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Résumeé

Résumé

Cette theése présente quelques résultats d’analyse harmonique sur les LP non commu-
tatifs. La premiere partie consiste en ’étude des isométries compléetes préservant 'unité
entre sous-espaces d’espaces LP non commutatifs contenant 1'unité. Le résultat principal
est une généralisation non commutative d’un théoréme de Rudin et Plotkin et affirme que
si p n’est pas un entier pair, une telle isométrie compléte est toujours la restriction d’'un
isomorphisme entre les algebres de von Neumann engendrées. La deuxiéme partie traite
des inégalités de Haagerup en probabilités libres. Le résultat principal énonce une inégalité
de Haagerup & coefficients opérateurs renforcée pour les normes p (avec p entier pair ou
p = o0) sur l'espace engendré par les mots holomorphes de longueur donnée dans ’algebre
de von Neumann des groupes libres. Des résultats analogues sont montrés dans le cadre
plus général des variables Z-diagonales libres. La preuve, de nature combinatoire, est ba-
sée sur ’étude de certaines partitions non croisées et de processus de symétrisation de
partitions. La troisieme partie de cette these caractérise les matrices de Hankel a valeurs
opérateurs dans les espaces LP non commutatifs & valeurs vectorielles. En annexe sont
présentées quelques remarques et questions sur les fonctions opérateur-Lipschitz.

Mots-clefs

Espaces LP non commutatifs et Espaces LP non commutatifs & valeurs vectorielles,
isométries complétes, inégalités de Haagerup, opérateurs de Hankel, fonctions opérateur
Lipschitz.

On certain results of harmonic analysis in non-commutative
LP-spaces

Abstract

This thesis presents some results of harmonic analysis in non-commutative LP-spaces.
The first part consists in the study of complete isometries between unital subspaces of
non-commutative LP spaces. The main result states that when p is not an even integer



such a complete isometry is the restriction of an isomorphism between the von Neumann
algebras generated by theses subspaces. The second part is devoted to the Haagerup
inequalities in free probability. The main result is a strong Haagerup inequality with
operator coefficient for the p norms (with p an even integer or p = oo0) on the space
generated by the holomorphic words of a given length in the von Neumann algebra of the
free groups. Analogous results are proved in the more genral setting of free %-diagonal
operators. The proof, of combinatorial nature, is based on the study of certain non-crossing
partitions and on a symmetrization process of partitions. In the third part of this thesis
we characterize the bounded Hankel matrices in the vector valued non-commutative LP
spaces. In the appendix we present some questions and remarks on operator Lipschitz
functions.

Keywords

Non-commutative LP spaces and vector-valued non-commutative LP spaces, complete
isometries, Haagerup inequalities, Operator Lipschitz functions.opérateur Lipschitz.
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Introduction

Cette these s’inscrit dans la théorie de ’analyse non commutative. Cette branche des
mathématiques a clairement son inspiration dans la physique quantique, mais s’est déve-
loppée depuis des années. Elle s’insére dans une démarche générale importante des mathé-
matiques récentes : le remplacement des fonctions (ou des scalaires) par des opérateurs sur
des espaces de Hilbert. La premiére conséquence devient le caractére non commutatif du
produit. Le fait remarquable dans ces théories est que souvent, une fois que l'on a établi
un dictionnaire correct entre la théorie commutative et la théorie non-commutative, la
plupart des énoncés commutatifs se transposent en énoncés non-commutatifs, qui restent
(souvent) vrais, mais avec des preuves différentes.

On s’intéresse ici a la théorie des espaces d’opérateurs (ou espaces de Banach non
commutatifs) et aux espaces LP non commutatifs. Dans cette introduction je commencerai
par donner quelques rappels sur ces théories, avant de donner une description détaillée des
différents chapitres de cette these.

0.1 Quelques rappels

0.1.1 Espaces d’opérateurs

La théorie des espaces d’opérateurs est, comme son nom l'indique, la théorie des es-
paces vectoriels constitués d’opérateurs sur un espace de Hilbert. Elle s’inseére dans la
démarche présentée ci-dessus dans laquelle les fonctions ou les scalaires sont remplacés
par des opérateurs. De ce point de vue, les espaces d’opérateurs sont parfois considérés
comme les analogues non commutatifs des espaces de Banach, puisqu’ils consistent en des
espaces vectoriels normés dans lesquels on autorise des combinaisons linéaires a valeurs
opérateurs. Pour une introduction détaillée, le lecteur est invité a lire [44].

Les applications entre espaces d’opérateurs intéressantes a étudier sont les applications
complétement bornées.

Du fait que M, (B(H)) ~ M, (C) ® B(H) s’identifie canoniquement & B(H®™), a tout
espace d’opérateurs est naturellement associée une famille de normes || - ||,, sur M, (E) ~
M, (C) ® E pour n € N, n > 1. Une application linéaire v : F — F entre espaces
d’opérateurs est dite complétement bornée si les applications (™ = id, ® u : M,(E) —
M, (F) sont bornées uniformément en n, et on note ||u/|s = sup,, |u™].

Dans la catégorie des espaces d’opérateurs, les objets sont les espaces d’opérateurs et
les morphismes sont les applications complétement bornées. On y identifie deux espaces
d’opérateurs s’ils sont complétement isométriques. La donnée d’un espace d’opérateurs
abstrait est donc simplement la donnée d’un espace vectoriel F et d’une suite de normes
Il - || sur M, ® E.

Remarque 1. Les espaces d’opérateurs sont une structure intermédiaire entre les espaces
de Banach et les algebres d’opérateurs. Par cela, on entend que tout espace d’opérateurs
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est un espace de Banach (si on ne se souvient que de la norme sur F), et que récipro-
quement tout espace de Banach peut étre muni en général de plusieurs (une infinité)
structures d’espaces d’opérateurs. De méme, (par définition!), toute C*-algebre est un
espace d’opérateurs si on ne se souvient que de la suite des normes || - ||,. Il est peut-étre
moins immeédiat de se rendre compte que pour un espace d’opérateurs abstrait donné, il
peut exister plusieurs réalisations de cet espace comme une partie d'un B (H) telles que
les C*-algebres engendrées sont distinctes (ne sont pas isomorphes). Un exemple frappant
est donné par les espaces d’opérateurs engendrés par les générateurs (resp. les générateurs
et leurs inverses) dans la C*-algebre réduite du groupe libre a r générateurs. Inversement,
dans certains cas connaitre I'espace d’opérateurs permet de retrouver 1’algebre d’opéra-
teurs engendrée. Ce genre de résultat est obtenu a ’aide du théoréme de factorisation des
applications complétement bornées qui permet de relier des propriétés d’espaces d’opéra-
teurs a des morphismes d’algebres d’opérateurs.

L’étude des applications complétement bornées a déja une histoire assez importante,
mais c¢’est seulement & partir des années 90 que la théorie des espaces d’opérateurs (comme
espaces de Banach non commutatifs) s’est vraiment développée, avec les travaux de Ruan
(J49]) qui caractérisent de fagon abstraite les espaces d’opérateurs parmi les espaces E
munis d’une suite de normes sur M, (E) pour n = 1,2,.... Cette caractérisation permet
en particulier I'introduction de techniques d’analyse dans cette théorie, comme la notion
de quotient, de dualité, d’interpolation complexe, etc... pour des espaces d’opérateurs.

0.1.2 Espaces L? non commutatifs

Dans la théorie de l'intégration non commutative, les fonctions sont remplacées par
des opérateurs sur un espace de Hilbert, et les mesures sont remplacées par des traces.
Plus précisément :

Définition 2. Soit M une algebre de von Neumann, et 7 une trace semi-finie, fidele et
normale sur M, et soit 1 < p < oo. L’application z — (T(|x\p))1/ ?_ définie sur I’ensemble
des z € M tels que 7(|z|P) < oo, est une norme. L’espace obtenu par complétion est appelé
espace LP non commutatif et noté LP(M,7) ou bien LP(1).

L’espace L*°(M,T) est simplement M muni de sa norme en tant qu’algebre de von
Neumann.

On est parfois amené a travailler avec des C*-algébres munies de traces. On peut bien
str dans ce cas aussi définir les espaces LP associés, mais il coincident avec les espaces LP
qui correspondent & ’algébre de von Neumann engendrée par la représentation GNS.

L’espace LP non commutatif peut-étre le plus simple est la classe de Schatten, qui
correspond au cas ot M = B({3), T est la trace usuelle. L’espace L associé est noté .Sy, et
il correspond a l’ensemble des opérateurs x € B({2) tels que T'r(|x|P) < co. Les analogues
de dimension finie qui correspondent & M = M,,(C) sont notés Sh.

De méme qu’on définit les espaces d’opérateurs comme les sous-espaces linéaires d’al-
gebres de von Neumann, il est naturel d’étudier les sous-espaces d’espaces LP non commu-
tatifs LP(M, 7). Comme M, (M) est muni d’une trace semi-finie normale et fidele Tr,, @,
on peut aussi parler d’analogues d’applications complétement bornées dans ce cadre la.

Remarque 3. On peut noter que d’apres le travail présenté dans le chapitre [1] de cette
these, le lien entre structure de « sous-espace d’espace LP » et « algebre de von Neumann
engendrée » est plus simple lorsque 1 < p < oo et p ¢ 2N que dans le cas p = oo : le
théoréme principal énonce en effet que dans ce cas, la donnée de la famille des normes p
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sur les matrices a coefficients dans un sous-espace unital d’une algébre de von Neumann
détermine entiérement l’algébre de von Neumann engendrée (voir la description détaillée

dans la partie [0.2.1)).

On aurait ainsi pu, pour tout p, développer une théorie des sous-espaces des espaces
LP non commutatifs, paralléle a la théorie des espaces d’opérateurs. Mais Pisier a inclus
cette étude dans la théorie des espaces d’opérateurs.

Comme le cas p = oo correspond a la norme d’opérateurs, les espaces L°° non commu-
tatifs sont par définition des espaces d’opérateurs. Dans le cas p = 1, I’espace L'(M, 1)
s'identifie au prédual de l'algebre de von Neumann, et est donc également muni d’une
structure d’espace d’opérateur par les axiomes de Ruan. Comme, pour 1 < p < oo,
LP(M) s’identifie isométriquement a l'interpolé complexe entre L'(M) et L>(M), on
définit une structure d’espace d’opérateurs sur LP(M) par linterpolation complexe des
espaces d’opérateurs.

Le fait remarquable (et heureux) est que cette structure abstraite d’espace d’opé-
rateur sur les espaces LP non commutatifs est compatible avec la structure naive dé-
crite précédemment, a savoir que Pisier a montré que pour une application linéaire entre
sous-espaces d’espaces LP non commutatifs, sa norme complétement bornée coincide avec
sup,, |lid, ® v : LP(M,, ® M) — LP(M,, ® M)||.

Plus généralement Pisier a développé ([42]) dans le cadre non-commutatif la notion
d’espace LP a valeurs vectorielles pour des algébres de von Neumann hyperfinies.

0.1.3 Espaces L? non commutatifs a valeurs vectorielles

La encore, pour définir LP(M; E) il faut que E soit muni d’'une structure d’espace
d’opérateurs, et alors LP(M; E) est & nouveau un espace d’opérateurs. Cette structure est
encore définie par interpolation, et parmi ses propriétés importantes on peut noter :

— Une application linéaire entre espaces d’opérateurs u : £ — F est completement

bornée si et seulement les applications u ® id : Sj(X) — S;(Y) pour n > 1 sont
uniformément bornées. Plus précisément,

|u®id: S}HX) — Sp(Y)|| = llu®id: My (X) — My (V)|

— (Théoréme de Fubini) Complétement isométriquement, Sy (Lp (M, 7')) ~ [P (Mn ®
A tr, ® 7').

