continuum, on utilise
des déterminants zeta régularisés d’opérateurs elliptiques pour généraliser le déterminant
usuel qui suffit pour définir les fonctions de partition de théories discrétisées sur réseaux.

L’analyse semiclassique est une branche des mathématiques qui a pour origine l’étude
de la mécanique quantique alors que l’analyse algébrique a été inventée par Sato pour
décrire les singularités de systèmes d’EDP dans le cotangent. Les méthodes de Sato ont
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été vite appliquées à l’étude des amplitudes de Feynman par l’école japonaise d’analyse
algébrique. Ces méthodes ont été généralisées au cadre C∞ par Hörmander dans les années
70 et ce sont vite révélées comme un outil incontournable dans l’étude des EDP linéaires
comme nonlinéaires. Elles ont trouvé d’importants champs d’application pour décrire de
façon quantitative les singularités de distributions et d’opérateurs dans l’espace des phases,
qui contient des informations sur la position et aussi la codirection des singularités, en
notant que les méthodes semiclassiques peuvent dans certains cas donner des résultats de
localisation précis des singularités hautes fréquences. Ceci explique l’efficacité des méthodes
microlocales, semiclassiques et spectrales pour ces deux types de problèmes.

Depuis la thèse de Radzikowski dans les années 90, les méthodes microlocales ont per-
mis des avancées sur des problèmes conceptuels en théorie des champs : définition des
champs en espace–temps courbes grace à la notion d’états d’Hadamard [165] et la preuve
de la renormalisabilité perturbative des champs en espace–temps courbes Lorentziens [26].
En dynamique hyperbolique, parfois à l’interface avec la topologie ou la théorie analytique
des nombres, plusieurs conjectures de Bowen, Fried [62], Smale [171] ont motivé des di-
zaines d’années de recherche dans le domaine. De façon relativement surprenante, des idées
provenant du semiclassique et du microlocal ont produit des avancées récentes dans le sujet
conduisant à la résolution de nombreuses conjectures [75, 46, 45, 43, 82, 5, 54]. De
façon inattendue, ce sont des méthodes profondes provenant de la mécanique quantique
qui permettent de résoudre des problèmes difficiles de mécanique classiques.

Le manuscript résume la série d’articles [12, 13, 14, 15, 16, 17, 9] qui illustrent
des applications de méthodes microlocales, semiclassiques et spectrales à des problèmes
de dynamique et théorie des champs 10. Nous nous sommes efforcés de souligner les idées
communes (bien sûr ces domaines sont différents et ont leur spécificité propre). Passons
maintenant en revue le plan de notre mémoire :

— Le premier chapitre est introductif et couvre la série de travaux [12, 13, 14, 15, 16]
en collaboration avec Rivière, qui sont tous reliés d’une façon ou d’une autre avec la
théorie de Morse et la topologie. Nous débutons en introduisant les notions d’opé-
rateur de transfert en dynamique et de spectre de Pollicott–Ruelle, en motivant
par des analogies avec la mécanique quantique. Nous traitons un modèle jouet très
simple sur un graphe où des raisonnements simples avec des matrices nous per-
mettent de parler du lien entre spectre de Ruelle et fonction zeta. Dans un second
temps, nous abordons le formalisme supersymétrique popularisé par Witten dans
ses travaux sur la théorie de Morse. Nous passons en revue plusieurs exemples pour
illustrer le formalisme comme les formes différentielles, les courants de de Rham, la
théorie de Hodge, le laplacien de Witten et la formule de Lie Cartan. Dans un troi-
sième temps, nous rappelons les définitions de flots Anosov et Morse–Smale. Puis
nous expliquons un résultat obtenu avec Rivière [12, 16] qui donne le spectre des
champs de gradient Morse–Smale. Ensuite, nous en donnons une autre approche
qui fait le lien avec le laplacien de Witten [16]. Nous discutons brièvement des flots
Morse–Smale généraux [13, 14] où le spectre de Pollicott–Ruelle a une structure en
bandes verticales. Dans la dernière partie un peu plus “topologique”, nous relions
le spectre de Pollicott–Ruelle à des propriétés topologiques de la variété qui porte
le flot. Nous en déduisons des inégalités de Morse pour les flots Morse–Smale et
Anosov [15].

— Le second chapitre résume [9] qui porte sur la renormalisation de déterminants
fonctionnels. Notre motivation dans ce travail est de donner un sens à la fonction
de partition de fermions chiraux en interaction avec un potentiel de jauge externe, le
potentiel est considéré comme un champ “lentement variable” donc il reste classique
alors que le champ fermionique est quantifié c’est le champ “rapide”. Ce chapitre
et l’article résumé sont des tentatives pour comprendre une note conjecturale de
Quillen [148]. Notre présentation diffère de l’article original [9] qui repose sur des

10. Ces travaux forment une partie de nos travaux après la thèse. Par manque de temps et de
place, nous n’avons pas pu couvrir l’article [18] écrit avec Zhang.
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méthodes de type noyau de la chaleur. Ici les méthodes sont plus microlocales
bien que nous traitons de champs euclidiens. C’est tout à fait volontaire car nous
souhaitons dans l’avenir étendre nos résultats aux champs quantiques sur un espace–
temps Lorentzien où seule l’approche microlocale survit. L’exposé est inspiré d’un
travail en cours avec Brouder–Zhang. Nous esquissons seulement certaines preuves
et par contre nous insistons beaucoup sur les motivations physiques.

— Le troisième chapitre aborde des travaux communs avec Guillarmou-Rivière-Shen [10]
et avec Chaubet [6]. L’objectif commun des deux articles est la conjecture de Fried
reliant dynamique et topologie. Le but est de relier la torsion de Reidemeister, qui
est un invariant topologique définit à la manière d’un déterminant d’un complexe
de chaîne acyclique, et la valeur en zéro de la fonction zeta de Ruelle qui est une
fonction qui compte les orbites périodiques d’un système dynamique donné. Comme
les énoncés des résultats principaux sont lourds et mettent en jeu beaucoup d’ob-
jets, par souci de clarté et de brièveté nous avons presque exclusivement expliqué
les énoncés des résultats.

— Le dernier chapitre porte sur [17] avec Rivière qui applique les méthodes abordées
au chapitre 1 à un problème classique en géométrie et dynamique : le comptage
orbital. Sur une surface à courbure négative, nous montrons que les séries de Poin-
caré comptant les arcs géodésiques orthogonaux à une paire de courbes géodésiques
fermées admet un prolongement méromorphe au plan complexe. Quand les deux
courbes sont homologiquement triviales, nous montrons que les séries de Poincaré
ont une valeur rationnelle explicite en 0 en interprétant ce nombre comme un enla-
cement de noeuds legendriens. En particulier, pour n’importe quelle paire de points
sur la surface, la longueur des arcs géodésiques reliant les deux points détermine le
genre. De plus, pour n’importe quelle paire de géodésiques fermées homologique-
ment triviales, les longueurs des arcs géodésiques orthogonaux aux deux arcs fermés
détermine l’enlacement des deux géodésiques.

2. Introduction in English.

Quantum field theory was developed as a theory describing interactions of elementary
particles. In a similar way, quantum mechanics appeared as a theory describing atomic
physics. Quantum mechanics stimulated the development of many areas of mathematics,
such as the theories of partial differential equations, operator algebras, functional analysis,
geometry. But the mathematical complexity of quantum field theory and the sophistication
of related mathematical problems seem to be of a different magnitude. In quantum field
theory, the perturbative calculation of any physical process involves a summation over an
infinite number of virtual intermediate states which is generically divergent, hence produces
infinities. The divergences of perturbation theory in quantum field theory are directly linked
to its short distance structure which is highly non-trivial because its description involves
the infinity of multi–particle states.

In a totally different subject namely dynamical systems, in order to describe analyti-
cally the fine properties of the long time behaviour of Axiom A dynamical systems [171,
21, 61], it is necessary to leave the world of functions to consider instead singular distribu-
tions of negative Sobolev regularity. They arise naturally because the dynamics contracts
in certain directions and expands in others.

Because of the physical nature of the problems considered, a common feature in both
subjects are the singularities of the objects of interest : on the one hand, correlation
functions of quantum fields are functions

〈φ(x1) . . . φ(xn)〉 on configuration space {(Rd)n \ all diagonals}

which become singular when |xi − xj | → 0. On the other hand, dynamical correlators for
Axiom A dynamical systems can be expressed in terms of Ruelle resonant states which are
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singular. For instance when X is a Morse–Smale gradient field, we expect :〈
Ψ2, e

−tXΨ1

〉
=

∑
a∈Crit(X)

〈Ψ2, Ua〉 〈Sa,Ψ1〉+ o(1)

where Ua, (resp Sa) are currents having anisotropic singularities : smooth (resp singular)
in the unstable directions and singular (resp smooth) on the stable ones. Moreover, the
ubiquitous notion of determinant like object appears in the two topics under various
forms : determinant like objects counting periodic orbits in dynamical systems, determi-
nants of chiral fermions, partition functions in quantum field theory which are either zeta
regularized determinants of elliptic operators for field theories in the continuum or discrete
determinants for lattice field theories.

Semiclassical analysis is a branch of mathematical analysis which is deeply rooted in
the study of quantum mechanics whereas algebraic microlocal analysis was invented by
Sato to describe the singularities of PDEs in the cotangent space and was immediately
applied to the study of Feynman amplitudes by the Japanese school of algebraic analy-
sis. They were adapted to the smooth setting by Hörmander [93] in the 70’s and quickly
became a powerful tool in the study of linear and nonlinear PDEs. These methods give
important tools to describe quantitatively singularities of distributions and operators in
phase space, this contains informations on the location but also the direction of the
singularities at high frequency. This explains why microlocal, semiclassical methods and
spectral theory are relevant for both problems. Starting from the 90’s, microlocal analysis
allowed to solve important conceptual problems in field theory : give a consistent formu-
lation of quantum fields in curved space–times with the notion of Hadamard states [165]
and prove the perturbative renormalizability of quantum field theory on curved Lorentzian
space–times [26]. At the interface of dynamical systems and topology, many conjectures
by Bowen, Fried [62], Smale [171] have motivated decades of research in the field. Re-
cently surprisingly, microlocal and semiclassical ideas revolutionized the analytic study
of hyperbolic flows in dynamical systems allowing to solve several longstanding conjec-
tures [75, 46, 45, 43, 82, 5, 54]. Surprisingly, hard classical mechanics problems are
solved using deep quantum mechanical techniques.

Our manuscript summarizes a series of articles [12, 13, 14, 15, 16, 17, 9] which
illustrate some applications of microlocal, semiclassical and spectral techniques in dynamics
and quantum field theory. We tried to highlight some ideas lying at the intersection of the
two subjects. Let us give a detailed plan of our manuscript :

— The first chapter is introductory in nature and deals with the series of joint works [12,
13, 14, 15, 16] with Rivière which are all related to Morse theory and topology.
We start with a soft introduction to the concept of transfer operators in dynamics
and Pollicott–Ruelle spectrum, with some motivation and parallels with quantum
mechanics. We completely treat a toy model involving graphs to illustrate the main
ideas in the simplest possible case. We then move on to describe the formalism
of supersymmetric quantum mechanics which was popularized by Witten. We give
many examples to illustrate the formalism, such as de Rham forms, Hodge theory,
the Witten Laplacian and the Lie–Cartan formula. We next recall some defini-
tions of Anosov and Morse–Smale flows in dynamical systems. We state and briefly
sketch a proof of our result with Rivière [12, 16] which gives the Pollicott–Ruelle
spectrum for Morse–Smale gradient flows. We explain how this result relates to
the Witten Laplacian [16]. We briefly discuss the results for general Morse–Smale
flows [13, 14] whose Pollicott–Ruelle spectrum has vertical band structure. In the
last more topological part, we relate spectras and topological properties of the
underlying manifold carrying the dynamics by giving Morse inequalities for both
Morse–Smale and Anosov flows[15].

— The second chapter is devoted to our paper [9] which deals with the renormalization
of determinant like functions. Our goal is to make sense of the partition function
of chiral fermions interacting with some external gauge potential. This adresses a
conjectural picture of Quillen [148]. Our exposition of the result differs from the
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original paper and relies heavily on microlocal methods even though we are dealing
with Euclidean quantum fields. This is on purpose since our longterm goal would be
to extend these results to the Lorentz case where the microlocal viewpoint plays an
essential role. It is inspired by some joint work in progress with Brouder–Zhang. We
only sketch proofs and we provide lots of motivations from quantum field theory.

— The third chapter discusses some joint works with Guillarmou-Rivière-Shen [10]
and with Chaubet [6]. Both articles are devoted to the Fried conjecture which
relates dynamics and topology. It aims to connect the Reidemeister torsion, which
is a topological invariant similar to the determinant of acyclic chain complexes,
with the value at 0 of the Ruelle zeta function which is a complex function counting
periodic orbits. Since the statements of the main results are complicated and involve
many objects, this chapter contains almost no indication of proofs and only tries
to explain the results.

— The last chapter discusses the work [17] with Rivière which gives application of
microlocal analysis to some classical problem in geometry : orbital counting. On a
negatively curved surface, we show that the Poincaré series counting geodesic arcs
orthogonal to some pair of closed geodesic curves has a meromorphic continuation
to the whole complex plane. When both curves are homologically trivial, we prove
that the Poincaré series has an explicit rational value at 0 interpreting it in terms
of linking number of Legendrian knots. In particular, for any pair of points on the
surface, the lengths of all geodesic arcs connecting the two points determine its
genus. Finally, for any pair of homologically trivial closed geodesics, the lengths of
all geodesic arcs orthogonal to both geodesics determine the linking number of the
two geodesics.
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Chapitre 1

Transfer operators, quantum theory and supersymmetry.

In this thesis, we take the opportunity to make some analogies and give more examples
than what could be found in the published articles. We hope that they might serve the
reader as they were very helpful to us. The goal of this first chapter is to introduce the
main motivations and ideas behind all the works presented in the next chapters concerning
hyperbolic dynamics.

1. The formalism of transfer operators.

1.1. Motivation. In dynamical systems and classical mechanics, we are given a phase
space (or configuration space) that we may think as some smooth compact manifoldM and
some smooth vector field V ∈ C∞(TM) on M which generates some flow e−tV : M 7→M
acting on M . Throughout the manuscript, a dynamical system will consist in a triple
(M,V, µ) where µ is a measure on M .

Example 1.1 (The circle S1). On S1, consider the dynamics generated by the vector
field ∂θ which generates the rotations whose invariant measure is dθ.

Roughly speaking, in dynamical systems, one deals with the study of statistical pro-
perties of trajectories of some discrete or continuous evolution in some space. To motivate
the formalism of transfer operators, we follow Omri Sarig’s lectures [157]. Let us consider
the following :
Thought experiment. Drop a little bit of ink into a glass of water, and then stir it with
a tea spoon.

— Can you predict where individual ink particles will end after one minute ? NO : the
motion of ink particles is chaotic.

— Can you predict the density of the ink particles after one minute ? YES : it will be
nearly constant, equal to |mass of ink| / |volume of water+ink|.
Gibbs’s insight : For chaotic systems, it is often easier to predict the be-
havior of densities of large collections of initial conditions, then to predict
the behavior of individual initial conditions.

The transfer operator : instead of studying the individual trajectories of ϕt(x) for
every x ∈M for large times t, we consider the action of the dynamical system on extended
objects such as mass densities, functions, differential forms, currents...This idea will be
particularly fruitful when we study Morse gradient flows whose "individual trajectories"
are very simple. The next paragraph aims to compare the formalism of transfer operators
with quantum mechanics.

1.2. From classical to quantum mechanics. In the case of the geodesic flow, we
would like to compare the quantum and classical formalism. In the classical mechanics of the
geodesic flow, the configuration spaceM = S∗M is a contact manifold, the cosphere bundle
of some manifoldM. We are given some Hamiltonian function on S∗M, the evolution of
some particle in S∗M is dictated by some ordinary differential equation dϕt

dt = XH ◦ ϕt
where XH is the Hamiltonian vector field defined from the Hamiltonian H ∈ C∞(S∗M).

Example 1.2 (Free particle on R). The phase space reads S∗R = R × {±1} with
coordinates (x, p) where p = ±1. Then the geodesic flow takes the very simple form t 7→
(x+ tp, p).

17



Example 1.3 (Free particle on Td, geodesic flow.). The phase space reads S∗Td =
Td × Sd−1 with coordinates (x, p) where p ∈ Sd−1. Then the geodesic flow takes the very
simple form t 7→ (x+ tp, p), the momentum component remains constant along the geodesic
flow since the curvature vanishes.

In quantum mechanics, the state of the system is modelled by some Hilbert space
H = L2(M) and observables are operators acting on the state space H. The evolution of
the quantum system is given by some operator evolution operator e−itH : H 7→ H with
infinitesimal generator the Hamiltonian H : D ⊂ H 7→ H which is often selfadjoint so that
the dynamics is unitary. In quantum mechanics, starting from some initial state of the
system Ψ1 ∈ H, ‖Ψ0‖H = 1, the probability amplitude that the evolved system at time t
to be in the state Ψ2 reads

〈
Ψ2, e

itHΨ1

〉
and the actual probability is |

〈
Ψ2, e

itHΨ1

〉
|2.

Example 1.4 (Free particle on Td). On the torus Td, the Hilbert space is L2(Td) and
the quantum evolution is given by the Schrödinger propagator eit∆, where ∆ is the Laplacian
on Td which quantizes the geodesic flow since the symbol of ∆ is the Hamiltonian of the
geodesic flow.

classical quantum
Hamiltonian ξ2 H = −∆
Evolution t 7→ (x+ tξ; ξ) eit∆Ψ

1.3. From quantum mechanics to transfer operators in dynamics. The for-
malism of transfer operators is somewhat midway between classical dynamics and quantum
mechanics. At first approximation, the state space H will be the space of smooth functions
C∞(M) on the configuration space M and more generally some anisotropic Sobolev space
of distributions as we will see in section 5 1. Instead of viewing the flow e−tV acting on
points of M , we will rather view it as acting on functions and Sobolev distributions by
pull–back :

(1) Ψ ∈ H 7−→ e−tV Ψ = ϕ−t∗Ψ.

The above linear evolution will be denoted naively as the transfer operator. The infinitesi-
mal generator of the evolution is the Lie derivative LV acting on functions and distributions.
In the sequel, for simplicity of notations, we will simply denote this operator by V . In the
language of PDE, the evolved state Ψ(t) = ϕ−t∗Ψ is in fact the solution of the transport
equation

(2) ∂Ψ(t) = −VΨ(t),Ψ(0) = Ψ

where we transported the initial Cauchy data Ψ by the flow e−tV .
A fundamental question in dynamical systems, let Ψ(t) = ϕ−t∗Ψ be the solution of the

above transport equation, what is the long time behaviour

lim
t→+∞

ϕ−t∗Ψ?

1.4. Dynamical correlators and their Laplace transform. How to extract dy-
namical informations from the transfer operators ?

Example 1.5. Assume we are given a subset Ω ⊂ M of our configuration space and
the initial density of particles is Ψ1. We would like to know how to write the number of
particles in the region Ω when the system evolved at time t ? The answer is very simple∫

Ω⊂M
e−tV Ψ1dµ =

〈
1Ω, e

−tV Ψ1

〉
.

1. Traditionnaly in dynamics for instance in the book of Baladi, the transfer operator is viewed
as acting on probability measures by push–forward
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This example illustrates the meaning of the dynamical correlators. If there is a measure
µ on the compact manifold M , then one can consider the dynamical correlators defined
as :

(3) CΨ1,Ψ2(t) =

∫
M

Ψ2

(
e−tV Ψ1

)
dµ.

To emphasize the analogies with quantum mechanics, we shall sometimes denote such
correlator as

〈
Ψ2, e

−tV Ψ1

〉
.

In the analytical approach to dynamical systems we shall follow, we will be interested
in the long time behaviour of the dynamical correlators CΨ1,Ψ2(t) when t → +∞, in
particular the asymptotics for large t → +∞. The study of the asymptotic behaviour of
correlators in hyperbolic dynamics has a long history with many contributions [151, 123,
31, 112, 39]. These asymptotics can be captured in some sense by the Laplace transform
of CΨ1,Ψ2(t) w.r.t. variable t . This leads us to a formal definition of the Pollicott-Ruelle
resonances [143, 152] as the poles of the Laplace transformed correlators

Definition 1.6 (Pollicott-Ruelle resonances). The Pollicott-Ruelle resonances of V
are the poles, when they exist, of the Laplace transformed correlators

(4) ĈΨ1,Ψ2(z) =

∫ ∞
0

CΨ1,Ψ2(t)e−tzdt =

∫ ∞
0

(∫
M

Ψ2

(
e−tV Ψ1

)
dµ

)
e−tzdt.

So one first fundamental problem reads

Given some vector field V on some compact manifold M . Study the ana-
lytic properties of the Laplace transformed dynamical correlators. What
is the structure of its poles ?

1.5. The concept of Atiyah–Bott flat trace. Let M be some compact manifold
with smooth density µ. To some linear map T : C∞(M) 7→ D′(M) corresponds a distribu-
tional Schwartz kernel K(x, y) ∈ D′(M ×M), we define the flat trace of T :

Tr[(T ) =

∫
x∈M

K(x, x)dµ(x)

the pull–back of K on the diagonal followed by integration, when these operations are well–
defined. Let us consider the following simple example to understand the most important
case of flat trace [1].

Example 1.7 (Flat trace and transfer operators). Let f : R 7→ R be a C∞ diffeomor-
phism which is transverse to the identity i.e. f(x) = x =⇒ f ′(x) 6= 1 and |f(x)| → +∞
when |x| → +∞. The pull–back operator Tf : ψ ∈ C∞c (R) 7→ f∗ψ = ψ ◦ f ∈ C∞c (R) defines
a transfer operator. Its Schwartz kernel reads δ(y − f(x)) and is supported by the graph of
f since

∫
R δ(y − f(x))ψ(y)dy = ψ(f(x)).

Then the flat trace of Tf is expressed in terms of fixed points of f as Tr[ (Tf ) =∑
x=f(x)

1
|1−f ′(x)| .

Observe that we already see in the simple example that the flat trace does not count
the number of fixed points and we will see in subsection 1.1 that it is only by adding
supersymmetry to the picture that we will be able to count the number of fixed points.

2. Resonances, zeta functions and graphs.

2.0.1. Graphs and transfer operators. We illustrate the main ideas and techniques used
in the sequel in some simple example involving only matrices and graphs called subshifts of
finite type in the dynamical systems litterature. Consider a finite alphabet A = {1, . . . , n},
the letters in the alphabet are represented by the vertices of some directed graph Γ where
for every pair of vertices (i, j) ∈ A2, there is at most one directed edge i 7→ j in Γ. For
every such pair, we assign a non negative number mij > 0 and mij = 0 if there are no edges

19



connecting (i, j). In certain situations, mij can be some integer but we do not assume this
a priori. If mij ∈ {0, 1}, then M is the adjacency matrix of Γ. The matrix M is irreducible
if any pair of vertices can be connected by some path in Γ. The notion of irreducibility is
similar to ergodicity in the sense that, starting from any vertex, the dynamics can access
any other vertex of the graph. The state space is L2(V (Γ)) which are functions on the
vertices. The matrix M defines a transfer operator T : Ψ ∈ L2(V (Γ)) 7→MΨ ∈ L2(V (Γ)).
Dynamical correlators read CΨ1,Ψ2(n) = 〈Ψ1, T

nΨ2〉 where n ∈ Z plays the role of discrete
time. In this case, the Pollicott–Ruelle resonances are defined as the poles of the discrete
Laplace transform

ĈΨ1,Ψ2(z) =
∞∑
n=0

zn 〈Ψ1, T
nΨ2〉 =

〈
Ψ1, (Id− zT )−1 Ψ2

〉
.

Of course, these poles counted with multiplicity coincide with the inverse spectrum σ(M)−1

of M .
2.0.2. Relation with the periodic orbits. A periodic orbit in Γ is a sequence {i1, . . . , in}

of vertices s.t. i1 → i2 → · · · → in → i1, n = `(γ) is the period of γ. A periodic orbit
γ can be a multiple γ̃p of some periodic orbit γ̃ of smaller period. Also note that if γ =
{i1, . . . , in} is a periodic orbit then together with {i2, . . . , in, i1}, . . . , {in, i1, . . . , in−1} there
are potentially several periodic orbits passing through the physical loop i1 → i2 → · · · →
in → i1. To kill all these multiplicities in the definition of periodic orbits, we define the
equivalence classes of prime periodic orbits that we denote by [γ] which means that a
representative γ of the class [γ] cannot be a multiple γ̃p, |p| > 1 of some periodic orbit γ̃
of lesser period and we identity [{i1, . . . , in}] ∼ [{i2, . . . , in, i1}] ∼ · · · ∼ [{in, i1, . . . , in−1}].
This is a “geometric closed path on the graph” without repetition. Let us make the following
trivial observation which is the simplest instance of trace formulas.

Lemma 2.1 (The simplest trace formula). LetM be a matrix corresponding to the finite
directed graph Γ as above. To every periodic orbit γ = (i1 . . . ik), we associate the weight
w(γ) = mi1i2 . . .miki1. One could think of this weight as "exponential of the integral of
some potential" on the discrete loop or the holonomy of some discrete connection on the
graph. Observe that we have the identity :

Tr(Mn) =
∑
i∈A

(Mn)ii =
∑
γ

w(γ) =
∑

[γ]∈P

`([γ])
∞∑
k=1

w([γ])kδn=k`([γ])︸ ︷︷ ︸
geometric side

=
∑

λ∈σ(T )

λn

︸ ︷︷ ︸
spectral side

(5)

where the sum runs over all the periodic orbits γ of length n.

One should think of the geometric side as the discrete version of the Atiyah–Bott flat
trace whereas the spectral side is like a spectral trace. In case M is the adjacency matrix,
we always get w(γ) = 1. In analogy with combinatorics and analytic number theory, one
can associate a weighted zeta function which counts the periodic orbits in Γ :

(6) ζ(z) =
∏

[γ]∈P

(1− w(γ)z`(γ))−1

where the product runs over the equivalence classes of prime periodic orbits in Γ
denoted by P. This is called the Artin–Mazur zeta function in analogy with the Weil
zeta function in number theory. The following theorem, which is easy to prove in this
combinatorial setting, is the key to understand the proofs of analytic continuation of zeta
functions. It gives a direct relation between periodic orbits and spectrum of M .

Theorem 2.2 (Bowen–Landford [61]). The identity ζ(z) = det(I − zM)−1 holds true
hence ζ is rational with poles at σ(M)−1 which is the resonance spectrum of T : L2(V (Γ)) 7→
L2(V (Γ)). We also have

(7)
d

dz
log ζ(z) = Tr

(
M(Id− zM)−1

)
=
∑
γ

`(γ)w(γ)z`(γ).
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The second formula relates the discrete resolvent (Id− zM)−1 to the log derivative of
the zeta function. A similar formula will play a crucial role in Chapter 2 where we also
express the log-derivative of the partition function (derivative of the free energy) in terms
of traces of resolvents and also in our work on the Fried conjecture where we also calculate
the log–derivative of the Ruelle zeta function.

