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ABSTRACT. We study the twisted Ruelle zeta function (x(s) for smooth Anosov vector
fields X acting on flat vector bundles over smooth compact manifolds. In dimension 3, we
prove Fried conjecture, relating Reidemeister torsion and (x(0). In higher dimensions, we
show more generally that (x(0) is locally constant with respect to the vector field X under
a spectral condition. As a consequence, we also show Fried conjecture for Anosov flows near
the geodesic flow on the unit tangent bundle of hyperbolic 3-manifolds. This gives the first
examples of non-analytic Anosov flows and geodesic flows in variable negative curvature
where Fried conjecture holds true.

1. INTRODUCTION

Let M be a smooth (C*), compact, connected and oriented manifold of dimension n and
E — M a smooth Hermitian vector bundle with fibers C" equipped with a flat connection V.
Parallel transport via V induces a conjugacy class of representation p : w1 (M) — GL(C"),
which is unitary as soon as V preserves (-,-)p. One can then define a twisted de Rham
complex on the space Q(M; E) of smooth twisted forms with twisted exterior derivative dV,
and we denote by H*(M;p) its cohomology of degree k. We say that the complex (or p) is
acyclic if H*(M;p) = 0 for each k. If p is acyclic and unitary, Ray and Singer introduced
a secondary invariant which is defined by the value at 0 of the derivative of the spectral
zeta function of the Laplacian [RaSi71]. They showed that this quantity 7,(M) is in fact
independent of the choice of the metric used to define the Laplacian, thus an invariant of the
flat bundle. This is the so-called analytic torsion and it was conjectured by Ray and Singer to
be equal to the Reidemeister torsion [Re, Fra, DR]. This conjecture was proved independently
by Cheeger [Ch] and Miiller [Mul] and it was extended to unimodular flat vector bundles
by Miller [Mu2] and to arbitrary flat vector bundles by Bismut and Zhang [BiZh]. For an
introduction to the different notions of torsion, we refer the reader to [Mn].

In the context of hyperbolic dynamical systems, Fried conjectured and proved in certain
cases that the analytic torsion can in fact be related to the value at 0 of a certain dynamical
zeta function [Fr4] that we will now define. Given a (primitive) closed hyperbolic orbit
of a smooth vector field X, one can define its orientation index £, to be equal to 1 when
its unstable bundle E, () is orientable and to —1 otherwise. If now X is a smooth Anosov
vector field on M, we can define the Ruelle zeta function twisted by the representation p as :

Cxp) = [ det(1 - e5p([)e D), Re(A) > € (L1)
yEP
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where P denotes the set of primitive closed orbits of X and () the corresponding periods.
Here C > 0 is some large enough constant depending on X and p. If p is unitary and acyclic
and if X is the geodesic vector field on the unit tangent bundle M = SM of a hyperbolic
manifold M, Fried showed that (x,,(\) extends meromorphically to A € C using Selberg trace
formula [Fr3] and the work or Ruelle [Rue]. Then he proved [Fr2] the remarkable formula
(with dim(M) = 2ng + 1) :

[Cxp(0) 7| = 7p(M), (1.2)

where p is the lift to m1 (M) of an acyclic and unitary representation pg : w1 (M) — U(C").
Fried interpreted this formula as an analogue of the Lefschetz fixed point formula answering
his own question in the case of geodesic flows [Frl, p. 441] : is there a general connection
between the analytic torsion of Ray and Singer and closed orbits of some flow (e.g. geodesic
flow) ? He then extended this formula [Fr4, Fr5] to various families of flows such as Morse-
Smale flows and formula (1.2) was also generalized to non-positively curved locally symmetric
spaces by Moscovici-Stanton [MoSt] and Shen [Sh]. To generalize the above results, Fried
makes the following conjecture in [Fr4, p. 66]: it is even conceivable that (¢, E) is Lefschetz
for any acyclic B with o flat density and any C¥ contact flow ;. For geodesic flows, he also
conjectured in [Fr5, p. 181] : One may hope to generalize these results to variable negative
curvature ... Yet, as stated by Zworski [Zw2, p. 5] : in the case of smooth manifolds of
variable negative curvature, (1.2) remains completely open.

For analytic Anosov flows, generalizing earlier works of Ruelle [Rue], Rugh showed in [Ru]
that (x , has meromorphic continuation to the whole complex plane when dim(M) = 3. This
was later extended to higher dimensions by Fried [Fr5]. Then, Sanchez-Morgado [Sal, Sa2]
proved that (1.2) holds for transitive analytic Anosov flows in dimension 3 if there exists a
closed orbit  such that, for each j € {0,1}, ker(p([y]) —£}1d) = 0 — see also [Fr4] for related
assumptions in the case of Morse-Smale flows. More recently, the meromorphic continuation
of Ruelle zeta functions was proved in the case of hyperbolic dynamical systems with less reg-
ularity (say C*°). The case of Anosov diffeomorphisms was handled by Liverani [Liv2] while
the case of Axiom A diffeomorphisms was treated by Kitaev [Ki] and Baladi-Tsujii [BaTs2].
Afterwards, Giulietti, Liverani and Pollicott proved that the meromorphic continuation of
(x,p holds for smooth Anosov flows [GLP]. An alternative proof of this latter fact was given
by Dyatlov-Zworski [DyZw1] via microlocal techniques, and extended by Dyatlov-Guillarmou
[DyGul, DyGu2] to Axiom A cases. In the case of smooth contact Anosov vector fields in
dimension 3 and of the trivial representation 1 : [y] € m; (M) — 1 € C*, Dyatlov-Zworski
[DyZw?2] subsequently proved that the vanishing order of (x 1()) at 0 is A1 (M)=2 Dy 7w2]
where b1 (M) is the first Betti number of M — see also [Ha2] in the case with boundary.
Recent account about these progresses can be found in [Go, Zw2]. We also refer to the book
of Baladi [Ba] for a complete introduction to the spectral analysis of zeta functions in the
case of diffeomorphisms. Building on these recent results in the smooth case, the purpose
of this work is to bring new insights on Fried’s questions regarding the links between Ruelle
zeta functions and analytic torsion.
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2. STATEMENT OF THE MAIN RESULTS

Our first result answers Fried’s question in dimension 3 for smooth Anosov flows.

Theorem 1. Suppose that dim(M) = 3 and let E be a smooth Hermitian vector bundle
with a flat connection V inducing a unitary and acyclic representation p : m (M) — U(C").
Let Xg be a smooth Anosov vector field preserving a smooth volume form. Then, there is a

nonempty neighborhood U(Xo) C C°(M;TM) of Xo so that

VX € U(Xo), CX,p(O) = CXo,p(O) # 0.

In addition, if by(M) # 0 or if there exists a closed orbit v of Xo such that, for each
j € {0,1}, ker(p([y]) — €1d) = 0, then |(x,,(0)|7! = 7,(M) is the Reidemeister torsion for
each X € U(Xp).

The second part of the Theorem is based on the approximation of smooth volume preserv-
ing Anosov flows by analytic transitive Anosov flows and the result of Sanchez-Morgado [Sa2],
while the first part follows from a variation formula for (x ,(0) with respect to X which shows
that X — (x ,(0) is locally constant for unitary and acyclic representations in dimension
3. Observe that a vector field in U(X() may not preserve a smooth volume form even if Xy
does. This variation property of the Ruelle zeta function at 0 is in fact our main result and
it holds more generally for smooth Anosov vector fields in any dimension under a certain
non-resonance at A = 0 assumption. In order to state it, we need to recall the notion of
Pollicott-Ruelle resonances.

Given a vector field Xy and connection V, one can define the Lie derivative Xy :=
dVix, + tx,dY acting on smooth differential forms Q(M; E). Then, one can find some
C > 0 depending on X and p such that

“+o0o
Ry (V) = / e e Ko gt O(M: E) - (M, B)
0

is holomorphic for Re(A\) > C where Q'(M; E) is the space of currents with values in FE.
For smooth Anosov flows, it was first proved by Butterley and Liverani that Rx,(\) has a
meromorphic extension to the whole complex plane [BuLi]. The poles of this meromorphic
extension are called Pollicott-Ruelle resonances and this result was based on the construction
of appropriate functional spaces for the differential operator Xo — see also [BKL, GolLi] in
the case of diffeomorphisms and [Livl, GLP] for flows. Building on earlier works for diffeo-
morphisms [BaTsl, FRS], Faure and Sjostrand introduced microlocal methods to analyse the
spectrum of Anosov flows and, among other things, they gave another proof of this result —
see also [T's, DyZwl, FaTs]. Using this meromorphic extension, our main result reads as

Theorem 2. Let E be a smooth vector bundle with a flat connection V. Then the set
of smooth Anosov vector fields X such that 0 is not a pole of the meromorphic extension
of Rx(\) : QM E) — Q/(M; E) forms an open subset U C C°(M,TM), and the map
X €U — (x,p(0) is locally constant and nonzero.

This result is valid in any dimension and without any assumption on the fact that p is
unitary or that X preserves some smooth volume form. Note from [DaRi, Th. 2.1] that our
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condition on the poles of Rx(\) implies that p is acyclic. If we suppose in addition that
M is 3-dimensional, that p is unitary and that X preserves a smooth volume form, then
we will show that the converse is true and thus deduce the first part of Theorem 1. This
spectral assumption also implies that (x ,(0) # 0 as a consequence of [GLP, DyZwl] — see
e.g. [DyZw2, § 3.1]. In the case of nonsingular Morse-Smale flows [Fr4, Th. 3.1], Fried proved
that (x ,(0) is equal to the Reidemeister torsion under certain assumptions on the eigenvalues
of p([y]) for every closed orbits. This geometric condition was in fact shown to be equivalent
to the spectral condition we have here [DaRi, § 2.6].

Observe now that Theorem 2 says that the Ruelle zeta function evaluated at A = 0 is
locally constant under a certain spectral assumption. This result suggests that this value
should be an invariant of the acyclic representation class [p] but it does not say a priori that it
should be equal to the Reidemeister torsion. In dimension 3, this is indeed the case under the
extra assumptions that X preserves a smooth volume form and that p is unitary as shown by
Theorem 1. For contact Anosov flows and unitary representation p, we prove that it is enough
(in order to apply Theorem 2) to verify that 0 is not a pole of the meromorphic extension of
Rx,(\) restricted to Q"0 (M, E) where dim(M) = 2ng + 1. For hyperbolic manifolds, using
a factorisation of dynamical zeta functions associated to X in terms of infinite products of
Selberg zeta functions associated to certain irreducible representations of SO(ng), we can
show that X has no 0 resonance in the acyclic case when n = 5 (see Proposition 7.7) and we
deduce the following extension of Fried conjecture (1.2):

Theorem 3. Suppose that M = T\H? is a compact oriented hyperbolic manifold of dimension
3 and denote by X the geodesic vector field on M = SM. Let E be a smooth Hermitian vector
bundle with a flat connection V on M inducing an acyclic and unitary representation p :
w1 (M) — U(C"). Then, Xg has no resonance at 0 and there exists a nonempty neighborhood

U(Xy) € O (M;TM) of X so that*
VX € U(XO)a CX,ﬁ(O) = Tﬂ(M)27

where p is the lift of p to M.

In dimension nyg > 2, the computations for the order of 0 as a resonance of Xy on
S(I'\H"+*1) are involved and do not always seem to be topological (cf Remark 5).

Organisation of the article. In section 3, we describe in detail the dynamical framework
and construct the escape function needed to build appropriate functional spaces. In sections 4
and 5, we describe the variation of the Ruelle zeta function for Re(z) large. In section 6,
we show the analytic continuation of our variation formula up to z = 0 relying on the
microlocal methods of [FaSj, DyZw1]. In section 7, we use the variation formula and methods
of [Sa2, DFG, DyZw2, DaRi] to discuss Fried conjecture. Finally, appendix A gives technical
details on the escape function and appendix B discusses Selberg’s trace on symmetric tensors.

IRecall from [Fr4] that 7,(M)? = 75(M).
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Conventions. For a smooth compact manifold M, we will always use the following termi-
nology: TyM = {(z,§) € T*M; & # 0}, D'(M) = (C°(M))’ is the space of distributions,
H*(M) := (1+A)"*/2L*(M) if A is the Laplacian of some fixed Riemannian metric on M.
If B is a regularity space (such as C*, H*,C*,D') and E a smooth vector bundle on M,
B(M; E) denotes the space of sections with regularity B. A set I' C T*M (or C T M) is
called conic if (z,£) € T implies (z,t£) € T for all ¢ > 0.
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by the ANR project GERASIC (ANR-13-BS01-0007-01). CG is supported by the ERC
consolidator grant IPFLOW and GR also acknowledges the support of the Labex CEMPI
(ANR-11-LABX-0007-01).