0.2 Contenu de la thése

Cette thése contient trois chapitres et une annexe, rédigés en anglais. Les deux premiers
chapitres sont des articles écrits pendant ma these. Le chapitre [1| décrit un travail, intitulé
Complete isometries between subspaces of noncommutative LP-spaces, que j’ai effectué en
début de these, et qui a été accepté dans Journal of Operator Theory. Dans le chapitre 2] je
présente un travail intitulé Strong Haagerup inequalities with operator coefficients, et qui
a été accepté a Journal of Functional Analysis. Le chapitre [3] décrit les matrices de Hankel
(et matrices de Hankel généralisées) qui sont bornées dans les espaces LP non commutatifs
a valeurs vectorielles. L’annexe [A] traite de fonctions opérateur-Lipschitz : je présente
essentiellement ce qui est connu sur le sujet et pose quelques questions. J’inclus ci-dessous
des descriptions détaillées en frangais (chaque chapitre commence par une description
analogue en anglais).
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0.2.1 Chapitre

Le résultat principal de ce chapitre est un analogue non-commutatif d’un théoréme
d’équimesurabilité dii & Plotkin et Rudin. Ce résultat appartient au domaine de I’'étude
des isométries entre espaces de Banach. Les isométries entre espaces LP (commutatifs) ont
été tout d’abord étudiées par Banach puis Lamperti. L’étude des isométries entre sous-
espaces d’espaces LP remonte au moins aux travaux de Forelli dans les années 1960 ([16]),
mais le résultat le plus général dans cette direction est dii indépendamment & Plotkin [46]
et a Rudin [50] ; voir aussi Hardin [21].

L’étude d’isométries entre espaces LP non commutatifs a également été 'objet d’étude
d’un certain nombre de mathématiciens : pour les algebres de von Neumann avec une
trace, la caractérisation de ces isométries a été donnée par Yeadon [52]. Pour le cas non
tracial, voir [51] et [25]. Les isométries complétes entre espaces LP non commutatifs ont
été étudiées récemment par Junge, Ruan et Sherman dans [25].

Dans ce chapitre on étudie le cas non encore traité, a savoir les isométries entre sous-
espaces d’espaces LP non commutatifs, et les théorémes principaux sont tres similaires aux
résultats commutatifs.

Commencons par rappeler le théoréme de Plotkin et Rudin :

Théoréme 4 (Plotkin, Rudin). Soit 0 < p < oo avec p ¢ 2N, et soient p et v deux mesures
de probabilité (sur des espaces mesurés arbitraires). Soit n € N et fi,..., f, € LP(u),
91,5090 € LP(v).

Supposons que pour tous z1,...,2, € C,

/|1+Zlf1+"'+ann|pd/u:/|1+zlgl+"'+ann|pd1/' (1)

Alors (f1,..., fn) et (g1,...,gn) sont équimesurables (dans un vocabulaire probabiliste,
les variables aléatoires a valeurs dans C™ (fy,..., fn) et (g1, .., gn) sont équidistribuées).

Le principal résultat présenté dans ce chapitre est un résultat similaire dans le cadre
non-commutatif (avec quelques conditions techniques). Comme souvent, la modification
principale a apporter a cet énoncé est qu’il faut remplacer les combinaisons linéaires a
coefficients scalaires par des coefficients opérateurs dans ; ¢’est-a-dire qu’on parle d’iso-
métries complétes plutot que d’isométries.

Au moins en ce qui concerne des opérateurs bornés, le fait que deux familles d’opéra-
teurs aient la méme *-distribution est équivalent au fait qu’elles engendrent des algebres
de von Neumann isomorphes.

Le principal résultat montré dans ce chapitre est donc le théoréme suivant :

Théoréme 5. Soient (M, 7) et (N,7) des algébres de von Neumann équipées de traces
normales, finies et normalisées, et 0 < p < oo, p ¢ 2N. Soit v : E — LP(N,7T) une
application linéaire définie sur un sous-espace £ C LP(M,7) contenant 1 et telle que
u(lpg) = 1

Supposons de plus que E C L®(M)(= M).

Si u est une isométrie compléte, u(E) C L®(N) et u s’étend en un isomorphisme
préservant la trace entre l’algébre de von Neumann V N (E) engendrée par E et l'algébre
de von Neumann VN (u(E)) engendrée par u(E).

La preuve de ce théoréme se décompose en deux étapes logiquement distinctes : la
premiére consiste a prouver le résultat dans le cas ou l'on suppose u(E) C L*®(N); la
seconde consiste & prouver que si u est 2-isométrique, alors nécessairement u(E) C L (N).
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La preuve de la premiere étape est de nature combinatoire. La démarche est de cal-
culer I'x-distribution de familles d’opérateurs dans E a partir des normes p de matrices a
coefficients dans E. Par le calcul fonctionnel, si ||z|| < 1/3, on commence par développer
en séries entiéres |1+ z|P = (1 +z + 2% + 2*z)P/2 = 3 (p{f) (x + x* + x*z)", ce qui
permet d’exprimer la norme |1+ ||, & partir des *-moments de z. Il s’agit ensuite d’aller
dans l'autre sens, c’est-a-dire d’exprimer les x-moments d’éléments a partir des normes p.
Ce n’est pas possible lorsque p est un entier pair puisque dans ce cas la précédente somme
ne contient qu'un nombre fini de termes, mais lorsque p ¢ 2N, je décris une méthode
combinatoire pour le faire. Pour cela on prend dans le développement précedent pour x
des matrices bien choisies a valeurs dans E. L’outil principal est I’observation que pour
tout n, et dés que m > n/2 il existe des matrices ay,...a, dans M,,(C) telles que

1 si o est une permutation circulaire de {1,2,...,n}.
0 pour une autre permutation o.

Tr(o(1)0s(2) - - - Ao(n)) = {

Cette observation permet au passage de donner une preuve élémentaire d’un résultat
obtenu & l’aide matrices de aléatoires dans [10] (Lemme [1.4] de cette theése).

La deuxiéme étape logique est plus analytique et est prouvée dans le partie Le
résultat principal est le suivant :

Théoréme 6. Si a € LP(M) et b € LP(N) sont tels que a®> = 0 et b*> = 0, et tels que
|11+ zall, = ||1 + 2b]|, pour tout z € C, alors pour tout n € 2N U {oc}, a € L"(M) si et
seulement si b € L™(N) et de plus ||a|, = ||b]|n-

La preuve se fait par récurrence sur n et est basée a nouveau sur le développement
en séries entieres de ||1 + x|/ : il s’agit d’exprimer ||al|,, & partir des normes |1 + zal|,
et des normes |al|y pour k < m pairs. Mais les opérateurs n’étant pas bornés, il n’y a
pas de convergence en norme mais en mesure (l’analogue non commutatif de la conver-
gence presque stire). Il s’agit donc d’utiliser les outils de convergence d’intégration non-
commutative : lemme de Fatou et théoréeme de convergence dominée. La principale diffi-
culté rencontrée est pour I'application du lemme de Fatou, puisqu’il faut prouver la po-
sitivité de certains opérateurs. Curieusement c’est par des méthodes d’études qualitatives
d’équations différentielles que cette positivité est montrée (Proposition et Lemma
1.21)).

Voici comment se décompose le chapitre [I] : la premiére partie est une introduction
en anglais, qui reprend la description qui vient d’étre faite. Ensuite, pour introduire les
idées principales de la preuve, je présente une preuve (simple) du Théoréme [5| dans le cas
particulier ot E* = FE et u(z*) = u(x)* pour tout x € E. Dans la partiesont prouvés les
principaux points techniques de la preuve. Ensuite dans la partie le théoréeme principal
ainsi que ses reformulations et conséquences directes sont établis. Enfin dans une derniére
partie je présente d’autres conséquences des résultats de la partie[I.2] principalement dans
le cas ou l'espace E est muni d’une structure additionnelle (par exemple cas ou E auto-
adjoint ou stable par multiplication, ou encore cas des espaces HP non commutatifs).

0.2.2 Chapitre

Ce chapitre a pour objet les inégalités de Haagerup en probabilités libres.

Soient F,. le groupe libre a r générateurs et | - | la longueur associée a l’ensemble de
ces générateurs et de leurs inverses. On note C§(F}) la C*-algebre réduite du groupe libre,
c’est-a-dire la C*-algebre engendrée par la représentation réguliere gauche \ de F, sur
(%(F,). Dans [19], Haagerup a démontré le résultat suivant, connu depuis sous le nom
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d’inégalité de Haagerup : pour toute fonction f : F. — C a support dans I’ensemble des
mots de longueur d,

S A9 <@+ 0Ifl (2)
9cks CR(Fy)
Cette inégalité a eu beaucoup d’applications et de généralisations. Par exemple 'un

de ses intéréts est qu’elle donne un critére effectif pour construire des opérateurs bornés
dans C¥(F}), puisqu’elle implique en particulier que pout tout f : F, — C

> F9)Mg) <2 [> (gl + DY f(9),

€F, ¥
g&lir C)\(FT)

ot la norme « de Sobolev » \/ > ger (9l + 1)4f(g)|? est bien plus facile & calculer que

la norme d’opérateur de A(f) = >_ f(g)A(g). Les groupes pour lesquels des inégalités du
méme type sont vraies (avec une certaine puissance de (d+ 1) a la place du terme (d+ 1))
sont appelés les groupes a propriété RD [22] et ont été beaucoup étudiés.

Dans une autre direction les inégalités de Haagerup ont aussi été étendues a la théorie
des espaces d’opérateurs. Cela concerne les mémes inégalités dans lesquelles on remplace
la fonction f par une fonction a valeurs opérateurs (matricielles). Cette question a tout
d’abord été étudiée par Haagerup et Pisier dans [20], et le résultat le plus complet a été
présenté par Buchholz dans [§]. L'un de ses intéréts est qu’il donne une interprétation du
terme (d+ 1) de I'inégalité classique. En effet, pour 'inégalité a coefficients opérateurs, le
terme (d + 1)||f||2 est remplacé par une somme de d + 1 différentes normes de f, toutes
dominées par || f||2 dans le cas scalaire. Plus précisémeént si S est ’ensemble des générateurs
de F, et de leurs inverses, une fonction f : F,. — M, (C) dont le support est contenu dans
I’ensemble des mots de longueur d peut étre vue comme une famille (ahl7~--»hd)(h1,...7hd)esd de
matrices de la fagon suivante : a,, . p,) = f(h1ha... hq) si|hi... kgl =detagy, ) =0
sinon.

Cette famille de matrices a = (ap)pega peut étre vue de plusieurs fagons comme une
plus grosse matrice, pour chaque décomposition de S% ~ S! x §9=!. Si les matrices ay, sont
vues comme des opérateurs sur 'espace de Hilbert H = C™, on note M; 'opérateur de
H ® (%(5)®4~! dans H ® £2(S)®" dont la décomposition en blocs est donnée par

M, = (a(s,t))seslytesd—l .
Avec ces notations, le résultat de Buchholz est

Théoréme 7 ([8],Theorem 2.8). Si le support de f : F, — M,(C) est contenu dans
I'ensemble des mots de longueur d, et si 'on définit (ap);cg¢ €t M; pour 0 <1 < d comme
précédemment, alors

M=

> ) ®\g) <

d
ges M,&C5 (Fy)

| M|
;

Il
o

Pour les normes dans les espaces LP, les mémes inégalités ont été prouvées dans [33]
(mais avec des constantes qui ne sont pas bornées quand d — o). Voir aussi les travaux
[48] et [24].
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Plus récemment et en direction des probabilités libres, Kemp et Speicher [27] ont fait
I’étonnante découverte que, bien qu’en toute généralité la constante (d + 1) soit optimale
dans , si 'on restreint a des fonctions (& valeurs scalaires) dont le support est contenu
dans ’ensemble V[/d+ des mots de longueur d en les générateurs gy, ..., g, mais pas leurs
inverses, alors le terme (d+ 1) dans peut étre remplacé par un terme de ordre de v/d.