Démonstration. By the simple trace formula and using (1 − x)−1 = exp(− log(1 −
x)) :

ζ(z) =
∏

[γ]∈P

(1− w([γ])z`([γ]))−1 = exp

− ∑
[γ]∈P

∞∑
n=1

w([γ])nzn`([γ])

n


= exp

− ∞∑
k=1

∑
`(γ)=k

w(γ)
zk

k

 = exp

(
−
∞∑
k=1

Tr
(
Mk
) zk
k

)
= exp (−Tr log(Id− zM)) = det(Id− zM)−1.

The second formula is proved similarly using Lemma 2.1 and equation (41). �

This Theorem shows in the simple case of subshifts of finite type that the poles of the
zeta function counting periodic orbits are contained in the poles of the dynamical corre-
lators defined above and are therefore Pollicott–Ruelle resonances of the transfer operator
T .

3. Supersymmetric formalism.

In this memoir, we have applications to topology in mind. We will ask the more general
question, for a differential form ω ∈ C∞(Λ•T ∗M), what is the long time behaviour of ϕ−t∗ω
when times t goes to +∞ ? Do we have weak convergence to de Rham currents ? So one may
ask, what do we gain by considering the transport equation on differential forms instead of
functions ? The short answer would be supersymmetry and it is the purpose of the present
section to introduce differential forms which have an extra supersymmetric structure which
makes them richer and contains topological information about the underlying manifoldM .

3.1. Some motivating examples. We start by the important example of De Rham
differential forms in differential geometry. Then we explain how some simple formalism
appearing in the mathematical physics litterature relates Hodge theory, the Witten Lapla-
cian and the Lie–Cartan formula. Before we describe differential forms, we need to recall
the important notion of Z2 graded vector space which is used repeatedly in this memoir.

Definition 3.1. A vector space E is called Z2–graded if E is endowed with some
involution Γ : E 7→ E s.t. Γ2 = Id and hence E reads as a direct sum of eigenspaces for
Γ : E = E+ ⊕ E− where Γ|E± = ±Id|E± .

3.1.1. Differential forms and the de Rham differential d. Given a vector space V with
given basis (e1, . . . , en), the exterior algebra Λ•V of V is the Z2–graded algebra generated
by elements of the form (ei1 ∧ · · · ∧ eik)16i1<···<ik6n. The exterior algebra Λ•V decomposes
as ΛevenV ⊕ΛoddV where the operator Γ acts on homogeneous differential forms u ∈ ΛkV
as Γu = ±u depending on the parity of k. It is endowed with the exterior product

∧ : (u, v) ∈ ΛkV × ΛlV 7→ u ∧ v ∈ Λk+lV

which satisfies the relation u ∧ v = (−1)deg(u) deg(v)v ∧ u.

Remark 3.2. Geometrically, one can intuitively visualize the element u1 ∧ · · · ∧ uk as
the oriented k-volume element spanned by the k-uple (u1, . . . , uk). This explains why this
volume element vanishes if the family (u1, . . . , uk) is not linearly independent.
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On some smooth manifold M , starting from the cotangent bundle T ∗M , taking the
fiberwise union

⋃
x∈M Λ•T ∗xM of the exterior algebras of T ∗M defines the vector bundle

Λ•T ∗M of differential forms. The smooth differential forms on M are smooth sections of
ΛT ∗M which are denoted by C∞(Λ•T ∗M). The vector space C∞(Λ•T ∗M) is in fact a
finitely generated module over the algebra C∞(M). The vector space C∞(Λ•T ∗M) splits
as a direct sum

C∞(Λ•T ∗M) = C∞(ΛevenT ∗M)⊕ C∞(ΛoddT ∗M)

of even and odd elements. In local coordinates (x1, . . . , xn) near a point m on a manifold
M , a differential form ω of degree k reads ω =

∑
16i1<···<ik6n ωi1...ikdx

i1 ∧ · · · ∧ dxik where
ωi1...ik ∈ C∞(M). There is a local operator d, the de Rham differential, which raises the
degree of differential forms by 1 and acts in local coordinates as

dω =
∑

16i1<···<ik6n

n∑
i=1

∂ωi1...ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik .

One can verify that d defined as above is intrinsic and that d squares to zero i.e. d2 = 0.
This means that the differential forms C∞(Λ•T ∗M) endowed with the de Rham differential
d forms a cochain complex

. . .
d7−→ C∞(ΛkT ∗M)

d7−→ C∞(Λk+1T ∗M)
d7−→ . . .

3.2. De Rham currents. The de Rham currents play a fundamental role in our
works. They generalize differential forms in the same way as the distributions of Laurent
Schwartz generalize smooth functions. There are two possible definitions of de Rham cur-
rents, as forms whose coefficients are distributions or as the topological dual of smooth
differential forms for some appropriate notion of pairing. In practice, the de Rham cur-
rents form a vector space of differential forms with distributional coefficients. In local
coordinates (x1, . . . , xn) in some neighborhood Ω of a point m on a manifold M , a current
[T ] of degree k reads

[T ] =
∑

16i1<···<ik6n
Ti1...ikdx

i1 ∧ · · · ∧ dxik

where Ti1...ik ∈ D′(Ω). The currents of degree k on M will be denoted by D′,k(M) and
the de Rham differential also acts on the de Rham currents. The second definition is a bit
more conceptual and uses duality.

Definition 3.3. We think of the de Rham currents of dimension k as the topolo-
gical dual of differential forms of degree k, [T ] ∈ D′k(M) is a continuous linear map on
C∞(ΛkT ∗M) :

(8) [T ] : ω ∈ C∞(ΛkT ∗M) 7→ 〈[T ], ω〉

where the duality pairing 〈., .〉 generalizes the notion of integration.
The graded vector space D′•(M) is endowed with a boundary operator ∂ which is

defined as the transpose of the de Rham differential d, by definition :

(9) 〈∂[T ], ω〉 = 〈[T ], dω〉 .

Conceptually, formula 9 takes the Stokes formula as inherent definition of the boundary
operator ∂, it is similar to the notion of distributional derivative in the theory of distribution
which is defined by duality.

Example 3.4 (Integration currents on submanifolds). Let S be a smooth, oriented,
compact submanifold of M of dimension d ≤ n. This defines an integration current [S] in
D′d(X) which acts on test forms ω ∈ C∞(ΛdT ∗M) by [S](ω) =

∫
S ω.

For more on integration currents and the relation with delta distributions, we refer the
reader to the appendix of [11] and [161, 74, 38].
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3.3. The general formalism of supersymmetric quantum mechanics, Hodge
theory, Lie–Cartan formula and Witten Laplacians. The language described in this
section was strongly motivated by a landmark paper of Witten [183] which related for
the first time supersymmetry and Morse theory. We are given a Z2–graded vector space of
states H = H0 ⊕ H1 with parity operator Γ, Γu = u if u ∈ H0 and Γu = −u if u ∈ H1.
As explained above, Γ is an involution Γ2 = 1 and H0 ⊕H1 is a decomposition of H into
a direct sum of eigenspaces for Γ. A linear operator A : H 7→ H is called even (resp odd)
if it does not change the parity of elements (resp if it exchanges parities). Sometimes, we
will also say that A has degree 0 if it is even and A has degree 1 if it is odd. Let us give
the definition of the commutator of two linear maps in graded linear algebra 2 :

Definition 3.5. The supercommutator [A,B] between two operators H 7→ H is defi-
ned to be

[A,B] = AB − (−1)deg(A) deg(B)BA.

Definition 3.6. A supersymmetric quantum mechanical system consists of the follo-
wing data :

— A Z2–graded Hilbert space of states H = H0 ⊕ H1 with parity operator Γ. This
represents some Hilbert space of sections of some Z2–graded bundle E and we
have continuous dense inclusions C∞(E) ⊂ H ⊂ D′(E) where C∞(E) are smooth
sections and D′(E) are E valued distributions.

— Two odd operators Q,Q† which square to zero : Q2 = Q†2 = 0.
— The supercommutator [Q,Q†] = H defines the Hamiltonian of the quantum system

which is the infinitesimal generator of the dynamics. H is an even, unbounded
operator (not necessarily self–adjoint) from some dense domain D ⊂ H into H.
We have the important commutations relations [Q,H] = [Q†, H] = 0.

— The operator H is such that the resolvent (H− z)−1 : H 7→ H is Fredholm analytic
on some half–space Re(z) > −a for some a > 0.

Let us remark that in concrete applications, the structure we find will be slightly more
complicated. We have some family (Hm), where m ∈ C∞(S∗M) is some order function,
of anisotropic Sobolev spaces. These are Hilbert spaces of distributional sections of some
vector bundle which depends on the application in mind. In all applications from the
present thesis, Q equals the De Rham operator d or a twisted version of the De Rham
operator (see 7.1 for the definition of twisting) which is a differential operator of order 1.
Therefore, Q acts as a bounded operator Hm+1 7→ Hm where both spaces are anisotropic
spaces.

Let us now give three fundamental examples covered by the supersymmetric formalism
that we will meet several times in the manuscript.

3.3.1. The Hodge Laplacian. Obviously C∞(Λ•T ∗M) is Z2–graded by the parity of the
differential form. Assume that there is a Riemannian metric g on M . This defines a Hodge
star operator ∗ : C∞(Λ•T ∗M) 7→ C∞(Λn−•T ∗M) which is an involution on C∞(Λ•T ∗M)
s.t. 〈u, v〉 =

∫
M u∧∗v where 〈., .〉 is the natural scalar product on differential forms induced

by the metric g on M . Using the scalar product 〈., .〉, we may define the L2 adjoint d∗ of
the de Rham differential d. So we have a pair of differentials (d, d∗) such that

(10) [d, d∗] = dd∗ − (−1)deg(d) deg(d∗)d∗d = dd∗ + d∗d = ∆g

where ∆g is the Laplace–Beltrami operator.
3.3.2. Lie–Cartan formula. On a smooth compact manifold M with a smooth vector

field V , we describe a natural supersymmetric structure. The states space is the vector
space of differential forms which has a natural Z2 grading which comes from taking the
degree of the differential form modulo 2. The de Rham operator d plays the role of Q
since it is an odd operator squaring to 0. There is another operator denoted by ιV :
C∞(Λ•T ∗M) 7→ C∞(Λ•−1T ∗M) defined on one forms as ιV α = α(V ) and extended to all
degrees by ιV (u ∧ v) = (ιV u) ∧ v + (−1)deg(u)u ∧ ιV v.

2. Sometimes called the Koszul rule of signs in the supergeometry litterature
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Then (C∞(Λ•T ∗M), d, ιV ) forms a supersymmetric quantum mechanical system whose
dynamics is generated by

(11) [d, ιV ] = dιV − (−1)deg(d) deg(ιV )ιV d = dιV + ιV d = LV

by the Lie–Cartan formula.
3.3.3. The Witten Laplacian. This example interpolates in some sense between Hodge

and the Lie–Cartan supersymmetric structures. Let f be some Morse function on M .
Consider the twisting e−

f
~ de

f
~ = df = d + ~−1df∧ and its adjoint d∗f as in the Hodge

theory. Then the rescaled supercommutator

(12)
~
2

[df , d
∗
f ] = ∆f =

~
2

∆ + order zero term +
‖∇f‖2

2~

is the celebrated Witten Laplacian in a rescaled form. Then
(
C∞(Λ•T ∗M), df , d

∗
f

)
forms

a supersymmetric quantum mechanical system whose dynamics is generated by the Witten
Laplacian ∆f .

Let us summarize the common features of the above three examples in the following
array

Lie-Cartan Hodge Witten
State space C∞(M) ⊂ H ⊂ D′(M) L2(M) L2(M)

Hamiltonian iLV ∆ ∆f

Evolution e−tLV e−t∆ e−t∆f

SUSY states H⊗C∞(M) Ω•(M) L2(M)⊗C∞(M) Ω•(M) L2(M)⊗C∞(M) Ω•(M)

SUSY generators Q = d,Q∗ = ιV Q = d,Q∗ = d∗ Q = df , Q
∗ = d∗f

Key identity LV = [d, ιV ] ∆ = [d, d∗] ∆f = [df , d
∗
f ]

Physical states ker(Q)
Im(Q)

idem idem
Hodge decomp. H = ker(LVf

)⊕ Im(d)⊕ Im(ιV ) H = ker ∆⊕ Im(d)⊕ Im(d∗) H = ker ∆f ⊕ Im(df )⊕ Im(d∗f )

Intersection 〈u, v〉 =
∫
M u ∧ v idem idem

pairing
Scalar product ? (u, v) = 〈u, ?v〉 (u, v) = 〈u, ?v〉

Remark 3.7. There is a subtlety in the above comparison table which were brought
to our attention by Maciej Zworski. Actually, the quantum analogue of the operator iLV
(which has real principal symbol) should be the operator ∆ and therefore the analogue
of the flow e−tLV should be the unitary Schrödinger propagator eit∆. The correspondance
is even more true in case the flow is volume preserving in which case e−tLV : L2(M) 7→
L2(M) is also unitary. However, when acting on the anisotropic space, the operator iLV
is no longer "self adjoint" since the propagator e−tLV acting on the anisotropic spaces is
no longer unitary and behaves more like a semigroup. Furthermore when V is a Morse–
Smale gradient, the analogy with the heat flow in Hodge theory is striking since the flow
e−tLV : H 7→ H, t > 0 will damp exponentially fast all Ruelle resonant states except the
states for the resonance 0.

In sections 8 and 6 devoted to the Morse inequalities and the Witten Laplacian, we
will come back to these correspondences in more detail.

3.4. Quasi–isomorphism and formal Morse inequalities. We recall a bit of ter-
minology, two cochain complexes are called quasi–isomorphic if they have isomorphic coho-
mology groups. Let us indicate how one can prove Morse inequalities in the abstract setting
of supersymmetric quantum mechanics. This sketch of proof will be applied repeatedly to
Anosov and Morse–Smale flows as well as the Witten Laplacian. The mechanism works as
soon as one can check the abstract structure of definition 3.6.

Observe that ker(H) is stable by Q since Q and H commute by definition of H =
[Q,Q†]. The key idea is to show that the complex (C∞(E), Q) is quasi–isomorphic to the
complex (ker(H), Q) of zero modes for the Hamiltonian. Let Π0 be the spectral projector
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on ker(H) ⊂ H. We have the following commutative diagram :

Infinite dim. complex C∞(E)
Q−→ C∞(E)

↓ ↓
ker(H) Π0 (C∞(E))

Q−→ Π0 (C∞(E))

where we need to prove that the projector Π0 induces an isomorphism in cohomology. The
key method is to establish the chain homotopy equation. We have a sequence of identities :

Id−Π0 = HH−1(Id−Π0)︸ ︷︷ ︸
key term

= Q
(
Q†H−1(Id−Π0)

)
︸ ︷︷ ︸

R

+
(
Q†H−1(Id−Π0)

)
︸ ︷︷ ︸

R

Q.

This can be compactly written as :

(13) Id−Π0 = QR+RQ

which is called chain homotopy equation. The consequence of the above chain homotopy
equation is that one has a Hodge type decomposition

(14) H = ker(H)⊕ Im(Q)⊕ Im(Q†)

and also that a Q closed state u ∈ H satisfies u = Π0(u)+QRu hence u−Π0(u) is Q-exact
and belong to the same Q-cohomology class.

Remark 3.8. Let us remark that the above Hodge type decomposition holds true
in all the situations described in the present thesis, for instance when Q = d is the de
Rham differential, Q† is the contraction ιV . The decomposition does not require Q† to
be the adjoint of Q for some Hilbertian structure. The key idea used in the proof is that
the resolvent (V − z)−1 : H 7→ H acting on the anisotropic spaces has discrete spectrum
at 0 which has finite multiplicity. It follows that the spectral projector on the generalized
eigenspace ker(V ) reads Π0 = i

2π

∫
γ(V −z)−1dz where γ is some Jordan path which encloses

{0} and does not meet the rest of σ(V ). Then V : (Id−Π0)H 7→ (Id−Π0)H is invertible
and this is what is needed to obtain the chain homotopy equation (13) and the Hodge type
decomposition (14).

4. Morse–Smale and Anosov flows as hyperbolic dynamics.

In the present manuscript, we deal exclusively with Morse–Smale and Anosov flows.
So in the present section, we shall give a simple introduction to both kind of dynamics
emphasizing the similarities and differences.

4.1. Anosov flows. We shall start with Anosov flows.

Definition 4.1. The flow ϕt = etV : M 7→ M generated by some vector field V ∈
C∞(TM), is Anosov if the tangent bundle TM splits as a direct sum of invariant bundles :

TM = Es ⊕ Eu ⊕ R 〈V 〉

where R 〈V 〉 is the line bundle generated by V ,

‖dϕtx(v)‖ 6 Ce−Kt‖v‖, (x, v) ∈ Es(15)
‖dϕ−tx (v)‖ 6 Ce−Kt‖v‖, (x, v) ∈ Eu.(16)

Example 4.2 (Cotangent of negatively curved surface). Let M be a surface endowed
with a metric of negative curvature K < 0 everywhere, visually one should imagine that all
geodesic triangles have the sum of inner angles < π. Then it is a well known fact that the
geodesic flow (ϕt)t on S∗M is Anosov [102].
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4.2. Morse–Smale flows. Morse–Smale flows are slightly more complicated to des-
cribe since we need to introduce a bit of terminology from dynamical systems. We say that
a point x inM is wandering if there exist some open neighborhood U of x and some t0 > 0
such that

U ∩
(
∪|t|>t0ϕ

t(U)
)

= ∅.
This means intuitively that after a certain time, some neighborhood U of x pushed by
the flow will never intersect itself again. The nonwandering set of the flow is given by the
points which are not wandering. The set of nonwandering points is denoted by NW(ϕt).
For any invariant closed subset Λ of M , we define the unstable and stable manifolds of Λ :

W u(Λ) := {x ∈M : dist(ϕt(x),Λ)→ 0, t→ −∞},
and

W s(Λ) := {x ∈M : dist(ϕt(x),Λ)→ 0, t→ +∞}.
These notions are intuitively clear, the stable (resp unstable) manifold of Λ are the points
which are attracted to Λ in the future (resp past).

The concept of hyperbolicity is central. It starts with linear maps, for E a real vector
space, a linear map L : E 7→ E is hyperbolic if none of its eigenvalues lie in the unit circle.
Geometrically, this means that E splits as the direct sum E = Es ⊕ Eu of invariant sub-
spaces Es, Eu where Es is the stable subspace where the dynamics contracts exponentially
fast and Eu is the unstable subspace where the dynamics expands exponentially fast.

Example 4.3 (Fundamental example 1). Let M be the matrix

M =

(
2 0
0 1/2

)
acting on the plane R2 by x 7→ M.x. The unstable subspace is the Ox axis and the stable
subspace is the Oy axis.

A fixed point m of some flow ϕt is hyperbolic if dϕtm : TmM 7→ TmM is hyperbolic
for some t > 0.

Example 4.4 (Fundamental example 2). Let A be an n×n matrix such that for every
eigenvalue λ ∈ σ(A), Re(λ) 6= 0. This implies that the exponential matrix etA is hyperbolic
in the linear algebra sense as explained above.

The vector field 〈Ax, ∂x〉 = Ajix
i∂xj which generates the flow

x ∈ Rn 7→ etAx ∈ Rn

has 0 ∈ Rn as unique hyperbolic fixed point.

A periodic orbit γ of a dynamical system is hyperbolic if the Poincaré return map
Pγ mapping a transversal piece of hypersurface Σ to itself fixing m ∈ Σ is such that
dPγ : TmΣ 7→ TmΣ is hyperbolic.

Definition 4.5 (Morse–Smale flows). A flow etV = ϕt : M 7→M is Morse–Smale if
— its non wandering set NW (ϕt) is a finite union of closed orbits and fixed points,

we will denote by Λ ∈ NW (ϕt) the critical elements of V 3,
— the critical elements Λ ∈ NW (ϕt) are hyperbolic,
— for every pair (Λ1,Λ2) of critical elements (they can be the same), the intersection

W u(Λ1) ∩W s(Λ2) is transverse. This condition will be called Smale transver-
sality.

Let us comment the above definition. The fact that the stable and unstable manifolds
are actually smooth submanifolds (but non properly immersed) follows from the hyperbo-
licity of the critical elements. The transversality of N1∩N2 where N1, N2 are submanifolds
means that at every x ∈ N1 ∩N2, TxN1 + TxN2 spans TxM . The most important example
of Morse–Smale flows one should keep in mind are the Morse–Smale gradient flows

3. That is the connected components of NW (ϕt)
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Theorem 4.6 (Kupka–Smale). For a generic pair of function and metric (f, g) ∈
C∞(M)×Met(M), the gradient flow ϕt : M 7→M generated by V = ∇f is a Morse–Smale
flow whose nonwandering set coincides with the critical locus of f : {a ∈M ; df(a) = 0}.

The manifold M is partitioned as a union of unstable manifolds

M =
⋃

a∈Crit(f)

W u(a).

The observation thatM is partitioned by unstable manifolds is due to Thom [177] and
is an important precursor for applications of Morse theory to topology. In the case of Morse–
Smale gradient flows, there are no periodic orbits and only critical points in NW (ϕt) but
this was historically an important example that motivated Smale to introduce the larger
class of Axiom A flows [171, 21, 61].

Example 4.7. Consider the function f(x, y) = ax2 − by2 for (a, b) > 0 and the Eu-
clidean metric g = dx2 + dy2. Then f has critical point (0, 0) ∈ R2 and V = ∇f reads
ax∂x − by∂y with hyperbolic fixed point (0, 0). Integrating V , the flow reads (eatx, e−bty)
thus W u((0, 0)) = {x = 0} and W s((0, 0)) = {y = 0}.

4.3. Comparing Anosov to Morse–Smale flows. Let us state some important
classical results on Anosov and Morse–Smale flows. Then we will compare them and show
their structural differences. If the vector field V ∈ C∞(TM) is Anosov then there exists
a measure of maximal entropy µ on M whose support is the whole manifold M such that
the flow ϕt : M 7→ M preserves µ and is ergodic w.r.t. µ. This means that almost every
orbit of the flow is everywhere dense by the Birkhoff ergodic Theorem : ∪t>0ϕt(x) = M for
µ almost all x ∈ M and the non wandering set NW (ϕt) in the Anosov case is the whole
manifold M itself.

Example 4.8 (Geodesic flows and Liouville measure). If (M, g) is smooth, compact
negatively curved Riemannian manifold, then the geodesic flow ϕt : S∗M 7→ S∗M is
Anosov and preserves the Liouville measure on S∗M.

Intuitively, Anosov flows are typical examples of chaotic dynamics where it is difficult
to predict the history of individual orbits and it is therefore very fruitful to follow the
transfer operator approach and study the evolution of extended objects.

The situation for Morse–Smale flows is drastically different. In fact, there is a deep
Theorem of Smale whose complete detailed proof can be found in [13] which describes the
geometric structure of Morse–Smale flows

Theorem 4.9 (Smale). Let V ∈ C∞(TM) be Morse–Smale. Then the manifold M is
partitioned as a union of unstable manifolds of critical elements

(17) M =
⋃

Λ∈NW (ϕt)

W u(Λ),

and the relation ≺ on the critical elements NW (ϕt) defined as

Λ1 ≺ Λ2 if W u(Λ1) ⊂W u(Λ2)

is a partial order relation.
Moreover, we have a precise description of the closure of any unstable manifold as

(18) W u(Λ) = ∪Λ′�ΛW
u(Λ′).

The partial order relation gives a kind of ordering in the way in which M is stratified
by the unstable manifolds. From the above Theorem, we see that for Morse–Smale flows,
the only invariant measures are convex combinations of delta measures supported by the
critical points and periodic orbits of the flow so their support has empty interior in contrary
to the Anosov case.
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4.4. Motivations and questions. In the case of Morse Smale gradient flows, observe
that for every x ∈M , x must belong to some stable manifoldW s(a) and unstable manifold
W u(b) and therefore ϕt(x)→ a when t→ +∞. So in contrast with the Anosov flows, the
Morse–Smale trajectories exhibit very predictable and unsurprising behaviour. This is why
it is more fruitful to ask different questions about the long times dynamics of Morse–Smale
flows, more functional analytic in nature :

(1) In the paper [86, 87], Harvey–Lawson address the following problem : let u be a
smooth differential form, what can we say about limt→+∞ ϕ

−t∗u ? Is there conver-
gence in a weak sense to some current in D′(M) ? Can the topology of M influence
the possible weak limits ? In fact with Rivière, we show there is an exponential rate
of convergence to the limit, moreover we show that there is an asymptotic expansion
in t when t→ +∞.

(2) The first problem in Bowen’s notebook [16] reads : To what extent does the gra-
dient flow near a critical point depend on the metric ? With Rivière, we show that
the asymptotics of correlators of global observables is entirely determined by the
Lyapunov exponents of V at the critical points.

(3) Is there a relation between large times dynamics limt→+∞ ϕ
−t∗u and semiclassical

limit of low energy quasimodes of the Witten Laplacian ? This question was asked
by Harvey–Lawson and will be discussed in section 6.

Similar questions can be asked for Morse–Smale and Anosov flows, both types might
contain periodic orbits contrary to the gradient flows. The goal of the remaining parts
of this chapter is to provide partial answers to all above questions first for gradient flows
then we shall discuss more general Morse–Smale and Anosov flows.

4.4.1. The results of Laudenbach and Harvey–Lawson. We state a Theorem in two parts
for gradient flows which motivated our results. The first part is due to Laudenbach [106]
and deals with the mass of unstable manifolds and the second due to Harvey-Lawson deals
with the convergence of dynamical correlators, f ∈ C∞(M) a given Morse–Smale function :

Theorem 4.10 (Laudenbach 1992, Harvey-Lawson 2000). Let M be a smooth, com-
pact, boundaryless manifold. Then for every pair (f, g) where V = ∇f satisfies the Smale
transversality condition (see definition 4.5) and g is flat in Morse coordinates near Crit(f) :

— (Laudenbach) the unstable manifoldsW u(a) define integration currents Ua = [W u(a)]
of finite mass called Laudenbach currents :

〈Ua, α〉 =

∫
Wu(a)

α.

— (Harvey-Lawson) the dynamical correlators converge and their limit reads :

〈β, ϕ−t∗α〉 →
t→+∞

∑
a∈Crit(f)

(∫
Wu(a)

β

)(∫
W s(a)

α

)
.(19)

For a ∈ Crit(f), the current of integration on the stable manifold W s(a) will be
denoted by Sa in the sequel.

Remark 4.11. One can reformulate the above result. Introduce a Schwartz kernel
[Π](x, y) in D′(M ×M) which is a current of degree n :

(20) [Π](x, y) =
∑

a∈Crit(f)

Ua(x, dx) ∧ Sa(y, dy)

then in terms of [Π], the above result reads :

(21) lim
t→+∞

〈β, ϕ−t∗α〉 =

∫
M×M

β(x) ∧ [Π](x, y) ∧ α(y).

Note that for every critical point a ∈ Crit(f), dim(W u(a)) + dim(W s(a)) = n =
dim(M) which implies that the wedge product Ua(x, dx) ∧ Sa(y, dy) is a current of degree
n.
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The Laudenbach currents (Ua)a∈Crit(f) are global versions of the Ruelle–Sullivan [154]
currents 4 in the specific situation of Morse–Smale flows. In the next section, we discuss
our result with Rivière generalizing the above Theorem.