3. DYNAMICAL AND ANALYTICAL PRELIMINARIES

Let X be a smooth vector field on a n-dimensional compact manifold M, and denote by
¢ its flow on M. Recall that a vector field is said to be Anosov if there exist some constants
C, A > 0 and a dyg-invariant continuous splitting

TM=RX ® E,(X)® Es(X), (3.1)
such that, for every ¢ > 0,
Vo € By(X,z), |ldgft (z)ol| < Ce™ o], Vo € Bu(X,2), |ldpX,(x)o]| < Ce ™[]

Here we have equipped M with a smooth Riemannian metric g that will be fixed all along
the paper. The subset of Anosov vector fields

A:={X € C°(M;TM) : X is Anosov}

forms an open subset of C°°(M;TM) in the C* topology. Next, we introduce the dual
decomposition to (3.1):
T"M=E;(X)® E,(X)® E;(X)
where Ej(X) (B, (X) @ Es(X)) = {0}, E:/U(X) (Es/u(X) ® RX) = {0}. We have for every
t>0,
Vo € E3(X,z), [[(dei (2)7) " ol| < Ce o],

. - B (3.2)
Yo € Ej(X,x), |(de¥,(z)") Mol < Ce™v]).

We define the symplectic lift of X as follows:

V(2,8) € T"M, & (2,€) = (47" (), (de;* (x)7) 7€),
and the induced flow on S*M:

&)ix(xv’g) = (90?((33)7 H

(dpi* (x)") "¢ ) |
(A (@)D e[| x )
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The flow & is the Hamiltonian flow corresponding to the Hamiltonian H (z, ) := &(X (z)).
The vector fields corresponding to these lifted flows will be denoted by Xy and Xg.

3.1. Invariant neighborhoods. Fix some Xy € A. We will now recall how to construct
cones adapted to the Anosov structure. For that purpose, we decompose any given & € T M
as

£ =80+ &+ & € Ep(Xo,z) ® Ey(Xo, ) ® ES(Xo,2),

and we define a new metric on M

0
lell = ol + |

—00

+oo
A D) o+ [ @l

with v > 0 small enough to ensure that the integrals converge. With these conventions, one
has, for every tg > 0,

VE € EX(Xo, @), [[(dei”(2)") 7Nl < e gl

VE € Ej(Xo,x),  [I(del, ()") 1) < e ollg

Note also that, provided the initial metric ||.|| is chosen in such a way that || Xo(z)||s = 1 for
every x in M, one has, for every {5 € R,

VE € By(Xo,x), [[(dee”(2)") el = [I€l)-

In other words, we have constructed a metric adapted to the dynamics of goi(o. Recall that
this new metric is a priori only continuous. Nevertheless, we may use it to define stable and
unstable cones. We fix a small parameter o > 0 and we introduce:

C* () = {(z,€) € T"M\O : [|&u + &oll7 < el&ll%}
C(a) = {(x,€) € T"M\O = a|u + &ollr, > [1€]1%} -

In the following, « is always chosen small enough to ensure that C**(a) N C%(«) = (). We
have the following properties, for every ¢ > 0,

V(z,€) € C*(a),  [I(def(2)") 7 (€ + &o)ll; < e allde; (@) (€,
V(z,€) € Ca),  ae”|(dpp (2)") " (& + &)k 2 ldef (2) (&)1

In particular, the cone C"(«) (resp. C**(a)) is stable under the forward (resp. backward)
flow of (pfxo.

Proposition 3.1. From the continuity of the Anosov splitting, one knows that, for every
a > 0, there exists a neighborhood Uy, (Xo) C A of Xo such that, VX € Uy(Xo),

E}(X)® Ej(X)\0 C C*(«a) and E%(X)\0 C C**(a).
The following result will be useful in our analysis:

Lemma 3.2. Let Xy € A and let o > 0 be small enough to ensure C**(a)) N C*(a) = 0.
There exist a neighborhood U, (Xo) of Xo in the C* topology and T, > 0 (both depending on
a) such that

VX € Uy(Xo), Vt > Ty, ®%,(C*5(a)) C C*¥(a), and O (C*(a)) C C*(a).
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Proof. To begin with, let us first note that we could have defined an adapted norm ||.||s
for every vector field X close enough to Xy3. We would like to verify that all these norms
are uniformly equivalent — see equation (3.3) below. For that purpose, we set f (x,&) =
f(x, &/|€ll2) €l with f defined in the appendix, which is independent of X. By compactness
of S* M, there exists some constant C' > 0 such that

V(z,€) € T*M,  C7'€llx < f(a,€) < CJlé]l..

Combining this with? (A.6) and (A.7), one can verify that, provided v > 0 is chosen small
enough in the definition of |||y, one has, for every (z,§) € T*M and X € U,(Xo)

1€0 (X)) + C72 (€O + 1€(XDID) < N1Elx < 1€0(X) + C2 (l€a(X)] + lIE(X)D,

where & = &)(X) + &, (X) + &(X) is the Anosov decomposition associated with X and
Uy (Xo) C A some small neighborhood of Xj. Note that C' > 0 is independent of X € U, (Xy).
By continuity of the Anosov decomposition with respect to X, there is C' > 0 such that for
every (z,§) € T*M and for every X € U(Xy),

el < ligllx < Cllgll. (3-3)

Let us now prove our Lemma. We only discuss the case of C*(«) as the other case is similar.
First of all, thanks to the continuity of the unstable and stable directions (with respect to X)
and thanks to (3.3), one can find 1 > 0 and an open neighborhood U, (Xy) of X such that,
for every X in Un(Xo), one has C%(a1) C C*(a), where C% (1) is the cone of aperture o
built from X instead® of Xy. Up to shrinking the neighborhood of X a little bit more and
by a similar argument, we can also find g > 0 such that, for every X in U,(Xy), one has
C"(ag) C C%(aq). Observe now that, if (z,&) € C*(«a), then there exists T, > 0 such that
@?(‘;(C’“(a)) C C*%(a2/2). Hence, up to shrinking U, (Xo) one more time, we can deduce that,
for every X € U,(Xo) and for every (z,§) € C*(«), one has CI’% (x,€) € C"(2) C C ().
We deduce that, for every ¢t > T,, ®4(C%(a)) C C%(aq) C C“(a), which concludes the
proof. O

3.2. Escape functions. In order to study analytical properties of Anosov flows, we shall

make use of the microlocal tools developped by Faure-Sjostrand [FaSj] and Dyatlov-Zworski [DyZw1].
One of the key ingredients of these spectral constructions is the existence of an escape func-

tion:

Lemma 3.3 (Escape functions). There exists a function f € C®(T*M,Ry) which is 1-
homogeneous for ||£||z > 1, a constant co > 0 and a constant &y > 0 (small enough) such
that the following properties hold:

(1) fz,€) = lElla for [|E]le = 1 and (z,£) ¢ C** () U C*(aw),

(2) for every No, N1 > 0 and 0 < ag < &, there ezist a1 < o and a neighborhood U(Xo)
of Xo in the C*°-topology for which one can construct, for any X inU(Xy), a smooth
function

myON T M — [~2Ng, 2V4]

2Note also that the stable/unstable bundles depend continuously on X .
3It means that we replace .||’ by ||.|l’x and the components &o/uss of Xo by the ones of X.
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with the following requirements
° m%O’Nl is 0-homogeneous for ||£]|. > 1,
o my"™ (2,6/[€]la) = N on O (o), mx*™ (,€/||€]lz) < —No on C*(a1) and
mﬁo’Nl (x,&/€llz) = N1/2 in a small vicinity of E§(Xo),
o myN (z,&/||€]l.) > N — 2Ny outside C*(ap)
e there exist R > 1 such that, for every X € U(Xo) and for every (x,§) outside a
small vicinity of E}(Xo) (independent of X ), one has

léle >R = Xu(Gx"")(2,€) < —2¢omin{No, Ni}, (3-4)

where
G (2,€) s= my ™ (@, ) (1 + [ (2,€)), (3:5)
and where R can be chosen equal to 1 on C*(aq) U C* ().
o there exists a constant Cn, n, > 0 such that, for every X € U(Xo),

€. >R = Xp(GP™M)(2,6) < Cnywi, (3.6)
(3) Moreover,
X € C®(M; T* M) — my*™ € ¢ (T* M, [-2Ny, 2N ])

s a smooth function.

Under this form, this Lemma was proved in [FaSj, Lemma 1.2] (or Lemma [DyZwl,
Lemma C.1]). For our purpose, the only inputs with the statements from these references is
that we need the escape function to depend smoothly on the vector field X and the conic
neighborhoods must be chosen uniformly w.r.t. X. We postpone the proof of this Lemma
to Appendix A. Note that, compared with the construction of [FaSj], we do not have decay
of the escape function Gg‘)’Nl in a small vicinity of the flow direction but this will be com-
pensated by the ellipticity of the principal symbols in these directions — see e.g. the proof of
Proposition 6.1 below. We could have chosen f(z,¢) to depend on X and in that manner, we
would get X H(Ggo’Nl) < 0 for every ¢ large enough even near the flow direction — see [FaSj].
Despite the fact that f(x,&) is not equal to ||€]|; in a vicinity of £ and of E?, we emphasize
that C~1|¢]|x < f(z,&) < C€]| for |€] > 1 (for some uniform constant C' > 0).

3.3. Pollicott-Ruelle spectrum. Consider a smooth complex vector bundle £ — M
equipped with a flat connection V : QO(M, E) — QY(M, E), where QF (M, E) = C®°(M; AF(T* M)®
E). This connection induces a representation

p:m(M)— GL(C") (3.7)

by taking p([7y]) to be the parallel transport with respect to V along a representative 7 of
[v] € m1(M). We also denote by &£ the graded vector bundle

E=@per, e =NTM)E.
k=0

Associated with this connection is a twisted exterior derivative d¥ acting on the space
QM,E) = @7_,Q%(M,E). Since V is flat, one has d¥ o d¥ = 0. As before, we fix a
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smooth Riemannian metric g on M and a smooth hermitian structure (.,.)r on E. This
induces a scalar product on Q(M, E) by setting, for every (¢1,vs) € QF(M, E),

<,¢1) 7/’2>L2 = /M <1/)1, ¢2>5kdvolg.

We set L2(M, &) (or L2(M) if there is no ambiguity) to be the completion of Q(M, E) for
this scalar product. The set of De Rham currents valued* in E is denoted by D'(M, E).

Given X € A, we define the twisted Lie derivative
X :=ixdY +dVix : QM,E) = QM, E). (3.8)
The differential operator —iX has diagonal principal symbol given by
o(—iX) (2, ) = H(z, £)1ds (3.9)
(recall H(x,&) = £(X(x))). Note that X preserves QF(M, E) for each k. Also, since [X,ix] =

0, it also preserves sections of the bundle (depending smoothly on X)
n—1
& =ENkerix = (P EF Nkerix. (3.10)
~—_———
k=0 =&k
%0
It was shown in [Buli, FaSj, GLP, DyZwl] that this differential operator has a discrete
spectrum when acting on convenient Banach spaces of currents. Let us recall this result using
the microlocal framework from [FaSj, DyZwl]. Using [Zwl, Th. 8.6] and letting Ny, N1 > 0
be two positive parameters, we set

A (No, N1, X) :=exp (Oph (Ggo’Nlldg)) ,

where Opy,, is a semiclassical quantization procedure on M [Zw1, Th. 14.1]. We then define
the (semiclassical) anisotropic Sobolev spaces:
No,Np
VO<h<1l, H;X (M,E):=Au(No, N1, X) 'LE(M;E),
where we used the subscript X to remind the dependence of these spaces on the vector
field X. These spaces are related to the usual semiclassical Sobolev spaces H }’f(/\/l;g) =
(1+ h2Ag)F/2L2(M; E) as follows (Ag is some positive Laplacian on &)

N1

N,
MM, E) 1™ (M, E) € H M (M, &), (3.11)

with continuous injections. Stated in the case of a general smooth vector bundle E, the main
results from [FaSj, Th. 1.4-5, § 5] and [DyZw1, Prop. 3.1-3] read as follows:

Proposition 3.4. Let X be an element in U(Xo) where U(Xy) is the neighborhood of
Lemma 3.3. Then, there exists Cx > 0 (depending continuously’ on X € A) such that,

40bserve that E’ can be identified with E via the Hermitian structure.
SEven if not explicitely written in [FaSj], this observation can be deduced from paragraph 3.2 of this
reference and from Lemma 3.3 above.
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for any 0 < h <1 and for any No, N1, the resolvent

Ny Ng,Np

—+o00 Ny,
(X4 2! = /0 XD HX (M, E) 5 HY (M, €)

is holomorphic in {Re(\) > Cx} and has a meromorphic estension to°
{Re()\) >Cx — min{No, Nl}} s

where cg > 0 is the constant from Lemma 3.5. The poles of this meromorphic extension
are called the Pollicott-Ruelle resonances and the range of the residues are the corresponding
generalised resonant states. Moreover, the poles and residues of the meromorphic extension
are intrinsic and do not depend on the choice of escape function used to define the anisotropic
Sobolev space.