Théoréme 8 ([27],Theorem 1.4). Si f : F,, — C a son support contenu dans W; , alors

S F(9)A) < VeVd+ 1| £z

+
geWw 4 C;‘\ (F))
Dans le chapitre [2] je généralise (et améliore) ces inégalités avec des coefficients opéra-
teurs. De méme que pour la généralisation de 'inégalité de Haagerup , I'inégalité que
j’obtiens donne une interprétation du terme v/d + 1 : pour des coefficients opérateurs, ce
terme est remplacé par la combinaison ¢? des normes des matrices M introduites ci-dessus.

Théoréme 9. Pour d € N, soit WJ C Fy lensemble des mots de longueur d en les
générateurs g; (mais pas leurs inverses). Pour k = (ki,...,kq) € N¢ soit gy = gk, ... gk, €
+
Wi,
Soit a = (ay)ene une famille (& support fini) de matrices, et pour 0 < [ < d notons
M, = (a la matrice par blocs correspondante.

Alors

(kl7“"kl)’(kl+17"'7kd)) (kl7...,k‘l)€Nl,(kl+1,...7kd)€Nd7Z

1/2
S ar® Agy)|| < 47ve (ZHMZHQ) . (3)

keNd

Meéme dans le cas scalaire ce résultat est une amélioration du résultat de Kemp et
Speicher.

De méme que dans [27], la méme preuve s’applique au cadre plus général des éléments
Z-diagonaux *-libres. On obtient aussi des inégalités similaires pour les normes dans les
espaces LP non-commutatifs lorsque p est un entier pair :

Théoréme 10. Soient ¢ un opérateur Z-diagonal et (cp)reny une famille de copies *-
libres de ¢ sur un C*-espace de probabilité (A, 7). Soient (aj)ene une famille & support
fini de matrices, et M; = (a(k’l7-~-7kl)7(kl+1»-v-7kd)) pour 0 < [ < d les matrices par blocs
correspondantes.

Pour k = (ki,...,kq) € N% notons ¢, = ¢z, e Cliy

Alors pour tout p € 2N U {oo}.

1/2
d—
Y ar@ar| <4l “lelpey/1+ = <Z !Mz\p> : (4)
keNd »

L’idée générale de la preuve du Théoréme est la méme que dans [27] : on prouve
d’abord le résultat pour p = 2m € 2N; et pour cela on utilise les cumulants libres, qui
permettent d’exprimer les moments de variables en termes de partitions non croisées (voir
la partie pour des définitions). La plus grande partie du chapitre [2[ (partie est de
nature combinatoire et consiste d’une part en I’étude d’une certaine classe de partitions
non-croisées et d’autre part en la définition et ’étude d’un processus de symétrisation de
partitions.
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Dans le cas présent (longueur d et variables Z-diagonales) les partitions qui inter-
viennent sont les partitions de [2dm] = {1,2,...,2dm} qui appartiennent a I’ensemble
NC*(d,m) défini de la fagon suivante. Découpons [2dm| en 2m intervalles Ji,..., Jam
de longueur d : J,, = {(k — 1)d + 1,...,kd}. Pour tout i € [2dm] on note k; Uentier
compris entre 1 et 2m tel que i € Jj,. Avec ces notations une partition = appartient a
NC*(d,m) si elle est non croisée, si tous ses blocs sont de taille paire et si pour tous i < j
deux éléments consécutifs d'un bloc de m, k; # k; mod 2. L'un des buts du chapitre
est d’étudier NC*(d,m) (section [2.1.2). La partie de NC*(d, m) constituée de partitions
dont les blocs sont tous de taille 2 est notée NC5(d, m); sa combinatoire est bien connue
puisque NC5(d,m) est naturellement en bijection avec les chaines croissantes de d par-
titions non-croisées de [m] (pour I'ordre du raffinement). Pour étudier NC*(d,m) je suis
amené & définir une projection P : NC*(d,m) — NC5(d,m). J'obtiens en particulier le
résultat suivant :

Théoréme 11. Pour toute partition o € NCj(d,m) il y a au plus 4™ partitions 7 €
NC*(d, m) telles que P(r) = o.

De plus pour une telle partition 7, il y a au plus 4m éléments i € [2dm] tels que le
bloc de 7 auquel 7 appartient n’est pas une paire.

Le point important dans ce théoréme est que les bornes 42 et 4m obtenues ne dé-
pendent pas de d; une fagon d’interpréter ce résultat est donc de dire que NC*(d, m) est
proche de NC3(d, m) uniformément en d. Comme conséquence on obtient en particulier
le fait que le cardinal de NC*(d,m) est inférieur a (16e(d + 1))™.

Plus généralement, si [2V] est décomposé en k intervalles Sy, ..., Sk, on peut s’intéres-
ser (dans la partie a l'ensemble (que je note ici NC(Sh,...,Sk)) des partitions non
croisées de [2N] dont les blocs sont de cardinal pair et n’ont pas deux éléments dans le
méme intervalle S; pour 1 < i < k. On note encore NC5(S1,...,S;) I'ensemble des telles
partitions avec des blocs de taille 2. On peut également définir une projection naturelle
Q:NC(S1,...,5k) — NCy(S1,...,Sk), et dans ce cadre-la,

Lemme 12. Pour toute partition o € NCs(Si,...,S%), il y a au plus 4%=2 partitions
m € NC(S1,...,S) telles que Q(m) = 0. De plus pour un tel 7 € NC(Sy,...,S;) ily a
au plus 2k — 4 éléments de ¢ € [2N] tels que le bloc de 7 auquel 7 appartient n’est pas une
paire.

D’autre part dans le calcul de la norme p (pour p = 2m) de ), aj ® ¢ on est égale-
ment naturellement amené a étudier les expressions S(a, 7, d, m) pour des partitions 7 de
l'intervalle {1,2,...,2dm} = [2dm)], définies par

~% ~x%
S(a,m,d,m) = g Tr(aklozk2 .. aka_lakm),
(k17~--,k2m)<7"

ol si k € N?™ on note k < 7 si k; = k; pour tous %, j dans un méme bloc de la partition
.

Pour majorer ces expressions S(a,m,d, m), je suis amené a définir et a étudier des
applications de symétrisation de partitions. Pour un entier N, je définis 2N telles appli-
cations Py, ..., Poy sur ensemble de partitions de {1,...,2N} = [2N]. L’observation de
départ est qu’en appliquant une inégalité de type Cauchy-Schwarz a S(a,m,d, m), on ob-
tient une majoration en terme de ces méme expressions pour d’autres partitions, qui sont
précisément les images de 7 par les applications de symétrisation :
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Lemme 13. Si 7 est une partition de [2dm] et a = (ag)pen~ €st comme ci-dessus, alors
pour tout entier 1 <i¢ <'m

15 (a,m, d,m)| < (S(a, Pua(r), d,m))""? (S(a, Py yiya(r), d,m)) 2.

Cette inégalité peut bien sir étre itérée, et on est donc amené a étudier le « processus
de symétrisation » qui consiste a partir d’une partition 7 et & lui appliquer successivement
des applications de symétrisation P,4. Je montre alors qu’en choisissant de facon judicieuse
(par exemple au hasard) les application P;4 et en partant d’une partition dans NC*(d, m),
on obtient & partir d’un nombre fini d’étapes sur une partition qui est complétement symé-
trique (invariante par toutes les applications P;q) et pour laquelle I'expression S(a, 7, d, m)
est exactement la norme p (a la puissance p) d’une des matrices M;. On obtient donc qu’il
existe des p; > 0 avec Y = 1 tels que

d
‘S<a7 m,d, m)’ < H HMZH%M :
1=0

Le point délicat est de déterminer exactement les exposants p;. Cela revient a trou-
ver des invariants combinatoires pour les applications de symétrisation. Ces invariants
s’avérent étre liés a la projection P: NC* (d,m) — NC5(d, m). Plus précisément, comme
NC5(d,m) s’identifie aux chaines croissantes de longueur d de partitions non croisées de
[m], P induit une application NC*(d,m) — NC(m)® (x — (x*,..., 7)), et je montre que
la quantité |7%| (pour tout 1 < k < d) est un invariant des application P;y dans le sens ou
pour tout i si 7 = Pigm et ' = Pigymar, alors |7'%| 4+ |7"%| = 2|7’¥|. On en déduit donc
que iy = (|75t = |7¥])/(m — 1) avec la convention que |7°| =1 et 7% = m. A partir
de la il suffit d’appliquer les résultats d’Edelman [11] qui décrivent I’ensemble des chaines
croissantes dans NC'(m) pour conclure.

En adaptant les méthodes décrites ci-dessus, j'obtiens également les résultats suivants.
Soit ¢ un opérateur Z-diagonal et (cx)reny une famille de copies *-libres de c¢. Pour ¢ =
(e1,---,eq) € {1,x}% et k = (ki1,...,kq) € N on note ¢ = e ...cZ‘;. On établit tout
d’abord une extension de 'inégalité de Haagerup pour I'espace engendré par les ¢ . pour
k,e vérifiant k; = ki;1 = & = €441, c’est-a-dire pour lesquels A(g)x. a pour longueur d.
On note I; ensemble de tels (k,¢).
Théoréme 14. Soit (a(re))(ke)cix{1,«})¢ une famille & support fini de matrices telle
que a(pey = 0 si (k,e) ¢ Iy Pour 0 < I < d, notons M; la matrice obtenue comme
précédemment & partir de (a(x.)) pour la décomposition (N x {1, % = (N x {1,%})! x
(N x {1, x})?.

Alors pour tout p € 2N U {oo}

Y ae @ <lelid+1)
(ke)e(Nx{1,%})4

max || M||,.
Joax || Myl
p

De facon similaire pour des opérateurs auto-adjoints j'obtiens :

Théoréme 15. Soit p une mesure symétrique a support compact sur R et soit ¢ un
opérateur auto-adjoint dont la distribution est p.

Soient (ci)ren des copies libres de ¢ et (ag,, ..k, )k1.... kyen une famille & support fini de
matrices telle que ax, ., = 0 si k; = kjq1 pour un 1 <14 < d. Alors pour p € 2N U {oo}

d—
S ke @ o < Pl @+ 1) mmax 1],

(k1,...kq) ENE P



18 INTRODUCTION

Dans le cas semi-circulaire ce résultat est bien connu : il est di & Bozejko [7], et a été
reprouvé par des méthodes combinatoires par Biane et Speicher, Theorem 5.3.4 de [4]. La
preuve que je présente s’inspire de cette preuve et utilise certains de ses résultats.

Ces résultats ne sont pas complétement satisfaisants dans la mesure ot ’on s’attendrait
a pouvoir remplacer le terme (d+ 1) maxo<;<q || M;|| par Zfzo || M;]|. Le principal obstacle
pour obtenir un tel résultat est I’absence d’invariant combinatoire pour les applications
de symétrisation sur I’ensemble des partitions qui apparaissent (par exemple dans le cas
auto-adjoint) dans le calcul des moments de variables de la forme ¢y, ... ¢, pour ki # ko,
ko # ks... Les partitions qui interviennent sont celles de l’ensemble NC'(d,m) (défini
dans la partie , ou bien encore NC(Jy,. .., Joy,) avec les notations précédentes. Pour
étre plus précis on peut bien décrire un invariant de ces applications, mais il manque
une interprétation simple comme celle qui les relie aux chaines croissantes d’éléments de
NC(m) dans le cas de NC*(d, m).