5. Ruelle spectrum of Morse–Smale flows.

In this section, we will discuss the particular case of the Ruelle spectrum of Morse
Smale gradient flows which can be completely calculated. Let us observe that there are
few examples of systems where the spectrum can be calculated [52, 6]. Given V = ∇f ∈
C∞(TM), we denote by λj(a)nj=1, a ∈ Crit(f) the Lyapunov exponents of V at the critical
points. These are defined to be eigenvalues of the matrix (∂xia

j)(0) where the vector
field reads V = aj(x)∂xj in local chart where aj(0) = 0. Given V , we define the subset
σ = ∪a∈Crit(f)

∑n
j=1 N|λj(a)| which is constructed from the Lyapunov exponents.

Theorem 5.1 (D-Rivière). Let (f, g) ∈ C∞(M) ×Met(M) s.t. V = ∇f satisfies
the Smale transversality condition. If the Lyapunov exponents (λj(a))nj=1,a∈Crit(f) are Q-
independent, then there exists a sequence ([Πλ])λ∈σ of kernels in D′,n(M ×M) s.t. :

(22) 〈β, ϕ−t∗α〉 ∼
t→+∞

∑
λ∈σ

e−tλ
∫
M×M

β(x) ∧ [Πλ](x, y) ∧ α(y).

If V is only C1 linearizable near Crit(f), then σ is the Ruelle spectrum of V and we
have an asymptotic expansion :

(23) 〈β, ϕ−t∗α〉 ∼
t→+∞

∑
λ∈σ

e−tλPλ(t;α, β)

where Pλ(t;α, β) is polynomial in t and bilinear continuous in (α, β) ∈ C∞(Λ•T ∗M) ×
C∞(Λ•T ∗M). In both cases, ker(V ) contains no Jordan blocks.

When the Lyapunov exponents (λj(a))nj=1,a∈Crit(f) are Q-independent the vector field
V is C∞ linearizable near Crit(f) which means that the C1 linearizability assumption is
weaker. However, if V is only C1 linearizable then the Ruelle eigenspaces have eventual
Jordan blocks which explains the presence of terms which are polynomials in t. [Πλ] is
the Schwartz kernel of the spectral projector on the eigenspace ker(V − λ). [Π0](x, y) =∑

a∈Crit(f) Ua(x, dx) ∧ Sa(y, dy). In particular, ker(V ) is spanned by the Laudenbach cur-

rents ker(V ) =
〈

(Ua)a∈Crit(f)

〉
.

5.1. Proof sketch. Our proof applies to currents of all degree since we can construct
anisotropic Sobolev spaces of currents of all degree, but without loss of generality, we will
sketch the proof in the case of degree 0. We first explain that we can construct a family
of anisotropic Sobolev spaces Hm(M), m ∈ C∞(S∗M) is an order function adapted to
the dynamics, such that V : D ⊂ Hm(M) 7→ Hm(M) has discrete spectrum on Re(z) >
−a for a > 0 arbitrarily large. The method follows from a long series of contributions
by many people working in various contexts [2, 15, 28, 101, 113, 79, 178, 179], we
refer to [3] for a detailed exposition and an extensive bibliography. We mostly follow the
original method of Faure–Roy–Sjöstrand [53] with some ideas inspired by Lefeuvre [108,
2.4], Bonthonneau–Guillarmou–Hilgert–Weich [25]. It is similar in spirit to the “quantum
scattering in phase space” as can be found in the works of Helffer–Sjöstrand [89] and
Gérard–Sjöstrand [71, 72].

4. Ruelle–Sullivan constructed eigencurrents for Axiom A diffeomorphisms near each basic set
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5.1.1. Anisotropic spaces. Given a flow ϕt = etV : M 7→M , we lift the flow to the unit
cotangent space S∗M

Φt : (x; ξ) ∈ S∗M 7→ Φt(x; ξ) = (ϕt(x);
(Tdϕtx)−1ξ

‖(Tdϕtx)−1ξ‖
) ∈ S∗M

and find the attractor Σs and repeller Σu for Φt. For every submanifold S ⊂ M , we will
denote by N∗S ⊂ T ∗M its conormal bundle. In the Morse–Smale case, if there are only
critical points in NW (ϕt) (for instance in the gradient case), we need to consider the sets :

Σu = ∪Λ∈NW (ϕt)N
∗W s(Λ), Σs = ∪Λ∈NW (ϕt)N

∗W u(Λ).

The fundamental Theorem proved in [12] reads :

Theorem 5.2. The sets Σu,Σs are disjoint closed, conical subsets of T ∗M and Σs

(resp Σu) is the attractor (resp repeller) for the lifted flow Φt : S∗M 7→ S∗M on the unit
cosphere.

In the recent microlocal terminology, Σu acts as a source whereas Σs acts as a sink
for the lifted flow. Since the sets Σu,Σs are disjoint, we can build an order function
m ∈ C∞(S∗M), homogeneous of degree 0, which is very positive on Σu, very negative
on Σs and m is decreasing along the flow Φt. Then using the order function m, we
construct a symbol of variable order AC(x; ξ) = (1+‖ξ‖g(x))

m(x; ξ
‖ξ‖ ). Then by quantization,

we define a pseudodifferential operator with variable order Op(AC) ∈ Ψm(M) and the
corresponding anisotropic Sobolev space Hm(M) = Op(AC)−1L2. These Sobolev spaces
of variable order contain distributions which are regular near Σu and irregular near Σs.
The next step is to represent the resolvent R(z) = (V + z)−1 in terms of the propagator
of the flow e−tV , in the spirit of the Hille–Yosida Theorem in semigroup theory [51].
Then conjugate the resolvent with Op(AC). Note that for Re(z) large enough, we have
R(z) = (Id − e−T (V+z))−1

∫ T
0 e−t(V+z)dt in the sense of bounded operators on L2 for

T > 0. Given a > 0, to prove the analytic continuation of the resolvent up to the half–
plane Re(z) > −a, we formally conjugate R(z) with Op(AC). This yields :

Op(AC)R(z)Op(AC)−1 = (Id−Op(AC)e−T (V+z)Op(AC)−1)−1

◦ Op(AC)

(∫ T

0
e−t(V+z)dt

)
Op(AC)−1︸ ︷︷ ︸

holomorphic

where the second term on the r.h.s is bounded and holomorphic in z on the whole complex
plane. The key observation is a decomposition Op(AC)e−T (V+z)Op(AC)−1 = E(z) +K(z)

where E(z) = O(e−(C+Re(z))T ) for C arbitrarily large depending on the order function
m ∈ C∞(S∗M) hence E has small operator norm and K(z) is a compact operator. If
the order function m ∈ C∞(S∗M) is chosen so that C is much larger than a, then the
family of bounded operators (Id − K(z) − E(z)) is Fredholm analytic on the half–plane
Re(z) > −a and therefore Op(AC)R(z)Op(AC)−1 is meromorphic in z ∈ {Re(z) > −a}
with residues which are finite rank operators. This shows the meromorphic continuation of
the resolvent acting on the anisotropic Sobolev space Hm(M).

5.1.2. Resonances by zeta function. But the above construction does not a priori give
the location of the spectrum. To put constraints on the spectrum, in the original papers [12,
14], we mostly make a local study of the resonant states near the critical points relying on
wave front set arguments and Taylor expansions. This shows the resonances of V coincide
with σ. We also manage to eliminate Jordan blocks in ker(V ) but we can eliminate Jordan
blocks in σ(V ) only under the Q–independence condition on the Lyapunov exponents of
V . In the C1 linearizable case, Viviane Baladi suggested to us another approach to put
constraints on the spectrum that we now sketch. This method relies on the relation between
resonances with poles and zeroes of the zeta function [153] as we sketched in the toy model
of graphs 2. Recall the sets Σu/s = ∪a∈Crit(f)N

∗W s/u(a) are the repeller/attractor of the
lifted flow in the cotangent. Fix 0 6 k 6 d and we shall consider all operators as acting on
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k-forms. Using the radial estimates of Melrose [120], Vasy [181] as in [46], we can show
that for every ε > 0, the shifted resolvent e−εVR(z) of the Morse–Smale flow has wave
front set Γ ⊂ T ∗(M ×M) which does not meet the conormal N∗(d2) ⊂ T ∗(M ×M) of the
diagonal d2 ⊂ M ×M . Then it means that for every Pollicott-Ruelle resonance λ ∈ σ of
V acting on k-forms, we have the expansion for the resolvent :

(24) R(z) =
∑

16`6p

Π`

(z + λ)`
+R+(z)

where R+(z) is a holomorphic germ near −λ whose wave front set is also contained in Γ 5.
Π1 is a projector of finite rank whose wave front set is contained in Σu×Σs since we know
the wave front set of the resonant states. Since this has empty intersection with N∗(d2),
its distributional flat trace Tr[

ΛkT ∗M
(Π1) is well–defined and equals rk(Π1).

By the bound on the wave front of the resolvent, together with the expansion 24, we
obtain :

Tr[ΛkT ∗M
(
e−εVR(z)

)
= e−ελ

rk (Π1)

(z + λ)
+ Tr[ΛkT ∗M

(
e−εVR+(z)

)︸ ︷︷ ︸
holomorphic near −λ

.

This means that the Pollicott–Ruelle resonances can be identified with the poles of the flat
trace Tr[

ΛkT ∗M

(
e−εVR(z)

)
. So our next goal is to calculate explicitely these poles using

the Atiyah–Bott flat trace. The Hille–Yosida Theorem tells us that we have the equality
eεz
∫∞
ε e−tze−tV dt = e−εVR(z) : Hm(M) 7→ Hm(M) as operators acting on suitable ani-

sotropic Sobolev spaces Hm(M) for Re(z) > −a, a > 0. Now an approximation argument
similar to the one used in [46] yields 6 :

Tr[ΛkT ∗M
(
e−εVR(z)

)
= eεzTr[ΛkT ∗M

(∫ ∞
ε

e−tze−tV dt

)
= eεz

∫ ∞
ε

e−tzTr[ΛkT ∗M
(
e−tV

)
dt =

∑
a∈Crit(V )

eεz
∫ ∞
ε

e−tz
Tr(Λkde−tV |TaM )

|det(Id− de−tV |TaM )|
dt,

where we used the Atiyah–Bott flat trace identity [1] :

Tr[ΛkT ∗M
(
e−tV

)
=

∑
a∈Crit(V )

Tr(Λkde−tV |TaM )

| det(Id− de−tV |TaM )|
.

Now it is possible to calculate exactly the r.h.s using the Lyapunov exponents of the Morse–
Smale flow along critical elements of the flow. Assume the critical point a has Morse index
p = ind(a), then the Lyapunov exponents of V at a read {λ1(a), . . . , λp(a), λp+1(a), . . . , λn(a)}
where λi(a) < 0,∀i ∈ {1, . . . , p} and λi(a) > 0 otherwise. Using these notations, we obtain
the explicit formula for the flat trace :

Tr(Λkde−tV |TaM )

| det(Id− de−tV |TaM )|
=

∑
I⊂{1,...,n}

∏
i∈I e

−tλi(a)∏n
i=p+1(1− e−tλi(a))

∏p
i=1(e−tλi(a) − 1)

=
∑

I⊂{1,...,n},|I|=k

∑
(k1,...,kn)∈Nn

exp

(
−t(
∑
i∈I

λi(a)−
p∑
i=1

λi(a) +
n∑
i=1

ki|λi(a)|)

)
where the sum runs over the k–elements subsets I of {1, . . . , n} and we used the Neumann
series decomposition. We recognize the integral eεz

∫∞
ε e−tz

Tr(Λkde−tV |TaM )

| det(Id−de−tV |TaM )|dt as some
Laplace transform which equals :∑

I⊂{1,...,n},|I|=k

∑
(k1,...,kn)∈Nn

exp
(
−ε(

∑
i∈I λi(a)−

∑p
i=1 λi(a) +

∑n
i=1 ki|λi(a)|)

)
z + (

∑
i∈I λi(a)−

∑p
i=1 λi(a) +

∑n
i=1 ki|λi(a)|)

.

5. This is a consequence of the Cauchy formula and of the completeness of the space D′Γ of
distributions whose wave font set is in Γ [34]

6. the approximation argument allows to invert flat traces and integral over t
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This concludes that the pole λ must have the form
∑n

i=1 N|λi(a)| hence the set σ is the
Ruelle spectrum of V .

Theorem 5.1 is related to Bowen’s question since it expresses the Ruelle resonances
of the gradient flow e−tV in terms of the Lyapunov exponents of V = ∇f at the critical
points of f . The next section relates Pollicott-Ruelle resonances to Witten Laplacians.

6. Witten Laplacian.

6.1. Problem. We are given a Morse function f ∈ C∞(M) s.t. V = ∇f is Morse
Smale. Recall from subsubsubsection 3.3.3 the definition of the rescaled Witten Laplacian
∆f,~ = ~

2(dfd
∗
f +d∗fdf ). Observe that when ~ > 0, this operator is elliptic, self–adjoint with

compact resolvent therefore it has discrete spectrum contained on the nonnegative reals
{0 = λ1(~) 6 · · · 6 λk(~) . . .}.

Moreover, a classical intuition from quantum mechanics tells us that the low energy
states of ∆f,~ are concentrated at wells of the potential |df |2 which correspond to Crit(f).

What is the asymptotic behaviour of σ(∆f,~) when ~ → 0+ ? How do we
compare it to limt→+∞ ϕ

−t∗u ?

6.2. A fundamental identity. Motivated by question from theoretical physics, in [58],
the authors study a system that interpolates between the transport by the gradient flow
and some stochastic perturbation of it. A similar study was done by Dyatlov–Zworski [48]
for perturbations of the transport by Anosov flows (see also [186] for an interpretation of
scattering resonances as viscosity limits and [42] for similar investigations in the hypoel-
liptic case). The authors of [58] start from the rescaled Witten Laplacian

(25) ∆f,~ =
1

2

(
~∆ + ~−1|df |2 + V + V ∗

)
then by conjugating with e

f
~ , they observe that one has a new Hamiltonian

H = e
f
~ ∆f,~e

− f~ = V + ~
∆

2
(26)

so the Witten Laplacian is conjugated to some stochastic perturbation of the transport by
the gradient flow and where at the limit ~→ 0, this yields H = V .

Remark 6.1. Let us remark that such observation is also made in the work of Bis-
mut and the book by Helffer [90, p. 16–17] : one considers the following Dirichlet action
functional 7

S(ϕ) =

∫
M
〈∇ϕ,∇ϕ〉g e

− f
2

~ dv

where dv is the Riemannian volume and the action functional is perturbed by some ex-

ponential weight term e−
f2

~ which acts as a density w.r.t. the Riemannian volume. In the
semiclassical limit, this density will localize the action functional near the critical points.

This quadratic functional induces a new scalar product on L2(M, e−
f2

~ dv). Start from the
usual de Rham differential d and consider its adjoint d∗f for the new scalar product, then
the operator P = V + ~

2∆ is defined as the supercommutator [d, d∗f ]. This means that the
operator P satisfies the structure of supersymmetric quantum mechanical system described
in subsection 3.3.

Let us give a simple calculation to illustrate the phenomenon in the case of the rescaled
and shifted Harmonic oscillator : set A = x√

2~
+
√

~
2∂x and A∗ = x√

2~
−
√

~
2∂x. We find

AA∗ = −~
2∂

2
x + x2

2~ + 1
2 , A

∗A = −~
2∂

2
x + x2

2~ −
1
2 where the Hamiltonian reads H = −~

2∂
2
x +

x2

2~ −
1
2 . We recall the crucial commutator relations responsible for spacing in the spectrum

7. Called Dirichlet form in Helffer’s book
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[H,A∗] = A∗ and [H,A] = −A. If Hu = λu then HA∗u − A∗Hu = HA∗u − λA∗u =
A∗u =⇒ HA∗u = A∗u+ λA∗u hence A∗u is an eigenfunction for λ+ 1. Similarly, Au is
an eigenfunction for λ − 1. Hence eigenvalues differ by 1 after rescaling. To see the path
going from the harmonic oscillator to the gradient field :

e
x2

2~

(
x2

2~
− ~

2
∂2
x −

1

2

)
e−

x2

2~ =

(
x∂x −

~
2
∂2
x

)
which tends to x∂x when ~→ 0. To summarize, we have the following three operators on
R

Witten Laplacian Stochastic perturbation Gradient field
−~

2∂
2
x + x2

2~ −
1
2

(
x∂x − ~

2∂
2
x

)
x∂x

The motivation of [58] was to exhibit a phenomenon of localization on instanton moduli
space (the space of gradient flowlines), Morse theory is the typical example of such theory.
Let us try to explain the heuristics. The propagator of the Witten Laplacian is represented
like a path integral where one integrates over all paths.

Kt(x, y) =

∫
γ(0)=x,γ(t)=y

[Dγ] exp

(∫ t

0

λ

2

(
|γ̇(s)|2g(γ(s)) + |Vf (γ(s))|2g(γ(s))

)
ds+ fermions

)
︸ ︷︷ ︸

Schwartz kernel of e−t∆f,~

At the semiclassical limit, it is believed that the integrand under the path integral is some
Gaussian shaped differential form on path space localized around instantons and converges
to some delta form in the infinite dimensional space of path which is supported on the
moduli space of instantons. At an intuitive level, the path integral localizes as an integral
over the instanton moduli space which represents the propagator of V .

Kt(x, y) =

∫
γ(0)=x,γ(t)=y

[
∏

06s6t

Dγ(s)]δ(γ̇(s)− Vf (γ(s)))× det . . .

Let us give a concrete and rigorous simple example :

Example 6.2 (Localization). Consider the vector field V = ∂x1 on Rn with coordinates
(x1, . . . , xn). The propagator e−tV has Schwartz kernel e−tV (x, y) = δ(x1−t, . . . , xn, y1, . . . , yn)

whereas the propagator e−t(V+~∆
2

) has Schwartz kernel e−t(V+~∆
2

)(x, y) = e−
(x1−t−y1)2+···+(xn−yn)2

2t~

(2πt~)
n
2

which has Gaussian shape around the classical trajectory and converges to the δ distribution
when ~→ 0+.

One of the examples of [58] is the calculation of the Pollicott–Ruelle spectrum of
V = ∇f for the height function f on the Riemann sphere CP1 in which case they find that
the Ruelle spectrum σ(∇f) is the integers N. Our result concerns the explicit determination
of the spectrum both from the asymptotics of the correlators and from the limit spectrum
of the Witten Laplacians when ~→ 0+.

6.2.1. Strategy of the proof. The key idea is the identity

(27) e
f
~ ∆f,~e

− f~ = V +
~
2

∆

relating the Witten Laplacian ∆f,~ and the stochastic perturbation V +~∆
2 . So in practice

we study the transport equation perturbed by some viscosity term. For ~ > 0, we start
from some initial data u(0) = Ψ ∈ C∞(Λ•T ∗M) and we look for a solution on R>0 ×M
of the equation :

∂tu = −
(
~∆

2
+ V

)
u.

The solution reads u(t) = e−t(
~∆
2

+V )Ψ where e−t(
~∆
2

+V ) is the semigroup generated by
the operator ~∆

2 + V . The natural idea is to study V + ~∆
2 by the microlocal methods

of Faure–Roy–Sjöstrand used to study V . For every a ∈ R, we construct the anisotropic
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Sobolev spaces Hm(M) adapted to V using the results of section 5. The operator (V + z) :
D ⊂ Hm 7→ Hm is Fredholm analytic with resolvent (V + z)−1 which is meromorphic on
the half–plane Re(z) > −a. This anisotropic space Hm(M) is defined independently of ~.
Then we prove that the spectrum of the elliptic operator V + ~∆

2 on the anisotropic space
Hm(M) coincides with its L2 spectrum 8 which follows from the ellipticity of V + ~∆

2 . Then
the resonance spectrum and states of V are obtained as viscosity limits of σ(~∆

2 + V ) and
eigenstates of ~∆

2 + V acting on Hm(M). This shows stochastic stability of resonances as
in [48]. Technically, the convergence follows from the interpretation of the spectrum of
both V and ~∆

2 + V as zeroes of some Fredholm determinant which depends continuously
on ~.

Let us state the main Theorem from [16]. First, we recall that Γ = ∪a∈Crit(f)N
∗W u(a)

is a closed conical subset of T ∗M and σ = ∪a∈Crit(f)

∑n
j=1 N|λj(a)| where (λj(a))nj=1 are

the Lyapunov exponents of V at the critical point a ∈ Crit(f).

Theorem 6.3 (D-Rivière). For (f, g) ∈ C∞(M) × Met(M) s.t. V = ∇f is C1-
linearizable near critical points and V satisfies the Smale transversality condition. Then :

— σ is the set of Pollicott–Ruelle resonances of V and is obtained as the limit of the
usual discrete spectrum of the Witten Laplacian ∆f,~

(28) lim
~→0

σ(∆f,~) = σ.

— ker(V ) is spanned by invariant currents Ua ∈ D′Γ, a ∈ Crit(f) 9 supported by the
closure of unstable manifolds (W u(a))a∈Crit(f),

— The family Ua(~), a ∈ Crit(f) which spans the low energy eigenspaces of ∆f,~ is
such that e

f−f(a)
~ Ua(~) is a quasimode of V + ~

2∆ and e
f−f(a)

~ Ua(~) →
~→0

Ua in D′Γ
10

6.3. Construction of the quasimodes. Our goal is to outline the construction of
quasimodes of ∆f,~ which satisfy exactly the Witten–Helffer–Sjöstrand instanton formula
without exponential correction. The construction of low energy states follows a procedure
that we call cut–project–correct–conjugate. We will make extensive use of the three
operators in our problem : the Lie derivative V along the gradient field, the stochastic
perturbation H = V + ~

2∆ which is conjugated to the Witten Laplacian ∆f,~.
6.3.1. Cut. Near a ∈ Crit(f), consider a cut–off function χ = 1 near a and χ vanishes

near all other critical points. Then consider the “germ of integration current” [W u(a)]χ on
W u(a) near a. This is well–defined since W u(a) is a smooth submanifold near a.

6.3.2. Project. Recall that the resonant states of V have their wave front set contained
in Γ = ∪a∈Crit(f)N

∗(W u(a)) and also that the eigenfunctions of V + ~
2∆ converge to

resonant states in the space D′Γ. The wave front set of [W u(a)]χ is obviously contained
in the conormal bundle N∗W u(a) hence in Γ. Therefore, the current [W u(a)]χ belongs to
some anisotropic space Hm(M) for some well-chosen order function m ∈ C∞(S∗M), then
we apply the spectral projector Π0 on ker(V ) and define an element Ua = Π0 ([W u(a)]χ).
We repeat the operation for all a ∈ Crit(f), the currents (Ua)a∈Crit(f) span ker(V ) in
Hm(M) and are the Laudenbach currents from Theorem 4.10.

6.3.3. Correct. We fix 0 < ε < infλ∈σ\{0} λ strictly smaller than the smallest non zero
resonance. Then for ~ << 1, the projected quasimode converges in the semiclassical limit :

1[0,ε](H)(Ua) →
~→0

Ua

which shows the family (1[0,ε](H)(Ua))a∈Crit(f) spans the low energy states of H = V + ~
2∆.

8. Recall that the elliptic operator V + ~∆
2 has compact resolvent

9. The existence of these currents was established by Laudenbach and Harvey–Lawson
10. for the normal topology of D′Γ introduced in [34]
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6.3.4. Conjugate. TheWitten Laplacian is related toH by conjugation ∆f,~ = e−
(f−f(a))

~ He
(f−f(a))

~

hence the family

Ua(~) = e−
(f−f(a))

~ 1[0,ε](H)(Ua) = 1[0,ε](∆f,~)(e−
(f−f(a))

~ Ua), a ∈ Crit(f)

spans the low energy states of the Witten Laplacian ∆f,~. We therefore obtained some
purely spectral construction of the low energy states of ∆f,~. To summarize all four steps of
the construction, we obtain the low energy quasimode of ∆f,~ concentrated at a ∈ Crit(f)
from the “germ of integration current” [W u(a)]χ using the formula
(29)

Ua(~) = 1[0,ε](∆f,~)
(
e−

(f−f(a))
~ Π0 ([W u(a)]χ)

)
= e−

(f−f(a))
~ 1[0,ε](H) (Π0 ([W u(a)]χ)) .

Our construction is also related to the approach of Bismut-Zhang [14, 13]. The idea
of constructing approximate objects and then correct them by application of the spectral
projector goes back to the seminal paper of Witten [183]. In the next section, we leave the
gradient flows to consider general Morse–Smale flows with might have periodic orbits.

7. Vertical bands for Morse–Smale flows.

General Morse–Smale flows with periodic orbits are not of gradient type therefore
Bowen’s question makes no sense for these flows. Instead of studying the convergence of
limt→+∞ ϕ

−t∗u, we will ask what is the behaviour of the Laplace transformed dynamical
correlators ĈΨ1,Ψ2(z) when X is Morse Smale or Anosov ? By [56] in the Anosov case
and [13] for Morse–Smale flows, it has meromorphic continuation to the whole complex
plane then it means these works proved the existence of Pollicott–Ruelle resonances for
these flows. But in the same spirit as Bowen’s question one may ask : can we express the
resonances in terms of the jets of X at critical elements in NW (ϕt) in the Morse–Smale
case ? We generalize previous works [12] by coupling the flow with a flat connection in which
case the dynamics acts on sections of some flat bundle E in the more general Morse–Smale
case with periodic orbits. We find in the work [14] that the Ruelle spectrum has vertical
band structure which comes from the Lyapunov exponents of the periodic orbits and the
monodromies of some flat connection at the periodic orbits. We next explain how to lift
the flow on sections of some bundles.

7.1. Lifting the flows on some flat vector bundle. Let (E,∇) be some flat vector
bundle over M , this is the data of the vector bundle E and of some flat connection ∇.
A connection ∇ always reads locally as d + ω where ω ∈ C∞(T ∗M ⊗ End(E)) and the
flatness of the connection reads

(30) dω + [ω ∧ ω] = 0

which means that ω solves the Maurer–Cartan equation. More geometrically, it is equivalent
to the fact that the parallel transport along any path γ with endpoints (a, b) ∈M2 depends
only on the homotopy class of the path γ among paths with endpoints (a, b) ∈M2.

Using any connection ∇, one can lift the dynamics of some flow ϕt = etV acting on
functions on M to some dynamics acting on smooth sections of E as follows :

Definition 7.1. For every section s ∈ C∞(Λ•T ∗M⊗E), we define e−tV s as the unique
solution of the transport equation

(31) ∂tu+ L∇V u = 0, u(0, .) = s

where L∇V = [d∇, ιV ].

Only in this section, we use the notation L∇V to insist on the fact that the Lie derivative
is twisted by the connection ∇, the Lie derivative acting on functions is still denoted by
V . Intuitively, twisting the dynamics with a connection has the effect of adding a potential
term in the transport equation. In fact this observation is totally rigorous in case the bundle
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E is trivial since the connection∇ always has the form∇ = d+ω, ω ∈ C∞(T ∗M⊗End(E))
and therefore :

L∇V u = V u+ ω(V )u

and ω(V ) ∈ C∞(End(E)) acts as a potential term in the transport equation.