This result should be understood as follows. In these references, (X + \) : D(X) — H}*
is shown to be a family of Fredholm operators of index 0 depending analytically on A in the

region {Re(A) > Cx—% min{Ny, N1}}. Then, the poles of the meromorphic extension are the
Ng,Nq

0
eigenvalues of —X on Hhmx (M, E). We shall briefly rediscuss the proofs of [FaSj, DyZw]]
in Proposition 6.1 below as we will need to control the continuity of (X 4 \)~! with respect
to X € A. We also refer to the recent work of Guedes-Bonthonneau for related results [GB].

Remark 1. For technical reasons appearing later in the analysis of the wave-front set of
the Schwartz kernel of (X + \)~!, we use a semiclassical parameter h and a semiclassical
quantization, even though the operator X + X\ is not semiclassical. For this Proposition, one
could just fir h = 1 but some statement for h — 0 will be used later on in the proof of
Proposition 6.5.

Remark 2. In the following, we will take Ny = Ny and thus we will omit the index N1 in
Ggo’Nl, mgo’Nl and Ah(No, Ny, X)

4. TWISTED RUELLE ZETA FUNCTION AND VARIATION FORMULA

In this section, we shall introduce the Ruelle zeta function and derive a formula’ for its
variation with respect to the vector field X € A. More precisely, we consider a smooth
1-parameter family 7 € (—=1,1) — X, € A on M and we fix a representation p : m (M) —
GL(C"). We define the Ruelle zeta function of (X,, p) as in [Fr4] by the converging product®

Crp) 1= T det(@ — ey pl[r])e07)) (4.1)

Y+ E€Pr
for Re(A) > A, (for some A; > 0), where P; is the set of primitive periodic orbits of X, [y;]
represents the class of . in 71 (M), and £(y;) denotes the period of the orbit 7,. Recall also
that e, is the orientation index of the closed orbit. To justify the convergence, it suffices to

6The proof in [FaSj] was given in great details for h = 1 and one can verify that the region for the
meromorphic extension can be chosen uniformly for 0 < A < 1.

"Similar method is also used in [FRZ] for Selberg zeta function on surfaces of constant curvature.

8As we shall consider families 7 X+, if no confusion is possible we will use the index (or the exponent)
7 instead of X, in the various quantities o7 ", Cx, ,, etc.
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combine the fact that for a fixed Hermitian product (-,-)p on E, there is C' > 0 depending
only on (V, E, (-,-)g) such that ||p([v+])||z—r < e€“07), together with Margulis bound [Ma]
on the growth of periodic orbits

oThiop

Thi

top

HyePr: U(yvr) <T} ~ as T — 400 (4.2)

where h{,, denotes the topological entropy of the flow o] of X; at time ¢ = 1.

4.1. Variation of lengths of periodic orbits. The first ingredient is the following conse-
quence of the structural stability of Anosov flows:

Lemma 4.1. Assume that Xy € A. There exists a neighborhood U(Xy) of Xo such that
T+ X; € U(Xo) is a smooth family of Anosov flows on M. Moreover, there is a smooth
family T+ h, € CO(M, M) of homeomorphisms defined near T = 0 such that h- (7o) = -
for each vy € Py, the map 7+ £(v,) = £(h(y)) is C* near 0 for each vy € Po, and

0.t0) =~ | o

if 0 X7 = ¢- Xr + X3, with X+ € COM; E,(X,) @ Es(X,)).

T

Proof. We consider the Anosov vector field Xj. Following [DMM, App. A], we introduce
the space Cy,(M, M) of continuous functions h from M to M which are C' along Xj.
This means that, for all x in M, the map ¢t — ho (pfxo(x) is C' and the map = —

% (hogoixo(x))t — Dx,h(z) € TM is continuous. Building on earlier arguments of

Moser and Mather for Anosov diffeomorphisms, de la Llave, Marco and Moriyon proved the
structural stability theorem of Anosov via an implicit function theorem [DMM, App. A].

Proposition 4.2 (De la Llave-Marco-Moriyon [DMM]). With the previous conventions, there
exists an open neighborhood U(Xy) of Xo in A and a C* map

S: X €U(Xo) — (hx,0x) € Cxo(M, M) x C°(M,R),
where S(Xo) = (Id,1) and
Oe(hx (9 (2)))le=0 = Ox ()X (hx (2)), Yz e M
if @V is the flow of Xo. Moreover, hx is a homeomorphism of M for each X .

We take a connected component of the curve X, lying in U (Xp), which amounts to consider
X, for |7] < 0 with 6 > 0 small enough. Writing the flow of X; by ¢] and h, := hx,,
0 := fx_, this result can be rewritten in an integrated version:

Vo e M, hT(90?<m)) = SO}Of g_ro(pg(x)ds(hT(‘r))'

Fix now a primitive closed orbit 7y of the flow 9 (with period #(7p)) and fix a point zg on
this orbit. From the previous formula, one has

_ T
h‘r(l‘O) - ('pfoe(“lo) 97-090(3)(10)

ds (hr(z0)) -
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In particular, the period of the closed orbit for X, equals

W) = | 6, € C®((=3,6),R%).

Let us now compute its derivative by differentiating h,(xg) = Lp;(%)(hT(:Uo)) at 7 =0:

Oh. a Ohy
( or (xo)) |7=0 - 5%(%)(%0%:0 + 0-L(77) =0 Xo(w0) + dtpg(VO)(wO) . (87(%)) \7:0.

(4.3)

Let Byy @ TwyM — R be defined such that, if V € Ty, M, then V = B,,(V)Xo(zo) + V*+
where V+ € Ey.2,(Xo0) ® Es z,(Xo). Pairing (4.3) with 5,,, we get

0
87£(’Yr)|7-:o = — Pz, ((‘37902(70)(1:0)720) . (4.4)

Since Bz, is dcpg( WO)(aco) invariant, we have

0 1 -1 0
B&?O <a7_g0€(70)(x0)|7':0> = 5:20 <(d¢2(70)([£0)) . 87_803(70)(‘%‘0)“:0)

Z(Wo) d 8
= 0 —1 .
= /0 ﬁﬁxo <(d90t (1'0)) . 5% ($0)|7-0> dt. (4'5)
On the other hand, we have

9 a0, L, .
at <(d¢?(9€o)) g ("?O)T=°> = e @0) ™ g7 (P20 #l4al20) o0

and %(@gs 00l 4(20)) = —=Xo(p s 007 o(w0)) + X (% g 007, 4 (20)) + O(s). Hence, one finds
0 -1 0 - oxXT
5 ((dso?(xo)) 1 8Tso?(:fco)h:c)) = (d(x0)) - < o (wg(xo))>h:0. (4.6)

By (4.4)-(4.6) and by the invariance of the Anosov splitting, we get the desired equation (the
same argument works at each 7 instead of 7 = 0). O

Remark 3. A consequence Lemma /.1 is that, for every vy € Py, one has

(o)
2

provided that U(Xo) is chosen small enough (independently of the closed orbit).

< L(vr) < 26(0),

4.2. Variation of Ruelle zeta function in the convergence region. We start with the
following result which is a consequence of Lemma 4.1.

Lemma 4.3. Under the above assumptions, there exist 7o > 0 and Cy > 0 such that X, €
U(Xy) for every T € (—10,70) and such that the map

T € (—70,70) — Grp(.) € Hol(Qp)



FRIED CONJECTURE IN SMALL DIMENSIONS 13

is of class C1 where Qg := {Re(\) > Cy}. Moreover, for every T € (—70,70)

T # ,
Grp(A) = Cop(N) exp | =A /O Zi((,jﬁ)) ( / q7/> e Me, | Tr(p([yp)))dr |

where the sum runs over all closed orbits of X, ﬁ(%/) is the period of the primitive orbit
generating v;, €+, s the orientation index’ of v+ and

£(v,r) o
/ QT/ = / q’T/ o (pt dt
! 0

Proof. The fact that A — (;,(\) is holomorphic in some half plane {Re(\) > C;} was
already discussed. The fact that Cpy can be chosen uniformly in 7 follows from Lemma 4.1
and Remark 3 together with (4.2) at 7 = 0. Let us now compute the derivative with respect
to the parameter 7. For that purpose, we compute the derivative of each term in the sum

defining log ¢, ,(.). Precisely, we write

“+oo

o, (1og det (Id _ e%e‘wwp([%]))) = \O-(yr Z TROD R Te(p([y,])F).
k=

The same kind of considerations as above allows to verify that the sum of this quantity
over all primitive orbits is a continuous map from (—79,7) to Hol(y). Hence, the map
7 € (=70,70) = In¢r (., 7) € Hol(Qp) is C! with a derivative given by

0-10g Grp(N) = A Y 0-L(7) Ze MWEOEE Tr(p([y-])P).

YEPr

It remains to integrate this expression between 0 and 7 and use Lemma 4.1. ]

One of the technical issue with the formula of Lemma 4.3 is that ¢, is in general C° (or
Holder), and it makes it difficult to relate it with distributional traces as in [GLP, DyZwl].
To bypass this problem we introduce an invertible smooth bundle map S, : TM — TM
such that S;(Xp) = X; and

T

VO<k<n, AW .=8 (AkS,) (Ms;l) L AE(TM) — AF(TM). (4.7)

Our next Lemma allows to express the variation of the Ruelle zeta function in terms of
this bundle map A(Tk) instead of the continuous function g¢;:

Lemma 4.4. With the conventions of Lemma /.3, one has, for every T € (—70,79), for every
closed orbit v, and for every x € v,
1 n
(z) = — k. (A< )(z) AR dT ) :

k=0

where P(vy;) = dgog(%)(x)\Eu(XT)@Es(XT) is the linearized Poincaré map at x € ;.

9For a nonprimitive orbit k., his is equal to ex., = 55.
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Proof. Fix 11 in (—79,79) and x belonging to a closed orbit ~,,. Write

det (Id - 575;161@;3%1)(95)) det (Id — il (@) = (S — 8,)S5 e, (@ ))
det (Id - P(’YTl)) a det(ld - P(Vﬁ)) '
We now differentiate this expression at 7 = 7. We have

- dS; .
S swsal = (=m0 () S0l -
T=T1

Oberve now that ( S LX) = (djif)h:ﬁ. Hence, one finds

)IT T 71

g (det (1a-5:8 1 dep (@)

="y det (Id — P(7,))

|T=71
by using the decomposition RX,, & Es(X,) ® E,(X7 ). On the other hand,
—1 T _ k k 1
det (14 — ;8- Vdgpt, () = kzo(—l) Te (A* (S-871dgpt (@)

Differentiating this expression at 7 = 7, this yields

= e (Id—lP(%l)) g(_l)kﬁ <dd (/\k (5 S Ao, (7 ))>r=n>’

from which the conclusion follows. OJ

Combining Lemma 4.3 and Lemma 4.4, we get

Corollary 4.5. With the conventions of Lemma /.53, one has, for every T € (—1p,70) and
for A € Qo

(k) \k T’
) _ (o [y e (40 0,
Go.p(A) 0 13(%/) | det(Id — P(y,))[eN0O:)

Tr(p([y-]))dr’

k=0

5. VARIATION FORMULA IN THE NON-CONVERGENT REGION

We recall that [GLP, DyZw1] show that ¢;,(A) admits a meromorphic continuation A € C.

This was achieved by relating the Ruelle zeta function to some flat trace of some operator.
Cr (N
0,0(A)

A
( (A(k Ak d(Pg ( ))) e~ M)
a > T PO

We will use similar ideas to rewrite in terms of flat traces by analysing

FP() = Tr(p([r])- (5.1)

Yr

Note that, in these references, the meromorphic extension was proved under some orientabil-
ity hypothesis but this assumption can be removed by introducing the orientation index in
the definition of the Ruelle zeta function as we did.



FRIED CONJECTURE IN SMALL DIMENSIONS 15

5.1. Reformulation via distributional traces. Let us start with a brief reminder on flat
traces. First, if M is a compact manifold and I' C Ty M a closed conic subset, we define,
following Hérmander [H6, Section 8.2], the space

Dh(M) := {u € D'(M); WF(u) C T}.

Its topology is described using sequences in [H06, Def. 8.2.2.], we will recall it later. Denote by
A the diagonal in M x M and by N*A C 1§ (M x M) the conormal bundle to the diagonal. If
E — M is a vector bundle over M, the Atiyah-Bott flat trace of a K € Dp(M x M; EQ E*)
with ' N*A = () is defined by

T (K) == (Tr(tAK), 1)

where ian : M — M x M is the natural inclusion map i(z) := (z,z) and Tr denotes the local
trace of endomorphisms End(E) = E ® E*, so that Tr(i\ K) € D'(M).