0.2.3 Chapitre

L’objet de ce chapitre est ’étude des matrices de Hankel dans les espaces LP a valeurs
vectorielles SP[E] pour un espace d’opérateurs E. Le résultat principal est une caractérisa-
tion de la norme de telles matrices en termes d’espaces de Besov de fonctions analytiques
By (E), (les espaces de Besov By, sont des sous-espaces d’espaces LP commutatifs, voir
la partie pour une définition précise). La conséquence surprenante de ce résultat est
que ces normes ne dépendent que de la structure d’espace de Banach de F, alors que
les normes dans SP[E] dépendent de la structure d’espace d’opérateurs de E. Le résultat
principal est le suivant :

Pour toute série formelle ¢ = Y @(n)z" ou les @(k) appartiennent & un espace
d’opérateurs E, la matrice de Hankel I',, est définie par

Lo = (@ + k) r>0-

Théoréme 16. Une matrice de Hankel (a;1);k>0 appartient a SP[E] si et seulement si
la série formelle ) ., a,2™ appartient a B;/ P(B),.

Plus précisément il y a une constante C > 0 telle que pour tout espace d’opérateurs
E, toute série formelle ¢ = ) - @(n)2" ou @(k) € E et tout 1 < p < oo,

Remarque 17. Apreés avoir écrit la version finale de cette these, j’ai réalisé qu’en modifiant
légerement la preuve de ce théoréme, on peut obtenir une constante de I'ordre de /p a la
place de p a droite dans 'inégalité précédente. De plus cet ordre de grandeur est optimal.
Cette amélioration n’est pas incluse ici; le lecteur intéressé est invité a lire ’article qui ne
tardera pas étre écrit pour plus de détails.

Comme souvent dans des résultats sur les espaces LP non-commutatifs, ce théoréme
est prouvé a l’aide de la méthode d’interpolation complexe. Pour p = 1 on peut prouver
ce résultat directement. Une premiére idée naturelle pour prouver ce théoréme pour un p
quelconque serait d’obtenir quelque chose pour p = oco. Les matrices de Hankel a valeurs
vectorielles pour p = oo sont décrites complétement par le théoréme de Nehari (et sa
version vectorielle), qui affirme que pour E C B(¢?) et p = oo, I', appartient a B (Ao FE
si et seulement s'il existe une fonction ¢ € L>(T; B(£?)) telle que @(k:) = ¢(k) pour tout
k > 0. Mais pour des espaces d’opérateurs non injectifs, le fait de relier une telle fonction
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1 a quelque chose qui ne dépend que de E me semble difficile. Une autre idée naturelle
aurait été d’interpoler entre p = 1 et p = 2 puisque souvent les cas p = 2 sont évidents.
Mais je tiens a souligner que méme dans le cas ou p = 2, le Théoréme [16| est non trivial
(et je ne vois pas de fagon directe de prouver le cas p = 2).

On est donc amené a emprunter un chemin détourné. Celui-ci consiste a passer d’un
probléme & un seul paramétre p & un probléme a plusieurs (3 ici) parameétres, de fagon
a « créer de la place » pour pouvoir interpoler. On fait cela en étudiant les matrices de
Hankel généralisées.

Pour «, (3 réels (ou complexes) la matrice de Hankel généralisée de symbole ¢ est définie
par

g = (4" RBG+R)

Le théoréme que 1’'on prouve caractérise les matrices de Hankel généralisées qui appar-

tiennent a SP[E] a condition que av+ 1/2p > 0 et S+ 1/2p > 0.

Théoréme 18. Soient 1 < p < oo et a, 3 > —1/2p. Alors pour toute série formelle ¢ =
Y om0 P(n)2" avec p(n) € E, Fg”g € Sp[E] si et seulement si ¢ € B;/HO“LB (E),.

Plus précisément, pour tout M > 0, il existe une constante C = Cj; (dépendant
uniquement de M) telle que pour tout espace d’opérateurs E, toute telle ¢, tout 1 < p < oo
et tous «, 5 € R tels que —1/2p < a, f < M,

C
SplE] = V(@ +1/20)(8 4 1/2)

Ces résultats étendent des résultats antérieurs de Peller dans le cas scalaire ou dans le
cas ou E = SP ([40]). Dans le cas scalaire, le résultat de Peller exprime donc que le sous-
espace de SP constitué des matrices de Hankel (ou des matrices de Hankel généralisées)
est isomorphe a un espace de Besov. Le cas ou £ = SP montre que cet isomorphisme
est en fait un isomorphisme complet. Le Théoréme [I8| exprime que cet isomorphisme a la
propriété plus forte d’étre régulier dans le sens de [41].

()

-1 o,
O™ el gasoves gy < || 0l gy/rrars g,

+

Les résultats de ce chapitre sont plus a considérer comme des remarques sur les preuves
de Peller plutét que des résultats complétement nouveaux, dans la mesure ou chacune des
étapes de la preuve est semblable a une étape d’une des preuves de Peller qui sont données
dans le chapitre 6 de [40] (mais il y a quand méme du travail, puisque par exemple
contrairement au cas complétement borné, le cas p = 2 n’est pas trivial alors que Peller
interpole entre p = 1 et p = 2). Par souci de complétude je donne cependant des preuves
détaillées de tous les résultats énoncés. L’organisation de ce chapitre est la suivante : je
commence par faire des rappels (sans preuve) sur les opérateurs réguliers puis (avec preuve)
sur les espaces de Besov. Dans une derniére partie je donne une preuve du Théoréme [I§]:
par dualité on est ramené a prouver que ’application ¢ — Fg’ﬁ est réguliere de I'espace
de Besov dans SP. Le cas p = 1 ou p = oo est montré directement, et le cas intermédiaire
en est déduit par un argument d’interpolation.

0.2.4 Annexe [A]

Dans Pannexe [4] je fais quelques remarques et pose des questions sur les fonctions
opérateur-Lipschitz.

Le type de questions auxquelles on s’intéresse est : étant données une norme sur une
algébre de von Neumann et une fonction continue f : R — R, la fonction A — f(A) (définie
pour un opérateur auto-adjoint A par le calcul fonctionnel continu) est-elle Lipschitzienne
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pour la norme que 1’on considére ? (On s’intéresse principalement a la norme d’opérateur
et aux normes LP).

Plus précisément je m’intéresse dans cette annexe a la question de savoir : quelle est
la condition sur l'algébre de von Neuman et sa norme pour que toute fonction Lipschit-
zienne f : R — R reste Lipschitzienne étendue aux opérateurs? On sait depuis longtemps
que pour la norme d’opérateurs, il existe des fonctions qui sont Lipschitziennes mais pas
opérateur-Lipschitziennes, la plus simple étant la fonction f(¢) = |¢|. Pour les normes p, la
question a été longtemps ouverte jusqu’a ce que trés récemment Potapov et Sukochev [47]
y répondent par 'affirmative : tout fonction Lipschitzienne est operateur Lipschitzienne
pour la norme p dés que p < co. Je présente une preuve de leur résultat (c’est une preuve
simplifiée par rapport a la premiére version qui est apparue ; la méme simplification a aussi
été remarquée indépendamment par Potapov et Sukochev).

Cela semble clore définitivement la question, mais je voudrais mentionner le fait que la
dépendance que I'on obtient entre la constante de Lipschitz de f et sa constante opérateur-
Lipschitz est intéressante a étudier (en fonction de psi 1 < p < 0o, ou bien en fonction de la
dimension n pour la norme d’opérateurs sur M, ), et reste encore ouverte pour 1 < p < oc.



Chapter 1

Complete isometries between
subspaces of noncommutative
LP-spaces

Introduction

The study of isometries between Banach spaces has been an active area of research in the
theory of Banach spaces for a long time, see for example the survey [15]. The isometries
between LP spaces were first described by Banach, with a final proof given by Lamperti.
The study of isometries between subspaces of LP-spaces, goes back at least to the 1960’s
with Forelli’s work [16], but the most general result is due independently to Plotkin in a
series of articles in the 1970’s [46] and to Rudin in [50]; see also Hardin [2I]. The reader
is refered the [28, Chapter 2] for a survey.

The study of isometries between whole noncommutative LP spaces has already inter-
ested a few mathematicians, and the final characterization (in the tracial case) was given
by Yeadon in [52]. Recent results were also obtained for non semifinite von Neumann
algebras ([51] and [25]). The study of complete isometries between noncommutative LP
spaces has also been more recently studied by Junge, Ruan and Sherman in [25].

In this chapter we will be interested in the study of complete isometries between
subspaces of noncommutative LP spaces, and the main results are close analogues of the
result for isometries in subspaces of classical LP spaces.

We first recall Plotkin’s and Rudin’s theorem:

Theorem 1.1 (Plotkin, Rudin). Let 0 < p < oo and p # 2,4,6,8,.... Let i and v be two
probability measures (on arbitrary measure spaces Q0 and ). Let finally n be a positive

integer and fi,...fn € LP(1), g1,...9n € LP(v).
Assume that for all complex numbers z1, ...z, € C,

/\1+21f1+...znfn\pd,u:/|1+zlgl+...zngn\pdu. (1.1)

Then (f1,...fn) and (g1,...9n) form two equimeasurable families. Probabilistically,
this means that the C™-valued random variables (f1,... fn) and (g1,-..gn) have the same
distribution.

The following theorem was also proved by Rudin in his paper [50]. It had previously
been proved in weaker forms by Forelli ([16] and [17]).
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Theorem 1.2 (Rudin). Let p and v be as above, and 0 < p < oo, p # 2. Let M C LP(u)
be a (complex) unital algebra (with respect to the point-wise product), and A : M — LP(v)
a unital linear isometry: A(1) =1 and

[1sran= [1anpar  viear
o Then for all f,g € M:

A(fg) = A(f)A(g) Vf,geM

and

A loo = lIflloo-

e If moreover M C L™ orp # 4,6,8,..., then for alln and fi,... fn € M, (f1,... fn)
and (Afi,... Af,) are equimeasurable.

In this chapter similar results are proved in the noncommutative setting (with some
additional boundedness conditions). The commutative LP-spaces have to be replaced by
noncommutative spaces LP(M, ) associated to a von Neumann algebra M with a finite
normalized trace 7, and isometries are replaced by complete isometries. Let us briefly
introduce the vocabulary.

In the whole chapter (M, 7) and (N,7) are von Neumann algebras equipped with
normal faithful finite (n.f.f.) traces. The units of M and N are denoted by 1 and 1
or simply by 1. The traces will always be assumed to be normalized: 7(1) = 1.

When n is an integer, the set of M-valued n x n matrices is denoted by M,, (M), is
identified with the tensor product M,, ® M and is provided with a normal faithful tracial
state 7(W) & tr,, ® 7. Here tr,, denotes the normalized trace on M,,:

1 1
fally - - o
n r(a) n E as,j

1<j<n

trp(a) =

The unit of M, (M) is 1,, ® 1, and will be denoted simply by 1 when no confusion is
possible.

Let 0 < p < oo. If z € M, the “p-norm” of z is denoted by ||z||, and is equal to

Izl = 2]l o (ry < ( (J2[7))77
In the same way, if 2 € M,, (M), ||z[|, denotes the quantity ||z||p,r)). Remark that |[-|[,
is a norm only if p > 1. In this case, LP(M, 1) is defined as the completion of M with
respect to the norm | - ||, (see the survey [45] for more details, see also section [1.2.2). If
p = 00, L*°(M,T) is just M with the operator norm. The space LP(M, ) will be denoted
by LP(M) or LP(7) when no confusion is possible.