Example 7.2 (Abelian flat connection). For instance, if E = M×C, the flat connection
just reads d+ω where ω is a 1-form and the transport equation is easily solved. Then e−tV s
would simply read

(32) e−tV s(x) = e
∫ 0
−t ω(V )(euV (x))dus(e−tV (x))

The Maurer–Cartan equation in this case just amounts to solve dω + ω ∧ ω = dω = 0
which means the 1-form ω is closed.

Example 7.3 (On the torus). We give an example on the torus Td. Consider a flat
connection d + ω on the trivial bundle E = C × Td where ω is closed. In fact, it is easy
to show there is a gauge transformation which transforms the flat connection in the form
d + ω = d +

∑d
i=1 αidθ

i where αi ∈ C and (dθi)di=1 are the generators of H1(M,Z). For
any vector field V (θ)i∂θi , L∇V reads V (θ)i∂θi + V (θ)iαi where we see the twisting with the
flat connection produced a potential term.

More geometrically, the value (e−tV s)(m) ∈ Em at m is obtained by taking the value
of the section s(e−tV (m)) ∈ Ee−tV (m) at e−tV (m) and parallel transport this vector w.r.t.
the connection ∇ along the path s ∈ [−t, 0] 7→ esX(m) to end up with some vector
(e−tV s)(m) ∈ Em.

The above action extends naturally to E-valued differential forms that we will denote
as C∞(Λ•T ∗M ⊗ E).

Remark 7.4. The notion of twisting also plays a crucial role in QFT when we study
fermionic particles interacting with some gauge potential. The twisted connection allows
to couple the fermionic field with the gauge potential inside the action functional of the
theory. See subsection 1.1 in Chapter 2.

7.2. Pollicott–Ruelle resonances, the bundle case. To define Pollicott–Ruelle
resonances in the bundle case, we only need to define a suitable notion of dynamical
correlators in some more general setting and we briefly explain that almost nothing should
be changed in our existence proof of Pollicott–Ruelle resonances for scalar functions and
distributions.

Assume E is Hermitian, then dynamical correlators of two sections (Ψ1,Ψ2) of E are
defined as

CΨ2,Ψ1(t) =

∫
M

〈
Ψ2, e

−tV Ψ1

〉
(33)

where we denote by
〈
Ψ2, e

−tV Ψ1

〉
the fact that we consider the exterior product of the

differential form part but we must use the scalar product on the fibers of E to get numbers.
As usual the Pollicott–Ruelle resonances are defined as the poles of the Laplace transformed
correlators. The existence proof of Ruelle resonances just follows 5.1.1 except that the
pseudodifferential and Fourier integral operators act on the bundle E but the argument is
similar because the symbol of L∇V has scalar principal part which coincides with the scalar
case,

(34) σ
(
L∇V
)

(x, ξ) = ξ(V )(x)⊗ IdEx + lower order terms.

7.3. Vertical bands for Morse–Smale flows. In the more general Morse–Smale
case, we found in [14] that the Ruelle spectrum has vertical band structure. Instead of
giving the proof, we would like to explain the main ideas with the following example.
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Example 7.5 (The circle). Consider the trivial line bundle C×S1 over the circle S1 of
period 2π. Let V = g(θ)∂θ be a vector field on S1 without zeroes and d+α(θ)dθ a given flat
connection. The differential operator L∇V reads g(θ)(∂θ + α(θ)). We try to find conditions
on z s.t. the equation (L∇V + z)u = 0 has a non trivial solution u ∈ C∞(S1).

The solution reads u(θ) = e−
∫ θ
0 α(s)+zg−1(s)dsu(0) and the periodicity condition implies

that
∫ 2π

0 α(s) + zg−1(s)ds = 2iπk for k ∈ Z which implies that z =
2iπk−

∫
S1 α

P , k ∈ Z where
P is the period of the periodic orbit S1 and

∫
S1 α is the integral of the connection 1-form

on the orbit. So the possible solutions of the eigenvalue equation forms a vertical band in C
and the vertical spacing between the resonances is inverse proportional to the period of the
orbit. We also see that the monodromy of the flat connection has an effect on the spectrum,
it can translate the vertical band.

7.4. Pollicott–Ruelle resonant states meets Epstein–Glaser renormalization.
In our work, we follow an observation of Frenkel–Losev–Nekrasov [58] that there is a deep
analogy between constructing the resonant states of Morse–Smale flows and renormaliza-
tion in quantum field theory formulated as the problem of extension of currents by Epstein–
Glaser (later revisited by Stora, Brunetti–Fredenhagen [26], Hollands–Wald [91, 92],
Nikolov–Todorov–Stora [128], see [7]).

Let us be precise on the analogy. In perturbative QFT, one is interested in making sense
of correlation functions as distributions on configuration spaceMn whereM is space–time.
Consider a 2-point function in φ4 theory for instance,〈

Ω|T
(
φ4(x)φ4(y)

)
|Ω
〉

= C∆4
F (x, y)

where ∆F ∈ D′(M×M) is the Feynman propagator. ∆F is a distribution onM×M which
is a fundamental bisolution of the wave equation.

Example 7.6 (On R1+3). The Feynman propagator ∆F (t − s, x − y) on Minkowski
space reads ei|t−s|

√
∆∆−

1
2 (x − y) = C((t − s)2 −

∑3
i=1(xi − yi)2 + i0)−1 where C is some

constant.

By classical wave front set arguments, it is well–known that the product ∆4
F is well–

defined on M ×M \ d2, so the issue is to extend this distribution on the whole manifold
M ×M . The idea is to use some Euler vector field ρ 11 which is defined near the diagonal
d2 ⊂M ×M . Recall Morse–Bott vector fields are gradients of functions f s.t. the critical
set {df = 0} is a closed submanifold and whose Hessian is nondegenerate in the normal
direction to {df = 0}. The Euler vector field ρ is therefore of Morse–Bott type since its
critical set is the submanifold d2 ⊂M ×M , it is nondegenerate in the normal direction of
d2 and the unstable manifold W u(d2) of d2 is some neighborhood U ⊂ M ×M of d2. It
means that all elements in U are attracted to d2 by e−tρ, t > 0. Set Γ ⊂ T ∗(M ×M) to
be the Feynman wave front set : for Q(ξ) = ξ2

0 −
∑3

i=1 ξ
2
i the quadratic form of signature

(1, 3),

Γ = {(x, y; ξ, η);Q(x− y) = 0, ξ = τdQ(x), η = −τdQ(x), τ ∈ R>0} ∪N∗d2 ⊂ T ∗
(
R4 × R4

)
.

We have Γ ∩ T ∗d2
(M ×M) = N∗(d2) which means the restriction of Γ on the diagonal d2

is the conormal. We assume the vector field ρ is chosen in such a way that e−tρ∗Γ ⊂ Γ, for
all t > 0. When the Lorentzian spacetime M , dim(M) = 4 is globally–hyperbolic, one has
an asymptotic expansion in D′Γ(U \ d2) of the form :

e−tρ∗∆4
F ∼
t→+∞

∞∑
k=−8

e−kt(vk,0 + vk,1t+ · · ·+ vk,4t
4)

where (vk,p) ∈ D′Γ(U \ d2). This is very similar to the resonance expansion for the Morse–
Smale gradient flows but it is only localized near the critical element d2. The existence
of the asymptotic expansion is a consequence of the Hadamard parametrix approximation
of the Feynman propagator ∆F . The fact there are polynomials in t on the r.h.s. of the

11. These are non unique
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expansion shows there are Jordan blocks in the generalized eigenspaces of ρ, generated
by (vk,0)k. These blocks come from the log term in the Hadamard parametrix of ∆F .
Then the asymptotic expansion suggests we decompose ∆4

F as ∆4
F =

∑−4
k=−8 vk,0 + R ∈

D′Γ(U \d2) where
∑−4

k=−8 vk,0 is the singular part and R is some distribution which behaves
nicely with respect to scaling. R is the regular part and has a unique extension R in
D′(U) s.t. e−tρ∗R →

t→+∞
0. Now each (vk,0)−4

k=−8 solves a transport equation of the type

(ρ − k)p+1vk,0 = 0 in D′Γ(U \ d2) where p is the dimension of the Jordan block generated
by vk,0. So one way to phrase the renormalization problem would be : find solutions vk,0 ∈
D′Γ(U), k ∈ {−8, . . . ,−4} of the linear PDE : (ρ − k)p+1vk,0 = 0. Then the extension of
∆4
F reads

∑−4
k=−8 vk,0 + R. The existence of a distributional extension is possible by the

results in [7]. However, one may loose the property of being a solution of (ρ− k)p+1vk,0 =
0, renormalization may increase the rank of the Jordan block and one can only solve
(ρ− k)Nvk,0 = 0 for some N large enough.

Example 7.7 (On Rd). The function ( 1
‖x‖d ) obviously solves the linear PDE : (ρ +

d)( 1
‖x‖d ) = 0 on Rd \ {0} where ρ = xi∂xi is the radial vector field. The distribution

FP ( 1
‖x‖d ) on Rd solves the equation

(ρ+ d)FP (
1

‖x‖d
) = Cδ{0}(x) =⇒ (ρ+ d)2FP (

1

‖x‖d
) = 0 in D′(Rd)

where C > 0 and there is no extension of ( 1
‖x‖d ) which solves the initial PDE. So the

renormalization process has created a Jordan block which is referred in [58] as logarithmic
mixing.

In our work [12, 14] and in [58], we solve equations of the form V u = λu near some
critical element Λ ∈ NW (ϕt), where u must be supported byW u(Λ). We can construct the
current u first as a germ at Λ using some linearized chart near Λ and then propagate the
germ by the flow using e−t(V−λ)u = u to get an element u in D′(M \∂W u(Λ)). So to define
a global object, we need to extend the current u to D′(M) which still solves V u = λu.
In concrete examples, u has moderate growth near the boundary ∂W u(Λ) of the unstable
manifold W u(Λ) and can be extended as a current u by the renormalization à la Epstein–
Glaser. However in our case, we use the spectral projector to extend the current. We pick
some cut–off function χ = 1 near Λ and χ vanishes near all other critical elements. Then
we set u = Πλ (χu), all the difficulties are hidden in the construction of the anisotropic
spaces and of the spectral theory for V . Still, the renormalization viewpoint might help to
understand the Jordan block structure in the resonant states, this phenomenon was called
logarithmic mixing by [58].

Up to now, our discussion only dealt with spectras. We next give topological applica-
tions of these spectral techniques.

8. Morse inequalities for Anosov and Morse–Smale flows.

We recall the notion of twisted cohomology since the Morse inequalities are expressed
in these terms.

8.0.1. Twisted de Rham complex. Using the flat connection ∇, we may defined a diffe-
rential d∇ : C∞(Λ•M⊗E) 7→ C∞(Λ•+1M⊗E) where the condition d∇◦d∇ = 0 comes from
the flatness of ∇. This defined a complex of E–valued differential forms C∞(Λ•M⊗E), d∇

whose cohomology H•(M,E) is called the twisted de Rham cohomology.
8.0.2. Morse inequalities for twisted cohomology. We then state the Morse inequalities

for a Morse–Smale or Anosov flow e−tV acting on sections of some flat vector bundle
(E,∇)→M in terms of Pollicott–Ruelle resonances.

Theorem 8.1. Let M be a closed compact manifold, (E,∇) 7→ M some flat vector
bundle over M and V ∈ C∞(TM) a vector field on M which is Anosov or Morse–Smale.
Set Ck(M) to be the vector space generated by the degree k resonant states of L∇V for the
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resonance 0 and ck = dim
(
Ck(M)

)
, bk = dim(Hk(M,E)) are the Betti numbers of the

twisted cohomology. Then :
— the complex (C∞(Λ•T ∗M ⊗ E), d∇) and (Ck(M,E), d∇) are quasi–isomorphic,
— we have the Morse inequalities

∀0 6 p 6 n,
p∑

k=0

(−1)n−kck >
p∑

k=0

(−1)n−kbk(35)

with equality when p = n.

Recall that d∇ commutes with L∇V = [d∇, ιV ] acting on C∞(Λ•T ∗M ⊗ E) hence with
the spectral projector Π0 on ker(L∇V ). This implies that ker(L∇V ) is stable by d∇ hence(
ker(L∇V ), d∇

)
forms a cochain complex. Once we show that the operator V has good spec-

tral properties, the proof of the Morse inequalities follows immediately from the quasi–
isomorphism whose proof is sketched in subsection 3.4. In the Anosov case, the result of
Theorem 8.1 is new and in the Morse–Smale case, it is related to the Morse inequalities
established by Smale [172]. What is surprising about the above Theorem is that the Betti
number bk(M) gives some abstract topological constraints that force the existence of cur-
rents U of degree k, which are killed by the Lie derivative L∇V and whose wave front set is
in E∗u. The author has no idea how these currents look like, we just know they exist, we
know their wave front set and their support which is the whole manifold M .

8.1. The instanton complex. In the particular case of a Morse–Smale gradient V ,
we saw that Im (Π0) = ker(V ) is a complex quasi–isomorphic to the de Rham complex
(C∞(Λ•T ∗M), d∇). But our proof is abstract and used only spectral arguments. It gives
no geometric interpretation on the complex (ker(V ), d). A natural question one could ask
is what is the complex

(
ker(V ), d∇

)
counting ?

We show in our microlocal context that we can recover a result of Laudenbach who
was able to determine precisely the boundary of the unstable currents (Ua)a∈Crit(f).

Theorem 8.2 (Laudenbach). The chain complex (ker(V ), d) generated over Z by (Ua)a∈Crit(f)

has differential which satisfies the equation :

(36) dUa =
∑

b∈Crit(f);ind(b)=ind(a)−1

nabUb

where nab ∈ Z counts the number of instantons connecting (a, b).

Let us sketch the proof of the exact instanton formula. We would like to compute dUa.
Because we know that the finite dimensional space ker(V ) = Span(Ua)a∈Crit(f) forms a co-
chain complex, we know already dUa expresses as a linear combination

∑
b∈Crit(f);ind(b)=ind(a)−1 cabUb

where a priori cab ∈ R and we know the sum runs over critical points b s.t. ind(b) =
ind(a) − 1 since Ua is a current of degree k = n − ind(a), dUa has degree k + 1 which
implies that the currents Ub must have degree k + 1 hence the Morse index of b is fixed.

Consider the dual basis (Sb)b of coresonant states, then observe that cab = 〈dUa, Sb〉. To
prove that cab is an integer, we just consider a family of currents e−tV (Uaχ) approximating
Ua in the anisotropic space Hm(M) for t > 0 large, χ = 1 near a and vanishes near other
critical points . Then we prove that

〈
de−tV (Uaχ) , Sb

〉
= (−1)deg(Ua)

〈
e−tV (Uadχ) , Sb

〉
converges to cab for large t and also that cab is an integer counting the number of instantons
between the critical points a and b.

8.2. The exact instanton formula for Witten quasimodes. Let us now show
how to obtain the exact instanton formula from the quasimodes of the Witten Laplacian
constructed in subsubsection 6.3. Recall the quasimodes in 1[0,ε](∆f,~) are the smooth forms
(Ua(~))a∈Crit(f). They span the image of 1[0,ε](∆f,~) and are not necessarily eigenstates for
the eigenvalue 0 since for small ~, there are small eigenvalues that approach 0. The twisted
de Rham differential reads df,~ = e−

f
~ de

f
~ . Since it commutes with the Witten Laplacian

∆f,~, it commutes with all functions of ∆f,~ obtained by the spectral functional calculus.

39



Therefore df,~ commutes with the spectral projector 1[0,ε] (∆f,~) for all ε > 0. For all
ε > 0, up to choosing ~0 small enough, ε /∈ σ (∆f,~) for all ~ ∈ [0, ~0]. So this means that
the quasimodes (Ua(~))a∈Crit(f) in 1[0,ε] (∆f,~) generate a cochain complex for the twisted
differential df,~.

Theorem 8.3 (Witten, Helffer–Sjöstrand, D–Rivière). Under the notations as above,
consider the low energy cochain complex (Ua(~), df,~). Then the quasimodes satisfy the
exact tunneling formula

(37) df,~Ua(~) =
∑

b∈Crit(f)

e
f(a)−f(b)

~︸ ︷︷ ︸
Quantum correction

nabUb(~).

The integer nab appearing on the r.h.s. is the same as the integer nab of Theorem 8.2.
Let us sketch the proof whose principle is extremely simple. The relation df,~ = e−

f
~ de

f
~

yields :

df,~Ua(~) = df,~ 1[0,ε](∆f,~)(e−
(f−f(a))

~ Ua)︸ ︷︷ ︸
by definition of Ua(~)

= 1[0,ε](∆f,~)(e−
(f−f(a))

~ dUa)︸ ︷︷ ︸
commmute df,~

=
∑
b

nab1[0,ε](∆f,~)(e−
(f−f(a))

~ Ub)︸ ︷︷ ︸
by Thm 8.2

=
∑
b

nabe
f(a)−f(b)

~ 1[0,ε](∆f,~)(e−
(f−f(b))

~ Ub)︸ ︷︷ ︸
=Ub(~)

where f(a) − f(b) < 0 in above sum. We would like to insist on the fact that the tunne-
ling formula is really due to Witten, Helffer–Sjöstrand but it holds true only up to some
exponential factor. The only new feature of our work [16] is the exact formula without
exponential error.

There is a number of results from [16] we did not cover in the present chapter. The
most important is the proof of Fukaya’s conjecture using our methods and we refer the
reader to the original paper for details.

9. Perspectives.

The notion of transfer operator comes from statistical physics where it appears in the
analysis of spin chains. It was also motivated by these deep analogies that mathemati-
cal physicists, such as Sinai, Ruelle and Bowen [20] among many others, developped the
thermodynamic formalism for hyperbolic dynamics [132, 20]. There is a dictionary which
relates the analysis of 1d spin chains and hyperbolic dynamics, the relation is via Markov
partitions.

In statistical physics, the deep variational principle states that Gibbs measures of some
spin system maximize the free energy. The (potential free) dynamical analogue of Gibbs
measures are the Bowen–Margulis measures of maximal entropy. Is there a microlocal in-
terpretation of these measures and of the variational principle ? Another naive question
would be how to estimate precisely the Hölder regularity of the resonant states for Ano-
sov and Axiom A flows and diffeomorphisms using microlocal methods. Can it help in
understanding the nature of the measures of maximal entropy ?

Conversely, can the semiclassical methods be used to revisit the study of higher di-
mensional spin chains, in particular lattice gauge theories that admit a transfer operator
formulation ? This would be in the spirit of the beautiful book of Helffer [90]. In fact,
Nelson axiomatized the properties of quantum systems that admit a transfer operator des-
cription. This is related to reflection positivity and covers many examples of interest [127],
among them, lattice gauge theories. Still inspired by quantum field theories, it could be in-
teresting in the future to investigate the simplest examples of dynamical systems from [59]
which are infinite dimensional in nature. For instance, study the space of maps from the
cylinder 12 R × S1 to the torus T2n, viewed as a Kähler manifold, as some gradient flow

12. 2d σ–model in infinite radius limit
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on loop space for the Floer functional [59, p. 14–15]. Can we rigorously define a notion of
Pollicott–Ruelle spectrum?

Finally, something quite striking in the works of Faure–Sjöstrand, Dyatlov–Zworski
in hyperbolic dynamics and works of Vasy, Wrochna, Gérard on wave equations is that
hyperbolic problems are treated using Fredholm techniques. This is possible in both cases
because there is some sort of scattering. A natural question one could ask, at the interface
of analysis and geometry, is can one find some new index formulas using these machineries ?
For us, an index formula should be understood in the broad sense as giving a geometric in-
terpretation of some formula of spectral nature : Fredholm index, winding numbers of some
eigenvalues, counting some special resonances. These index formulas would be hyperbolic
counterparts of the Atiyah–Singer index formula in the elliptic case.
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Chapitre 2

A conjectural picture of Quillen on determinant lines.

The goal of the present chapter is to present our work [9] which aims at understanding
a short three page note of Quillen [148] where he asks questions about the meaning of re-
normalization for chiral fermions interacting with external gauge potential. We will explain
the meaning of these words in the next paragraph. Our exposition is strongly influenced
by surveys by Perrot [139, 140, 141] and Singer [170]. Since the results in the original
paper [9] are rather technical, we would like to present a more leisurely exposition with
some emphasis on the physical motivations from Quantum Field Theory (QFT). Then, we
shall present a new point of view on the main results which is part of some joint work in
progress with C. Brouder and B. Zhang.

1. The motivations and geometrical set–up.

Consider a quantum system which contains an infinite number of fermionic particles,
for instance a gas of electrons, interacting with external currents or charges which produce
some electromagnetic field which is supposed to have slow variation. One can imagine that
the gauge potential is generated by some nuclei or magnets...Slow–fast regime is very useful
in QFT applied to material science, condensed matter theory, solid state physics, quantum
chemistry but also in the study of chiral anomalies as discussed in [148, 67, 66, 65]. We
would like to acknowledge Jan Derezinski for insisting that the renormalization of such
systems should be investigated [37].

The mathematical formalism which describes the interaction is linear response theory [65,
p. 67]. Under some variation of the external potential, the quantum system is supposed
to respond by producing some quantum current which can be measured [65, p. 45, 64].
In the quantum formalism, one has an effective action Seff defined as the log of some
renormalized determinant detren(D+A) of a chiral Dirac operator D+A coupled to some
external gauge potential s.t. Seff (A) = log detren(D+A). Seff is a functional of the ex-
ternal potential A. Since we deal with a quantum system, the presence of currents can
be accessed from the functional derivatives of Seff (A) = log detren(D+A) in A which
give currents correlators. Our goal in the present chapter is to sketch a construction
of the renormalized determinants based on elementary microlocal analysis and following
some insights of Quillen [148], Perrot [139].

Let us describe the ingredients which appear in such study. The fermionic particles
we would like to describe have some internal degree of freedom, namely they have spin.
At the classical level, the fermion fields are sections of some spin bundle, more concretely
the reader may think about vector valued functions. The Dirac operator describes the
classical equation of motion and action functional satisfied by the fermionic field. Then
in paragraph 1.2, we shall explain the quantization of the Dirac operator which is the
functional determinant detren and why it requires renormalization to remove infinities.

1.0.1. The Dirac operator. Looking for a relativistic quantum theory of the electron,
Dirac tried to find some first order operator D that squares to the wave operator D2 = �.
In the present manuscript, since we are motivated by Euclidean QFT, we rather consider
Dirac operators that square to the nonnegative Laplacian D2 = ∆. Dirac soon realized that
such operator should be matrix valued. First, let us describe the modern point of view on
Dirac operators essentially following [107]. Given the vector space R2n endowed with its
usual Euclidean metric, we look for an algebra Cl(R2n) which is generated by abstract
elements γµ, µ = (1, . . . , 2n) satisfying the commutation relation γiγj + γjγi = −δij . In
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practice, we deal with representations of the Clifford algebra hence we look for matrices
γµ, µ = (1, . . . , 2n) that satisfy the above commutation relations. Therefore, the first order
operator D =

∑2n
µ=1 γ

µ∂xµ squares to the non negative Laplace operator acting on vector
valued functions. We give the fundamental examples following [107, p. 119-120].

Example 1.1 (Dimension 2 and 4). Let us give the fundamental examples in dimension
2 and 4. First we may identify the plane R2 with the complex plane C ' R2. The Dirac

operator is a 2 × 2 matrix, D =

(
0 − ∂

∂z
∂
∂z̄ 0

)
and is expressed in terms of the Cauchy–

Riemann operator ∂̄. Identifying R4 with the quaternion plane H4, the Dirac operator can
also be defined in terms of Cauchy–Riemann operators associated to the quaternions. It

reads D =

(
0 − ∂

∂q
∂
∂q̄ 0

)
, for the Cauchy Riemann operator : ∂

∂q̄ = ∂
∂x0

+σ1
∂
∂x1

+σ2
∂
∂x2

+

σ3
∂
∂x3

where (σi)i are the 2 × 2 Pauli matrices which represent the action of quaternions
on C2.

Remark 1.2. There is yet another representation of the Clifford algebra hence of the
Dirac operator on R4 [67, p. 20,50]. We set the following four antihermitian matrices
γµ, µ = 1, . . . , 4 which generate a representation of the Clifford algebra Cl(R4) :

γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 ,

γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , γ4 =


−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i


In this representation, the chirality operator γ 1 reads

(38) γ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


1.1. Spinors, Yang–Mills theories and chiral fermion coupled to gauge po-

tentials. In this paragraph, we mostly follow [139, 170]. LetM be a compact even dimen-
sional spin manifold. Concretely, the reader can takeM = T4, S4. The spinor bundle S(M)
splits as a direct sum S = S+⊕S− 2 and there is a chirality operator denoted by γ ∈ End(S)
such that γS± = ±S±. Each bundle is made of eigensections for the chirality operator γ.

The full Dirac operator D : C∞(S) 7→ C∞(S) reads D =

(
0 D+

D− 0

)
=
∑4

µ=1 γ
µ∇µ

in the decomposition S = S+ ⊕ S− where D± : C∞(S±) 7→ C∞(S∓) where ∇µ is the
Levi–Civita connection naturally lifted to the spinor bundle S 7→ M . Let E = CN ×M
be some trivial auxiliary bundle over M and a connection ∇ on E can be identified with
some matrix valued 1-form A ∈ C∞(T ∗M ⊗End(E)) = C∞(T ∗M)⊗C∞(M)MN (C) called
gauge potential in the physics litterature 3. The coupling of the Dirac operator with the
gauge potential A defines a twisted Dirac operator [67, p. 50, 74]

(39) DA = γµ (∇µ ⊗ Id+ Id⊗Aµ) =

(
0 D+A

D−A 0

)
where D±A : C∞(S± ⊗ E) 7→ C∞(S∓ ⊗ E) and D+A is called chiral Dirac operator.

1. the celebrated γ5 = γ1 . . . γ4 from physics textbooks
2. right and left handed spinors
3. In electromagnetism, E is a complex line bundle
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Remark 1.3. Let us make the following remark about an abuse of notation. If we vary
the gauge potential A, then the two twisted Dirac operators DA and DA0 differ by a term
of order 0 which reads

(γµ (Id⊗Aµ − Id⊗A0µ)) .

Using the decomposition S ⊗ E = S+ ⊗ E ⊕ S− ⊗ E given by the chirality operator γ, so
(γµ (Id⊗Aµ − Id⊗A0µ)) ∈ End(S ⊗E) can be decomposed as a 2× 2 block part and in
reality

D+A −D+A0 = (γµ (Id⊗Aµ − Id⊗A0µ))−+ ∈ Hom(S− ⊗ E,S+ ⊗ E).

But in the sequel, for simplicity, we will make the notational abuse D+A−D+A0 = A−A0

even though the reader has to think it is the complicated block part we just describe above.

1.2. Chiral gauge theories and chiral fermions. In the convention of [67, p. 20,
p. 57], the Dirac conjugate variable Ψ̃ reads Ψ̃ = −iΨt

γ4. The action now reads [67, p. 65]

(40) S[Ψ, Ψ̃, A] = i

∫
M

Ψ̃(x)DAΨ(x)d4x

where Ψ̃ = −iΨt
γ4. This means i

∫
M Ψ̃(x)DAΨ(x)d4x =

∫
M Ψ

t
γ4γµ (∇µ +Aµ) Ψ.