Lemma 5.1. For each closed conic subset T' C T*(M x M) satisfying TNN*A = (), the flat
trace Tt" is a sequentially continuous linear form

T : Dp(M x M; E® E*) —» C
with respect to the topology of Dp(M x M; E @ E*).

Proof. This follows directly from continuity of the pullback from Dp(M x M; E ® E*) —
D;*AF(M) [HO, Theorem 8.2.4] and continuity of the pairing against 1. O

For an operator B : C*°(M; E) — D'(M; E) with Schwartz kernel Kp satisfying Kp €
D(M x M; E® E*) for some I with I' 1 N*A = (), we write
T (B) := T’ (Kp).
Then, by a slight extension of the Guillemin trace formula [GS, p. 315], we have

(k) Ak T
fﬁ(%) f% Tr (AT A d(pﬁ(%))
— Uyr) [ det(ld = P(37))]

T (AP |grar ) ) = Te(p([3]))(t = £(37), (5.2)

in D/'(Rsq), where this equality holds for every 7 such that X, € U(Xy) and where the sum
runs over all closed orbits. Here, we choose £y > 0 so that there is some C' > 0 uniform in 7
(7 is also close enough to 0) such that mingea dg(z, @7 (7)) > C and define the meromorphic
family of operators (well-defined by Proposition 3.4)

Qr(N) 1= e 0% (=X, —N\)7L (5.3)

By the same arguments as in [DyZw], § 4], we obtain that Trb(A(Tk)QT()\ﬂ ek ) is well-defined
for each small 7 as a meromorphic function in A € C and

if Re(\) > Cp, FW(\) = —e Moy (A(Tk)QT()\)|gk) (5.4)

T

with Cy > 0 given by Lemma 4.3.
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5.2. Proof of Theorem 2. The proof of Theorem 2 will follow directly from Corollary 4.5
and the following

Theorem 4. Assume that Xog € A is such that Xy has no Ruelle resonance at A = 0 and
let Z C C be a simply connected open subset containing 0 and a point inside the region
{Re(\) > Cx,} and such that Xo has no Ruelle resonance in Z. Then, there exists a
neighborhood U(Xo) C A of Xy such that

1) the operator (—X — A\)~1 of Proposition 3./ is holomorphic in Z for all X € U(X).
2)if T — X; € U(Xyp) is a smooth map with X, |,—o = Xo, then T — Trb(As—k)QT()\”gk) is
continuous with values in Hol(Z), with AP defined by (4.7).

Take By(Xo,€) := {X € A;|| X — Xo||cr < €} contained in the neighborhood U (Xy) of
Theorem 4, for some k € N, e > 0, and for X € By(Xo,¢€) define X; := Xy + 7(X — X) for
T € (=d,1+9) with § > 0 small so that X, € By(Xp,€). Now each X, has no resonances in
Z and 2) in Theorem 4 with (5.4) show that 7 +— FT(k)()\) can be extended as a continuous
family of functions in Hol(Z) for 7 € [0,1]. Corollary 4.5 then shows that (;,())/Co,p(N)
admits a holomorphic extension in Z with (- ,(0) = (0,,(0). Thus (x,(0) = (x,,,(0). The
proof of Theorem 4 will be given in the next section.

6. CONTINUITY OF THE RESOLVENT AND PROOF OF THEOREM 4

The purpose of this section is to prove the properties of the Schwartz kernel of the resolvent
that were used in the proof of Theorem 2. We are interested in the continuity with respect
to 7 of the flat trace of the operator

Qr(\) = e X (X, — N7} (6.1)

where we recall that we chose ¢ty > 0 so that there is some C' > 0 uniform in 7 (here 7 is
close enough to 0) such that
min d (. ¢, (1)) > C

where d, is the Riemannian distance induced by a metric g. The arguments used here
are variations on the microlocal proofs of Faure-Sjostrand in [FaSj| and Dyatlov-Zworski
in [DyZwl1]. The continuity with respect to the resolvent also follows from Butterley-Liverani
[BuLi]. For k € R, we will write U¥(M;&) for the space of semi-classical pseudo-differential
operators [Zw1, Chapter 14.2] (on sections of £) with symbols in the class SF(T*M; ) defined
by: aj, € SHT*M;E) if ap, € C®°(T*M;End(€)) satisfies |aga§ah(:c,£)l < Cop(€)F181 with
Cop independent of h. As mentionned before, we also take a semi-classical quantisation Op,
mapping SK(T*M;E) to UF(M;E). The operators in the class UF(M;E) = \IIQO (M;E) for
some fixed small hg > 0 are called pseudo-differential operators. We introduce the family of
h-pseudodifferential operators:

Px(h,\) := A (No, X)(=hX — hA)Ap(Ng, X)L, (6.2)
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6.1. Continuity of the resolvent for families of Anosov flows. For the first part of
Theorem 4 we prove:

Proposition 6.1. Let Xy and Z chosen as in Theorem /. There exist a neighborhood U(Xy)
of Xo, ho > 0 and C > 0 such that, for every 0 < h < hg, and for every X € U(Xy), the
map A\ € Z + Px(h,\)~! € L(L?, L?) is holomorphic and

VA€ Z, ||[Px(h N7y < ORI (6.3)

Moreover, for every 0 < h < hg, the following map is continuous

X € U(Xo) = Px(h,\)"" € Hol (L(H}, L?)) .

Proof. In order to prove this Proposition, we need to review the proofs from [FaSj, p.340-
345] — see also paragraph 5 from this reference or [DyZwl] for a semiclassical formulation
as described here. Note already from Proposition 3.4 that, for every X € U(Xp), A € Z —
Px(h,\)~! € £(L? L?) is meromorphic.

Recall from [FaSj, Lemma 5.3] that
Px(h,\) = Op, ((—iHX —hA+h {HX, G§0}> Id) + Ox (k) + O, (1), (6.4)

where Hx (z,£) = {(X(z)) and where the remainders are understood as bounded operator
on L?(M;E). Only the second remainder depends on the choice of the order function,
and both remainders can be made uniform in terms of X € U(X) thanks to Lemma 3.3.
Following [FaSj, § 3.3], one can introduce an operator xo = Opj, (xold) in U9 (M; £) depending
only on Xy with xo > 0 and so that (¢g is the constant from Lemma 3.3)

V(&) e M, {Hx, G} — xo(@,€) < ~2¢0No (6.5)
Remark 4. Note that we have some flexibility in the choice of the operator Xo. Besides the
fact that it belongs to \I’?I(M,c‘:), the only requirements we shall need are

° X% = Cn, + 2¢oNy (inside a small conic neighborhood of Ej(Xo), where Cn, > 0 is
the uniform constant from (3.6),

o outside a slightly larger conic neighborhood of Ej(Xo), supp(xo) is contained in
{l[¢]] < 3R/2} where R is the parameter from Lemma 3.3,

e Yo satisfies (6.5) in {||¢]| < R}.

Next we let X1 = Opy,(x1ld) € U9 (M) with x1 € C§°(T*M,Ry) satisfying supp(x1) C
{l€ll < 3R/2}, and x1(x, &) =1 for ||¢]| < R, and we define'"
X = XX+ hXoxo € (M E). (6.6)

Following [FaSj, p. 344] (with the addition of a semiclassical parameter), one can verify that,
for 0 < h < hg small enough,

(Px(h,\) — %) ' L2 (M, &) = L*(M, €)

10The operator X1X1 is not necessary for this proof but will be useful for the wavefront set analysis later.
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is bounded for Re(\) > Cy — coNy, where Cp is some positive constant that can be chosen
uniformly in terms of X € U(Xy). Moreover, their proof yields a uniform upper bound: there
is C' > 0 such that

VX € U(Xo), Y0 < h < 1, H(Px(h, ) — f()*l‘ < Ch L. (6.7)

L2—L2

By adding a constant s € [—1,1] to the order function mﬁo, the same argument as above
works and we can pick the operators xo and y; independently of s € [—1,1]. Since the
consideration of P-(h, \) —x acting on H} (M; ) is equivalent to its conjugation by Opy,((1+
£)?), it implies that

h(Px (h,\) =)™+ Hy(M;€) — Hj(M;€) (6.8)
is uniformly bounded in (A, X, h) for all (X, ) as before and all h > 0 small. In order to
study the continuity, we first write

(Px(h,A) = %) = (Pxo(h,20) = %)

+ (PX(hv /\) - f()il (PXo(h7 /\0) - PX(h7 )‘)) (PXO (hv >‘0) - )A()il'

Thanks to the Calderén-Vaillancourt Theorem [Zw1, Th. 5.1], one knows that
Py 20) = P Ml g2 < CIX = Kol +hIA = ol

for some k > 1 large enough (depending only on the dimension of £) and for some C' > 0
independent of h, X and A. Hence, combined with (6.8), we find that the map (X,\) —
(Px(h,\) —x)~! € L(H}, L?) is continuous.

Next, as in [FaSj, p. 344], one can construct Ex (h,\) € \11,71(/\/1; &) whose principal symbol
is supported in a conic neighborhood of E(Xy) so that

with Sx (h, A) and Tx (h, A) both in W9 (M; €) such that the support of their principal symbols
intersects supp(xo)Usupp(x1) inside a compact region of T* M which is independent of (X, A).
Note that all these pseudodifferential operators depend continuously in (X, A) (these are just
parametrices in the elliptic region). Then,

Kx(h,A) == X(Px(h,A) = X) ™" = XEx (h, A) = XTx (h, \) (Px (h, A) = %)™ (6.9)
is compact as YEx (h,\) € ¥, ' (M;E) and XTx (h, A) € ¥, 1 (M, ).
This operator (viewed as an element of £(H}, H})) depends continuously on (X, \). More-
-1

)
over, from our upper bound on the modulus of continuity of (X, \) — (Px(h,\) —x)™", we
get

1
1 (y A) = Kxo (B Ao) i sz < 33w (A = Aol [1X = Xollew),

where w(z,y) is independent of (h, X, \) and verifies w(x,y) — 0 as (z,y) — 0. With this
family of compact operators, we get the identity (as meromorphic operators in A on H ,%)

Px(h,\)7t = (Px(h,\) — %) *Id 4+ Kx(h,\)) "% (6.10)

Now, from the definition of Z, we know that, for every A € Z, (Id + Kx,(h, \)) is invertible
in £(H},H}). Thus, by continuity of the inverse map, we can then conclude that this
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remains true for any ||X — Xo||o+ small enough uniformly for A € Z (as of Px,(h, \) remains
invertible for A in Z). The neighborhood depends a priori on h but, as all the operators
Px (h, \) are conjugated for different values of h, it can be made uniform in h. It now only
remains to verify the upper bound on the norm of the resolvent. For that purpose, we can
fix h = hg > 0 with hg small enough. The above proof shows that Px(hg, ) is uniformly
bounded (for X € U(Xp) and A € Z) as an operator from H,ll0 to L?. Then, we write for
Xelu (XQ)

h _ _
Px(h,A) = %Ah(N07X)AhO(N07X) ' Px (ho, A)Apy (No, X)Aj(No, X) 7'

We observe that

< h72N0’

| An(No, X)Ang(No, X) 7| oy 2 + \\Ah0<No,X)Ah<No,X)*W!Hh% <

from which we can deduce the expected upper bound on the norm of the resolvent. O

6.2. Wavefront set of the Schwartz kernel of the resolvent. The next part consists
in bounding locally uniformly in (7, A) the Schwartz kernel of the operator Q-(\) defined in
(6.1).

First, let us introduce a bit of terminology. Let M be a compact manifold (in practice,
we take M = M or M = M x M). We refer for example to [DyZwl, Appendix C.1] for
a summary of the notion of wavefront set WF(A) C T4 M (resp. WF(u) C Ty M) of an
operator A € WE(M) (resp. of a distribution u € D'(M)). For I' C T¢ M a closed conic set,
we say that a family u, € D'(M) with 7 € [11,72] C R is bounded in Dy if it is bounded in
D’ and for each 7-independent A € ¥O(M) with WF(A)NT = (),

VN € N,3Cn 4 > 0,7 € [11,72], ||A(ur)||gy < Cnoa.

This can also be described in terms of Fourier transform in charts (see [DyZwl, Appendix
C.1]). Similarly, we refer to [DyZwl, Appendix C.2] for a summary on the semi-classical
wavefront set WF,(A) C T*M (resp. WFy(u) C T*M) of an operator A = Opy,(ap) €
UK(M) (resp. of a h-tempered family of distributions u;, € D'(M)); here T*M denotes the
fiber-radially compactified cotangent bundle (see [Va, Section 2.1]). For I' C T* M a closed
set (not necessarily conic), we say that a family of h-tempered distributions wuy, » (in the sense
sup, |[wr pl| g~ ) = O(h™") for some N > 0) is bounded in D} if for each T-independent

A€ W) (M) with WF,(A)NT =0,

VN € N,HCNA > 0,V1 € [Tl,TQ], HA(uh,T)HHN(M) < CN7AhN.
This can also be described in terms of the semiclassical Fourier transform in charts (see
[DyZw1, Appendix C.2]).