As usual, the main modification one has to bring in order to deal with the noncommu-
tativity is the fact that one has to allow operator coefficients instead of scalar coeflicients
in .

In the whole chapter, we will try to use the following notation: unless explicitly speci-
fied, small letters = or y will stand for elements of the von Neumann algebras M or N, a,
b will stand for finite complex-valued matrices viewed as matricial coefficients. Operators
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written with capital letters will be matrices with coefficients in M or A/. The letters z
and A (resp. s and t) will denote complex (resp. real) numbers. In a typical equation like

SIZZkak®$k€Mn(M),
k

it should thus be clear to which set all the z;, ai and x; belong.

At least as far as bounded operators are concerned, the fact that two families of
noncommutative random variables (i.e. elements of the LP-spaces) are equimeasurable
can be expressed by requesting that their x-distributions are the same. Let us recall the
definition of the distribution of noncommutative random variables. If (z;)ie;r C M is a
family of operators in M, its distribution with respect to 7 is the linear form on the free
algebra generated by elements indexed by I that maps a polynomial P((X;);er) in non
commuting variables to T(P((:Bi)iE]). Its *-distribution is the distribution of (z;, x})icr.
The fact that two families of bounded operators have the same *-distributions is known
to be equivalent to saying that they generate isomorphic tracial von Neumann algebras

(Lemma [1.25)).

The main result of this chapter is the following theorem:

Theorem 1.3. Let (M, 1) and (N,T) be von Neumann algebras equipped with faithful
normal finite normalized traces. Let E C LP(M, 1) be a subspace of LP(M,T), and let
u: E — LP(N,T) be a linear map. Denote by id @ u: M,, ® E — M,, ® LP(T) the natural
extension of u to M, (E). Fiz 0 < p < 0o such that p is not an even integer.

Assume that the following boundedness condition holds: E C L*°(M)(= M).

Assume that for all n € N and all X € M, (E), the following equality between the
p-“norms” holds:

110 ® Lag + Xllp = 110 ® Ly + (id @ ) (X)) (1.2)

Let VN(E) denote the von Neumann subalgebra generated by E in M. Then u(E) C
L*(N) and u extends to a von Neumann algebra isomorphism u : VN(E) — VN (u(E))
that preserves the traces, and this extension is unique.

In particular, if E is an algebra, then u agrees with the multiplicative structure of E:
if v,y € E, then u(xy) = u(x)u(y). Moreover, if x € E and z* € E, then u(z*) = u(x)*.

First some remarks: as in the commutative case, the condition p ¢ 2N is crucial.
Indeed in the simplest case when p = 2n and £ = CX is one-dimensional, with X* = X
and Y = u(X) = Y™, then condition holds as soon as the distributions of X and
Y coincide on every polynomial of degree less than 2n, which does not imply that the
distributions agree on every polynomial.

It is also easy to see that it is necessary to allow matrix coefficients to appear in ,
and that the theorem does not hold when is assumed only for x € E. A simple
example is when £ = M = N = M, equipped with its normalized trace tr,, and u is the
transposition map u : (a;;) — (aj;). Then wu is isometric for every p-norm but is not a
morphism of algebras.

However, it is unclear whether the theorem holds if is only assumed for every
x € M, (E) for a fized n (even for n = 2).

When p = 2m is an even integer, the situation is different: it is possible to show that
if holds for n = m, then holds for any n. See Theorem m
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The techniques used in the proof of Theorem do not allow to state the result
when E is a general subspace of LP(M) (i.e. not necessarily made of bounded operators).
Indeed the proof relies on Lemma which says that the x-distribution of a family of
bounded operators characterizes the von Neumann algebra they generate. This result is
known to be false for unbounded operators even in the commutative case (it is the moment
problem). Moreover the proof relies on the expansion in power series of operators of the
form |1 + z|P, which allows to compute the *-distribution of operators (Lemma [1.7). At
first sight this seems to require that the operator x is bounded. However it is possible to
get some results of this kind for unbounded operators using a noncommutative version of
dominated convergence theorem from [12]: see Lemma It is also immediate to see
that Theorem still holds if the boundedness condition is replaced by the assumption
that £ N L>®°(M) (or even ENL> 4+ u=Y (u(E) N L>®) by Theorem is dense in F.

In the case when E is self-adjoint and w is assumed to map a self-adjoint operator to a
self-adjoint operator (which is a posteriori always true, see Lemma, Theoremcan
be deduced from the commutative Theorem Although it is contained in the general
case, this special case is proved in the first section of this chapter, since the proof uses the
same idea as in the general case but with simpler computations.

In the second section of this chapter the main technical results are proved. The first
one establishes the link between the trace of products of operators and p-norms of linear
combinations of these operators (Lemma for bounded operators and Lemma for
the general case). The second one (Theorem proves that in the setting of Theorem
if £ C L®(M) then u(E) C L>®(N).

In section the main theorem (analogous to Theorem is derived from Lemma
(Theorem and Theorem and also reformulated in the operator space setting
(Corollary . We also derive an approximation result and we discuss the necessity of
taking matrices of arbitrary size in (but this question is mainly left open).

In a last part, some other consequences of the results of section [1.2]| are established,
dealing with maps defined on subspaces of LP which have an additional algebraic structure
(e.g. self-adjoint, or stable by multiplication...). In particular a noncommutative analogue
of Rudin’s Theorem [1.2]is derived. We end the chapter with some comments and questions.

1.1 Self-adjoint case

In this section we prove the special case explained in the introduction as a consequence of
the commutative theorem.

Let pe R\ 2N, E C M and u: E — A be as in Theorem Assume furthermore
that E is self-adjoint (if 2 € E, z* € E) and that u(z*) = u(z)* for z € E.

Let us sketch the proof in this special case: for any self-adjoint operators z1,...x,
in F, denote y, = u(xy). Then for any self-adjoint matrices a1, ...ay, since ), ar ® xp,
and ), ar @ yi, are self-adjoint, they generate commutative von Neumann algebras, and
Rudin’s theorem can be applied to deduce that they have the same distribution. The
conclusion thus follows from Lemma and from the following linearization result (and
the fact that F is spanned by self-adjoint operators):

Lemma 1.4. Let z1,...x, € M and yy, ...y, € N be self-adjoint operators. Assume that
for all m and all self-adjoint m x m matrices ay ... ay, the operators a1 @ r1+...a,  Tp,
and a1 @Y1 + ... an @Y have the same distribution with respect to the traces tr,, ® 7 and
tr, QT

dist(a1 @ 1+ ... ap, @ x,) = dist(a1 @Y1 + ... ap @ Yp) (1.3)
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Then (z1,...xy) and (y1,...Yyn) have the same distribution.

Independently of our work, this lemma was obtained in [10] using random matrices,
and was used to give a new formulation of Connes’s embedding problem.

Here we provide a different and elementary proof that consists in exhibiting specific
matrices aq,...a,. The idea is the same as in the proof of the general case of Theorem
[I.3] but here the computations are simpler.

In fact the result of Collins and Dykema is apparently slightly stronger than the one
stated above in the sense that they only assume that holds for any self-adjoint
matrices a; with a spectrum included in [c, d] for some fixed real numbers ¢ < d. But it is
not hard to deduce their result from the one above. More precisely, m € N and ¢ < d being
fixed, if one only assumes that holds for any self-adjoint matrices a; of size m with
a spectrum included in [, d], then it holds for any self-adjoint matrices a; € M, (without
restriction on the spectrum). Indeed, if ¢ < A < d and a; € M, are arbitrary, then for
t € R small enough, the matrices Al,, +ta; all have spectrum in [c, d]; and the distribution
of > (1,, + ta;) ® x; for infinitely many different values of ¢ is enough to determine the
distribution of Y a; ® z;.

Proof of Lemmal[1.} Let m be an integer and take (i1,...%m) € {1,2,...n}". We want
to prove that

T(Q?ilxi2 .. a:zn) = ?(yilyig .. 'yin)'

Relabeling and repeating if necessary the x;’s and y;’s, it is enough to prove it when
m = n and iy = k for all k. We are left to prove that

T(z122 ... Tn) = T(Y1Y2 - - - Yn)- (1.4)

Take 21, ... 2, € C and consider the n x n self-adjoint matrices ay, = zpex x+1+Zxer+1.k
if k < nand a, = zpen,1 +Zne1,n; the expression (tr, @7) (Do), ar ® x)") can be viewed
as a polynomial in the z;’s and the Z;’s, and the coefficient in front of z122. .. 2, is equal
to 7(x122 ... xy,). This is not hard to check from the trace property of 7 and from the fact
that for a permutation o on {1;2...n},

trn(eo(l),a(l)—i-l mod n€s(2),6(2)+1 mod n - €o(n),oc(n)+1 mod n)

is nonzero if and only if ¢ is a circular permutation, in which case it is equal to 1/n.
Thus (1.4) holds, and this concludes the proof. O

Remark 1.5. The following property for n-uples a1, ...a, of m X m matrices is the key
combinatorial property used in the proof above and will later on be considered in this
chapter:

(1.5)

1 for a circular permutation ¢ on {1;2;...n}.
trm(aa(l)aa(Q) s aa(n)) = { { }

~ | 0 for another permutation o.

A permutation o is said to be circular if there is an integer k such that o(j) = j + k
mod n for all 1 < j < n.

As noted in the proof above (and it was the main combinatorial trick in the proof), the
matrices a; = nl/”ej,jﬂ mod n € M, have the property . But in fact in section
it will be interesting to find n matrices a ... a, with the same property but with smaller
size. And this is possible with matrices of size m for m > n/2:



26 CHAPTER 1. SUBSPACES OF NONCOMMUTATIVE LP-SPACES

If n = 2m, then the following choice of the a; € My, (j =1...n) works:

a25—1 = €55 forj: 1...m
a2; = €5.5+1 forjzl...m—l

a2m = Mem,1
If n = 2m — 1, then the following choice of the a; € M, (j =1...n) works:

a25—1 = €55 forjzl...m—l
a2; = €45.5+1 forjzl...m—l

A2m—1 = MEm,1.-

1.2 Expression of the moments in term of the p-norms

In this section, we prove that the trace of a product of finitely many operators or of their
adjoints can be computed from the p-norm of the linear (matrix-valued) combinations of
these operators. The main results are Lemma[I.7]for bounded operators and its refinement
Lemma for unbounded operators. We also prove that a map u as in Theorem
maps a bounded operator to a bounded operator (Theorem .

1.2.1 Case of bounded operators

First suppose we are given x1, 3, . . . ¥, elements of the von Neumann algebra M (here the
x;’s are bounded operators), and e1,...e, € {1,x}. If z is an element of a von Neumann
algebra and ¢ € {1, %}, let 2% denote x if ¢ = 1 and a* if ¢ = % (for a complex number z,
z* =7Z).

For clearness, we adopt the following (classical) notation: for every z = (z1,...2y) €
C" and k = (k1,...ka) € N, we write 2% = [, zfj and z* = T[; ij. In the same

way, one writes z° = [[; zjj. If fis a formal series f(z) = > ) jenn ar, 2"z, we denote
f(2)[z%2Y] = ax,;. We will also denote by (Z ) the generalized binomial coefficient defined,

for 5 € C and n € N, by:

<5> —B(B-1)...(8—n+1)/nl (1.6)

n

Pick n matrices a,...a, with complex coefficients (say of size m). The a;’s will soon
be assumed to satisfy (L.5)). For all z = (21, 22, ... 2,) € C", denote by S, € M,, (M) the

matrix
n
SZ:S(zl,...zn):1+sza§j®a:j. (1.7)
j=1

The following combinatorial lemma justifies the choice of the a;s:
Lemma 1.6. Denote by a(e) or simply o the number of indices 1 < j < n such that
gj=x*and ejr1 =1 (again if j =n, enqp1 = €1).