Now the physicists want to compute the functional integral∫
DΨDΨ̃eiS[Ψ,Ψ̃,A]

where the fields Ψ ∈ C∞(M,C4), Ψ̃ ∈ C∞(M,C4) are considered as independent va-
riables in the formal functional integration. This is similar as considering (z, z) as in-
dependent coordinate functions on R2 which is identified with C. DΨDΨ̃ is a formal
infinite dimensional analogue of the Berezin measure, since the Ψ, Ψ̃ fields are fer-
mions. Since we deal with massless fermions, we can split the fermionic action in two parts
S[Ψ, Ψ̃, A] = S+[Ψ+, Ψ̃−, A] + S−[Ψ−, Ψ̃+, A] where

S±[Ψ, Ψ̃, A] =

∫
M

Ψ̃∓D±AΨ±.

The functional integral now reads

Z (A) =

∫
DΨ+DΨ̃−DΨ−DΨ̃+e

iS+[Ψ+,Ψ̃−,A]eiS−[Ψ−,Ψ̃+,A].

By formal application of the Fubini Theorem under the functional integral, the partition
function factorizes as a product of partition functions for chiral fermions :

Z (A) = Z+ (A)Z− (A) , where Z±(A) =

∫
DΨ±DΨ̃∓e

iS±[Ψ±,Ψ̃∓,A].

By analogy with probability theory, the fields (Ψ+, Ψ̃−) and (Ψ−, Ψ̃+) should be viewed
as independent random variables distributed w.r.t. the “measure” eiS+[Ψ+,Ψ̃−,A] and
eiS−[Ψ−,Ψ̃+,A] respectively. Indeed, for any pair of observables F1(Ψ+, Ψ̃−) and F2(Ψ−, Ψ̃+) 4,
we have〈

F1(Ψ+, Ψ̃−)F2(Ψ−, Ψ̃+)
〉

=
1

Z+

∫
DΨ+DΨ̃−e

iS+[Ψ+,Ψ̃−,A]F1(Ψ+, Ψ̃−)× 1

Z−

∫
DΨ−DΨ̃+e

iS−[Ψ−,Ψ̃+,A]F2(Ψ−, Ψ̃+)

=
〈
F1(Ψ+, Ψ̃−)

〉
(Ψ+,Ψ̃−)

〈
F2(Ψ−, Ψ̃+)

〉
(Ψ−,Ψ̃+)

So this decoupling of the full quantum theory in the two chiral sectors gives the chiral
gauge theory which is concerned only with the fields

(
Ψ+, Ψ̃−

)
called chiral fermions.

4. Mathematically just some polynomial functionals of (Ψ+, Ψ̃−) and (Ψ−, Ψ̃+)
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1.3. The conjectural picture of Quillen. The motivation from the note of Quillen
is to make sense of the half functional integral [148, p. 282]

A 7→ Z+(A) =

∫
DΨ+DΨ̃−e

iS+[Ψ+,Ψ̃−,A]

quantizing the chiral fermions emphasizing the dependence on the gauge potential
A. Note that the action S+ is quadratic in the variables Ψ+, Ψ̃− and therefore the above
looks formally like a Gaussian integral. In finite dimension, a Gaussian integral wrt to the
Berezin measure would equate a determinant and we expect that in the infinite dimensional
case [129, p. 37-38] :

Z+(A) =

∫
DΨ+DΨ̃−e

iS+[Ψ+,Ψ̃−,A] = detren(D+A)

for a suitable notion detren of renormalized determinant, where S′′+ = D+A is the Hessian of
the quadratic function S+

5. So the finite partition function is expected to be some analytic
function of A.

Chiral fermions coupled to gauge potential
Bundles S± ⊗ F
Fast

(
Ψ+, Ψ̃−

)
spinor

Slow (gauge field A,metric g)
Operator D+Aγ

µ (∇µ ⊗ Id+ Id⊗Aµ)︸ ︷︷ ︸
twisted Dirac

Action S+(Ψ+, Ψ̃−, A, g) = i
∫
M

〈
Ψ̃−, D+AΨ+

〉
Partition f.
integrate Z+ (A) =

∫
[DΨ+DΨ̃−]eS(Ψ+,Ψ̃−,A,g)

fast field

The main goal of the present chapter is to make sense of such renormalized determinants
and study their analytical properties. In general, we encounter two problems :

1.3.1. Divergences. Assume we fix an invertible element D+A0 where A0 is often called
background connection, then we would like to define our determinant relative to D+A0 .
This is very natural, since as a function of A, we just fix a multiplicative normalization
Z+(A0) = 1. Set the affine space A = D+A of twisted Dirac operators D+A for all gauge
potentials A ∈ C∞(T ∗M ⊗ End(E)). Following Quillen [148, p. 282] and Perrot [139], a
formal computation yields

det(D+A)

det(D+A0)
=

det(D+A0 + (A−A0))

det(D+A0)
= det(Id+ (A−A0)D−1

+A0
)

= exp

( ∞∑
k=1

(−1)k+1

k
Tr

((
(A−A0)D−1

+A0

)k))

where we formally expanded the ratio of determinants as a power series of the perturbation
A−A0 being careless about convergence issues. The problem is that there are a finite num-

ber of traces Tr
((

(A−A0)D−1
+A0

)k)
to be renormalized since for small k, the operators(

(A−A0)D−1
+A0

)k
are not trace class. So we need to deal with divergences produced by

variations of A ?

5. We find the determinant and not the Pfaffian since Ψ+, Ψ̃− are viewed as independent va-
riables as in [129, p. 35]
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1.3.2. The chiral Dirac operator acts on different vector spaces. The chiral Dirac ope-
rator D+A sends sections from C∞(S+⊗E) to sections of C∞(S−⊗E) which are sections
of bundles of different chirality. So even in the finite dimensional analogy, it is similar to
making sense of the determinant of an invertible linear map T acting between different vec-
tor spaces. Let (E,F ) be two finite dimensional vector spaces and T : E 7→ F an invertible
linear map. What meaning can we possibly give to det(T ) ? How to get numbers ?

For every pair of translation invariant volume forms vol(E), vol(F ) in ΛtopE∗,ΛtopF ∗,
the ratio T∗vol(E)

vol(F ) defines a number, hence the natural object to consider is rather the

determinant line ' Λtop(E)
Λtop(F ) over the element T . In the present situation, we consider

familie of such T ’s parametrized by some affine space A hence varying the determinant
line for each T ∈ A yields the determinant line bundle over A. Quillen [149] constructed
the holomorphic line bundle L 7→ A in the Cauchy–Riemann case which was later
generalized by Bismut–Freed [12] to families of Dirac operators.

Our work aims to deal with both issues. Now let us directly quote Quillen’s note [148,
p. 284] to give a reader a sense of what one should expect from renormalization of deter-
minants applied to QFT.

These considerations lead to the following conjectural picture. Over the
space A of gauge fields there should be a principal bundle for the additive
group of polynomial functions of degree 6 d where d bounds the trace
which have to be regularized. The idea is that near each A ∈ A we should
have a well–defined trivialization of L up to exp of such a polynomial.
Moreover, we should have a flat connection on this bundle.

1.4. Recollection on the usual determinant. To motivate our definitions of renor-
malized determinants, let us recall some important properties of the traditional determinant
which will be relevant for our discussion.

Proposition 1.4. The determinant det : Mn(C) 7→ C is the unique entire 6 function
on the complex vector space Mn(C) s.t.

(1) det(Id) = 1,
(2) det vanishes over non invertible elements, the order of vanishing at a non invertible

A ∈Mn(C) equals dim(ker(A)),
(3) det has polynomial growth along complex rays z ∈ C 7→ det(A+ zB).
It satisfies the following equation, for any branch log of the logarithm, we have

(41) d log det(A) = Tr(A−1dA)

where A ∈ GLn(C) and the equality holds in the sense of 1–forms on GLn(C).

The above results are well known facts about determinant. The only unusual result is
the uniqueness claim. Assume someone else constructed some function f which satisfies
the same three properties as det so in particular it has the same zeroes with the same
multiplicities. On every complex ray z 7→ Id+ zH emanating from the identity matrix Id,
the entire function z ∈ C 7→ det

f (Id + zH) never vanishes and has polynomial growth, it
must be constant by Hadamard factorization Theorem. But f(Id) = det(Id) = 1 therefore
det = f along all such complex rays hence det = f everywhere on GLn(C).

In particular the determinant can be reconstructed by path integration as follows, for
every A ∈ GLn(C), we have the Abel–Liouville–Jacobi–Ostrogradskii formula [35,
p. 15865] :

(42) det(A) = exp

(∫
γ
Tr(A−1dA)

)
6. This means holomorphic on Mn(C)
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where we integrate along some path γ connecting Id and A in GLn(C) which is always
possible since GLn(C) is connected.

Replacing the ring Mn(C) by Id + Trace class and Tr with the functional trace TrL2

defines the Fredholm determinant detF [121] 7.

2. Renormalized determinants.

Following a suggestion from Singer [170] one may use the famous zeta regularization
pioneered by Ray–Singer [166] and Hawking [88]. Assume we work on the sphere M =
Sd for even d with metric of positive curvature. Fix a base connection A0 s.t. D+A0 is
invertible which means ker (D+A0) = {0} and Index(D+A0) = 0 8. Observe thatD∗+A0

D+A :
S+ ⊗ E 7→ S+ ⊗ E is elliptic with Laplace type principal symbol but D∗+A0

D+A is non
selfadjoint. Then we may define the zeta determinant as

A 7→ detζ
(
D∗+A0

D+A

)
= exp(− d

ds
|s=0ζ(s)),

where ζ(s) =
1

Γ(s)

∫ ∞
0

Tr
(
e
−tD∗+A0

D+A

)
ts−1dt︸ ︷︷ ︸

spectral zeta

. So for the moment, let us summarize the

two approaches to defining renormalized determinants. Both cases involve fixing some base
connection A0 :

(1) Following Singer consider A ∈ C∞(T ∗M ⊗End(E)) 7→ detζ(D+AD
∗
+A0

), the ques-
tion is about the regularity in A.

(2) Following Quillen and Perrot, these authors suggest to start formally from the
perturbative series

A 7→ det(I + (A−A0)D−1
+A0

) =
∑ (−1)k+1

k
Tr
(

((A−A0)D−1
+A0

)k
)

and then try to renormalize the divergent traces on the r.h.s. of the above identity.
If we manage to make sense of the second approach, a natural question is to compare the
renormalized determinant obtained with the zeta regularized version. Choose a background
gauge potential A0. We want to define analytic functions of A A 7→ detRen(DA) in a similar
way as formula 42.

2.0.1. Pseudodifferential calculus and power counting. Here we recollect some pro-
perties of pseudodifferential operators of order 6 0 with polyhomogeneous symbols that
will be used in the sequel. An exposition which is very close to the spirit of this chapter
can be found in [49, Appendix E].

— On M , we have a filtered algebra · · · ⊂ Ψ−k−1(M) ⊂ Ψ−k(M) ⊂ · · · ⊂ Ψ0(M)
of operators, Ψ−∞ is the ideal of smoothing operators they map distributions to
smooth functions, Ψ<− dim(M) is the ideal of trace class operators,

— We have the composition Theorem Ψa ◦ Ψb ⊂ Ψa+b which is why we speak about
filtered algebra,

— Polyhomogeneous symbols of order 0 can be defined as smooth functions in C∞(T ∗M)
where T ∗M is the radial compactification of T ∗M whose boundary is the cos-
phere at infinity ∂T ∗M = S∗M . There is a linear quantization map which maps
symbols to operators a ∈ C∞(T ∗M) 7→ Op(a) ∈ Ψ0(M), the construction is detai-
led in any textbook of microlocal analysis [175, p. 3] and also in [138, Chapter 6].
Then in some sense, one should think of Ψ0(T ∗M) as a quantization of C∞(T ∗M)
and Ψ−k(M) as a quantization of the ideal Ψ−k of functions on T ∗M vanishing at
order k at boundary infinity ∂T ∗M .

Example 2.1. ∆−1 ∈ Ψ−2, D−1
+A ∈ Ψ−1, multiplication operator by C∞ ∈ Ψ0.

7.
8. Since both conditions imply that coker(D+A0) and therefore the Fredholm operator D+A0 is

surjective from its domain to L2 sections
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2.0.2. Divergences and renormalized traces. Inspired by [148, 139, 121] assume we
have solved the problem of defining some renormalized determinant detren. Then along
some path (At)t∈[0,1] ∈ Ψ0(M) where all elements along the path are invertible, we formally
differentiate log detren(D+At) :

d log detren (D+At)

dt
= Tr

(
dAt
dt

D−1
+At

)
︸ ︷︷ ︸

∈Ψ−1

But we immediately see that the r.h.s. is ill–defined since dAt
dt D

−1
+At
∈ Ψ−1(M) is not trace

class. Now the idea is to perturbD−1
+A around the fixed potential A0, setH = D−1

+A0
(A−A0)

then we have the decomposition :

D−1
+At

= (Id+H)−1︸ ︷︷ ︸
expand in H

D−1
+A0

= (

p−1∑
k=0

(−1)kHk)D−1
+A0︸ ︷︷ ︸

=P (A)

+ (−1)pHp(Id+H)−1D−1
+A0︸ ︷︷ ︸

=R(A)

where the singular part P (A) ∈ Ψ−1(M) is a polynomial in A and R(A) ∈ Ψ−p−1(M)
is the regular part and is trace class when p = dim(M). Choose p = dim(M) and extend
continuously the L2–trace [139, eq (197) p. 32]

TrL2 : Ψ<− dim(M)(M) 7→ C

as a linear map to handle the singular part P (A). In doing so, we often loose the cyclicity
of trace. The extension is denoted by

Trren : Divergent terms + Ψ<dim(M) ⊂ Ψ−1 7−→ C.

The extension is always possible in the polyhomogeneous setting as we will see in the next
example. These extension procedures are operator theoretic analogues of the Epstein–
Glaser technique used to renormalize Feynman amplitudes as we discuss in [18] and is
related to the works of Brunetti–Fredenhagen [26] and Hollands–Wald [91, 92].

Example 2.2 (Trace extensions in terms of regularized integrals of the symbol). In
terms of symbols a ∈ C∞(T ∗M)<− dim(M), we can identify the L2-trace with integrals of
the symbol as follows : TrL2(Op(a)) =

∫
T ∗M a(x; ξ)dxdξ, where dxdξ is the Liouville form.

Divergences occur because of some finite jets of a at boundary infinity ∂T ∗M . The idea is
to extend

∫
T ∗M from the closed ideal C∞(T ∗M)<− dim(M) to

∫R
T ∗M as continuous linear

map on C∞(T ∗M) :

Trren(Op(a)) =

∫ R
T ∗M

a(x; ξ)dxdξ.

This is always possible using the Hadamard finite part or Riesz regularization as beautifully
explained in Paycha’s book [138, Chapter 3].

Remark 2.3. In fact, choosing a continuous extension of the L2 trace is not quite
enough. We need to add an extra condition of microlocal nature. We consider the com-
pactified cotangent T ∗M endowed with the Liouville measure µ which diverges near the
boundary ∂T ∗M . If ρ is a boundary defining function for ∂T ∗M and (yi)i=1,...,2n−1 are local
coordinates on ∂T ∗M , then in local coordinates near the boundary, the Liouville measure
has a local expression as µ = ρ−(n+1)dρdy1 . . . dy2n−1 + lower order terms where it is poly-
homogeneous in ρ. Then the renormalized trace should be interpreted as a distributional
extension µ of µ :

Trren (Op(a)) = 〈µ, a〉T ∗M
where the extension µ ∈ C∞(T ∗M)′ has minimal distributional order and the wave front
set WF (µ) is contained in the conormal N∗

(
∂T ∗M

)
which is the minimal possible wave

front set. We will later briefly discuss why this wave front condition guarantees that the
second derivative of the log detren has wave front set in the conormal of the diagonal.
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It is also possible to preserve some form of covariance which means the regularized
trace depends only on the metric and finite jets of A0 :

Example 2.4. Recall for f admitting an asymptotic expansion f(ε) ∼ε→0+

∑∞
n=0 ε

n−kan−k+
log(ε)b the finite part is defined as FP(f)(0) = a0 where we only keep the constant term
in the asymptotic expansion. So we may define two regularizations of the trace. The heat
regularization :

Trren(P (A)) = FP|ε=0TrL2

(
e
−εD∗+A0

D+A0P (A)
)
.

The zeta regularization :

Trren(P (A)) = FP|s=0TrL2

(
(D∗+A0

D+A0)−sP (A)
)

which is called weighted trace in [138, 7.3, def 7.12 p. 136].

2.0.3. Renormalized determinant. Once we possess a renormalized trace Trren, we can
very simply define detren using the Abel–Liouville–Jacobi–Ostrogradskii formula as 9 :

Definition 2.5. Choose Trren. For everyD+A, choose some smooth path γ = (At)t∈[0,1]

connecting 0 and A in the space of potentials s.t. (D+At)t∈[0,1] is always non invertible,
then :

detren(D+A) = exp

(∫ 1

0
Trren

(
dAt
dt

D−1
+At

)
dt

)
.(43)

Recall D−1
+At

= P (At) + R(At) then detren factors as a product of some ePolynomial(A)

times the Gohberg–Krein’s determinant detp+1 :

detren(D+A) = exp

(∫
γ
Trren

(
dAt
dt

P (At)

)
dt

)
︸ ︷︷ ︸

1−loop renorm

exp

(∫
γ
Tr

(
dAt
dt

R(At)

)
dt

)
︸ ︷︷ ︸

detp+1(Id+H)

,

where we used that Trren = TrL2 on the trace class operators.
We next discuss properties of detren related to locality which is a central concept in

field theory.
2.0.4. Locality. In field theory, we always manipulate functionals which are functions of

functions or functions of sections of some bundles over spacetime manifold M . Since func-
tions onM have a notion of support, this notion will have consequences for the functionals
we consider. We usually work with polynomial functionals, which means continuous maps
P : A ∈ C∞(T ∗M ⊗End(E)) 7→ P (A) ∈ C such that t ∈ R 7→ P (tA) ∈ C is polynomial of
fixed degree deg(P ) ∈ N for all A ∈ C∞(T ∗M ⊗ End(E)). We first explain the notion of
local functional.

Definition 2.6 (Local polynomial functionals). P : A ∈ C∞(T ∗M ⊗ End(E)) 7→
P (A) ∈ C is a C∞, local polynomial functional iff it can be represented as P (A) =∫
M Λ(jkA(x))dv, where dv is a C∞ density, Λ(jkA(x)) is a polynomial in k-jets of A at x
for some k. We denote this vector space by Oloc 10.

Example 2.7. V ∈ C∞(R) 7→ P (V ) =
∫ 1
−1 V

4(x)dx is a local polynomial functional of
degree 4 in V .

There is a functional characterization of polynomial local functionals which we shall
call the Hammerstein condition. We learned this property working with Brouder, Laurent–
Gengoux, Rejzner on [3]. Before we discuss this condition, we should explain the notion of
differential of order 2 of a smooth functional. To simplify the discussion, just assume that

9. Beware that in the above definition the renormalized determinant is defined up to multiplica-
tive constant since we need to choose an invertible basepoint D+ and decide that detren(D+) = 1.
10. It is not even an algebra, for instance V 7→

∫
V is local but not V 7→

∫
V
∫
V
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A is a function on M instead of some complicated section. If F is a smooth functional of
A ∈ C∞(M), then it has a Taylor expansion near any element A0 ∈ C∞(M) which reads

F (A) = F (A0) +DF (A0;A−A0) +
1

2
D2F (A0;A−A0, A−A0) +O(‖A−A0‖3)

where H 7→ DF (A;H) and (A1, A2) 7→ D2F (A0;A1, A2) is linear and bilinear continuous
for the Fréchet topology of C∞(M). Bilinear continuous maps can be represented by a
pairing of A1 ⊗ A2 against a distribution in D′(M ×M) that we will call the Schwartz
kernel of the second derivative.

Proposition 2.8 (Hammerstein condition). For P a polynomial functional, P ∈
Oloc ⇔ D2P (A;A1, A2) = 0 for all (A,A1, A2) ∈ C∞(T ∗M ⊗ End(E)) s.t. A1, A2 have
disjoint supports.

Equivalently, it means that the Schwartz kernel of the bilinear map D2F (A0; ., .) is
supported on the diagonal d2 ⊂M×M andWF

(
D2F (A0; ., .)

)
is contained in the conormal

bundle N∗(d2) 11.

The intuition behind the previous result is that in the second differentialD2P (A;A1, A2)
of the local functional, we have to multiply derivatives of A1 with derivatives of A2 which
vanishes by the condition on the support. For the converse sense, we refer to [3] for a
pedagogical exposition.

Example 2.9. For V ∈ C∞(R) 7→ P (V ) =
∫ 1
−1 V

4(x)dx, the Schwartz kernel of
D2P (V ; ., .) reads 12V 2(x)1[−1,1](x)δ(x−y) ∈ D′(R×R) which is supported by the diagonal
{x = y} in R× R.

2.1. Subtracting local counterterms in the Lagrangian. In [9], we were trying
to find analytic maps A 7→ detren (D+A) vanishing over Z = {A s.t. ker(D+A) 6= 0}, of
minimal growth when some norm of A goes to +∞, which is obtained by local renorma-
lization. Let us briefly explain this concept first with a simple toy example.

Example 2.10. Assume we work on the torus T2 with flat metric and we would like
to define detF (Id + ∆−1V ) for some C∞ function V . This is not possible since ∆−1V is
not trace class. So we can mollify it by applying the heat operator, e−ε∆∆−1V then the
regularized determinant detF (Id + e−ε∆∆−1V ) is well–defined provided ε > 0 but we still
have a logarithmic divergence :

log detF (Id+ e−ε∆∆−1V ) = ±
∫
T2 V

4π
log(ε) +O(1).

To remove the ultraviolet cut–off ε, we must find some way to subtract the divergences by
multiplicative renormalization : we must find exponential of some local functional of V ,
local is understood in the sense of paragraph 2.0.4, such that

detF (Id+ e−ε∆∆−1V )× exp

(
∓
∫
T2 V

4π
log(ε)

)
︸ ︷︷ ︸

local functional of V depends on ε

has a limit when ε→ 0+.

In our case, regularize the propagator D−1
+A0

by the heat operator e−ε(D
∗
+A0

D+A0
) ∈

Ψ−∞. The operator Id+ (A−A0)e
−ε(D∗+A0

D+A0
)
D−1

+A0
has the form Id+ smoothing and

the Fredholm determinant detF

(
Id+ (A−A0)e

−ε(D∗+A0
D+A0

)
D−1

+A0

)
is well–defined. Of

11. In fact, the condition is slightly more technical since we have to formulate everything in
terms of the topology of D′N∗(d2) and the C∞ topology for A but we prefer to give the unprecise
statement for simplicity
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course, the divergences occur when ε→ 0+ since the operator (A−A0)e
−ε(D∗+A0

D+A0
)
D−1

+A0

converges to some non trace class operator. The regularized determinant

detF
(
Id+ (A−A0)e

−ε(D∗+A0
D+A0

)
D−1

+A0

)
can be renormalized by subtraction of local counterterms if there exists a sequence of local
polynomial functionals Pε ∈ Oloc ⊗ C[ε−

1
2 , log(ε)] such that the following limit

detren(D+A) = lim
ε→0+

detF
(
Id+ (A−A0)e

−ε(D∗+A0
D+A0

)
D−1

+A0

)
exp (Pε(A))︸ ︷︷ ︸

local counterterm

exists and defines an analytic functional of A. Our goal is to classify all possible renor-
malized determinants detren that can be obtained by local renormalization as above. So
in [9], we introduced some set of axioms of functional analytic nature, in the spirit of the
three properties of Proposition 1.4, they aim to characterize in a functional analytic way
all possible renormalized determinants detren that can be obtained by local renormaliza-
tion. Before we give the axioms, we would like to draw an analogy between our problem
of finding “good” renormalized determinants and the problem of finding some entire func-
tion with given zeroes whose answer is well–known and given by Hadamard’s factorization
Theorem.

2.1.1. Digression on Hadamard’s factorization Theorem.

Theorem 2.11 (Hadamard’s factorization Theorem). Let (an)n be some sequence s.t.∑
n |an|−(p+1) < +∞ but

∑
n |an|−p = ∞. Then any entire function with f(an) = 0 and

|f(z)| 6 CeK|z|p has unique representation :

f(z) = zmeP (z)
∞∏
n=1

Ep

(
z

an

)
(44)

where P polynomial of deg p, Ep(z) = (1 − z)ez+
z2

2
+···+ zp

p Weierstrass factor of order p
and m vanishing order at 0.

So the problem of finding f with a prescribed divisor is non unique when the exponent
p is positive, there is a polynomial ambiguity P which is very similar to the polynomial
ambiguity we will find which was conjectured by Quillen.

2.1.2. Functional analytic axioms and the main Theorem. We can now state our axioms
for detren.

Definition 2.12 (Axioms). detren is a renormalized determinant on A if
— Zeroes of determinants, A ∈ C∞(T ∗M⊗End(E)) 7→ detren(D+A) is an analytic

functional of A which vanishes exactly on noninvertible elements D+A.
— Growth order d+ 1 : | detren (D+A) | 6 CeK‖A‖

d+1
Cm for some norm ‖.‖Cm .

— Locality detren satisfies the Kontsevich–Vishik [104, p. 4] 12 equation :

(45) D2 log detren (D+A;A1, A2) = TrL2

(
D−1

+AA1D
−1
+AA2

)
if supp(A1) ∩ supp(A2) are disjoint.

— Smoothness of the counterterms, the Schwartz kernel of the second derivative
D2 log detren (D+A; ., .) has its wave front set contained in the conormal bundle of
the diagonal d2 ⊂M ×M .

Once we give the axioms for detren, we can now state our main Theorem that the
reader can think of as some infinite dimensional version of the Hadamard factorization
Theorem.

12. In the original paper, they attribute this equation to Witten
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Theorem 2.13 (Brouder–D–Zhang). For every renormalized trace Trren,

detren(D+A) = exp

(∫ 1

0
Trren

(
dAt
dt

A−1
t

)
dt

)
satisfies the first three axioms of definition 2.12 and is renormalized by subtraction of local
counterterms.

To prove the fourth axiom which states that WF
(
D2 log detren (D+A; ., .)

)
⊂ N∗d2,

we need the supplementary condition from remark 2.3. This will be discussed in the joint
work with Brouder–Zhang.

In particular, in the original paper [9] we proved :

Theorem 2.14. The zeta determinant detζ
(
D∗+A0

D+A

)
satisfies all the axioms of de-

finition 2.12.

The solutions to the axioms of definition 2.12 are not unique. We also obtain a result
which classifies the solutions, this is very closed to what was conjectured by Quillen [148].

Theorem 2.15. Let Oloc,6d denotes the local functionals of degree 6 d. The group
(Oloc,6d,+) acts freely and transitively on renormalized determinants :

P ∈ Oloc,6d 7→ exp (P (A)) detren (D+A) .(46)

There is a Hadamard factorization formula which reads :

(47) detren (D+A) = eP (A)detp
(
Id+ (A−A0)D−1

+A0

)
where P is a nonlocal polynomial functional in A.