We recall from [HO, Definition 8.2.2] the topology of Dp(M): a sequence u, € Dp(M)
converges to ur, in DL(M) as 7 — 79 if uy — uy, in D'(M) and (u,), is bounded in Dy.

We note that all these properties hold the same way for sections of vector bundles.
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Next, we recall a result which is essentially Lemma 2.3 in [DyZwl] characterising the
wave-front set of a family K, € D'(M x M;E ® £'), but uniformly in the parameter 7. We
shall use a semi-classical parameter A > 0 for this characterisation.

Lemma 6.2. Let K, € D/(Mx M;ERE’) be an h-independent bounded family depending on
T € [11, 72| and let K, be the associated operator on M. Let T' C T*(M) x T*(M) be a fized
closed conic set, independent of T. Assume that for each point (y,n, z,—C) € (T*MxXT* M)\I'
with ||(n,Q)|| € [2R,4R] (for some R > 0), there are small relatively compact neighborhoods
U of (2,¢) and V of (y,n) in T*M such that, for all family fr, € C°°(M;E) independent
of T satisfying || fullr2 = 1 and WFy(f) C U, then for each T-independent By, € W9 (M, E)
microlocally supported inside V, we have WF(BpKr fr) NV = 0 uniformly in 7, i.e.

VN € N,3Cy.p > 0,Y7,Vh € (0,1) ||BrK,fnl|z2 < Cn.gh". (6.11)
Then, one has (K;)r is a bounded family of distributions in Dp(M x M;E® E').

Proof. The proof is readily the same as [DyZw]1, Lemma 2.3] by just adding the 7 dependence
and we note that it suffices to fix ||(n,()|| € [2R,4R)] for some R > 0 instead of considering

all (1, ¢). O

6.2.1. Main technical result. We shall now prove that the kernel of the resolvent is uniformly
bounded in Dj(M x M; ERE’), where I is a closed cone that does not intersect the conormal
N*A of the diagonal.

Proposition 6.3. There exist a small neighborhood U(Xy) of Xo in the C*°-topology and a
closed conic set I' C Tj(M x M) not intersecting N*A such that, for every T — X, as in
2) of Theorem /,

(1, \) € [=6,8] x Z = Q-(N)(.,.) € Dp(M x M, E @ E')

is bounded, where 6 > 0 is small enough to ensure that X, € U(Xy) for all T € [—0,9].

Proof. Thanks to Proposition 6.1, we already know that the Schwartz kernel of Q-()) is
uniformly bounded on D/(M x M;E @ &) and Q,(\) — Qr,(Ao) in this space as (1,A) —
(70, Ao) for |7o] < &, Ao € Z. Hence, it only remains to show that the family is bounded in
DR(M XM, E®E’). We shall use the criteria of Lemma 6.2 to get a bound on the kernel of the
resolvent and, up to some details of presentation, we will follow partly [DyZw1] by combining
with [FaSj] and we shall verify that everything is bounded uniformly in the parameter 7.

We take some R > 0 larger than the R appearing in Lemma 3.3 and we fix some point
(2,¢) in T*M such that 2R < ||¢|| < 4R. Let U be a small enough neighborhood of (z,()
in T"M so that Uy := U, <5 7, (U) satisfies UNU,s =0 where the existence of U is
guaranteed by the choice of tg. We also fix R large enough so that Uy s N {[|¢|| < 3R/2} =0
for each (z,¢) with ||C|| € [2R,4R]. Let f;, € C*°(M;E) be a family independent of 7 such
that WFp(fx) C U and || f||z2 = 1. Define

Ja(r) = he X
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which verifies that WF},(f4(7)) C Uy, 5 uniformly in 7, thus not intersecting U. Let
up(1,A) = (=hX: — hA) ! fi(7),

where |7| < § for some small 6 > 0 and where A varies in Z.

We now conjugate the operators with Ay, (No, 7) in order to work with the more convenient
operator P-(h,\) defined in (6.2) (with X = X,), i.e.

Po(h, N)ap (7, \) = Fj,(1), with
an (7, \) := Ap(No, Tup(t,\),  Ep(1) :== Ap(No,7) fr(7).

Observe that WF,(Fy,(1)) C Uy, s uniformly in 7 (as the order functions used to define
A (Ny,7) are uniform in 7— see Lemma 3.3) and that ”Fh(T)”H}L < Hfh(T)HHiNOJ,-l < h,
where the involved constants are still uniform for (7,\) in the allowed region. From the
resolvent bound from Proposition 6.1, one has, uniformly in (7, \), ||an (7, \)| 2 < h=4No,
In order to apply Lemma 6.2, we just need to verify that WFy, (@ (7, A)) N U = ) uniformly
in (7,A) thanks to the uniformity of A(No,7) in (7, ). For that purpose, we fix a family
(Bn)o<n<i C ¥9(M) whose semiclassical wavefront set is contained in U. We also need to
use the operator (with y defined in (6.6)) and functions

PX(h,A) == Pr(h,A) — X, @X(7,\) := PX(h, \) L Fy(7)

where we recall that PX(h, ) is invertible on L?(M) for A € Z and that the norm of the
inverse ||PX(h, \) 7|12 2 = O(h™!) uniformly for (7, \) in the allowed region.

We start with the simplest part of phase space where the operator P (h, ) is elliptic, i.e.
we suppose that (z,() € Ty M does not belong to the cone

C*(a) = {(2,6) € T"M\0 : o|€u + &l" > lI&oll'}

for some small @ > 0 with the conventions of Section 3.1; here and below, the cones are
defined with respect to the Anosov decomposition of the vector field Xy. The operator
P-(h, ) is elliptic outside C"#(«) uniformly for 7 small enough. We can then use the fact
that WF},(By,) is contained in a region where the principal symbol of P;(h, ) is uniformly
(in (7, A)) bounded away from 0. This allows us to write, for every N > 1,

By, = BY (1, NPy (h, A) + Opz_2(hY)

where B (r,\) € ¥9(M) and where the constant in the remainder are uniform in (7, )
in the allowed region. Note that B,le (1, A) depends on (7,\) but, as these two parameters
remain bounded, WFy, (B} (7, )) C U uniformly in (7, \). Gathering these informations, we
get

B (7, M2 < 1B (7, ) En(7)ll 12 + O(BN)||an (7, M| 2.
Since WFy,(Fj,(1)) C Utys (uniformly in 7) does not intersect U, we find that, for every

N > 1, there exists Cy > 0 such that, for every (7, ) in the allowed region, || B (7, \)||r2 <
CnhN=4No Therefore WF},(4ip,(7,A)) N U = 0 uniformly in (7, ).
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Then, since PX(h,)) is elliptic in {||¢|| < R} and outside C"*(«), the same ellipticity
argument shows that uniformly for (7, A) in the allowed region we have

ICI € [2R, 4R] = WF (it (7, A)) N WER (%) C {lI¢]| > R} (6.12)
while, if (z,¢) ¢ C"$(«a), then WFy(@f(7,A)) N U = @ uniformly in (7, X). Observe that

(1, A) = @X(1,A) — Pr(hy ) 7IRAX (T, \),

hence if we can prove that Y@\ (r,\) = Op2(h") for all N uniformly in (7, ), then it is

equivalent to prove the wave front properties for @) (7, A) or for @ (7, A) thanks to resolvent
bound of Proposition 6.1.

It now remains to deal with the part of phase space where the symbol of P:(h,\) is not
elliptic. We start with the regularity/smallness near E}(X,,) for large |||

Lemma 6.4. Let (2,() € C*(ay) satisfying ||C]| € [2R,4R] for ay > 0 small. There exist
a1 < ap small enough and R > 0 large enough such that, if U = C**(aq) N {||€|| > 8R},
then, for each By, € V9 (M;E) independent of (1,\) with WFp,(By,) C U, we have: for each
N > 0 there is Cn such that for all T close enough to 9 and A € Z

~ ~ 2
| Bpiin(r, \)[172 < CnBY, || Briif (7, A) || 2 < CwRY.

Proof. Recall that (z,() is the point around which the sequence (fj)o<n<1 is microlocalized.
To deal with this case, we will make use of the radial propagation estimates from [Va, DyZwl1],
the only difference being that we need to verify the uniformity in the parameter 7. First of
all, we write that, uniformly in (7, \),

Yo e COM;E),  |Buulliz = (Opy(b(h))v,v) + O(RY)|vl|7, (6.13)

where b(h) = Z;V:O h7b; are symbols supported in U.

We now fix a nondecreasing smooth function x; on R which is equal to 1 on [N1, +00) and
to 0 on (—oo, N1/4 — Np]. Take a; < g small, and using Remark 7 we set

Xr(2,€) := %1 (mYoN (2,€)) .

For ||£]|» > 1, we have x, = 0 outside C**(), xr = 1 on C**(«ay) and {H, x+} < 0. We will
use this smooth function in order to microlocalize our operators near C**(«1) at infinity (the
radial source). After possibly shrinking U (by adjusting «;, R) and thanks to (A.6), we may
suppose that there exist Ry < Rg such that f(z,&) > Ro on U and f(z,€) < Ry on Uy, 5. We
fix X2 to be a nondecreasing smooth function on R which is equal to 1 near [In(1+ Rp), +00)
and to 0 near (—oo,In(1 + Ry)]. We set

x2(2,€) = Xe(In(1 + f(z,£))).

With these conventions, one has y2 = 1 in a neighborhood of U, x2 = 0 in a neighborhood
of Uy, s and {H;, x2}(z,§) < 0 for [[£||; > 1 such that (z,§) € C**(ag), for all 7 near
70. We now define Ap(7) = A;(7) in ¥9(M;E) with principal symbol a, := y,x2Id and
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WE},(An(7)) C supp(ar), thus WE,(Ax(7)) N Uy s = O uniformly for (7, ) in the allowed
region. From the composition rules for pseudo-differential operators,

Ap(7)P-(hy\) + P-(h,\)*Ap(7) =h Opy, ((— {H:,a;} — 2a, (Re()\) + {HT, G,JFVO})) Id)
+ Oy (m,e)(h°).

Note that the remainder has semiclassical wavefront set contained in U,supp(a,) uniformly
in (7,\). Then, from our construction

(- {H;,a;} — 2a;(Re(\) + {H,,GX0}) — by) Id > 0.

Note that we got the positivity of the symbol provided that we choose Ny large enough
in a manner that depends only on by and Z (recall that {HT,G%} < —¢oNy for every
€]l > 1 when (z,£) € C**(ay)). We can then use the Garding inequality proved in [DyZw3,
Proposition E.35]: combining with (6.13), we get for all v in C*°(M;E)

1Boll72 < h™'2Re((Ap(T) Pr (h, \)v,v) 12) + B{Ri (7, Ao, 0) 12 + O(W™) 0] 72,
where Ry(1,\) € U9 (M;E) satisfies WFy(Rp(7,2)) C V with V a small neighborhood of

Ursupp(a;) in T*M uniform in (7, A). Then, for all v in C*°(M;€) and uniformly in (7, \),
one has

1Brollze < 20| AR(T)Pr(h, Aol g2 loll 2 + h(Bp(7, A)v, 0) 2 + O(BY)|[o][ 7.
This is a kind of weakened version of the radial estimates (near the source) from [Va, DyZw1]

which holds uniformly in (7, \). Using that ||@s(7,\)| 2 < Ch~*No uniformly in (7, ), we
find by letting'! v — @, (7, \) that, for all N > 0, there is Cy > 0 so that

| Byin (7, \)||72 < 207 70 A By || 12 + B(RA (7, N (7, N), in (7, A)) 2 + O b =88,

Using the facts that WFh(Fh(T)) C U5 and WF(Ap(7)) N U 5 = 0 uniformly in (7, )
we obtain that, for every N > 1, there exists Cy > 1 such that || Ay (7)E)(7)||2 < CyhNH
uniformly in (7, ). Hence, one has, uniformly in (7, \),

| Briin (7, Ml72 < h{Ru (7, Niin (7, X), iin (7, N)) g2 + Cy b 3N,

We can now reiterate this procedure with B} By, replaced by h%Rh(T, A) which has WE, (Ry(7,))) C
V, thus not intersecting Uy, 5. After a finite number of steps, we find ||Bpip (7, )|z <
Cyh2 4o uniformly in (7,)). The case with @} (7, \) is exactly the same by using that
WEL(x) N {[&]l = 8R} NC¥(ap) = 0. Hence, Pr(h, \) coincide with P;X(7, A) microlocally in
the region {||¢|| > 8R} where we do the analysis. O

For each ap > a3 > 0 small, and for each (z,() € C"* () \ C"* (1) satistying ||C|| €
[2R, 4R], there exist an open neighborhood U of (z, () and a uniform time 7} > 0 such that
&7 (U) C U (defined in Lemma 6.4). Take now B}(Ll) € UY(M;€) with WFh(B}(Ll)) cU.
As (z,¢) € C"*(ap) (hence not in the trapped set of the flows ®7, given by E§(X;)), by
taking U and 0 small enough we can suppose that, for every ¢ € [0,7;] and for any 7
small, ®7,(U) N Uy, s = 0. Hence, by propagation of singularities [DyZw1, Prop. 2.5] for the
operator iP;(h, \) and by the regularity near the radial source (Lemma 6.4), one knows that

HwWe can use [DyZw3, Lemma E.47] to justify the convergence in the inequality.