If the a;’s satisfy (1.5) and S, is defined by (L.7)), then for any integer k,

7(m) ((5;52 - 1)’9[26]) = 725252 .. xi")k(n f k) (1.8)
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Proof. Recall that

* — ACi . e * S o Ci* EI * o
S8, —1= E zja; @ x; + E zja;y Qxj + g Zizja;" a; @ ;T

Jjsn Jjsn BL,j<n
For one of the terms of )
Ej . * k . . L . Ej L Ej . Ej
[1;z7 in (525. —1)%, it is necessary that ¢; = 1;.3nd then zja/ ® z; = za; ® x.
In the same way, for one of the terms of >, Zja; ® z} to bring a contribution, it is

i<n zjajj ® x; to bring a contribution to the coefficient of

— E4q% €5 E4
necessary that €; = « and then zja;” ® 27 = z;a; ® x;”. Last, for one of the terms of
N : g5 . .
> i<n zizjaf’*aj] ® xfx; to have a nonzero contribution, the values of €; and €; must be
W =
N : g5 . E4 . E4 .
gi =+ and £; = 1, and then ziz]a?*aj] Qxir; = z'z"aja; @ xflxj]. Thus if one denotes

J
_ G
y]_$]7

k
(Y Saout ¥ s o] |
1<j<n i,5,6;=* and ;=1
Developing and using the assumption (1.5 on the a;’s, one gets
n
7 ((S;‘Sz - 1)k> [2°] = Z Crm (Yyie1 - - Yi—1) » (1.9)
=1

where the indices have to be understood modulo n and where C; denotes the number of
ways of writing formally the word ;9,41 - . . y;—1 (which is of length n) as a concatenation of
k “elementary bricks” of the form y; (for 1 < j < n) or y;y;41 with e; = x and ;41 = 1.
Each of these bricks has length 1 or 2. If o; denotes the number of apparitions of the
subsequence #,1 in the sequence €;,€41 mod ns---€l—1 mod n (nOt cyclically this time!),
then for C; to be non zero it is necessary that £k < n < k + o;. In that case Cj is equal
to the number of ways of choosing the n — £ bricks of size 2 among the «; possible, the
other bricks being of size 1. Thus C; = (noilk) The fact that 7 is a trace then allows to

write (|1.9) as

) (528. = D! [+

Ty Yn) (noilk)

l
— £1 €2 En (%]
T (2]t ..y )Z<n—k>

It remains to notice that oy = a — 1 if ;_1 = % and g = 1 (which is the case for «
different values of 1), and that oy = « otherwise (for the n — « remaining values of [). The
preceding equation then becomes

P (818, 1)F) (7] = 7 (a1 o) <O‘ <3: ;) tn=e) <nfk)> |

Equation ([1.8) follows from the elementary equality

a(g:;>+<n_a>(nfk>:k(nik). 0
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Note that the above proof only uses combinatorial arguments, it therefore also holds
with minor modifications when the assumption x; € M is replaced by x; € L"(M, 1) for
all j.

The following lemma establishes the link between the p-norm of S, and the trace of
the product of the x;j .

Lemma 1.7. Let 0 < p < co. Let ay,...a, be matrices satisfying (1.5)), and, remembering
(1.7), define the function ¢ : R™ — C by

( )= m |,
P Tn) = 2m)" Jio,27]n

Then ¢ is indefinitely differentiable on a neighborhood of 0, and if « is defined as in
Lemma

S (rlewl, e rneie") HZ H exp(—i0;)%db; . .. db,.
J

d™ 1
—(0,...0)= 1
dry ... drnsp( ’ ) 1m0 ri...Tn

r(aSa .. 25 f:(n — k) <n"’£ 2k> <‘;‘> (1.10)

k=0

o(r1,...m0) =

Proof. The idea of the proof is the following: S, is a small perturbation of the unit, which
allows to write |S,|” as a converging series. Equation ((1.10]) follows from the identification
of the term in front of [, zj.j . First write:

* — .57 . 7 * . qCi% g5 * o
S8, = 1+ E zja; @ x; + g zja; ® xj + E Zizja;" a; @ T;x;
j<n j<n ij<n
= 14+ E Cj.
1<j<n2+2n

In the last line, we denoted by C; the n? 4 2n terms that appear on the preceding line.
Remark that if sup |zj| = 6 < 1, then ||C}|| < 6K where K = max; (||a;||[|z;]], [|a;]|*[|2;]?).

By the functional calculus for bounded operators, for z small enough (i.e. [[1—S%5.| <
1), one has:

.o \p p/2 " P/2
(53872 =" < 2) (818 —1)F =) < 2) > Cj, ...Cj,. (1.11)
k>0 k>0 1<1,- <2420

The series above converges absolutely and uniformly when § = sup |z;| is small enough,
i.e. K(n?+2n)é < 1. Indeed, ||Cj, ...Cj, || < $FK*, and since (p,éz) tends to 0 as k — oo,

one has
p/2 p/2
(k)cjl...cjk <k>

Z Z sup FKF < .
We can thus reorder the terms of the sum (.11} along powers of z; and Z;:

< Z(n2 + 2n)*

k>0

k>0 1<j1,...jp <n2-+2n 2310V

S.P = Y At ahnEl 2 Dy, (1.12)
k,leNn

where Dy are some operators in M, ® M, which are in fact some polynomials in aj' ®
Z1...a5" @ xy and their adjoints. Taking the trace 7(™) on both sides of (T.12) , one gets
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b
152115 = Z App 2t kgl gl (1.13)
k,lENT

In this sum, we wrote k = (ki,...k,) and [ = (l1,...1,). The coefficient \;; is equal

Akl = Z <p§2> <(S*S 1) ) [2FZ).

F<NU k]

to

If E is defined as the set of indices (k,!) € N® x N such that k; —[; = 1if ¢; = 1 and
k;j —1; = —1if ; = *, then for r1,...7r, small enough, we are allowed to exchange the
series and the integral in the definition of ¢(rq,...7,) and we get the following expression
of ¢ as a converging power series:

o(ry,... E Akl rkﬁ'll .. .TZ"H”.
(k,)eE

The two left-hand sides of ([1.10) are thus equal to Axo ;0 where k:? =1life; =1, k;-] =0
else, and l? =1- k:?. In other words, Aro 0 is the coefficient of [, zj.j in (1.13)):

dm) 0 . y 1 ) .
mgp( ---0) = ,«17.}23_,0 m%o(rb o Tn) = Ago g0, (1.14)

with

v =3 (1) 70 (525 - 1) 1. (1.15)

Jj€EN J

def
=7

But from Lemma

«
=7 (5252 ... 25 g .
i (7' 25 n)]<n_j>

Putting this equation together with (1.14) and (|1.15)), we finally get (1.10), which
proves the Lemma. ]

Remark 1.8. In the case when p/2 is an integer (i.e. p is an even integer), the same
result holds in a more general setting, when the x;’s are not bounded but are in the
noncommutative LP space associated to (M, 7). Indeed, then the sum on the right-hand
side of makes sense as a finite sum of elements which all are in L!'(M, 7). Indeed,
from Holder’s inequality, a product of k elements of LP is in LP/*. This allows to take the
trace in (|1.11)) and to follow the rest of the proof.

Of course when p is different from an even integer, the proof does not apply for un-
bounded operators: it is indeed unclear what sense should be given to the series ,
and more importantly taking the trace to get makes no sense. However, using a
noncommutative dominated convergence theorem from [12], it is possible to modify the
proof and get similar results with unbounded operators.
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1.2.2 Unbounded case

The reader is refered to [12] for all facts and definitions on measure topology and gener-
alized s-numbers. Just recall that if (M, ) is a von Neumann algebra with a n.f.f. nor-
malized trace, the ¢-th singular number of a closed densely defined (possibly unbounded)
operator Y affiliated with M is defined as

w(Y) =1inf {|[YE||, E is a projection in M with 7(1 — E) < t}.

The map t — u¢(Y) is non-increasing and vanishes on ¢ > 1, and u:(Y) < oo if t > 0.

Moreover the measure topology makes the set of 7-measurable operators affiliated
with M a topological *-algebra in which a sequence (Y;,) converges to Y if and only if
(Y =Y,) — 0 for all ¢ > 0. More precisely, the following inequalities hold for any positive
real numbers s,¢ > 0 and any (closed densely defined) operators T and S affiliated with
M (Lemma 2.5 in [12]):

p(AT) |A|pe(T') for any A € C (1.16)
) = pIT]) = (1) (1.17)
pers(T+5) < pe(T) + ps(S) (1.18)
Han(TS) < pe(T)palS). (1.19)

Another property from [12, Lemma 2.5] is the fact that us(f(7)) = f(us(T)) for
any operator T' > 0 and any continuous increasing function on R with f(0) = 0. As a

consequence, for any continuous function f on R with f(0) = 0 and any self-adjoint T’
affiliated with M,

p(f(T) < sup [f(u) (1.20)
lul|<pt(T)

For any 0 < p < oo, the noncommutative LP-space LP(M,7) is identified with the set
of closed densely defined operators Y affiliated with M such that the function ¢ — p(Y)
is in LP([0, 1], dt). Moreover, the p-norm of this function is equal to ||Y||,.

We now fix 0 < p < oc.

The first fact we prove is the following lemma, which basically says that when the x;’s
are unbounded operators affiliated with M, the development in power series of | S|P
still holds, but in the measure topology instead of the norm topology.

Lemma 1.9. Let X be a closed densely defined operator affiliated with a von Neumann
algebra (M, ). Forr >0, denote by Y, the operator

V=1 +rX)*(1+7rX)—1=rX +rX*+r2X*X.
Then as v — 0, the following convergence holds in the measure topology:
1 » " (v/2 j
14X —; ; Y/ | —o. (1.21)

Proof. We first claim that for all t > 0, sup, 4 (Y, /r) < oco. Indeed, from (L.18), we
have:

pae(Yo/r) < (X +X%) 4 u(rXX)
(X + X7) 4 rag(X°X)



1.2. EXPRESSION OF THE MOMENTS IN TERM OF THE p-NORMS 31

The claim follows from the fact that u:(z) < oo for all closed densely defined operator .

Fix now t > 0 and take M = sup,q 1(Y7/r). Then (Proposition 2.2 in [12]) if
E = E|_pym(Yr/r) and 7 < 1, we have 7(1 — E)) <t and by the functional calculus, since
Y and E commute and are self-adjoint,

(1+Y,)"E = (E +Y,E)"*E = ; <p/.2> (Y,EYE = ; <p§2> Y/E.