We shall not give the proof of the full Theorem but we will just discuss an impor-
tant point concerning the renormalization ambiguities since the solutions to the axioms of
definition 2.12 are not unique.

2.2. Locality and renormalization ambiguities.
2.2.1. Renormalization ambiguities are local. We want to explain the power of the

equation (45) found in Kontsevich–Vishik and why it forces the renormalization ambiguities
to be local. Assume detren,1 and detren,2 are two renormalized determinants solutions of
the axioms from definition 2.12. We compute the second derivative of log

(
detren,1(D+A)
detren,2(D+A)

)
.

D2 log
detren,1(D+A)

detren,2(D+A)
(A1, A2) = TrL2

(
D−1

+AA1D
−1
+AA2

)
− TrL2

(
D−1

+AA1D
−1
+AA2

)
= 0.

for all (A1, A2) with disjoint supports. This allows to conclude by the Hammerstein condi-
tion that A 7→ log

(
detren,1(D+A)
detren,2(D+A)

)
∈ Oloc. So this proves that the renormalization ambigui-

ties are of the form exponential of some element in Oloc.
2.2.2. Wodzicki residue and renormalization ambiguities. In this short paragraph, we

will try to answer some questions which were asked to the author by Sylvie Paycha, Jan
Derezinski and Michal Wrochna about the relation between renormalization ambiguities
and the notion of Wodzicki residue. Following Paycha’s book [138, Prop 7.24 p. 139],
given two Laplacians ∆1,∆2, one can define the renormalized traces Trren,1 and Trren,2
on Ψ0(M) as follows :

Trren,1 (B) = FP |s=0TrL2

(
∆−s1 B

)
, T rren,2 (B) = FP |s=0TrL2

(
∆−s2 B

)
.(48)

These are called weighted traces in Paycha’s book [138, def (7.12) p. 136]. We would like
to compare the corresponding renormalized determinants detren,1 and detren,2. They are
defined from the renormalized trace using formula 42. By construction of the renormalized
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determinants,

log
detren,1(D+A)

detren,2(D+A)
=

∫ 1

0

(
Trren,1(

dAt
dt

P (At))− Trren,2(
dAt
dt

P (At))

)
dt

=

p∑
k=1

(−1)k+1

k
Trren,1

(
((A−A0)D−1

+A0
)k
)
− (−1)k+1

k
Trren,2

(
((A−A0)D−1

+A0
)k
)

where P (At) was the singular part appearing in the decomposition of D−1
+,At

= P (At) +

R(At) and is polynomial in At and (At)t∈[0,1] is a smooth path in C∞(T ∗M ⊗ End(E)).
Now we use a result proved by Melrose–Nistor [122], Cardona–Ducourtioux–Magnot–

Paycha comparing different weighted traces, for any pseudofifferential operator B with
polyhomogeneous symbol [138, Prop 7.24 p. 139] :

FP |s=0Tr
(
∆−s1 B

)
− FP |s=0Tr

(
∆−s2 B

)
= Res

(
B

(
log(∆2)

2
− log(∆1)

2

))
where Res on the r.h.s is the celebrated Wodzicki residue. Hence

detren,1(D+A)

detren,2(D+A)
= exp

(
p∑

k=1

(−1)k+1

k
Res

(
((A−A0)D−1

+A0
)k
(

log(∆2)

2
− log(∆1)

2

)))

and the locality is recovered from the fact that Wodzicki residues vanish on trace class
pseudodifferential operators.

3. Perspectives

There is a question by Jan Derezinski that we plan to address in future works. It is
related to the fact that our space of renormalized determinants depends on all possible
extension of the trace which is infinite dimensional. Physically, one would like to put more
constraints on the renormalized traces and determinants so that they depend only on the
metric and a finite number of choices. The general philosophy is to reduce the renormali-
zation ambiguities to the strict minimum. In our approach, one has to renormalize a finite
number of traces contained in the singular term P (A) which depend polynomially on A.
But the best approach to covariance would be to impose extra conditions in definition 2.12
on our determinants so that divergences in P (A) are linear combinations of universal po-
lynomials of finite degree in covariant derivatives of the metric up to some finite order and
polynomials of finite degree in finite jets of A−A0 where A0 is the background connection.
This will be treated in the joint work with Brouder–Zhang.

As noticed by Christian Brouder, one should add another axiom to 2.12 which is the
fact that functional derivatives of odd orders of log det should vanish. Physically, this
should be a consequence of symmetry by charge conjugation and is called Furry’s Theorem
in the classical litterature in QED. We refer such investigation to our future work.

A natural line of investigation would be to prove some index Theorem for our renorma-
lized determinants : it gives a topological formula for the winding number of the partition
function when the gauge potential describes some non trivial loop in the space of gauge
potentials. Then relate the index to quantum anomalies as in the work [139, 170] which
was the original purpose of Quillen. Motivated by Quantum Field Theory on Lorentzian
space times, we could try to generalize all this to the Lorentz Dirac operator. This means :

— define the correct functional framework to define some notion of determinant to
the hyperbolic Dirac operator, this would probably use similar microlocal tools as
discussed in Chapter 1,

— prove analyticity in the gauge potential, this has the same flavour as the analytic
continuation of zeta function,

— give a geometric versus topological formula for the winding number of the partition
function when the gauge potential describes some non trivial loop in the space of
gauge potentials.
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Another interesting direction would be to show that the limit of quantum partition
functions of a discretized quantum field converges to our renormalized determinants when
the mesh of the discretization goes to zero and after suitable renormalization. The next step
would be to explore discrete versions of index Theorems that were found by physicists [67].

4. Appendix

4.1. Meaning of currents in gauge theories. First one should not get confused
between de Rham currents and currents in field theory which are different objects 13. In
this appendix, M = T2d is a torus of even dimension.

4.1.1. Group action. Consider the action of C∞(M,U(1)) on the configuration space
(Ψ, Ψ̃) : Ψ 7→ eiαγΨ =

(
eiαΨ+, e

−iαΨ−
)
, Ψ̃ 7→ Ψ̃e+iαγ =

(
Ψ̃+e

iα, Ψ̃−e
−iα
)
. The fact

that there is a + sign on the action on the component Ψ̃ comes from the fact that γ5

anticommutes with γ4 γ5γ
µ + γµγ5 = 0 and the Dirac conjugate Ψ̃ = −iΨt

γ4 is defined
in terms of γ4. When α is constant this is a symmetry of the action S[Ψ+, Ψ̃−, A] but for
general α ∈ C∞(M,R) this acts as a symmetry only when the functional S is restricted to
solution of the Dirac equation D+AΨ+ = 0, D−AΨ̃− = 0 14. Currents measure the response
of the action functional S under an infinitesimal action εα :

d

dε
S[eiεαγΨ, Ψ̃eiεαγ , A] = i

∫
M

Ψ̃γµ
dα

dxµ
γΨ = −i

∫
M
α∂xµ

(
Ψ̃γµγΨ

)
= −i

∫
M
α∂xµJ

µ
A

where JµA =
(

Ψ̃γµγΨ
)
is called axial current. So this yields an equation −i

∫
M α∂xµJ

µ
A +∫

M
δS

δAµ(x)∂µα(x) = 0.
4.1.2. Conserved charges and Noether’s Theorem. Since

d

dε
S[eiεαγΨ, Ψ̃eiεαγ , A] = −i

∫
M
α∂xµJ̃ µ = 0

for all α ∈ C∞c (M) where Ψ is a solution of the Dirac equation, we find out that
∂µJ̃ µ(Ψ, Ψ̃) = 0. This implies that the (n− 1)-form QA(Ψ, Ψ̃) = J̃ µ(Ψ, Ψ̃)ι∂µdx

1∧ . . . dxn

which depends quadratically on the solutions (Ψ, Ψ̃) of the Dirac equation are closed forms.
By Stokes Theorem, their integral over (n− 1)–cycles in Tn is called charge

∫
ΣQA(Ψ, Ψ̃)

which does not depend on the homology class of the cycles. One speaks of conservation of
the charges.

4.1.3. Inserting currents in the action functional and current correlators. In Quan-
tum theories describing the interaction of charged particles, in our case the fermion fields
(Ψ+, Ψ̃−), the currents measure the response of the action functional under some group
action which come from the degrees of freedom of our fermion fields (here it is just a phase
represented by U(1) action) and are quadratic functionals of the fields valued in tensors :
the vectorial current JµV = Ψ̃−γ

µΨ+ and the axial current JµA = Ψ̃−γγ
µΨ+. Note the

difference between both currents comes from the appearance of the chirality operator γ.
In physical applications, one is interested in correlation functions of quantum currents of
the form 〈

Jµ1

A (x1) . . . JµkA (xk)J
ν1
V (y1) . . . JνlV (yl)

〉
A,V

.

Therefore, following the exposition of Fröhlich [66, 65] and Leutwyler [110, 111], one
defines a general action functional which contains both vector (Vµ)µ and axial (Aµ)µ po-
tentials which are coupled to the corresponding currents.

S[Ψ, Ψ̃, A, V ] =

∫
M

Ψ̃γµ (∂xµ ⊗ Id+ Id⊗ (Vµ +Aµγ)) Ψ =

∫
M

Ψ̃γµ∂xµΨ + (JµAAµ + JµV Vµ).

13. Even though sometimes they can be related
14. In physics terminology, this is called on–shell symmetry
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Take any branch of the log, or just view the log as a multivalued function, define the
correlation functions as Schwartz kernels of the differentials of logZ(A, V )

δn logZ(A, V )

δAµ1(x1) . . . δAµk(xk)
=
〈
Jµ1

A (x1) . . . JµkA (xk)
〉
A,V

.

So quantum correlators come from the response of the log of the partition function, called
free energy or effective action, to external excitations of the gauge potential. They give
correlators of quantum currents because the currents are coupled to the gauge potential in
the Lagrangian density.

An important observation is that the correlator
〈
Jµ1

A (x1) . . . JµkA (xk)
〉
A,V

reads as a
product of Dirac propagators which is smooth on Mn \ all diagonals. But the renormaliza-
tion of the partition function implies that the quantum correlators

〈
Jµ1

A (x1) . . . JµkA (xk)
〉
A,V

extend as distributions on the configuration space Mn which relates the renormaliza-
tion of the partition function with the Epstein–Glaser viewpoint on renormalization as
explained to us by Denis Perrot.

4.1.4. Relation with the phase of the S-matrix. For quantum fields interacting with
external fields, the partition function, given in terms of the functional integral, actually
represents the vacuum expectation value which is a coefficient of the S–matrix of the
system. For example the term

(49)
∫

[DΨ+DΨ−]e
∫
M Ψ−D+Ψ++fµ:Lµ+: =

〈
0|e

∫
M fµ:Lµ+:|0

〉
represents a vacuum to vacuum transition amplitude. The modulus square |

〈
0|e

∫
M fµ:Lµ+:|0

〉
|2

gives the probability amplitude not to create a Fermion pair after interaction with the ex-
ternal field Lµ controlled by sources fµ ∈ C∞c (M). In this language, there is a quantum
anomaly whenever the phase Im(W ) of

〈
0|e

∫
M fµ:Lµ+:|0

〉
is no longer gauge invariant.
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Chapitre 3

The Fried conjecture.

1. Motivations.

The Fried conjecture relates the Reidemeister torsion and the value at 0 of some twisted
Ruelle zeta function. The torsion is the homological counterpart of the determinant in linear
algebra. In a nutshell, one can argue that the Fried conjecture states that under certain
conditions which have to be found, torsion counts periodic orbits of some specific classes
of flows in the same way as the Lefschetz trace counts fixed points of diffeomorphisms. Let
us start by presenting a dictionary which motivates the present chapter.

Algebra Topology Dynamics
dim (V ) Euler χ(V, d) zeroes of vector fields∑

c∈Crit(V )(−1)indV (c)

trace(T ) Lefschetz L(T ) fixed points of maps∑dim(M)
i=0 (−1)iTr(T |Hi(M))

∑
x=T (x) indT (x)

determinants Torsion τ periodic orbits flows∏
γ∈ prime det (Id− ρ(γ)∆(γ))(−1)ind(γ)

We next illustrate the Fried conjecture with the simpler example of the Lefschetz
formula for the Euler characteristic χ essentially following Atiyah–Bott [1]. We realize the
topological invariant χ as the superdimension of the space of harmonic forms of the Hodge
Laplacian, which gives a quantum interpretation and also as a weighted count of critical
points of a Morse function f which yields a dynamical interpretation.

1.1. Lefschetz principle. Let M be a compact manifold and [d2] ∈ D′,d(M ×M) be
the current of integration on the diagonal d2 ⊂ M ×M . We would like to make sense of
the self–intersection of the diagonal defined formally as

(50)
∫
M×M

[d2] ∧ [d2] = ?

Of course the wedge product of currents is ill–defined since we multiply a current with
itself hence the wave front sets are not transverse and the product is forbidden. This
classical example is meant to illustrate the usefulness of the notion of supersymmetry by
calculating in three different ways this renormalized self–intersection. We calculate it using
three “renormalization schemes” :

— the heat regularization and extract the finite part,
— the zeta regularization and use analytic continuation,
— by Morse theory by making transverse perturbations.

Supersymmetry will ensure that the three results are the same hence the computation is
scheme independent 1.

We would like to interpret the wedge product with the diagonal current [d2] as a
supersymmetric generalization of the flat trace.

1. There is a fourth way using excess intersection and Chern classes that we do not sketch here
but it is also related to the above three methods
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Lemma 1.1 (Superflat trace). Let T : C∞(Λ•T ∗M) 7→ D′(Λ•T ∗M) be a linear map of
degree 0. Then for [K] ∈ D′,d(M ×M) the Schwartz kernel of T , we have the equality∫

M×M
[K] ∧ [d2] =

d∑
k=0

(−1)kTr[ (T |ΛkT ∗M )

whenever both sides are defined.

1.1.1. Method 1, heat regularization. The current [d2] is the Schwartz kernel of the
identity map Id : C∞(Λ•T ∗M) 7→ C∞(Λ•T ∗M). So at least formally, we are calculating∫

M×M
[d2] ∧ [d2] =

d∑
k=0

(−1)kTr[ (Id|ΛkT ∗M )

where both sides are ill–defined by the same lack of transversality reason. But one may
approximate the identity map by the heat operator e−ε∆ where ∆ is the Hodge Laplacian
since e−ε∆ →

ε→0+
Id. Then one can introduce a regularized superflat trace

d∑
k=0

(−1)kTr[
(
e−ε∆|ΛkT ∗M

)
=

d∑
k=0

(−1)kTrL2

(
e−ε∆|ΛkT ∗M

)
which makes sense when ε > 0 since the heat kernel is smoothing and a priori has divergent
asymptotic expansion when ε → 0+. We next define the renormalized superflat trace as
the finite part in the sense of Hadamard :

FP |ε=0

d∑
k=0

(−1)kTrL2

(
e−ε∆|ΛkT ∗M

)
.

Let us calculate the finite part by the following spectral argument. Assume that λ 6= 0 lies
in the discrete spectrum of ∆, then if u ∈ ker(∆ − λ) ∩ C∞(ΛkT ∗M) then du ∈ ker(∆ −
λ)∩C∞(Λk+1T ∗M) since d and ∆ commute. It means that in the alternate sum of traces :∑d

k=0(−1)kTrL2

(
e−ε∆|ΛkT ∗M

)
, the contributions of all non zero eigenvalues of ∆ cancel

out and only the zero modes survive. This yields FP |ε=0
∑d

k=0(−1)kTrL2

(
e−ε∆|ΛkT ∗M

)
=

dim(ker(∆))even−dim(ker(∆))odd = χ(M) since the harmonic forms are quasi–isomorphic
to the de Rham complex by the argument in paragraph 3.4 so the superdimension of the
space of harmonic forms equals the Euler characteristic.

1.1.2. Method 2, zeta regularization. In the same way as above, one could regularize
by complex powers of the Laplace operator ∆−s instead of using the heat regularization. It
is well–known that

∑d
k=0(−1)kTrL2 (∆−s|ΛkT ∗M ) admits an analytic continuation to the

complex plane and we woud like to compute

FP |s=0

d∑
k=0

(−1)kTrL2

(
∆−s|ΛkT ∗M

)
.

Then by a similar spectral argument as above only the zero modes survive and we get

FP |s=0

d∑
k=0

(−1)kTrL2

(
∆−s|ΛkT ∗M

)
= dim(ker(∆))even − dim(ker(∆))odd = χ(M).

1.1.3. Method 3, superflat traces and transversal perturbations. Instead of perturbing
the identity with the heat operator or with complex powers of ∆, we use e−εV where
V = ∇f is the gradient of a Morse function. V has nondegenerate zeroes therefore the
Schwartz kernel of e−εV is supported on the graph of e−εV and is transverse to the identity.
So we would like to calculate the limit limε→0+

∑d
k=0(−1)kTr[

(
e−εV |ΛkT ∗M

)
provided it

exists. We give an example which shows that the quantity
∑d

k=0(−1)kTr[
(
e−εV |ΛkT ∗M

)
gives a weighted count of the critical points of f .
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Example 1.2 (Counting fixed points and superflat traces). Let us return to example 1.7
in Chapter 1 but now we consider the action of the pull–back operator Tf on the full
differential graded algebra C∞c (Λ•T ∗R) = C∞c (R) ⊕ C∞c (T ∗R). Observe that for a 1-form
ψdx, Tf (ψdx) = f ′(x)ψ(f(x))dx which implies that the superflat trace

∑1
k=0 Tr

[(Tf |ΛkT ∗R)
reads

1∑
k=0

Tr[(Tf |ΛkT ∗R) =
∑

x=f(x)

1

|1− f ′(x)|
− f ′(x)

|1− f ′(x)|
=

∑
x=f(x)

(−1)sgn(1−f ′(x))

which is a weighted sum over the fixed points of f and is of topological nature 2.

The previous example should convince the reader that for every ε > 0, we find that

d∑
k=0

(−1)kTr[
(
e−εV |ΛkT ∗M

)
=

∑
x∈Crit(V )

(−1)ind(V ) = χ(M)

as a consequence of the Morse inequalities, this quantity does not depend on ε hence it
has a well–defined limit. Moreover, it is a consequence of our result with Rivière on the
Ruelle spectrum of V = ∇f acting on differential forms, that χ(M) = dim(ker(V ))even −
dim(ker(V ))odd where ker(V ) is generated by the Laudenbach currents which act as dyna-
mical replacement of the harmonic forms.

1.2. Conclusion. What we just proved is that the fundamental additive topological
invariant χ(M) has both a quantum representation and a dynamical realization

χ(M) = dim(ker(∆))even − dim(ker(∆))odd︸ ︷︷ ︸
quantum side

=
∑

x∈Crit(V )

(−1)ind(V ) = dim(ker(V ))even − dim(ker(V ))odd.︸ ︷︷ ︸
dynamical side

The Fried conjecture is the multiplicative analogue of the above Lefschetz formula where
torsion takes the place of the Euler characteristic and we are counting the periodic orbits
instead of fixed points.

2. Geometric context.

The geometric context of the present chapter can be quickly described as follows. We
work on a closed, compact, contact manifold (M, θ), dim(M) = 2d+1, θ ∈ C∞(T ∗M) is the
contact 1-form which means that θ ∧ dθ∧d is a volume form. The contact form θ defines
a vector field V ∈ C∞(TM) called the Reeb vector field θ(V ) = 1, ιV dθ = 0. We assume
that the Reeb flow e−tV : M 7→ M is Anosov, we refer the reader to subsection 4.1 of
Chapter 1 for precise definitions. We are given some representation ρ of the fundamental
group in GLn(C). In practice, this is implemented using a flat bundle (E,∇) and ρ :
π1(M) 7→ GLn(C) is realized by the monodromy of the flat connection ∇ as described in
subsection 7.1.

Example 2.1 (Abelian representations). If α is a closed 1-form, then ρ(γ) = exp
(∫

γ α
)

is a character on π1(M) : ρ(γ1+γ2) = exp
(∫

γ1◦γ2
α
)

= exp(
∫
γ1
α) exp(

∫
γ2
α) = ρ(γ1)ρ(γ2)

hence ρ : π1(M) 7→ C∗.
We may denote the representation a bit abstractly as ρ = e〈α,.〉 : π1(M) 7→ C∗, [α] ∈

H1(M,R).

2. In case of the real line it must vanish
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2.1. The twisted Ruelle zeta function. The main object of our study is the twisted
Ruelle zeta. Let us motivate its structure by considering some classical complex functions
from analytic number theory. The motivation is to count primes. A natural idea is to
associate some complex function to the counting problem. The Riemann zeta function
reads ζ(s) =

∑
n>1 n

−s =
∏

p∈Primes

(1− p−s)−1

︸ ︷︷ ︸
factorized

. Its analytical properties are related to the

distribution of primes. A generalization of the Riemann zeta function which is used if one
wants to count primes subject to congruence conditions are the Dirichlet L-functions. They
depend on some character χ : N 7→ S1 and are functions of (s, χ) :

L(s, χ) =
∏

p∈Primes

(1− χ(p)p−s)−1 =
∞∑
n=1

χ(n)n−s.

The analytical properties of L–functions can be used to prove a generalization of the prime
number Theorem due to Dirichlet. Note the similarity of structures between the ζ and L,
the main difference being the fact we use a character χ to twist zeta.

Definition 2.2. Given a contact Anosov flow e−tV : M 7→M and some character χ ∈
Hom(π1(M),C∗), we can form the twisted Ruelle zeta function (dynamical L–functions) :

ζV,χ(s) =
∏
γ∈P

(
1− χ(γ)e−s`(γ)

)
,

where the product runs over the set P of prime periodic orbits of etV , `(γ) period of γ.
More generally, given a representation ρ : π1(M) 7→ GLn(C), we form the twisted Ruelle
zeta function

(51) ζV,ρ(s) =
∏
γ∈P

det
(

1− ρ(γ)e−s`(γ)
)
.

The twisted Ruelle zeta function ζV,ρ(s) is defined by some infinite product which
converges when s > htop where htop is the topological entropy of the Anosov flow. The
reader unfamiliar with htop just has to think of it as some exponent measuring the expo-
nential growth rate when T → +∞ of the number of prime geodesics of length less than
T . We refer to subsection 2.2 of Chapter 4 for a more detailed discussion of htop.

Let us give the simplest example of Ruelle zeta function in the case of the circle S1.

Example 2.3. On S1 of length `, flow ∂θ, u generator of π1(M), monodromy ρ(u) ∈
C∗, ζV,ρ(s) = (1− ρ(u)e−s`).

2.2. Natural properties of ζV,ρ. It is well known ζV,ρ is holomorphic when Re(s) >
htop. There are two natural questions one could ask : Is there an analytic continuation result
for ζV,ρ ? This was conjectured by Smale motivated by the analogy with number theory since
both the Riemann zeta function and the Dirichlet L-functions have meromorphic continua-
tions. Smale’s conjecture was adressed using Markov partition techniques by Rugh [155]
for 3d analytic Axiom A flows building on the works of Ruelle. Then Fried [64] generalized
the result of Rugh to all analytic Anosov flows. Using functional analytic techniques, a si-
milar problem was solved in the discrete case by Liverani for Anosov diffeomorphisms, then
Kitaev [101] and Baladi–Tsujii [4] for Axiom A diffeomorphisms. Going back to flows, it is
only recently (2013) that Giuletti–Liverani–Pollicott [75] proved the meromorphic conti-
nuation for C∞ Anosov flows. This result was recovered by Dyatlov–Zworski [46] using
a microlocal proof, in the spirit of the work of Faure–Sjöstrand [56] and relying on the
radial estimates of Melrose [120], Vasy [181]. Finally, Dyatlov–Guillarmou [45, 43] settled
Smale’s conjecture for general C∞ Axiom A flows.

Theorem 2.4. The function ζV,ρ has meromorphic continuation to the complex
plane for all V ∈ C∞(TM), nonsingular Axiom A hence for V Anosov.
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A second question one could ask is what is the topological content of ζV,ρ which are
questions posed by Bowen and Fried [62]. Both problems, the analytical continuation and
the topological content are deeply related. A result which is simple to state reads :

Theorem 2.5 (Dyatlov–Zworski [47]). For a surfaceM of variable negative curvature,
V generates the geodesic flow on S∗M then we have near s = 0 :

(52) ζV,Id(s) =
∏
γ

(1− e−s`(γ)) = s2g−2 (c+O(s))

where g is the genus ofM. In particular, the length spectrum determines the genus.

The above result was generalized by Hadfield in the boundary case [84] and Cekić–
Paternain [32] for volume preserving Anosov flows in terms of asymptotic cycles and
helicity of the flow.

In some sense, our situation is the opposite. To define torsion, we need to kill the
cohomology groups (hence the Euler characteristic would vanish) to make our complexes
acyclic. This is done by twisting the de Rham complex by a flat connection.

2.2.1. Abstract torsion of cochain complexes. The goal of this short paragraph is to
introduce the notion of torsion for abstract cochain complexes.

Let us start by discussing a motivating example.

Example 2.6. T : E 7→ F isomorphism, corresponding complex 0 7→ E 7→ F 7→ 0.
How from T do we get numbers ? If we choose volume elements µ1 ∈ ΛtopE,µ2 ∈ ΛtopF
then T∗µ1 = λµ2 where λ is a number. Torsion generalizes the notion of determinant for
based cochain complexes 3.

Given some cochain complex (C•, ∂)

0 7→ C0 ∂7→ C1 7→ . . .
∂7→ CN 7→ 0

∂2 = 0, acyclicity means that Im(∂) = ker(∂), we choose some volume element [c] in C•,
this means a volume element ci in each Ci, then the torsion τ of the based cochain complex
is defined as :

(53) τ(C•, ∂) = |
N∏
i=0

[∂bi+1bi/ci]
(−1)i+1 |

where bi is basis of coker(∂)i and [(∂bi+1)bi/ci] ∈ R just compares the volume elements
(∂bi+1)bi and ci. Here (∂bi+1)bi is a basis of Ci by acyclicity of ∂ and [(∂bi+1)bi/ci] can be
thought of as the determinant of the matrix going from the basis ci to the basis (∂bi+1)bi.
The abstract torsion τ(C•, ∂) does not depend on the choice of basis (bi)i.

2.2.2. Geometric implementation on manifolds. Once we defined torsion for abstract
cochain complexes, we need to discuss how to define torsion of some manifold M endowed
with some acyclic representation ρ of the fundamental group. Our recipe uses Morse theory
but this could equally be well–defined using cell decompositions of M . It goes as follows,
for simplicity we give it for Abelian representations ρ ∈ Hom(π1(M),C∗) : on the manifold
M and given some closed form α with complex coefficients, we choose some Morse function
f s.t. V = ∇f satisfies the usual transversality conditions of definition 4.5 discussed in
Chapter 1. The Morse complex generated by Crit(f), twisted by the representation ρ =

e〈α,.〉 has a differential defined as :

(54) ∂a =
∑
γ:a7→b

± e
∫
γ α︸︷︷︸

twisting

b

where the sum runs over the instantons connecting (a, b) s.t. ind(b) = ind(a) + 1 and
the ± depend on the choices of orientations and we choose to be a bit unprecise here for
the sake of simplicity. So this is exactly the instanton formula for the Witten complex
discussed in Chapter 1 except in the present case, there is a correction term e

∫
γ α which

3. More precisely for cochain complexes equipped with some volume element
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represents the parallel transport w.r.t. the flat connection d + α along the path γ. Note
the similarity between this formula and the tunneling formula of Helffer–Sjöstrand which
is not a coincidence but comes from the fact that we twist the de Rham differential d.
In the Witten Laplacian case, the differential was twisted by an exact form ~−1df since

df,~ = d+ ~−1df which explains that the correction reads e−
∫
γ df

~ = e−
f(b)−f(a)

~ where (a, b)
is a pair of critical points connected by some instanton.