24 N.V. DANG, C. GUILLARMOU, G. RIVIERE, AND S. SHEN

||B}(ll)ﬂh(7', AN)|[z2 < CxhY for all N with Cy uniform in (7, ) (in the allowed region). Note
that due to the compactness of WFy(By,), evaluating ||Bpup|/z2 or || Brip|| 2 is equivalent.
Here, we notice that, due to the facts that we just use propagation for a uniform finite
time and that the Hamiltonian flow ®] is smooth in 7, the proof of [DyZwl, Prop. 2.5]
can be repeated uniformly for 7 close enough to 0. This concludes the case where (z,() ¢
C""(aq). Note that the same argument also works for &z as we can apply propagation of
singularities [DyZw1, Prop. 2.5] with the operator iPX(h, \) as well (using that x? > 0).

We now discuss the case where the sequence (fy)o<n<i is microlocalized near (z,() €
C"(ay) with |[(]| € [2R,4R]. In that case, we will need to use the auxiliary sequence
(@) (7,A\))o<n<1. First, we see similarly that there is a uniform time 75 > 0 such that for
each (z,&) € C"(ap) \ C*""(a) satistying ||¢]| € [R/2,3R/2] and for every T close enough to
0, @7 p, (z,€) € U. One more time, we can apply propagation of singularities as in [DyZwl,
Prop. 2.5] and Lemma 6.4 to @) (7,\) with the operator PX(7,A). From that, we deduce
that, uniformly in (7, A), WFy(ay (7, X)) NV = 0 for V a small neighborhood of (z,). Thus,
one has, uniformly in (7, \),

(WER (@3 (m, ) N WFR(X)) € (C"(a1) U{ll]l < R/2}). (6.14)

Combining with (6.12), we get uniformly in (7, \)
(WEx(ay(1, 1)) "WEL(X)) C (C"(en) N{lI¢]l € [R.3R/2]}). (6.15)
If o is chosen small enough, then, for each (z,§) € C"*(ay) with ||€]| € [R,3R/2], there is
a uniform time T3 > 0 (with respect to 7) such that ®7p, (z,£) € {|[{]| < R/2}. We now
combine propagation of singularities as above with the elliptic estimate (6.12). From the

above, we conclude that, uniformly in (7, ),

WE (@) (1, X)) NWE,(x) = 0. (6.16)

As expected, we find that @X(7,\) = dp(r,A) + Orz(h") uniformly in (7,)). Hence, it
remains to show that, if By, is microlocalized inside a neighborhood U of (z,() € C**(a)
with |[¢|| € [2R,4R], then B,a)(r,A) = O(hY) uniformly in (,A). For that purpose, it
is sufficient to combine propagation of singularities [DyZwl, Prop. 2.5] with the elliptic
estimate (6.12) as before. Indeed, as above and up to shrinking U a little bit, there is Ty > 0
such that ®7 ,, (U) C {[|¢|| < R/2} uniformly in 7 and such that ®7,(U) Ny, 5 = 0 for every
0<t<Ty. ([l

We conclude the proof of 2) in Theorem 4 by combining Lemma 5.1, the sequential con-
tinuity of (7,\) = Q-(A) in DL (M x M;E @ ') from Proposition 6.3 : this shows that for
every 0 < k <n the map

(1)) € [-6,6] x Z s TY (AQf)QT(mgk) eC (6.17)

is continuous. Finally, by an application of the Cauchy formula and by Proposition 6.1, one
can verify that, for every 7 € [—4, d] and for every 0 < k < n,

Ne 2o T (ADQ (e )

is an holomorphic function using Cauchy’s formula and the continuity of (6.17).
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Finally, let us remark that the arguments of this section combined with [DyZw], §4] also
show the following

Proposition 6.5. Suppose that Xg is an Anosov vector field and that the representation pg
(induced by the connection) is such that Xo has no resonance at A = 0. Then, the maps

X — CX»PO (O) and p+— CX07P(O)
are continuous near Xq (resp. po).

Note that we only treated the case where X varies. Yet, the same argument holds when
we vary p and when we fix X as it only modifies X by subprincipal symbols.

7. FRIED CONJECTURE IN DIMENSION 3 AND SOME CASES IN DIMENSION 5

7.1. The kernel of X at A = 0. In this section, we will analyze when 0 is not a resonance
for the operator X of (3.8) associated to a vector field X € A. We define

CF .= ker(X|ge)?, CF:=CFNkeriy

where p > 1 is the smallest integer so that ker(X®*))? = ker(X*))?+1 and where here we
mean the kernel on the anisotropic spaces. By [DaRi, Th. 2.1], the complex

v v v 4 \4
0L 0 L or o Dy, (7.1)

is quasi-isomorphic to the twisted De Rham complex (Q°(M, E),d") hence the cohomology
of (7.1) coincides with the twisted De Rham cohomology. We will denote by H*(M:; p) the
twisted de Rham cohomology of degree k with p the representation associated with the flat
bundle (£, V).

We say that X € A is a contact Anosov flow if there is a € Q'(M) such that ixa = 1,
ixda = 0 and da is symplectic on ker . The dimension of M will be denoted n = 2ng + 1
in that case. In particular, one has Xa = 0 and Xda = 0, and Xp = 0 if p = a A da™.
To begin with, we notice a few commutation relations that will be extensively used. For all

u €D (M;E)
Xixu=1ixXu, X(aAu)=aAXu, X(uAda)=(Xu)Ada. (7.2)
The Koszul complex is naturally associated with our problem
0 2 gnotl X, ono X, 00X, ol X, o0 X, g
and in the contact case there is a dual complex
Na

N A N N AN
0 L% 00 29 of 29y 24 o2n0 29y o2notl 29 ()

Lemma 7.1. For X € A, the complex (C®,ix) is acyclic. If in addition X is contact with
contact form a, (C®, Aa) is acyclic and we have a decomposition :

VO<k<2ng+1, CF=(Cy'ra)eCh.
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Proof. If u € C* Nker(ix) = CF, then ixIy (0 Au) = TIp ((X)u) = u if § € QY(M) satisfies
6(X) =1 and IIj is the projector on C*. Thus (C*,ix) is acyclic. According to (7.2), a Au
belongs to C¥*! whenever u belongs to C*. For u € C¥ Nker(Aa), one has a A (ixu) =
a(X)u = u. Hence, (C*, Aa) is acyclic. For u € C*, we can write u = aAixu+ (u—aAixu)
with u — a Aixu € CF, and if u € CF satisfies a Au = 0, then u = ix(a Au) = 0. O

From the contact structure, we can also deduce the following duality property:

Lemma 7.2. Suppose that X € A is contact, then for every 0 < k < ng,

k ~ 2no—k k ~ 2no+1—k
Ok~ c2rok ok~ .

Proof. The bundle N := kera is smooth and w := da is symplectic on N. The form w
induces a non-degenerate pairing G on A*N* for each k € [1,2no], invariant by X. Following
[Li, Ya], we can define a (smooth) Hodge star operator % : AFN* — A2m0—F N*

b1 A B2 = G(ﬂhﬁQ)wno/no!.

One can check from LxG = 0 and Lxw = 0 (Lx the Lie derivative) that Xx = xX, and thus
*x: CF — C’g"ofk is an isomorphism since xx = Id. It remains to use Lemma 7.1 to obtain
Ck ~ 02n0+17k_ I

Proposition 7.3. Suppose that X € A is contact on M with dimension 2ng + 1. The
following statements are equivalent:

(1) ™=t =0 and H™(M,p) =0,
(2) C™ =0,
(3) For all0 <k <2ng+1, C* =0.

Suppose that X € A (not necessarily contact) on a 3-manifold M and that X preserves
some smooth volume form. Then (Q*(M,E),dV) is acyclic with C° = 0 if and only if
V0 <k <3,CF=0.

Proof. The statement (3) = (1) follows from the quasi-isomorphism between (C®,dV)
and (Q°(M,E),dV). Let us show (1) = (2). Since C™~! = 0, we have C™"2 = 0 by
Lemma 7.2. Moreover, by Poincaré duality, H™ (M, p) = H™ (M, p) = 0. Then, still
from the quasi-isomorphism, we have that dv : C™ — C™7! is an isomorphism. We can
now use the acyclicity of (C®,iy) and the same argument shows ix : C™0F! s C™ is an
isomorphism. So, combined with Lemma 7.1, this shows that Xicng = ixdY +dVix =
ixdY : O™ s O™ is an isomorphism. However, by our definition, X|cmo is nilpotent. Thus,
C™ = O™+l = (. To show (2) = (3), from Lemmas 7.1 and 7.2, it suffices to show that
Cp° = Cg°~! = 0 implies CF = 0 for every 0 < k < ng — 2. By [Ya, Cor. 2.7], u + u A (de)
maps C§ — C§+2 injectively'? if k& < ng — 1, thus we have dim Cy° > dim 03072 > ... and
dim €' > dim C°~3 > ..., which shows that (2) = (3).

In case n = 3 (i.e., ng = 1), the proof of the converse sense is the same as before. For the
direct sense, we cannot use Lemma 7.2. But we still have C° = C3 = 0 since X preserves

2This follows from surjectivity of the map u € C™(M; ER7F72) = u A da € CF(M; EFT).
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some smooth volume form . The rest of the proof is exactly the same as (1) = (2) given
before. 0

Lemma 7.4. Assume X € A preserves a smooth volume form u and assume (E,V) is a
bundle with flat unitary connection. Let u be an element of C° such that Xu = 0. Then
u € C®(M;E) and d¥u = 0.

Proof. Note that X* = —X on C*°(M; E), since Xy = 0 and that for vy, vy € C®°(M; E),

(Xvy,v2) 12 = /M<XU1,U2>E,u = /M X((v1,v2)g)p — /M<01,XUQ>E,LL = —(v1, Xva) 2.

Hence, we can apply [DyZw?2, Lemma 2.3] and deduce that u € C*°(M; E). Now we use the
argument of [FRS, Lemma 3]. We can lift u to its universal cover M to get a bounded 1 (M)
equivariant @ € C°°(M; C") satisfying 4(3;(x)) = t(z) for all z € M and @ is the lifted flow
on M. This implies dig,_,(z) = (d@)g,t(x)dﬁw' For xz € M assume that du, ¢ E} ® Ej, then
as t — 400 we get |di,_,(z)lcr — +oo, but |du[cr € L™ thus a contradiction. The same
argument by letting t — —oo tells us that du, € E;; & Ej thus du, € Ej(z). But du(X) =0,
thus di(x) = 0. Then d¥u = Vu =0 on M. O

7.2. Proof of Theorem 1 - Fried conjecture in dimension 3. We start with the first
statement in Theorem 1. Let Xy be an Anosov vector field preserving a smooth volume
form p and V be a flat unitary connection on a Hermitian bundle E inducing an acyclic
representation p. By Lemma 7.4, we find C° = 0 and by Proposition 7.3, we obtain C* =0
for all k € [0, 3]. Then Theorem 2 shows that (x ,(0) = (x,,(0) for all X in a neighborhood
U(X()) C A of Xj.

Let us show the second part of Theorem 1. It suffices to show that there is a sequence
X, € Asuch that X,, = X in C>(M;T*M) and such that |(x, ,(0)|! = 7,(M). Sanchez-
Morgado [Sa2, Th. 1] (based on [Sal, Ru, Fr5]) showed that transitive analytic Anosov vector
fields X satisfy |(x,,(0)|! = 7,(M) if there is a closed orbit v of X so that ker(p([y])—€l1d) =
0 for each j € {0,1}. Among other things including the spectral construction of [Ru],
Sanchez-Morgado’s argument relied crucially on the existence (for Anosov transitive flows
on 3-manifolds) of a Markov partition [Rat, p. 885] whose rectangles have boundaries in
W (y)UW?(7) for any fixed closed orbit . Recall that, for Anosov transitive flows, W"/*(v)
is everywhere dense in M.