The previous series converges in the operator norm topology if rM < 1, since in that case,
|Y;E| <rM < 1. Then

s ()] < | E (e () 8
rh ] rh =

=0 J

(]

j=n+1

This proves that (7'*" <\1 +rX[P =370, (’?2) Y/ )) tends to zero as r — 0 for every
t > 0. This concludes the proof. O

Let us denote by @, the linear projection from the space of complex polynomial Clr]
to the subspace C,[r] of the polynomials of degree at most n given by: Q,(rF) = r*
if » < n and Qu(r¥) = 0if k > n. If V is any vector space over the field of complex
numbers, this projection naturally extends to the space of polynomials with coefficients in
V' (this extension if simply the tensor product map id ® @, if one identifies the space of
polynomials with coefficients in V' with the tensor product V @ C|r]). For simplicity this
extension will still be denoted by @,. The following result follows from Lemma [1.9

Corollary 1.10. Let X and Y, be as above (for any r > 0). Then as r — 0,

1 " (v/2\ .
— |1 XP-Q, Y/ .
(X -Q Z<j) 2] =0

J=0

Proof. 1t follows immediately from Lemma and from the fact that if T is affiliated
with (M, 7) and k > n, then

1
—nrkT — 0 in the measure topology as r — 0. 0
r

The next step is to get a domination result necessary to apply Fack and Kosaki’s
dominated convergence theorem. More precisely, we prove:

Lemma 1.11. With the same notation as above, there are constants C' and K depending
only on p and n such that for allr <1 and all 0 <t <1,

He ri” 1+ X = Qn(} (pf)Yrj) < Clpyyre (X)™ + (X)) (1.22)
=0
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Proof. Denote by my, the left-hand side of ([1.22]):

e 1 "2\
mer S | o (1P = (Y (7))
7=0

Fix an integer K such that K > 21227t and K > 3 x 227t Define a real number s
by s =t/K. To prove that m;, < C(us(X)"™ + ps(X)P), we consider two cases, depending
on the value of rus(X).

First assume that rus(X) > 1.

Note that there are some real numbers ). indexed by the integers k¥ > 0 and ¢ =
(e1,€9,...€1) € {1,%}* such that for any r > 0 (and any n),

Qn i(pf)w :Zn: ST ArEXTXT X,

j=0 k=0ce{1,x}*

Thus, using (T.18) 2"*! times, one gets

n
Py < e (L TXP) Y Y T DelrF g one (XX LX)
k=0ece{1,x}k

Since t/2"*! > t/K = s, we have that

pejonir (L X[P) < ps(J1 +rXJP)

ps (|1 +r X1

a1+ 7 X)P

(14 rps(X))P

20(r s (X))

{ r2Pus (X)P ifp>n
2P (X)" ifp<n

IN A

IN

In these computations, the fact that us(f(T)) = f(us(T)) for any operator T' > 0 and any
continuous increasing function on R with f(0) = 0 was used, together with the assumption
1 <rps(X).

From ([1.19)) and (1.17)), we get, for 0 < k < n,

ut/2n+1 (XleEZ .. Xsk) S Mt/(k2n+1)(X)k.

Since t/(k2"t1) > t/K = s, we have that

1
T g (XX LX) <P (R < g (X
This concludes the proof that my, < C(us(X)P + ps(X)"™) for some C, in the case
when rus(X) > 1.
Let us now assume that rus(X) < 1. We want to prove that in that case, there is a
constant C' not depending on r and ¢ such that

r'myy < Cr'us(X)". (1.23)
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In the same way as above, write

- auy () v =

§=0
n p/2 4 2n ~

perxp -3 (e 3 0Y Ratxnamx,
i=o N k=n+1ee{1,x}F

for some real numbers A, . depending neither on 7 nor on ¢.

Again, using (|1.18)), one gets

n
"My < pyjgznir |1+ rX[P — Z (p/,2> Y| +
=0 N7
2n
D> MeerF e (XX LX),
k=n+1ee{1,x}*

The second term is easy to dominate using that rus(X) < 1 and that if n < k < 2n, then
t/R2 L > /K = s

boons (XX LX) < o (X)F < g (OF < g (X

For the first term, we use ([.20) for T = Y, and f(z) = (1 +x)?/?2 = 3}, (pf)ack (if
x > —1, and say f(z) = f(—1) else). Indeed, we have that f(z) = o(z") as z — 0, in
particular there is a constant Cj such that |f(z)| < Ci|z|" if |z| < 3. If one proves that
fie22nt1(Yy) < 3rps(X), we thus have that

n » A
e (13 =3 ()32 2 Conecar,

: J

Jj=0

which would complete the proof of (|1.23]).
We are left to prove that ji;j92n+1(Y;) < 3rus(X). But since t/22"t! > 3t/K, we have

that p1y/92n+1(Yr) < pgs(Yr), and thus using (1.18), one gets

pej22nt1 (Yr) < p3s(FPX* X 47X +1rX*) < rPug(X*X) 4 rps(X) + rps(X)
= (rue(X))? + 2rps(X) < 3rps(X). O

It is now possible to use Fack and Kosaki’s dominated convergence theorem [12, The-
orem 3.6] to prove the main result of this part, which is the unbounded version of Lemma
1.7

Lemma 1.12. Let 0 < p < co. Assume that x1...x, € LP(M,T) and take €1,...e, €
{1,%}. If xj € L™(M,T) for all j, then the trace T(x7" ...x5") “can be computed from the
p-norms” of linear combinations of the x;’s with coefficients in M,, for some m.

More precisely, letm € N and aq, ...a, € My, satisfying (as explained in Remark
such a choice of the a;’s can be achieved for any m > n/2). Define o as in Lemma
and denote Vz € C*

n
SZ =1 —i—sza;j ®IL’]‘.
j=1
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Let Z = (Z1, ... Zy) be a (classical) C"-valued random variable where the Z;’s are uni-
formly distributed in {exp(2ikn/3),k = 1,2,3} and independent. Denote by E the expected
value with respect to Z. Then

1 " —c —0 : @ p/2 «

SEIS2IE 127 | == ratay ol o =m( 7 ) () (124
7j=1 k=0

Proof. The first step of the proof consists in using Corollary and Lemma [1.11] in

the von Neumann algebra (M,, (M),7™) in order to apply [12, Theorem 3.6]. Fix

z € C", and denote Y, = S},S,, — 1 (the dependence of Y, on z is implicit). If T, =

i <\Srz|p —Qn (En, (p/z) Yj>)) then from Corollary|1.10 7. converges to 0 in measure,

and from Lemma [l T, is dominated in the following way: there are positive constants
C’anszuchthatforany0<t§1andany0<7"<1,

11 (Tr) < Oy (X)P 4 payic (X)), (1.25)

where X =377, zja;j ® x;. In particular, X € LP(M,, (M), ™)) N LM (M, (M), (™).
To deduce that

n
%T(m) 1S4 [P — Z <p§2>YTJ 0, (1.26)
7=0
it is thus sufficient to prove that the domination term C'(p/x(X)P + ey (X)") is (as a
function of ), in L!(Ry,dt) (see [12, Theorem 3.6]). But this follows from the fact that,
since X € LP(M,, (M), 7™) (resp. X € L"(M,, (M), 7(™)), the function ¢t — ps(X) is
in LP(Ry,dt) (resp. L™(Ry,dt). This proves (L.26).

Now replace z in by the random variable Z defined above, multiply by H?Zl Zaj
and take the expected value. Since z is no longer fixed, Y, is denoted by Y,.(z) to remember
that Y, depends on z. Since Z only takes a finite number of values, equation then
becomes:

n
e o (1177150 -0 () L7 )| =20
J /o
7=0 J=1
Note that Q37 (p/g) (2)7) is, as a function of z = (21, ... z,), a polynomial in the

2n variables z; and Zj with coefficients in L'(M,, ® M, 7(™)) (this follows from Holder’s
inequality and from the fact that x; € L™(M,7)). Moreover, if P(z1,...zy,) is such a
polynomial, i.e. P(z) =), leN k| +l|<n Xk’lzkzl, then

n
11Z7P2)| = X,

where k% € N™ and [° € N" are again defined by k:? =1lifeg =1, k:? = 0 else, and
l? =1- k?. If Dyo o denotes the coefficient in front of A7 in >0 (pf)Yl(z)j , then
one has:

Qn Z (pg 2) H Z7Y,(2)))| = E Qn<§nj (?) ﬁZ‘le(rZ»

j=0 j=0 Jj=1
= TnDkOJO .
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Taking the trace 7(™), dividing by 7" and taking the limit as 7 — 0 in (T.26]), one gets

1

n
prl 11Z7 1521 | —= "™ (Dyo o).

Jj=1

This shows ((1.24)) since from Lemma

7™ (Dyo o) = r(a5a2 .. a5r) f:(n — k) <n”£ ? k) (Z) 0

1.2.3 Boundedness on E N L? of isometries on £ C LP

In this subsection and in the next one, we study how isometric properties for one p-norm
imply boundedness (and isometric) properties for the g-norms for ¢ # p.

Here we first show that a unital map which is isometric between subspaces of noncom-
mutative LP-spaces for 1 < p < oo is also isometric for the 2-norm. This is a noncommuta-
tive analogue of [16, Proposition 1], where the author proves that a unital isometry between
subspaces of commutative probability LP-spaces is also an isometry for the L?-norm, and
our proof is inspired by Forelli’s proof.

Then in Theorem [1.16] we will prove that any unital and 2-isometric map between
subspaces of noncommutative LP-spaces for 0 < p < oo, p ¢ 2N is also isometric for the
2n-norm for any n € NU {oo}.

Theorem 1.13. Let (M, 1) and (N,T) be as in the introduction, and 1 < p < cc.
Let x € LP(M, 1) and y € LP(N,T) such that for any z € C,

11+ 2z, = 11 + zyllp. (1.27)
Then ||z||2 < oo if and only if ||y|2 < oo, and ||z||2 = ||y||2-
The following Lemma will be used; its proof was communicated to me by Pisier.

Lemma 1.14. Let A be a bounded operator on a Hilbert space H, and p > 1. Then
1+ AP+ 1 AP+ |1+ AP+ |1 - AP >4 (1.28)

Proof. By the operator convexity of the function t — t" for 1 < r < 2 and by an induction
argument, it is enough to prove (1.28)) for p = 1. For convenience we denote by C' =
1+ Al + |1 — A+ |1+ A%+ |1 — A%

By [3, Corollary 1.3.7], for any operator B on H, the following operator on H @& H is

positive:
|B| B
B |B*|)°

Replacing B respectively by 1+ A, 1 — A, 1+ A* and 1 — A* and adding the four resulting
positive operators, we get that the following operator is also positive:

(5 o)

It is classical that this implies that C' > 4 (see for example [3, Theorem 1.3.3]). O
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Remark 1.15. The Lemma is stated for bounded operators, but by approximation it also
applies to closed densely defined unbounded operators.

The inequality does not hold for 0 < p < 1 (take A = 1). But if one could find
a finitely supported probability measure v on C\ {0} such that

/(Il F AP 4 |1+ 2A*P) dv(z) > 2, (1.29)

then one would be able to get the conclusion of Theorem also for the values of p for
which ([1.29) holds.

Proof of Theorem [I.13, If ||z||2 = ||y|l2 = oo, there is nothing to prove.

If [|z]2 < oo and ||y||2 < oo, then the fact that ||z]|2 = ||y||2 follows from Lemma [I.12]
with n =2, m = 1 and (1,e2) = (%,1) (and hence v = 1). Indeed, by the hypothesis
, the left-hand side in equation does not change if one takes x1 = o = x €
LP(M) or &1 = 29 =y € LP(N). Therefore the right-hand sides are also equal:

o () () o (o) 7))
This implies that ||z|3 = 7(z*z) = 7(y*y) = ||y||3 since 2(P}?) + (P[*) = p*/4 # 0.