Theorem 2.7 (Whitehead, Milnor). Let M be a smooth compact manifold without
boundary, ρ is a unitary representation s.t. the twisted Morse complex (C•f , dρ) is acyclic.
Then τR(ρ) := τ(C•f , dρ) does not depend on the choice of Morse function f satisfying the
Smale transversality condition. It is a topological invariant of the pair (M,ρ).

Let us give a complete example of the above recipe in the case of the circle where we
choose the height function as Morse function.

Example 2.8. Acyclicity. First, let us briefly explain how twisting can kill cohomology
groups in the simplest case of S1. On S1 of perimeter 2π, let α ∈ iR s.t. e−2πα 6= 1. We set
the twisted de Rham differential to be d+αdθ. The parallel transport w.r.t. the connection
d + αdθ generates a unitary representation of π1(S1) ' Z s.t. ρ(u) = e−2πα ∈ S1 ⊂ C∗
where u is the generator of π1(S1).

Let us look for u ∈ C∞(S1,C) solutions of (d + αdθ)u = 0. We solve ∂θu + αu = 0
with u(0) = u(2π) by periodicity. The solution reads u(θ) = u(0)e−αθ. But periodicity and
smoothness impose u(2π) = u(0)e−2πα hence u(0) = u(2π) = 0 since e−2πα 6= 1. Therefore
ker(d+ αdθ) ∩ C∞(S1) = 0 and the same can be said about the 1-forms. So we see that a
monodromy condition e−2πα 6= 1 implies the acyclicity of the twisted de Rham complex
C∞(Λ•T ∗S1), d+ αdθ.

Torsion. Consider S1 with the height function as Morse function, we denote by (a, b)
the two critical points. The basis of the Morse complex is (a, b). The differential reads

∂a = e−παb− eπαb = (e−πα − eπα)b

but this implies that
| det(∂)| = |1− e2πα|

and therefore the definition of Reidemeister torsion gives :

(55) τR(ρ) = |det (Id− ρ(γ)) |−1 = |ζV,ρ(0)|−1.

3. Some results on the Fried conjecture.

In the example of the circle, we saw that the twisted Ruelle zeta function equals
|det (Id− ρ(γ)) |−1 which is related to the value at 0 of ζV,ρ. Such observations moti-
vated Fried to conjecture a relation between ζV,ρ(0) and τR. Let us state a Theorem [63]
in such direction :

Theorem 3.1 (Fried). LetM be a hyperbolic manifold, M = S∗M, dim(M) = d, V ∈
C∞(TM) generates the geodesic flow, ρ : π1(M) 7→ Un an acyclic unitary representation.
Then :

(56) τR(ρ) = |ζV,ρ(0)|(−1)d−1
.

The above result was extended to locally symmetric spaces by Moscovici–Stanton [125],
Shen [164], then to complex torsions and arbitrary representations by Müller [126], Spi-
lioti [168] and Shen [167]. In another direction, Sanchez–Morgado [156] proved the Fried
conjecture for V analytic Anosov when dim(M) = 3 under some conditions on the
Anosov flow e−tV on M and the representation ρ.

Then building on both above results, together with Guillarmou–Rivière–Shen, we could
show :
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Theorem 3.2 (D–Guillarmou–Rivière–Shen). Let M be smooth compact manifold. If
for some flat bundle (E,∇) 7→M and Anosov V0 ∈ C∞(TM), we have ker(V0) = {0} then
(57) ζV,ρ(0) = ζV0,ρ(0)

for all V near V0. In particular, the Fried conjecture :

(58) τR(ρ) = |ζV,ρ(0)|(−1)d−1
.

holds true for V Anosov in 3d if b1(M) > 0 and in 5d near geodesic flows of hyperbolic
manifolds.

Remark 3.3. The absolute values are already present in Theorem 3.1 due to Fried
himself, τR(ρ) is positive and equals |ζρ| on hyperbolic manifolds, what Theorem 3.2 says
is that the equality still holds when V is close to the geodesic flow of some hyperbolic
manifold.

The assumption that ker(V ) = {0} implies the acyclicity of the twisted de Rham
complex since we showed that (C∞(Λ•T ∗M ⊗E), d∇) is quasi–isomorphic to (ker(V ), d∇).

4. The Fried conjecture for Turaev’s refined torsions.

We would like to point out two weaknesses in the above Theorem 3.2. It does not cover
the case where ρ is acyclic but ker(V ) 6= {0} since in such case, ζV,ρ might vanish or have
a pole at 0, hence the value at 0 is a priori ill–defined. The next issue is that we would like
to remove the absolute value |.| to capture the phase of ζV,ρ(0). Then a natural question is
to compare

ζV,ρ(0)

with complex torsions that refine τR. Recall that we proved that (ker(V ), d∇) is a chain
complex which is quasi–isomorphic to the twisted de Rham complex (C∞(Λ•T ∗M ⊗
E), d∇). The problem is that when we compute the torsion of a chain complex, we need
some distinguished basis. But there is no special basis in ker(V ) for V Anosov. For Morse–
Smale flows, there is always a distinguished basis of currents of integration on unstable
manifolds. Similarly, when we consider a cell decomposition of a manifold M , there is also
a natural basis of the chain complex (C•, ∂) generated by the cells of the decomposition.
The key idea to resolve this issue is the observation that the contact structure on M in-
duces some involution Γ : ker(V ) 7→ ker(V ). This begins with the definition of Lefschetz
maps due to Lepage :

Proposition 4.1 (Lepage 1946). Let (M, θ) be some contact manifold. Then there
exists bundle isomorphisms

Ld−k : ϕ ∈ C∞
(

ΛkT ∗M
)
∩ ker(ιV ) 7→ ϕ ∧ dθk ∈ C∞

(
Λ2d−kT ∗M

)
∩ ker(ιV ), ∀k 6 d.

These isomorphisms are defined only on differential forms which are killed by contrac-
tion with the Reeb field V . We next extend the construction to all differential forms.

Definition 4.2. Every k-form ϕ ∈ C∞(ΛkT ∗M) decomposes as a sum ϕ = f ∧ θ +
g, (f, g) ∈ ker(ιV ) and we define a chirality operator Γ as the unique involution satisfying :

(59) Γϕ = Ld−kg ∧ θ + Ld−k+1f, k 6 d.

By construction, the involution Γ commutes with the action of V on anisotropic Sobolev
spaces and therefore induces some involution Γ on ker(V ). Now we use an important result
of Braverman–Kappeler [17, 18, 19], who noticed the fact that an involution Γ on any
finite dimensional complex C• defines a normalized torsion τ(Γ, C•) without choosing some
volume element [c] in C•. In fact, the involution Γ selects some class of Γ–invariant volume
elements which fixes the value of torsion.

Proposition 4.3 (Braverman–Kappeler). Let (C•, d) be a finite dimensional cochain
complex endowed with some involution Γ. Then Γ defines an intrinsic torsion τΓ(C•).
In particular, there is an intrinsic torsion τΓ(ker(V )) which depends only on the contact
form θ.
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Once we have a torsion τΓ(ker(V )) of ker(V ), we may define a new object, named
dynamical torsion, which corrects the value at s = 0 of the Ruelle zeta function in the case
ker(V ) 6= {0}.

Definition 4.4 (Dynamical torsion). Inspired by the work of Braverman–Kappeler [17,
18, 19] and Hutchings–Lee [97], we define the dynamical torsion as the product

(60) τ(V, ρ) = τΓ(ker(V ))︸ ︷︷ ︸
torsion of ker

× lim
s→0+

s−mζV,ρ(s)︸ ︷︷ ︸
renormalized zeta

.

When ker(V ) = {0}, τ(V, ρ) = ζV,ρ(0) and therefore τ(V, ρ) generalizes the value ζV,ρ(0).

Now our next goal is to briefly describe Turaev’s refined torsion which is some complex
torsion which depends holomorphically on the representation. This will allow us to com-
pare τ(V, ρ) with the Turaev torsion as holomorphic functions on the acyclic part of the
representation variety.

4.0.1. Turaev torsion. It is well–known that there are ambiguities in the definition of
the Reidemeister torsion which seem to disappear by miracle since we take the modulus |.|
and also since the representation ρ is unitary. However, if we keep the same definition of τR
as in equation (53) except we remove the modulus |.| and consider arbitrary representations
in GLn(C), we see that there are ambiguities in the definition of τR and it was proved by
Turaev that these ambiguities are fixed once we choose some Euler structure e ∈ Eul(M)
and some homology orientation. To fix ambiguities of τR, Turaev defined a torsion τ as a
holomorphic function of the representation ρ ∈ Hom (π1(M), GLn(C) and as a function
of the Euler structure e ∈ Eul(M) : (ρ, e) ∈ Hom (π1(M), GLn(C)×Eul(M) 7→ τe(ρ) ∈ C∗.
This extends the Reidemeister torsion in the sense that |τe(ρ)| = τR(ρ) for all unitary
representation ρ and all choices of Euler structure e ∈ Eul(M).

The main Theorem we proved with Chaubet can be stated as follows. Let us de-
note by A the space of Anosov vector fields on M , this is an open subset of C∞(TM)
by structural stability. We also denote by Rep0 the subset of acyclic representations in
Hom(π1(M), GLn(C)) which is open in Hom(π1(M), GLn(C)).

Theorem 4.5 (Chaubet–D). The map V ∈ A 7→ τ(V, ρ) is locally constant. For all
connected open sets U ⊂ Rep0 and V ⊂ A, ∃e ∈ Eul(M), C ∈ C∗ such that

τ(V, ρ)︸ ︷︷ ︸
dynamical torsion

= C τe(ρ)−1︸ ︷︷ ︸
Turaev torsion

, ∀V ∈ V, ∀ρ ∈ U

where the constant C does not depend on (X, ρ) ∈ U ×V and both sides are holomorphic
functions of ρ ∈ Rep0.

There is a strong analogy between our work on Quillen’s conjectural picture and torsion
as a function on the character variety. Let us explain the similarities. The torsion plays the
role of the partition function of chiral fermions. They are both determinants viewed as
holomorphic functions of the connection ∇. In both cases, the key idea is to differentiate
the log of the determinant under variation of ∇ and to find a heuristic formula of the type :

δ log det(∇) = Tr (Variation of connection δ∇ ◦ Resolvent of some operator)

where the resolvent on the r.h.s is the Dirac inverse in the case of QFT or some operator
K which satisfies [d∇,K] = Id 4 in case of torsion.

5. Perspectives.

In the paper [85], the authors have given evidence that the Ruelle zeta function can
be defined as the partition function of some topological field theory of BF type where the
gauge fixing uses the vector field V . It would be interesting to push this analogy further
and see if one can define correlations of observables in BF theories in terms of counting of

4. This is called chain contraction in algebraic topology
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some dynamical objects such as closed geodesics, geodesic arcs or even geodesic nets. This
would give new formulas in the spirit of the Fried conjecture of the form :

Topological invariant = value at 0 of generating function counting
dynamical objects associated to V.
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Chapitre 4

Orbital counting.

1. Introduction

Let (M, g) be a compact Riemannian manifold with negative curvature, X1, X2 are
two oriented submanifolds in M, for simplicity the reader can just take a pair of points,
consider the function

ηX1,X2(z) =
∑
γ

e−z`(γ)(61)

where the sum runs over geodesic arcs orthogonal to X1, X2 and going from X1 to X2, `(γ)
is the length of the geodesic arc γ.

A similar problem can be considered whenM is a surface with negative curvature, and
given a pair of closed geodesic arcsX1, X2 which may intersect or have some selfintersection.

2. Motivations for the problem under study.

Let us give three motivations to study the Poincaré series η which are all related to
dynamical systems : analytic number theory, topological entropy and orbital counting. For
more informations, we refer the reader to the surveys [130, 131].

2.1. Counting with complex functions. The first is the analogy of counting ob-
jects in dynamics with analytic number theory. The following array summarizes the dif-
ferent correspondences between counting primes in analytic number theory, counting per-
iodic orbits in dynamics and counting arcs which is the subject of this chapter.

object Prime numbers Periodic orbits Geodesic arcs
Counting function NT = |{p 6 T}| NT = |{γ; `(γ) 6 T}| NT = |{γ; `(γ) 6 T}|

Asymptotics NT ∼ T
log(T )

NT ∼ C ehtopT

T
NT ∼ CehtopT

Complex ζ(s) =
∑∞

1 n−s ζ(z) =
∏
γ(1− e−z`(γ)) η(z) =

∑
γ e
−z`(γ)

function =
∏
p(1− p−s)−1 Riemann Smale Poincaré

Holomorphy domain Re(s) > 1 Re(z) > htop Re(z) > htop
Continuation yes yes for curvature− 1,

Axiom A flows variable negative curvature ?
Zeroes, poles ? Selberg ?
Value at s = 0 ζ(0) = 1 + · · ·+ 1 + · · · = − 1

2
ζ(z) = z2g−2(C +O(z)) η(0) = 1 + · · ·+ 1 + · · · = ?

2.2. Riemannian geometry and topological entropy. The topological entropy is
an invariant of a flow which measures the complexity of a flow ϕt : M 7→M in long times.
It is usually defined from the asymptotics number of Bowen balls 1 needed to cover the
manifold M carrying the dynamics :

lim
ε→0+

lim sup
1

T
log (Min number of Bowen balls B(., T, ε)needed to cover M) .

This is a definition of dynamical nature. Yet, for geodesic flows, there is another definition
of topological entropy which is simpler. In a sense, it is purely geometric. Given two points
(x, y) on any Riemannian manifold (M, g), let NT (x, y) be the number of geodesic arcs of

1. We refer to [100] for the definition of Bowen balls
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length 6 T from x to y, Manẽ [114] and Paternain–Paternain [136, 134] showed that one
could recover htop by the formula :

(62) htop = lim
T→+∞

1

T
log

∫
M×M

NT (x, y)dv(x)dv(y)

where dv is the Riemannian volume. This was later generalized by G. Paternain [135] in
the case with a potential to recover the topological pressure.

Then what could we prove if the pair (x, y) is fixed ? Manẽ–Freire [115] showed that if
the metric g has no conjugate points, htop can be given by :

(63) htop = lim
T→+∞

1

T
logNT (x, y)

for all pairs (x, y) ! Still in the case without conjugate points, Manẽ has proved an identi-
fication with the growth of volumes of balls. He shows with Freire [115] that if we take a
ball Bρ(r) centered at ρ on the universal cover M̃ 7→ M, then the volume growth of the
ball when the radius r goes to infinity is related to htop by the formula

htop = lim
r→+∞

1

r
logVol (Bρ(r)) .

Hence for metrics without conjugate points, which contains the negative curvature case,
the counting of arcs NT (x, y) connecting x to y gives htop by the following formulas :

htop = lim
r→+∞

1

r
logVol (B(r)) = lim

T→+∞

1

T
log

∫
M×M

NT (x, y)dv(x)dv(y) = lim
T→+∞

1

T
logNT (x, y).

Remark 2.1. NT (x, y) is deeply related to orbital counting. On the universal cover
M̃ ofM, fix x and consider the orbit of Γ = π1(M) through y ∈ M̃, then

(64) NT (x, y) = |{g ∈ Γ; g.y ∈ Bx(T )}|
hence the number of points in the Γ orbit of y contained in balls of large radius.

2.3. Relation with Anosov flows and the work of Selberg, Margulis. Similarly
to the study of periodic orbits, very precise informations on the arc counting are obtained
either in strict negative curvature, either in algebraic situations using the powerful tools
from homogeneous dynamics. In fact, in constant negative curvature, using the relation
with the analysis of the Laplacian, precise results about arc counting were obtained by
Delsarte [36], Huber [95, 96] and Selberg [162, 163] :

Theorem 2.2 (Delsarte, Huber, Selberg). If M has constant negative curvature then
ηx,x(s) has a meromorphic continuation to the complex plane with a simple pole at s = 1
which is the only pole on the vertical axis Re(s) = 1.

The counting of orthogeodesics in constant negative curvature seems to be first stu-
died by Good [76] and recently revisited by [30, 29]. In variable negative curvature,
Margulis [117] showed in his thesis :

Theorem 2.3 (Margulis). The function η is holomorphic in the half–plane Re(z) >
htop and NT (x, y) ∼ Cx,yehtopT .

This was later generalized by Pollicott and Pollicott–Sharp in several other cases [142,
144, 146, 145].

2.4. Examples of Poincaré series and the quantum classical correspondence.
Poincaré series deal with counting of geodesic arcs and the first results on their analytic
continuation relied on the quantum–classical correspondence by expressing the Poincaré
series in terms of quantities related to the Laplacian. In the spirit of the Selberg trace
formula which relates some formula in terms of periodic geodesics to the trace of the
heat kernel. This is possible in homogeneous situations because of the strong ties between
the Laplacian and the geodesic flow. Working in variable curvature requires a different
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approach that we later discuss. Let (x, y) be some pair of points on the torus and we want
to study the Poincaré series ηx,y(z) =

∑
γ e
−z`(γ) where the sum runs over the geodesics

connecting x and y. By the subordination identity e−za = z
2
√
π

∫∞
0 e−

z2

4u e−ua
2
u−

3
2du [174,

p. 247 Chapter 5],[184, 3.6],[173, (β)p. 61] :∑
k∈Zd

e−z‖x−y+k‖ =
z

2
√
π

∫ ∞
0

∑
k∈Zd

e−
z2

4u e−u‖x−y+k‖2u−
3
2du

=
z√
π

∫ ∞
0

e−tz
2
∑
k∈Zd

e−
‖x−y+k‖2

4t
t

3
2

t2
dt

with variable change u = 1
4t . This makes appear the heat kernel on the torus since by Pois-

son summation one recognizes
∑

k∈Zd e
− ‖x−y+k‖2

4t = (4πt)
d
2 e−t∆(x, y), ∆ is the Laplacian

on the torus, which yields a further simplification∑
k∈Zd

e−z‖x−y+k‖ =
z(4π)

d
2

√
π

∫ ∞
0

e−t(∆+z2)(x, y)t
d+1

2
dt

t

Now we use the Mellin transform identity : (∆ + z2)−s = 1
Γ(s)

∫∞
0 e−t(∆+z2)ts dtt which

yields : ∑
k∈Zd

e−z‖x−y+k‖ =
z(4π)

d
2 Γ(d+1

2 )
√
π

(∆ + z2)−
d+1

2 (x, y).

Finally, we get an equation relating geodesic arcs and the Laplacian :

(65) ηx,y(z) =
∑
k∈Zd

e−z‖x−y+k‖

︸ ︷︷ ︸
classical

= z2dπ
d−1

2 Γ(
d+ 1

2
)(∆ + z2)−

d+1
2 (x, y)︸ ︷︷ ︸

quantum

which proves that η(z) has meromorphic continuation to the whole complex plane with
poles at ±iλ where λ is in the spectrum of

√
∆.

2.4.1. Poincaré series on hyperbolic 3-manifolds. Let M be a compact hyperbolic 3-
manifold of the formM = H3/Γ. We start from H3 before going to the quotient. Denote
by L the shifted Laplacian L = ∆− 1 on H3 2, the important idea is that L satisfies the
strong Huygens principle. Then in Taylor–Metcalfe [176, equation 2.3 p. 3492], we find
the explicit formula for the wave propagator :

sin(t
√
L)√

L
δy(x) =

δ(t− d(x, y))

4π sinh(t)
(66)

where d(x, y) is the hyperbolic distance between (x, y).
This implies when we go to the quotientM = H3/Γ that the counting measure reads

µ(t) =
∑
γ

δ(t− `(γ)) = 4π sinh(t)
sin(t
√
L)√

L
δy(x)

where the operator L = ∆− 1 defined on the r.h.s is defined onM. By Laplace transform,
we get

ηx,y(z) = 4π

∫ ∞
0

e−tz sinh(t)
sin(t
√
L)√

L
δy(x)dt

=
∑
γ

e−z`(γ)

︸ ︷︷ ︸
classical

= 2π
(
(z − 1)2 + ∆− 1

)−1
(x, y)− 2π

(
(z + 1)2 + ∆− 1

)−1
(x, y)︸ ︷︷ ︸

quantum

2. Recall that ∆ has spectrum in [ (3−1)2

4 = 1,+∞) in H3 so adding −1 shifts the spectrum to
[0,+∞)
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3 So the r.h.s has analytic continuation to the complex plane with poles still related to the
spectrum of

√
∆− 1 which seems to be a common feature of these algebraic situations.

3. Main Theorem.

Let us state the main Theorem of this chapter.

Theorem 3.1 (D–Rivière). Let (M, g) be a negatively curved surface and V ∈ C∞(TS∗M)
is the generator of the geodesic flow. The function ηX1,X2(z) extends as a meromorphic func-
tion on the complex plane. The poles are contained in the set of Pollicott–Ruelle resonances
of the vector field LV acting on 1-forms. If X1, X2 are two points

ηX1,X2(0) =
1

χ(M)
if X1 6= X2(67)

ηX1,X1(0) =

(
1

χ(M)
− 1

)
.(68)

If X1, X2 are homologically trivial, there exists a couple of surfaces S1,S2 which bound
the projections of X1, X2 s.t.

ηX1,X2(0) = ε(X2)

(
χ(S1)χ(S2)

χ(M)
− χ(S1 ∩ S2) +

1

2
χ(X1 ∩X2)

)
.(69)

In a certain sense, we generalize the results of Delsarte, Huber [95, 96], Selberg [162,
163] (1956) to the variable curvature case and this answers some question of Pollicott,
Sharp (appendix to the thesis of Margulis [117]). Our main identity is somewhat reminis-
cent of the hyperbolic identities found by Basmajian, McShane which express some function
of the orthogeodesic spectrum in terms of some Euler characteristic or volume [8, 22, 23,
118, 119]. There are relation of our results with the works of Bergeron–Charollois–Garcia–
Venkatesh [10, 11] on the rationality of the value at zero of certain zeta functions arising
in number theory (Klingen, Siegel, Shintani see Bergeron [10, 11] and also [40, 73]).

4. Sketch of proof.

Let us fix some conventions for the present chapter. The base surface readsM whereas
the unit cotangent S∗M is denoted by M . The conormal of a curve X ⊂ M is the set
N∗X = {(x; ξ);x ∈ X, ξ ∈ TxX⊥} ⊂ S∗M. The proof of Theorem 3.1 has four parts.

(1) We use the theory of currents to give a new integral formula to represent the coun-
ting functions NT (x, y) and η. The important idea is to lift the counting problem
to the cotangent S∗M and interpret arc countings as a counting of Reeb chords
between Legendrian curves N∗X1 and N∗X2 in S∗M.

(2) We use the results sketched in chapter 1 to relate to the resolvent (V + z)−1 cor-
responding to the Lie derivative LV along the flow, the resolvent acts on Sobolev
anisotropic currents described in chapter 1.

(3) We show there are no poles at 0 based on the works of Dyatlov–Zworski [47]. We
identify the value at 0 with minus the linking number of Legendrian knots.

(4) We calculate the linking number by using some constructible function which quan-
tizes the Legendrian knot. We will later explain this notion of quantization.

3. There is a notation abuse, sin(t
√
L)√

L
δy(x) is the Schwartz kernel of sin(t

√
L)√

L
taken at (x, y)

which are fixed since we count arcs from x to y. But this is viewed as distribution of t, in the same
way as δ(t−‖x− y‖) in the representation of the retarded propagator for wave equations in R1+3.
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4.1. The integral formula on the cotangent space. We consider the conormals
N∗X1 and N∗X2 to the submanifolds (X1, X2) inM, these are Legendrian curves in S∗M :
the Liouville form pdq vanishes on the curves N∗X1 and N∗X2. In the present paragraph,
for any oriented submanifold S ⊂ M , we denote by [S] the corresponding integration
current. The function NT (X1, X2) counts the number of Reeb chords from Σ1 = N∗X1 to
Σ2 = N∗X2 in S∗M. Consider the Legendrian curve Σ1 = N∗X1, we push it by the flow
until time T , this describes a surface of dimension 2. The image of Σ1 by

Φ : (t, x) ∈ [0, T ]× S∗M 7→ ϕt(x) ∈ S∗M
describes a current Φ∗ ([[0, T ]× Σ1]) 4. Physically, this is the surface which is boun-
ded by ϕT (Σ1)−Σ1. With a natural choice of orientation, we get the homotopy formula
due to Elie Cartan, used by De Rham [38], Federer [57], Harvey–Lawson [86, 87] in the
context of currents :

(70) ∂Φ∗ ([[0, T ]× Σ1]) = Φ∗ ([(∂[0, T ])× Σ1]) = ϕT∗ [Σ1]− [Σ1].

The integral formula for the surface reads :

(71) Φ∗ ([[0, T ]× Σ1]) = −
∫ T

0

(
ιV e
−tV ∗[Σ1]

)
dt.

Instead of giving the proof, we give a simple example.
Example 4.1 (From point to interval). The integration current on the point (0, 0)

is defined by the equation [(0, 0)] = δ(x, y)dx ∧ dy. [0, 0] plays the role of [Σ1]. From the
relation

∫ T
0 δ(x− t)dt = 1[0,T ](x), we find∫
−ι∂xe−t∂x∗δ(x, y)dx ∧ dy = −

∫ T

0
(δ(x− t, y)dy) dt = −1[0,T ](x)δ(y)dy

which is the current of integration on [0, T ] on the x axis which plays the role of the surface
traced out by flowing [Σ1].

Now we just want to verify that the boundary of the current −
∫ T

0

(
ιV e
−tV ∗[Σ1]

)
dt

really matches the boundary of Φ∗ ([[0, T ]× Σ1]). ∂[Σ] = (−1)deg([Σ])−1d compares the
boundary operator with the de Rham d differential and the Cartan magic formula LV =
dιV + ιV d.
[Σ1] is a closed current of integration on the knot, this is a 2-form.

∂

∫ T

0

(
−ιV e−tV ∗[Σ1]

)
dt = d

∫ T

0

(
−ιV e−tV ∗[Σ1]

)
dt

=

∫ T

0
−LV e−tV ∗[Σ1]dt = eTV∗ [Σ1]− [Σ1].

If we intersect this surface with Σ2 which has dimension 1, under suitable transversality
hypothesis, the intersection Φ∗ ([0, T ]× Σ1) ∩ Σ2 is a finite number of points. Assuming
the positivity of all oriented intersection numbers, we get :

(72) 〈Φ∗ ([[0, T ]× Σ1]) , [Σ2]〉 =

∫
M

(∫ T

0

(
−ιV e−tV ∗[Σ1]

)
dt

)
∧ [Σ2] = NT (X1, X2)

where we view the pairing as some intersection product of currents on M . Let us state the
transversality assumption that guarantees that such intersection product is possible.