If the monodromy property is satisfied for some orbit v of Xy, then, for all vector fields X
in a small neighborhood U(Xj), there is a periodic orbit yx of X in the same free homotopy
class and the corresponding flow is topologically transitive by the strong structural stability
Theorem 4.2. Therefore, the results of Sanchez-Morgado applies for any X in U (Xy) provided
that it satisfies some analyticity property. The conclusion of the proof is then given by the
following when there exists a closed orbit v such that the monodromy property of [Sa2] is
verified.

Proposition 7.5. There exists a real analytic structure on M compatible with the C°
structure and a sequence (X)), C A of analytic Anosov vector fields such that X, — Xo in
the C° topology.
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Proof. By Whitney [Wh, Th. 1 p. 654, Lemma 24 p. 668] (see also [Hi, Th. 7.1 p. 118]),
there exists a C™ embedding o of M into RY for some N € N such that o(M) is a real
analytic submanifold of RY. It follows from such embedding that the manifold M inherits
some analytic structure compatible with the C'*° structure of M since M is diffeomorphic
to some analytic submanifold of RY. The tangent bundle TM — M also inherits the real
analytic structure from M which makes it a real analytic bundle in the sense of [KrPa,
Def. 2.7.8 p. 57]. Therefore by the Grauert—Remmert Theorem [Hi, Th. 5.1 p. 65], the space
of analytic maps M +— TM is everywhere dense in C°°(M, T'M) for the strong C*°-topology.
In particular, a vector field X on M is understood as a smooth map M — T M transverse
to the fibers of TM which is C! stable. Hence any analytic map M — TM sufficiently close
to X in the C' topology will be transverse to the fibers of TM and its image in TM can be
realized as the graph of a real analytic section X of T M (see also [CiEl, Cor. 5.49 p. 106]
for similar results). O

It now remains to discuss when we only suppose that p is acyclic and that H' (M, R) # {0}.
In that case, one knows from [P1, Th. 2.1] that X has a closed orbit vy which is homologically
nontrivial. It may happen that no closed orbit verifies the monodromy condition of [Sa2].
Yet, we can fix a closed one form ag € H'(M,R) such that f% ag # 0. Then, we define
Vs =V +isapA (with s € R) which still induces a unitary representation. Recall that, for
s = 0, 0 is not a resonance of Xg according to Lemma 7.4 and to Proposition 7.3. Thus,
for s small enough, V, also remains acyclic thanks to the finite dimensional Hodge theory
[BiZh, (1.6)] or to [DaRi, Th. 2.1] combined with the fact that O is still not a resonance of
Xg + isag(Xg) by the arguments'® used to prove Proposition 6.1. One can verify that, for
s # 0 small enough, the monodromy condition of [Sa2] is verified. Hence, for every s # 0
small enough, one has [(x, p,(0)|~' = 7,,(M). By Proposition 6.5 and by continuity of the
map p — 7,(M), we can conclude that |(x, ,(0)|~1 = 7,(M).

7.3. Fried conjecture near hyperbolic metrics in dimension n =5 - Proof of The-
orem 3. We refer to [Fr2, BuOl, Ju] for backgrounds on Ruelle/Selberg zeta functions for
hyperbolic manifolds. Let M = I'\H"*! be a smooth oriented compact (ng+ 1)-dimensional
hyperbolic manifold with ng > 2 and SM = I'\SH" ! its unit tangent bundle, where here
I' € SO(ngp +1,1) is a co-compact discrete subgroup with no torsion. We consider a unitary
representation p : w1 (M) — U(r) for r € N, and since m(SM) ~ 7 (M) if ng +1 > 3,
p induces a representation p : w1 (SM) — U(r). By considering functions w on H"*! with
values in R” that are I-equivariant (i.e., Vy € ', v*w = p(y)w), we obtain a rank r vector
bundle F — M equipped with a unitary flat connection V, and similarly by using p we
obtain a bundle E and a flat connection V on SM.

We let X be the vector field of the geodesic flow on M := SM, and following the previous
sections, this induces an operator on section of £ := @, A T*(SM) ® E

X : Q(SM; E) — Q(SM, E), X :=ixd" +dVix.

13The proof is even simpler in this case as adding isao(Xo) only modifies the operator by a subsprincipal
symbol.
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and we write X(*) X|Q,c where QF(SM; E) := QF(SM; E) Nkerix.

(SM;E)
We define the dynamical zeta function of X acting on QF(SM; E‘) by

1 e M) Te(p(y))) Tr(A* P(y)7)
Zx k) (A) = exp ( 7%;; | det(1 — P(v)7)| ) (73)

where P denotes the set primitive closed geodesics and P(7) is the linearized Poincaré map
of the geodesic flow along this geodesic. Note that P is parametrized by the conjugacy
classes of primitive elements in the group I'. It is known [GLP, DyZw1] that Zx &) (\) has an
analytic continuation to A € C and its zeros are the Ruelle resonances of X*) on SM with
multiplicities.

Let K = SO(ng+1) be the compact subgroup of G := SO(ng+1,1) so that H"*! = G/K
and we can identify SH™*! = G/H where H := SO(ng) C K is the stabilizer of a spacelike
element in R+l We have M = I'\G/K as locally symmetric spaces of rank 1 and
SM =T'\G/H.

Let us define &, : SO(ng) — GL(SPR™) to be the canonical (unitary) representation of
SO(ngp) into the space SPR™ of symmetric tensors of order p on R™. This representation
decomposes into irreducible representations of SO(ng)

& = E , Op—2q
2q<p

where o, : SO(ng) — GL(SjR™) is the canonical representation of SO(ng) into the space of
trace-free symmetric tensors of order r. We also define v; : SO(ng) — GL(A'R™) to be the
canonical (unitary) representation of SO(ng) on I-forms.

For each primitive closed geodesic v on M (i.e. primitive closed orbit on SM), there is
an associated conjugacy class in I', with a representative that we still denote by v € I' and
whose axis in H"*! descends to the geodesic 7. There is also a neighborhood of the geodesic
in M that is isometric to a neighborhood of the vertical line {z = 0} in the upper half-space
Hmot =R} x R0 quotiented by the elementary group generated by

(20,2) = €' (z0,m(7)2),

where m(y) € SO(ng) and ¢(y) > 0 being the length of v. The linear Poincaré map along
this closed geodesic on F; & FE,, is conjugate to the map

P(y) : (we,wy) = (€7 D m(y)ws, e P m(y)w,) (7.4)
where we identify F; and E, with R™0,

To any irreducible unitary representation p of SO(ng) and the representation p of m (M)
being fixed, we can define a Selberg zeta function Zgu()\) by

Tr(5(7)7) Tr(u(m(y)?))e ¥4
Zsu(N) —exp( ;; Jdet P ) (7.5)

where the sum is over all primitive closed geodesics and Ps(v9) = P(70)|gs is the contracting
part of P(+). This series converges uniformly for Re(\) > ng. For any unitary representation
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p of SO(ng), we can also define Zg , () by the formula (7.5), and if p = Y°F_) p1q is a de-
composition into irreducible representations, Zs ,(\) = [[7—; Zs,,(A). By [BuOl, Theorem
3.15], Zs,,(A\) has a meromorphic continuation to A € C, and if ng + 1 if odd, the only zeros
and poles are contained in Re(X) € [0, ng).

Proposition 7.6. In the region of convergence Re(\) > ng, we have for k € [0, ng]

co oo k

ZxwN) =TT T TI Zswem oo, X +2(a=1) +p+no + k) (7.6)
p=04¢=01=0

Proof. To factorise Zx k) () with some Selberg zeta functions, we compute for j € N
|det(1 — P(y)7)| 7" =e ™70 det(1 — e 7 m(y)7) "L det(1 — Py(v)7)~?
=034 det(1 — Ze T Tr(€, (m(y)7))

where we used det(1—B)~! = > Tr(S"B) with S”B the action of B on symmetric tensors
on R™ if B € End(R™) with |B| < 1. Now we can use

Ze’”e Tr (& (m Z Y e O Tr(oy gy (m(7)))

r=0 2q<r
— Z Z e~ PT203¢) Tr(g, (m(7)7))
p=0 g=0

Now we also have Tr(AFP(y)7) = Zf:o eI =R T () (m(7)?) @ vg_1(m()?)). Combining
all this, we thus get

k1 e~ Hno+p+2(g—1)+k)je(v) Tr(5(7)9)Tr ()
ZxwW) =e (=333 5 I D011

with fu 1 == 1 ® vp_; ® 0p,. This gives the result. Note that the products in (7.6) converge
for Re(\) > 0. O

We notice that in each Re(A) > —N for N > 0 fixed, there is only finitely many Selberg
type functions in the factorisation (7.6) whose exponent of convergence is on the right of 0,
this means that only finitely many Selberg terms can bring a zero to Zxx)(\) in Re(A) > —N.
In particular at A = 0, only the terms [, k, ¢, p with

2g—1)+p+k<0 (7.7)

can contribute to a zero (or a pole) there. Theorem 3 follows directly from Theorem 1, Fried
formula 1.2 for hyperbolic manifolds [Fr2] and the following:

Proposition 7.7. Let M = I'\H® be a smooth compact oriented hyperbolic manifold and let
p be a unitary representation of w1 (M). The multiplicity my,(0) := RankResy—o(—Xj — A) !
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of 0 as a Ruelle resonance for Xy, are given by
mo(0) = dim H°(M; p), m1(0) = 2dim H(M, p),
ma(0) = 2(dim H' (M, p) + dim H°(M; p)), ma4_x(0) = m4(0)
where H*(M; p) is the twisted de Rham cohomology of degree k associated to p.

Proof. For k =0, from (7.6) and (7.7), we see that only the term Zg ,,(A+2) can contribute
to a zero to the dynamical zeta function Zx ) (A). By Selberg trace formula [BuOl, Corollary
5.1], Zs.54 (X + 2) has a zero of order dim ker Ay where Ag = (dV)*dV on sections of the flat
Hermitian bundle (E, V) associated to p.

For k = 1, the condition (7.7) reduces to the following cases to analyse: ¢ = 0, [ = 1,
p=0,1. For p =0, the only term to consider is Zg,, (A + 1), the Selberg zeta function on
1-forms. As explained in Section 5.3 of [BuOl], v; decomposes into two irreducibles y1+ 2
and by [BuOl, Proposition 5.6], each irreducible brings a zero of order — dim H°(M, p) +
dim H'(M, p) at A = 0: the contribution to Zx1)(A) at A = 0 coming from Zg,, (A + 1) is a
zero or pole with order —2dim HO(M, p) +2dim H' (M, p). Next the term p = 1: we need to
look at Zg 1,00, (A+2). First we decompose 01 @ = v1 ®vq into irreducibles: v @y = 09 ®
v G og. Since vy =~ 1y is equivalent to the trivial representation, Zg sy, (A+2) = (Zg,60 (A +
2))? has a zero of order 2dim H°(M, p) at A = 0. Now, for Zg 4, (A+2) we can use Proposition
B.1, which gives that the order of Zg,, (A +2) at A = 0 is dim(ker V*V — 2) Nker D* where
V is the twisted covariant derivative on S3T*M ® E and D* the divergence operator. But by
Bochner identity [DFG, Equation (2.4)], V*V > 3 and thus dim(ker V*V — 2) Nker D* = 0.
We conclude that the order at A = 0 of Zx () is 2dim H (M, p).

For k = 2, if | = 2 one has to consider (p,q) = (0,0), (p,q) = (0,1), (p,q) = (1,0),
(p,q) = (2,0). First (p,q) = 0, one get the term Zg,,(\) since v ~ 1, and this has a
zero of order dim H°(M, p) at A = 0. For (p,q) = (0,1), Zs,,(A + 2) has a zero of order
dim H°(M, p) at A = 0. For (p,q) = (1,0), we get the term Zg,, (A + 1) which has a zero
of order —2dim H°(M, p) + 2dim H'(M, p) as discussed above. For (p,q) = (2,0), we get
Z5,55(A + 2) which has no zero at A = 0 as above. Now for I = 1, only (p,q) = (0,0) could
contribute, and we get the terms Zg ., @y, (A + 2) which, as shown above, has a zero of order
2dim H°(M, p). This ends the proof. O

Remark 5. We remark that such a result could alternatively be obtained using the works
[DFG, KuWe], with the advantage of knowing the presence of Jordan blocks. The work [DFG]
also directly implies that in all dimension ng+1 > 4, one always has m1(0) = dim H*(M; p)
for M = T\H"™*! co-compact. However, for higher degree forms, and ng > 4, it turns out
that my(0) could a priori be non-topological: for example, when ng = 4, some computations
based on Proposition 7.6 and Selberg formula for irreducible representations as used above
shows that when dim ker(Ag—4) = j > 0, these j elements in the kernel contribute to mz(0).

APPENDIX A. PROOF OF LEMMA 3.3

A.1. Family of order functions. In this paragraph, we fix the aperture of the cones ag > 0
small enough to ensure that C*%(ag) N C%(agp) = () and we fix some small parameter § > 0.
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We construct an order function for every X in a small enough neighborhood of Xj. For that
purpose, we closely follow the lines of [FaSj, Lemma 2.1]. We fix T}, > T,, where T, is
given by Lemma 3.2. The time T}, will be determined later on in a way that depends only on
ap. For our construction, we also let mq(z,§) € C*°(S*M, [0, 1]) to be equal to 1 on C*(«)
and to 0 on C**(«). Then, we set

1 Tao ~
mx(e€) = g [ mao @F (w6 (A1)
Qo — ag

Note that mx depends smoothly on X as we chose Ty, independently of X near Xo. First
of all, we note that

XHmX (‘Tv 5) = (mO % i)¥0/¥0 (.’IJ, 5) —mpo©° &)i(T[)O (.f, 5)) ) <A2)

277,
where X is the vector field of ®X. We also observe that, for every (z,£) inside S* M, the
set

Ty (2,€) i= {t ER:DX(2,6) € S*M\ (C*(ap/2) U 058(%/2))}
is an interval whose length is bounded by some constant T/, > 0. Fix now a point (z,§) €

S*M and a vector field which is close enough to X (to be determined). If QBtX(ZL‘, &) € C*(ay)
for every t € R, then the set

Tx(z,€) = {t ER: X (2,6) € S*M\ (C*(ag) U Css(ao))}

is empty and the same holds if ;¥ (x,£) € C**(ag) for every t € R. Hence, it remains to
bound the length of Zx (x,{) when the orbit of (z,&) crosses S* M\ (C*(ap) U C*¥(ay)) and
we may suppose without loss of generality that (x,&) € S* M\ (C"(ap) U C**(a)). Up to
the fact that we may have to decrease a little bit the size of the set Uy, (Xo) appearing in
Lemma 3.2, we have that ®2, (z,£) belongs to C%(ag). Hence, thanks to Lemma 3.2, one
ao -
finds that, for every ¢ > T/ + T, one has ®;*(z,£) € C*(ap). The same holds in backward
times. Hence, the diameter of Zx (x,¢) is uniformly bounded by 2(Ty, + 17 ) and we pick
o Tt g oy
We set
OUX) = &7, (S*M\C*(ap)) and O (X) = &X, (S*M\C"(ap)).
[e7¢) @Q
Let us now discuss the properties of mx for X belonging to Uy, (Xp):

(1) If (z,&) € O%(X), then é)_(T&O(a:,f) ¢ C*(ap). Hence, from the definition of T}, , one

has @%, (2,€) € C*(ap) and, from (A.2), one deduce that Xgmx > 0 on O*(X).
0
Similarly, one has

1 Ty +2(Tag +15) = x T = X
mx(e.&) = o | | mo o (@, €)dt + [ o0 & (x,€)dt |
a0 \/ T4, —Th+2(Tag+TY)
from which one can infer
T + TI/
V(z,&) € OUX), mx(z,&)>1—- "2 _"% _1_34

!
%
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(2) Reasoning along similar lines, one also finds that, for every (z,£) € 0% (X), Xgmyx >
0 and

mx(z,§) <.
(3) Let (z,&) be an element of S* M\ (O"(X)UO**(X)). In that case, one has i)fT&O (x,€) €
C*(ap) and &%, (x,€) € C*(ap). Thus, one finds
ag

~ 1 ~ =T 1
XHmX(:E,f) = QTQO <m0 © (I)fl)géo ('7;75) — Mg o ®X 0(56,5)) = 2To/40 > 0. (A3)
(4) Let now (z,&) € S*M\C"(ag). Write
1+0

1 1 /0 -y
mX($,£) < 5 + QT&O /_T‘;O mOOCDt (ZE,g)dt < T

Let us conclude this construction with the following useful observation:

Lemma A.1. Let ag > 0 be small enough to ensure that C* () NC**(ay) = 0. Then, there
exists 0 < a1 < ag and a neighborhood Uy, (Xo) of Xo in A such that, for every X € Uy, (Xo),

C'"(a)NS* M cCc OX) and C¥(aq)NS*M C O%(X).

Proof. We only treat the case of O%(X), the other one being similar. First of all, we note
that by construction (with v > 0 as in Section 3.1)

@%(50 (C“ (aoe_ﬂz*o /2)) C C"(/2).

Hence, up to the fact that we may have to shrink the above neighborhood U,,(Xp) a little
bit, one can verify that, for every X € U,,(Xo),

oy, (C“ (aoe—vT&o /2)) C C%(ap) © T*M\C*(ap),
@Q
which concludes the proof by taking a; = aoe_VT‘;O /2. ([l

Remark 6. In all the construction so far, we could have defined the cones C**(a) and

C*(a) and a decaying order function mx (x,&) which is close to 0 on C*(«) and close to 1
on C*"(«).

A 2. Definition of the escape function. We start with the construction of the function
f(z,&) € C*(T*M,R,). For €|z > 1, it will be 1-homogeneous and equal to ||£||, outside
the cones C*"(ap) and C**(&p) for @y > 0 small enough (to be determined). Following
the proof of [DyZwl, Lemma C.1] (see also [GBWe, Lemma 2.2]), we set, for (z,&) near
C**(a0/2) and [z > 1,

L i h Xo Ty\—1
Flag) = e (0 [ e @) el ).

Recall that, for every & in E*(Xg,z), one has ||(dg;°(z)T)~1¢|| < Ce=Pt||€| for every t > 0
(where C, B are some uniform constants). Hence, if we set T = 2%, we find that, for every
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(x,&) € EX(Xo) with ||£]|z > 1, Xu, f(z,€) < —f(a:,f)g. Similarly, picking 77 large enough,
we set, for (x,€&) near C""(&p/2) and ||£]|x > 1,

o 1M Xo(, \Ty-1
Fla§) = (- [ e @) el i)

and we find that Xg, f(z,€) > f(z, f) on E}(Xp). By continuity, we find that there exists
some (small enough) &g > 0 such that, for every ||£]|, > 1,

(2,€) € C**(60/2) = X, (2, €) < ~f(,6). (A1)

and 8
As the function f(x,¢) is 1-homogeneous, we can find a neighborhood U (Xy) of Xy in the
C*>-topology such that, for every X in U(Xy) and for every [[£]|, > 1,

g

(A.5)

(¢,6) € 0" (60/2) > X (2,) < —f(2,6) (A6)
and
(¢,6) € C**(a0/2) = Xuf(x,€) > f(a,6)". (A7)

Finally, we note that there exists some uniform constant C' > 0 such that, for every X in
U(Xp) and for |||, > 1,

—Cf(#,§) < Xuf(x,§) <Cf(x,8) (A.8)

We are now ready to construct our family of escape functions G%O’Nl (x,§):
No,N No,N-
GX()’ 1(%,5) _TnX07 1(m,§)ln(1+f(x,§)),

with mﬁO’Nl € C>®(T*M,[—2Ny,2N;]) which is 0-homogeneous for [[£||; > 1. In order to
construct this function, we will make use of the order functions defined in paragraph A.1 as
in [FaSj, p. 337-8]. Before doing that, let us observe that

Xp f(z,€)
L+ f(z,8)
We now fix a small enough neighborhood U (Xg) of Xy so that f enjoys (A.6) and (A.7) for
all X in U(Xy) and so that we can apply the results of paragraph A.1. Following [FaSj], we
set, for ||€|l. > 1,

myN (z,€) = N <2 — mx <m ”5’) e <:c H;Hx» — 2Norx (:v Hf“) , (A.10)

where we used the conventions of paragraph A.l and Remark 6. First, notice that, by

construction, X (m %”Nl) < 0 for ||€]| > 1. Recall that the order functions mx and mx

depends on the parameters ag > 0 and § > 0 and that they depend smoothly on X. Here, we

fix 0 < § < min(1/2, %M) and 0 < agp < dp/2. We then find that m Y™ (x, £/]|€]|2) >

Ny on 0%%(X), YoM (2, €/[€ll.) < —Np on O"(X) and mA™ (z,¢/|¢],) > N1/2 in a
small vicinity of Ej(Xp). We also have that mNO’N1 (x,&/)|€|le) = N1/4 — 2Ny for (x,€)

XpGRON (2,€) = X (my™) (@, &) (1 + f(x,€)) + myo™ (a,€) (A.9)
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outside C"*(ap). We now fix a; to be the aperture of the cone appearing in Lemma A.1.

This allows to verify the first three requirements of m%O’Nl.

Remark 7. We could also have defined

We still have mﬁ”Nl (z,§) > N1 on O%(X), mﬁ”Nl (z,€) < ML — Ny outside C**(ap).

Finally, combining XH(mgo’Nl) < 0 with (A.9) for ||¢]| > 1, we immediately get the upper
bound (3.6). It now remains to verify the decay property (3.4). For that purpose, we shall
use the conventions of paragraph A.1 and set, for every X € U(Xy),

O"(X) = O"(X)NO%X), O'X)=0%X)NO%X), and O*(X) = O*(X) N O*(X),

which contains respectively C**(aq), C*(a1) N C*(a1) and C**(aq) for ayq > 0 small enough
(see Lemma A.1). Note also that O°(X) is contained inside C"(ag) N C*(ayp) which is a
small vicinity of Ej(Xp). Based on (A.9), we can now establish (3.4) except in this small
cone around the flow direction. Outside O**(X) U O°(X) U O*(X), it follows from (A.3)
and (A.9). Inside O%(X) and O*(X), it follows from (A.6), (A.7) and (A.9).

APPENDIX B. SELBERG ZETA FUNCTION ON TRACE-FREE SYMMETRIC TENSORS

Proposition B.1. Let n be even and M = T\H"! be a compact hyperbolic manifold. Let p :
m(M) = U(V,) be a finite dimensional unitary representation and let o, be the irreducible
unitary representation of SO(n) into the space S§'R™ of trace-free symmetric tensors of order
m > 1 on R™. Then the Selberg zeta function Zs,, (s) on M associated to o, and p is
holomorphic and the order of its zeros are given by

dimker(V*V —n?/4 —m + (sg — n/2)?) Nker D*  if so # n/2
ords, Zsz,, (s) = . N 9 * ,
’ 2dim ker(V*V —n*/4 —m) Nker D if so =n/2
where V is the twisted Levi-Civita covariant derivative on Sg*T*M @ E, E — M being the

flat bundle over M obtained from the representation p, and D* = —Tr o V is the divergence
operator.

Proof. We follow [BuOl, Theorem 3.15]. First we need to view o, as the restriction of a sum
of irreducibles representations of SO(n + 1) as in Section 1.1.2 [BuOl]: it is not difficult to
check that
om = (Bm — 2m—1)|SO(n)

where %, denotes the irreducible unitary representation of SO(n+1) into the space SJ*R™ 1.
By Section 1.1.3 of [BuOl], there is a Z2-graded homogeneous vector bundle V,, = ng &
Vs, over H"*+! with ng = SPR™ and Vs, = SR and we define the bundle
Vit pgom = I\(V,®V,,,) over M. Denoting E — M the bundle over M obtained from V, by
quotienting by I' and S§" 1™ M the bundle of trace-free symmetric tensors of order m on M,
the bundle Vi pgo,, is isomorphic to the bundle & := (S*T*M @ S§* 'T*M) @ E. There is
a differential operator Agm on & constructed from the Casimir operator that has eigenvalues
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in correspondence with the zeros/poles of Zg, (s), it is given A2 = —Q — ¢(o,,) where (2
2 — 20(0)pso(n) With pi(om) the highest
weight of o and pgom) = (5 — 1,5 — 2,...,0). Here we have (o) = (m,0,...,0) thus

is the Casimir operator and c(c) = n?/4 — |u(om)

n2
clom) = T m(m+n —2).

We then obtain the formula
Agm = (Am —c(om)) ® (Am—1 — c(om))

where A,, = V*V — m(m + n — 1) is the Lichnerowicz Laplacian on (twisted) trace-free
symmetric tensors of order m on M (see for instance [Hal, Section 5]). Now we have by
[Hal, Lemma 5.2] that D*A,, = A,,_1D* if D* is the divergence operator defined by D*u =
—Tr(Vu), and whose adjoint is D = SV is the symmetrised covariant derivative. This gives
A,,D = DA,,_1, but since D is elliptic with no kernel by [HMS, Proposition 6.6], it has
closed range and D gives an isomorphism

D :ker(Apy_1 — c(om) — 5) = ker(Ap, — (o) — 5) N (ker D*)*
for each s € R. In particular, one obtains that for each s € R
dimker(A,, — c(om,) — s) —dimker(A,,—1 — ¢(om,) — s) = dim(ker(A,,, — c(o,) — s) Nker D*).
Now by [BuOl, Theorem 3.15], the function Zg,,, (s) has a zero at s of order

2dim(dim(ker(A,, — ¢(om) Nker D)) if s =

dim(dim(ker(A,, — c(om) Nker D¥)) if s # 3.
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