Definition 4.2. The transversality assumption : Σ1 (resp Σ2) is transverse to Es⊕E0

(resp Eu ⊕ E0).

In that case the tangent spaces detV (TΣ1), de−tV (TΣ2) will approach Eu, Es without rein-
tersecting the bundles (Es, Eu). The transversality assumption is satisfied by the vertical
fibers of S∗M and we also proved in the original paper that it is satisfied by the conormal
N∗X ⊂ S∗M = M where X is a geodesic arc inM.

4. Recall Φ∗ means pushforward by Φ
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4.1.1. From the counting measure to the Poincaré series. Before we discuss the Poin-
caré series η, we will first describe the counting measure µ(t) defined as :

µ(t) =
∑
γ

ε(γ)δ(t− `(γ)) ∈ D′(R>0),

ε(γ) = ±1 depending on the orientations but the sign remains constant for all t > T for
some time T > 0 if Σ1,Σ2 satisfy the transversality condition 4.2. We use an integral
formula involving de Rham currents :

(73) µ(t) = −
∫
M

((
ιV e
−tV ∗[Σ1]

))
∧ [Σ2].

Remark 4.3. In fact, some supersymmetric version of the flat trace of Guillemin may
be recast in the above language by doubling the variables as follows. A flow ϕt : M 7→ M
with hyperbolic periodic orbits induces a flow on M × M as Φt : (x, y) ∈ M × M 7→
(x, ϕt(y)) ∈ M ×M . Let [∆] ∈ D′,n(M ×M) denotes the current of integration on the
diagonal of M ×M which is oriented once an orientation of M is chosen. Then a weighted
counting of the periodic orbits can be recovered by considering :

(74) µ(t) =

∫
M×M

Φt
∗[d2]∧ [d2] =

∑
γ

(−1)ind(γ)δ(t− `(γ)) =

dim(M)∑
k=0

(−1)kTr[ΛkT ∗M (e−tV )

where ind(γ) is the index of the Poincaré return map induced by the periodic orbit γ. µ(t)
is a distribution in the variable t exactly as in the above formula and the Guillemin trace
formulas.

The Poincaré series is just obtained by Mellin transform of the counting measure µ :

η(z) =
∑
γ

e−`(γ)zε(γ) =

∫ ∞
0

e−tzµ(t)dt =

∫
M

(∫ ∞
0

(
−ιV e−tV ∗[Σ1]

)
e−tzdt

)
∧ [Σ2]

where the series converges when Re(z) > htop thanks to the results from the thesis of
Margulis.

4.2. Relating to the resolvent. On the anisotropic Sobolev spaces of chapter 2, the
propagator e−tV : H 7→ H generates a strongly continuous semigroup. By the Hille–Yosida
Theorem, one can then relate the propagator e−tV with the resolvent via

(75)
∫ ∞

0
e−tV e−tzdt = (V + z)−1︸ ︷︷ ︸

resolvent R(z)

: Hm(M) 7→ Hm(M).

If we transport our current [Σ1] by the forward flow for sufficiently long time, we will
push the wave front set of ϕ−T/2∗[Σ1], ϕT/2∗[Σ2] in some conical neighborhoods of E∗u, E∗s
respectively where E∗u ⊂ T ∗M (resp E∗s ⊂ T ∗M) is the dual unstable (resp stable) bundle.
For T large enough, these currents will belong to anisotropic spaces of currents (here we
are cheating a bit since we did not discuss the points in the neutral direction but they
cause no problems since they are in the elliptic region of V ).

So up to transporting the currents by the flow, we may reformulate η in terms of the
resolvent acting on anisotropic currents :

ηΣ1,Σ2(z) =

∫
M

(−ιVR(z)[Σ1]) ∧ [Σ2].(76)

Then the upper bound on the wave front set of R(z) [46] :

WF (R(z)) = N∗d2 ∪ Ω+ ∪ E∗u × E∗s(77)
Ω+ = {

(
x, ϕs(x);−ξ, ((dϕs)−1)t(ξ)

)
; ξ(X) = 0, s > 0},

where d2 is the diagonal in M ×M and N∗d2 its conormal, yields the meromorphic conti-
nuation of η.

72



4.3. Elimination of the pole and linking of Legendrian knots. Now we shall
prove that there is no pole at z = 0 and identify the value η(0) with a linking number.
Linking numbers can easily be visualized. Start from two oriented knots T1, T2 in R3, since
R3 is contractible, we can consider a Seifert surface S1 bounded by T1. Then we compute
the oriented intersection number 〈[S1], [T2]〉 which counts with orientation how many times
the knot T2 will intersect the surface S1. The important idea to keep in mind is that of
taking a primitive of [T1] in the current theoretic sense. A formal definition reads :

Definition 4.4 (Linking of knots). If T1, T2 are two oriented knots in a 3–manifold
M s.t. the currents [T1], [T2] are trivial in H2(D′(M),R). Then for any primitive [Si] of
[Ti], ∂[Si] = [Ti], we define

Lk(T1, T2) = 〈[S1], [T2]〉 = 〈[T1], [S2]〉
where Lk(T1, T2) does not depend on the choice of primitive.

There is another closely related approach to linking numbers whose root goes back to
Gauss. We learned about this from topological quantum field theory. In particular in papers
by Harvey–Lawson [86, 87], Fukaya [68, 69, 70], Lescop [109]. In some perturbative
treatment of Chern–Simons theory, many authors express 3-manifolds and knot invariants
by counting configurations of graphs. To perform such counting, one writes integral
formulas on configuration space which involve products of some current on M ×M called
the propagator of the theory 5. This propagator is some sort of de Rham primitive of the
current [d2] of integration on the diagonal d2 ⊂M ×M .

Example 4.5 (Linking propagator). Let T1, T2 be two knots in R3. Their linking admits
an integral formula going back to Gauss∫

T1×T2

ω(x− y, dx− dy) where ω(x, dx) =
x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

4π‖x‖3

is a 2-form called linking form.

4.3.1. Resolvent and the linking form. To extract the de Rham primitive of the current
[Σ1] carried by the Legendrian knot Σ1, we shall use the resolvent R(z). In our work,
the operator ιVR+(0), where R+(0) = limz→0R(z) − Π0

z , will take the primitive and its
Schwartz kernel is the analogue of the Gauss linking propagator. This operator plays an
essential role in our work with Chaubet, see Chapter 3, since it appears in the derivative
of the torsion w.r.t. the flat connection.

The key result that we shall use is due to Dyatlov–Zworski [47, Lemma 3.5]. We give
a reformulation of it as follows :

Theorem 4.6. Let M be a negatively curved surface. Let D′,1E∗u(S∗M) denotes cur-
rents of degree 1 whose wave front is contained in the dual unstable bundle E∗u. There
are no Jordan blocks in the resonant states in ker(V ) ∩ D′,1E∗u(M) which is generated by
(θ, U1, . . . , Ub1(M)) where θ is the contact form and dUi = ιV Ui = 0 and (U1, . . . , Ub1(M))

generate H1(S∗M,R).
Dually, there are no Jordan blocks in the coresonant states in ker(V ) ∩ D′,2E∗s (M)

which is generated by (dθ, S1, . . . , Sb1(M)) where θ ∧ Si = 0 and 〈Ui, Sj〉 = δij.

Near z = 0, the resolvent acting on C∞(T ∗M) admits a decomposition

(78) R(z) =
Π0

z
+R+(z) : C∞(T ∗M) 7→ D′ (T ∗M)

where R+(z) is holomorphic near z = 0. Using the Lie–Cartan formula V = [d, ιV ], d[Σ] = 0
and Poincaré duality, this implies that :

d(V + z)−1ιV [Σ] = V (V + z)−1[Σ] = −zV Π0

z
([Σ])︸ ︷︷ ︸

=0

− zR+(z)ιV [Σ] + [Σ].

5. This propagator has nothing to do with the propagator of the flow
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This implies that ιVR+(0)[Σ2] is a primitive of [Σ2] using the holomorphy of R+(z) at
z = 0. We conclude that

(79) ηX1,X2(0) = −〈ιVR+(0)[Σ2], [Σ1]〉
which is minus the linking between the Legendrian knots Σ1,Σ2.

5. Linking between cotangent fibers.

Recall in case X1, X2 are two points, the value ηX1,X2(0) equals the linking between
the Legendrian knots Σ1 = N∗X1 and Σ2 = N∗X2. We will present two proofs of linking
between cotangent fibers. The first one uses Morse theory and the second one is a hyperbolic
geometry proof.

5.1. The Morse theoretic proof. The result Lk(S∗xM, S∗yM) = − 1
χ(M) was com-

municated to us at an early stage by Baptiste Chantraine and the present proof was
suggested and strongly inspired by discussions with Jean Yves Welschinger. We would like
to thank both of them warmly. We want to compute ηx,y(0) = −Lk(S∗xM, S∗yM) which
does not depend on x 6= y, it is purely topological. Given X ∈ C∞(TM) with hyperbolic
zeroes, assume w.l.o.g. that X = ∇f for a Morse function f and a metric of the form

∑
dx2

i
in Morse coordinates. This implies that the Lyapunov exponents of ∇f at critical points
belong to {±1}. The graph Γ of X

‖X‖ defines an integration current in S∗ (M\ Crit(X)).
The important fact is that it extends uniquely as a de Rham current of finite mass
denoted by [Γ] on S∗M. But the current [Γ] is not closed and satisfies the equation :

(80) ∂[Γ] = −
∑

a∈Crit(X)

(−1)ind(a)[S∗aM].

So the current theoretic boundary of [Γ] is the union of the currents of integration on the
cotangent fibers weighted by the Morse indices of f . Γ is the Seifert surface of the link∑

a∈Crit(X)(−1)ind(a)+1[S∗aM].
We conclude by observing that for y ∈M \ Crit(X) :

1 =
〈
[Γ], S∗yM

〉
= −

∑
a∈Crit(X)

(−1)ind(a)Lk(S∗aM, S∗yM) = −χ(M)Lk(S∗xM, S∗yM)

and we are done.

5.2. The hyperbolic geometry proof. The proof was strongly inspired by discus-
sion with Gabriel Paternain and we wish to warmly thank him here. The starting point
is to reformulate the integral

∫
y∈M ηx,y(s)dv(y) as some integral in the universal cover

M̃ 7→ M. Let ỹ ∈ M̃ be some representative of y, then we reformulate the counting as a
sum over the fundamental group :

ηx,y(s) =
∑

g∈π1(M)

e−sd(x,g.ỹ).

Let D be a fundamental domain of M̃, then by Fubini we get∫
y∈M

ηx,y(s)dv(y) =

∫
ỹ∈D

∑
g∈π1(M)

e−sd(x,g.ỹ)dv(ỹ)

=
∑

g∈π1(M)

∫
ỹ∈D

e−sd(x,g.ỹ)dv(ỹ) =

∫
y∈M̃

e−sd(x,y)dv(y).

We pull–back the last integral over TxM by the exponential map expx : TxM 7→ M̃
which is a global diffeomorphism. Using the tautological fact that for y = expx(tv) where
v ∈ SxM, we find d(x, y) = t, this yields :

(81)
∫
y∈M

ηx,y(s)dv(y) =

∫ ∞
0

e−ts
(∫

v∈SxM
| det(d expx(tv))|dθ(v)

)
dt.
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But in hyperbolic geometry, the exponential map can be explicitely calculated based
on the relation with Jacobi fields. By the properties of the Jacobi fields in [9, Prop 67
p. 249], for every h ∈ TxM, v ∈ TxM, we find that

d expx(tv)(h) = Y (t)

where Y (t) solves the Jacobi field equation Y ′′ = R(γ′(t), Y (t))γ′(t) with Y (0) = 0, Y ′(0) =
h where γ(t) is the geodesic expx(tv). In constant curvature K = −1, Y (t) = − sinh(t)h
for every vector h ⊥ v 6. It follows that |det(d expx(tv))| = | sinh(t)| and∫
y∈M

ηx,y(s)dv(y) =

∫ ∞
0

e−st
(∫

v∈SxM
sinh(t)dθ(v)

)
dt = 2π

∫ ∞
0

e−st sinh(t)dt =
2π

s2 − 1
.

In particular
∫
y∈M ηx,y(0)dv(y) = −2π. But we know already that ηx,y(0) = −Lk(S∗xM, S∗yM)

which is a topological constant c of y which is independent of y 6= x. Therefore∫
y∈M

ηx,y(0)dv(y) = cV ol(M) = −2π.

By the Gauss–Bonnet formula,
∫
MKdA = 2πχ(M), sinceK = −1 we find that V ol(M) =

−2πχ(M) therefore c = 1
χ(M) as desired.

5.3. How to think about orientations. Orientations are a central issue in our work.
There is a part of arbitrariness but certain choices must be made consistently with what
we are counting. The reader should keep in mind that the Poincaré series does not know
about orientations, it only counts geodesic arcs, but we represent this counting formula in
terms of intersection of currents and this requires to make some choices consistent with
the fact we count positive intersections.

Example 5.1. There is only 1 point at the intersection of x and y axis on R2 and the
number 1 carries no orientation information ! However one can realize 1 as the oriented
intersection Ox ∩Oy where R2 is oriented by ∂x ∧ ∂y or as Oy ∩Ox where R2 is oriented
by ∂y ∧ ∂x.

For an oriented submanifold N ⊂M, denote by [N ] the integration current on N then
−[N ] is the integration current on N with the opposite orientation. We choose some
orientation on the base surfaceM, this is our first choice. This means any small disc D
in M inherits a canonical orientation from M which implies that the boundary ∂D also
has an induced orientation.

Example 5.2. In the plane R2 with canonical orientation (∂x, ∂y), the disc x2 +y2 6 1
has boundary the unit circle oriented counterclockwise.

We need to orient M = S∗M before we can intersect currents in S∗M. We choose an
orientation on the fibers S1 of S∗M in such a way that the image eεV (S∗xM) of a fiber by
the geodesic flow at time ε > 0, once projected on the base M, bounds a disc of radius
ε > 0 around x has canonical orientation. The orientation of the base M plus the fiber
induces an orientation Or(S∗M) of S∗M with the following property : in this orientation,
if we fix an arbitrary fiber S∗xM, the orientation induces a current [S∗xM]. For any germ
of section σ : Ux ↪→ S∗M defined in some neighborhood Ux of x, [σ] is a current induced
by the orientation of Ux, then

∫
S∗M[σ] ∧ [S∗xM] = 1.

Example 5.3. If S∗R2 with coordinates (x, y, θ) is oriented by ∂x ∧ ∂y ∧ ∂θ then the
fibers should be oriented by ∂θ.

6. In fact, the metric g in polar normal coordinates (r, θ) reads

g = dr2 − r2 sinh2(r)dθ

where dθ is the canonical volume on the unit circle S1.
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Now, we start from two fibers S∗xM and S∗yM with their orientations. Then the question
is how to orient the surface ∪t∈[0,T ]ϕ

t(S∗xM) obtained by flowing out S∗xM in S∗M by the
geodesic flow so that its oriented intersection with S∗yM yields only positive integers. It
suffices that the projection of this surface on the baseM has the same orientation asM.
For small 0 < ε < T << 1, we therefore expect that the projection of ∪t∈[ε,T ]ϕ

t(S∗xM) on
M looks like a ring and the projection of the oriented boundary of ∪t∈[ε,T ]ϕ

t(S∗xM) should
look like a circle of radius T minus a circle of radius ε both centered around x and oriented
counterclockwise. The current of integration on ∪t∈[ε,T ]ϕ

t(S∗xM) with correct orientation
is therefore exactly given by

∫ T
ε −ιV e

−tV ∗[S∗xM]dt since

∂π∗

∫ T

ε
−ιV e−tV ∗[S∗xM]dt = π∗∂

∫ T

ε
−ιV e−tV ∗[S∗xM]dt

= π∗
(
e−TV ∗[S∗xM]− e−εV ∗[S∗xM]

)
= π∗e

TV
∗ [S∗xM]− π∗eεV∗ [S∗xM].

6. The case X1 is a point and X2 is a curve.

Assume that Ω is some domain bounded by some simple curve X1 without selfinter-
sections and X2 = y which does not belong to X1. We would like to calculate the linking
Lk(N∗Ω, S∗yM) between the conormal of the domain Ω and the fiber S∗yM. Before, we
need to state a Poincaré-Hopf Theorem we will use.

6.0.1. Poincaré-Hopf for manifold with boundaries by Morse 1929. Our workhorse Theo-
rem is a generalisation of the Poincaré–Hopf Theorem by Morse. We give some interpreta-
tion of the Poincaré–Hopf formula for manifolds with boundary, due to Morse (Theorem
A0 p. 170-171), in terms of intersection of some graph of vector field with the normal cycle

NΩ+ = {(x; v)|x ∈ ∂Ω, v ∈ Tx∂Ω⊥}
of a domain with boundary :

Theorem 6.1. Let Ω be a planar domain in some closed oriented surface M with
smooth boundary ∂Ω, W ∈ C∞(TM) a smooth vector field such that the graph of W

‖W‖ in
SM intersects the outward normal NΩ+ transversally, in particular W does not vanish
on ∂Ω.

Let W⊥ be the orthogonal projection of W on ∂Ω and for every a ∈ Crit(W⊥),
indW⊥(a) is the Poincaré index of a for W⊥. Then :

(82) χ (Ω) =
∑

a∈Crit(W )∩Ω

(−1)indW (a)

︸ ︷︷ ︸
bulk term

−
∑

a s.t. W⊥∂Ω+

(−1)indW⊥ (a)

︸ ︷︷ ︸
boundary term

.

Denote by [0|Ω] the current of integration on the zero section restricted to Ω. Then denoting
by S the graph of W :

χ(Ω) = 〈[S], [0|Ω]〉︸ ︷︷ ︸
bulk term

+ 〈[S], [NΩ+]〉︸ ︷︷ ︸
boundary term

where we can count in terms of both outgoing or ingoing normals to get the Euler charac-
teristic.

The reformulation in terms of intersection with the normal cycle plays a central role
in our approach and is a classical idea from microlocal geometry. This Theorem has some
strong analogies with the Gauss–Bonnet Theorem for surfaces with boundaries that we
would like to stress with the next :

Example 6.2 (Gauss–Bonnet–Chern). Under the assumptions of Theorem 6.1, Kdσ
is the scalar curvature times the volume form for the metric, α is the angular form :

(83) 2πχ (Ω) =

∫
Ω
Kdσ︸ ︷︷ ︸

bulk

+

∫
∂Ω
α.︸ ︷︷ ︸

boundary
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Remark 6.3. In fact, both Theorems can be unified if one represents the Euler class
with currents in TM and formalizes the notion of transgression, originally due to Chern,
in terms of currents.

We also have the extremely naive impression that this is the simplest instance of some
sort of bulk–boundary phenomenon in elementary differential topology.

6.0.2. Idea of the proof. Choose some vector field X with hyperbolic critical points
outside ∂Ω s.t. the graph of X

‖X‖ over ∂Ω coincides with the inward normal of Ω. X has
isolated critical points in Ω. The key idea is that the graph Γ of X

‖X‖ over Ω is a cobordism
between the normal NΩ and the link ∪a∈Ω∩Crit(X)S

∗
aM :

∂[Γ] = [NΩ]−
∑

a∈Ω∩Crit(X)

(−1)ind(a)[S∗aM].

By Stokes Theorem, observe that〈
[Γ], [S∗yM]

〉
= 〈∂[Γ], [R]〉

where d[R] = [S∗yM], hence R is a de Rham primitive of [S∗yM]. Therefore〈
[Γ], [S∗yM]

〉
= 〈[NΩ], [R]〉 −

∑
a∈Ω∩Crit(X)

(−1)ind(a) 〈[S∗aM], [R]〉

= Lk(N∗Ω, S∗y)−
∑

a∈Ω∩Crit(X)

(−1)ind(a)

︸ ︷︷ ︸
=χ(Ω)

Lk(S∗aM, S∗yM)︸ ︷︷ ︸
=− 1

χ(M)

.

Applying the result of Morse yields Lk(N∗Ω, S∗y) = − χ(Ω)
χ(M) si y /∈ Ω = 1− χ(Ω)

χ(M) si y ∈ Ω.
Finally :

Lk(N∗Ω, S∗y) = χ(Ω ∩ {y})− χ(Ω)χ({y})
χ(M)

7. The general case.

In this part, we will be very sketchy and we refer to the original paper for further details.
We start from a Legendrian knot whose projection on the surface has only transverse
double self–intersections. In the original paper, we first killed all multiple self–intersections
by pushing the Legendrian knot by the geodesic flow.

The key idea is to decompose some arc with selfintersections as a finite union of simple
closed curves to reduce to the simple case of computing the linking of N∗γ1 with N∗γ2 for
a pair γ1, γ2 of smooth simple closed curves. For each of these closed curves γi appearing
in the decomposition, we try to generate the Seifert surface Si which is bounded by N∗γi.

Our derivation of the topological content of ηX1,X2(0) relies crucially on the Poincaré-
Hopf index formula as it was derived by Morse in [124], and we use this formula from a point
of view which is inspired by microlocal geometry. In fact, the microlocal index theorems
of Brylinski–Dubson–Kashiwara [24] and Kashiwara [98], later revisited by Kashiwara–
Schapira [99, p. 384] and Grinberg–McPherson [80], can be understood as generalizations
of the Poincaré–Hopf index formula.

7.0.1. Constructible functions. Σ is an oriented curve hence it defines a current [Σ],
the push–forward by the projection π : π∗[Σ] = [γ] where [γ] is some current which lives
downstairs on the base space. The curve γ downstairs is a geodesic arc, its complement
M \ γ = ∪i∈IΩi is a finite union of connected components. We fix f |Ω1 = 0 and therefore

(84) f |Ωi = oriented intersection numbers of a path from Ω1 to Ωi with γ.

So f is some piecewise constant function which satisfies the equation :

(85) ∂f = [γ]

in the sense of currents where ∂ is the de Rham boundary operator.
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For the moment f is defined up to some integer constant but we fixed the constant
by imposing the minimum of f to be 0 therefore f does not take negative values and 0 is
attained. The constructible function f is then viewed as a quantization of the Legendrian
Σ. In general, given a real algebraic manifold X and a stratification S of X, one says that
a function f : X 7→ Z is constructible if it is constant on each stratum. Our next goal is to
use the constructible function to decompose the curve γ as a union of simple closed curves
and extract the Seifert surfaces bounded by the conormals of these simple closed curves.

7.0.2. Euler integral. The notion of Euler characteristic generalizes to constructible
functions [182, 158, 159, 160] : f 7→ χ(f) :=

∫
X fdχ, and it is referred as Euler (charac-

teristic) integrals – see [7, 33] for an introduction to this notion and various applications
to motion sensors. We just say here that, for the characteristic function 1Ω of a domain Ω,
χ(1Ω) =

∫
Ω dχ coincides with the usual Euler characteristic χ(Ω) and that the extension to

constructible functions follows from Z–linearity [7, Def 2.6 p. 831]. An important property
is that χ satisfies the inclusion exclusion relation therefore for reasonable subsets (A,B) 7,
we have χ(A∪B) = χ(A) + χ(B)− χ(A∩B). One can view χ as some sort of topological
measure, which explains the basic identity

∫
1Adχ = χ(A). Euler integrals are defined by

the fundamental relation

(86)
∫
fdχ =

∑
s∈Z

sχ{f−1(s)}.

In our case this definition is not practical. The function f is defined as in paragraph 7.0.1
and we will decompose f by level sets. We set Ωi = {f > i} the region where f > i and
observe that we have the elementary identities :

(87) f =
∞∑
i=0

1Ωi ,

∫
fdχ =

∞∑
i=0

χ (Ωi) .

In microlocal geometry, given a constructible function f one associates a conical La-
grangian cycle Λf which generalizes the simple example 1Ω indicator of Ω 7→ Λ1Ω = N∗Ω
which is the conormal of Ω. Then, for every pair f1, f2 of constructible functions onX which
satisfy some appropriate transversality conditions, the microlocal index formula reads [80,
p. 269] :

(88) χ(f1f2)︸ ︷︷ ︸
Euler integral

= [Ch(f1)] ∩ [Ch(f2)]︸ ︷︷ ︸
Lagrangian intersection

where [Ch(f1)] ∩ [Ch(f2)] is the intersection of the two corresponding Lagrangian cycles.
Hence, the microlocal index formula gives an interpretation of Lagrangian intersections as
the Euler characteristic of some product of constructible functions. Our formula is in the
spirit of the above microlocal index formula. But instead of computing the intersection of
Lagrangian cycles, we rather consider the linking of Legendrian cycles and we also express
it in terms of constructible functions. More precisely, for every pair of Legendrian cycles
Σ1,Σ2 which are small deformations by Hamiltonian isotopies of the unit conormal bundle
of our homologically trivial geodesic representatives c1 and c2, we associate a pair (f1, f2)
of constructible functions quantizing the two knots Σ1,Σ2. Then we prove the microlocal
index formula :

(89)
χ(f1)χ(f2)

χ(X)
− χ(f1f2) +

1

2
χ(1c1∩c2)︸ ︷︷ ︸

Euler integral

= ±Lk (Σ1,Σ2)︸ ︷︷ ︸
Legendrian linking

= lim
s→0

∑
γ∈Pc1,c2 :`(γ)>0

e−`(γ)s

︸ ︷︷ ︸
Poincaré series at zero

.

In the framework of symplectic topology, the Poincaré series is understood as a sum over
the Reeb chords of the geodesic flow joining the two Legendrian curves Σ1 and Σ2. Hence,

7. Semialgebraic and subanalytic sets
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this index formula 8, gives an interpretation of some linking of two Legendrian curves in
terms of Euler integrals but also as a zeta regularized sum over the Reeb chords from Σ1

to Σ2. While the first equality is obtained by purely topological means, the second one is
a consequence of our spectral approach to the problem.

7.0.3. The decomposition Theorem for our Legendrian knots. Now everything relies on
a decomposition of our initial Legendrian knot Σ as a union of conormals of simple closed
curves :

Theorem 7.1. Let Σ be a Legendrian knot whose projection on M has only double
transverse intersections. Then there exists (Ωi)i oriented domains with piecewise C∞ boun-
daries s.t.

(90) [L] =
∑
i

[N∗Ωi]

and f is the corresponding constructible function s.t. f =
∑

1Ωi .

Then using smoothing arguments we can round the corners of our piecewise smooth
simple curves to reduce to smooth simple closed curves. Then using the bilinearity of the
linking, we reduce the calculation to the simpler case of the linking between conormals of
smooth simple closed curves where we managed to apply Theorem 6.1, yielding the final
result.

8. Perspectives.

There are many directions we would like to explore together with Rivière. First, we
would like to gain a better microlocal understanding of the quantum versus classical cor-
respondance for the problem of arc countings in both negative variable curvature and more
homogeneous cases, this includes exotic spaces such as metric graphs where it would be al-
ready interesting to define the geodesic flow. In the light of the recent result of Guillarmou–
Lefeuvre [82] related to rigidity questions, one could also ask if the marked length spectrum
of all geodesic arcs between two given points on some Riemannian manifold (M, g) of ne-
gative curvature determines the isometry class of g for small perturbations of the metric ?

8. However see [180, Th.4] and [147, Eq. (10)] for related results of Turaev regarding the first
equality on S∗S2.
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