Hence we only have to prove that if ||z||2 < oo, then ||y|j2 < co.
Denote by C(z) and C(y) the following operators:

Clz)= > (l4wzf’ +[1+wa’P -2)
we{l,i,—1,—i}
Cy)= >, (M+wyP+1+wy -2

we{l,i,—1,—i}

By Lemma C(x) and C(y) are positive operators, and by Lemma C(rz)/r?
(resp. C(ry)/r?) converges in measure to p?(z*x + zx*) (resp. p*(y*y + yy*)) as r — 0.
Moreover, for any r, the hypothesis (1.27)) implies that

T7(C(rz)) =2 Z |1+ wrz|) — 8 =7(C(ry)).

we{l,i,—1,—i}
By Fatou’s Lemma (|12, Theorem 3.5]), we thus have that
20%|lyll3 =7 (#*(y"y + ")) < liminf7(C(rz)/r?).

We now use Fack and Kosaki’s dominated convergence theorem [12, Theorem 3.6] to
prove that 7(C(rz))/r?> — 2p?||z||3. By the domination Lemma and the property
(1.18) of singular numbers, there are constants C, K > 0 such that

p(C(rz) /1?) < Clpyic(2)? + pyyre(@)?).

As in the proof of Lemma this is enough to deduce that
lim ~(C(ra) /r?) = 7 (nn% C(rz) /rQ) = 2p%|z2.

This concludes the proof. ]
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1.2.4 Boundedness on E N L?" for all n of 2-isometries on F C L?

Here we prove that a unital 2-isometric map between unital subspaces of noncommutative
LP-spaces maps a bounded operator to a bounded operator. The general idea is to prove
by induction on n that such a map is also an isometry for the g-norm when ¢ = 2n and
to make n grow to co. The idea of the proof is similar to the proof of Theorem [I.13] The
precise statement is:

Theorem 1.16. Let 0 < p < oo, p not an even integer. Let x € LP(M,T) and y €
LP(N,T) such that, for any a € M (C)

M+a@zl,=t+aey],.

Then for any n € N* U {co}, z € L*(M) if and only if y € L**(N'), and when this holds
[%]l2n = [lyll2n-
The Theorem is proved with the use of a classical 2 by 2 matrix trick, Fatou’s Lemma

and expansions in power series of operators of the form |1 + a|P for a satisfying a® = 0.
More precisely, for such an a, we derive an expression of the following form (Corollary

and Lemma :

N
L+af +[1—af’ + [T+ a P + 1= a*[" =Y Aafal + Agfa*|>
n=0
and are able to use a qualitative study of differential equations (Lemma [1.21)) to prove the

positivity (or negativity) of the difference of the two above terms.

Lemma 1.17. Let a be an element of a *-algebra such that a®> = 0. Then if one denotes
by a1, a2, az, ay the erpressions

a1 =a*a+a+a*

as=a*a—a—a*

az3 =aa* +a-+a*

a1 =aa*—a—a*

then for any integer m > 1,

4
Z aj' = 2Py (a*a) + 2Py (aa”),
j=1

where the polynomial Py, is defined by

Po(X) <X+\/)2(2+4X> . (X—\/)2('2+4X>

Proof. We can assume that a is a free element satisfying a® = 0, so that there are well
defined polynomials A,,, By, Cp, and D,, in R[X] such that

for any X € RT. (1.30)

(a1)™ = Ap(a*a) + aBp(a*a) + Cp(a*a)a™ + aDy(a*a)a™.
Thus we can write

aj' = 2Py (a*a) + 2Py (aa”)

4
=1

J
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with P, = A, + XDy, € R[X].
It is easy to check that the sequences of polynomials (A,,), and (D), (and hence
(P,)) satisfy the following induction relations:

Aya(X) = X (A1 (X) + Ap(X)) ifm >0
Dyns2(X) = X (Dt (X) + D(X)) i m > 1
Pria(X) = X (Ppi1(X) + Po(X)) ifm>1

=X
=X

But the right-hand side of ([1.30|) also satisfies the same relation, it is therefore enough
(and trivial) to check that equality (1.30) holds for m = 1 and m = 2. O

Lemma 1.18. Let a be a closed densely defined operator affiliated with a von Neumann
algebra (M, 1) such that a®> = 0. Let a;,i = 1,2,3,4 be as in Lemma . Then for any
continuous function f:[—1,00) — R,

4 * * )2 * fa — “a)? ’
Zf(ai)mZZf(a a—+ (a2a) + 4a a>+2f<aa (a2a) +4a a>+
j=1

2f (aa* + (a;*)z +4aa*> Lo (CLCL* _ (G;L*)2 —|—4aa*> _ 4](.(0) (131)

Proof. Lemma, implies that (1.31)) holds when f is a polynomial. By continuity
of the continuous functional calculus (with respect to the measure topology when a is
unbounded), (|1.31)) thus holds for any continuous f. O

Corollary 1.19. Let 0 < p < oo and a, as above, satisfying a®> = 0. Then
N+af +]1—aff + 1+ a*P +]1—a*P =2¢(a"a) + 2¢(aa™) — 4,
where 1 is the function ¢ : Rt — R defined by

w(t) = <1+t+\/t2+4t>p/2+ <1+t—\/t2+4t>p/2
L LzverR)

2

Proof. This is immediate since with the notation above, |1+ af’ = (1 +a1)?/?, |1 — alf =
(1+a2)??, 1+ a*P = (1 +a3)?? and |1 — a*]P = (1 + ay)?/? O

Let us study the function .
Proposition 1.20. The following properties hold for 1:

1. % is a solution to the following differential equation on R*:

2
(£ +4t)y" + (t+2)y — %y = 0. (1.32)

2. 1 has an expansion in power series around 0, more precisely for |t| < 4,

o)=Y sz I ( - k2> =3 (1.33)

n>0 " k=0 n>0
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3. For any 0 < p < oo, for any t € R and any N € N,

N
nf >0 ifp>2N or [N — L] is odd.
w(t) - z_;))\nt { <0 otherwise. ’ (1.34)

In this proposition, for a real number ¢, the symbol |¢| denotes the largest integer
smaller than or equal to t.

Proof. Checking is just an easy computation, the details are left to the reader. It is
also easy to see that 1 has an expansion in power series around 0, and follows from
the fact that both left-hand and right-hand sides of ([1.33)) satisfy (1.32)) and have value 2
att = 0.

Let us prove . Let us fix p and N. As a function of ¢, the left-hand side of ([1.34))
satisfies the following differential equation:

2

(2 + 4t)y" + (t+2)y — %y = (2N + 1)(2N + 2)An41tY.

Moreover, shows that the left-hand side of ([1.34]) and its derivative has the same
sign as An4+1 when ¢ is small (with ¢ > 0).
Note also that Ayy1 > 0 if p > 2N or if [N — £ is odd, that Ay41 < 0 else.

The fact (3)) thus follows from Lemmall.21{applied to & (w(t) — Zfzvzo )\nt”) depending
on the sign of An,1.

Lemma 1.21. Let a, b, ¢ and d be continuous functions on R™ such that for anyt > 0,

a(t) >0
c(t) <0
d(t) >0

Let y be a C? function on Rt solution of ay” +by' +cy = d, and to > 0 such that y(tg) > 0
and y'(to) > 0. Then y(t) > 0 for any t > to.

Proof. We prove that y/(t) > 0 for any ¢t > tyo. Assume that it is not true, and take
t1 = min{t > to,y'(t) = 0}. Since y'(t1) = 0 and y'(t) > 0 if tp < t < t;, we have that
/"
Yy (tl) S 0.
On the other hand, since y' > 0 on (to,t1), y(t1) > y(to) > 0. Thus y"(t1) = (d(t1) —
c(t1)y(t1))/a(t1) > 0, which is a contradiction. O

It is now possible to derive the main result of this part:

Lemma 1.22. Let 0 < p < 00 and (\y)n>0 € RY defined by (1.33). Take a € LP(M,T)
such that a® = 0, and fiz an integer N > 0 with Ay # 0.

1. ]f H(IHQN,Q < 0

N—-1
o 1
lla|3V < ll?nglf IAiEN <||1 +ta|b + |1 —tal[) —2 -2 Z )\nt%Ha@Z) (1.35)

n=1
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2. Moreover, if ||allan < 00, the previous inequality becomes an equality. More precisely,

n=1

N—1
. 1
lall5N = }1_{% AN (Hl +tall) + |1 — tal[h — 2 — 2 Z /\nt2"HaH§Z> (1.36)

Proof. The first fact is a consequence of the properties of 1) and of Fatou’s lemma.
Denote by b(t,a) the following (unbounded) operator affiliated with M:

1
b(t,a) = ey ( Y(t2a*a) — Z Aat?(a*a) > .

In this equation, (a*a)® is equal to 1. Note that the operators b(t,a) are affiliated with
the commutative von Neumann algebra generated by a*a, which is isomorphic to the space
of (classes of) bounded measurable functions on some probability space (€, u).

Then (1.33) implies that b(t,a) — (a*a)" in the measure topology as t — oo (in fact
the convergence holds almost surely if the operators are viewed as functions on ). But
(1.34]) also implies that b(t,a) > 0. Thus one can apply Fatou’s lemma to conclude that

a|38 = 7((a*a)N) < liltniélfr(b(t, a)). (1.37)

Replace a by a* in the preceding inequality, and add the two equations to get (using

la*[lq = llally for any real q)

1
2)|a||3N < h?i,iglf WT <¢(t2a*a) +(t? Z Ant?((a*a)” (aa*)”)) _

Applying Corollary and the linearity of the trace yields to the desired conclusion
(since (aa*)"™ and (a*a)™ belong to L'(M) for n < N —1).

To prove the second fact, we prove that if ||a|jan < 0o, then equality holds in (L.37).
But this follows from the (classical) dominated convergence theorem since

< C(tN + 17/

- Z At

‘ N
n=0

for some constant C' not depending on t € R. O
The proof of Theorem follows:

Proof of Theorem[1.16, First note that the statement for n = oo follows from the one for
n € N; since [|2||cc = lim, o ||Z]|2n. So we focus on the case when n is a positive integer.

The idea is to construct operators related to z and y of zero square by putting then in
a corner of a 2 by 2 matrix, and then to use Lemma So let us denote a(x) and a(y)
the operators

o) = (§ §) € M2 (M)) = (012 ()

o) = (o §) € M (L2(M) = L0 (A0)

Note that a(z)? = 0, that for any ¢ € RU {0}, [la()||, = 277||z||,, and that the same
holds for y. Moreover ||1 + ta(x)||, = |1 + ta(y)||p for any ¢t € R. It is thus enough to
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prove that if |[a(z)|2, < 0o, then ||a(y)|l2, < co and ||a(y)||2n = ||a(x)||2n. We prove this
by induction on n.

So take N > 0, assume that the aforementioned statement holds for any n < N (note
that we assume nothing if N = 1). Suppose that ||a(z)||2xy < oco. Then by induction
hypothesis for any n < N, ||y||2n, = ||z||2n. Thus the right-hand side of is the same
when a is replaced by a(y) or by a(z). But for a = a(z), it is equal, by (1.36]), to [la(z)|2n-
Hence proves that ||a(y)|len < [|a(z)|on < 0.

Applying again with a(y) yields to [|a(y)|len = |la(z)]|2n- O

1.3 Proof of Theorem 1.3

In this section we develop some consequences of Lemma We are given (M, 1) and
(N, 7) two von Neumann algebras with normal faithful tracial states.

Let z1,...2, € M and y1, ...y, € N. The noncommutative analogue (in the bounded
case) of Theorem is:

Theorem 1.23. Let 0 < p < oo such that p # 2,4,6... is not an even integer. Suppose
that for allm € N and all a1 ...a, € My,,

IN+> @il =11+ ai @ yillp-

Then the n-uples (z1,...xy) and (y1,...Yyn) have the same x-distributions. More pre-
cisely, for all P € C(Xy,... Xo,) polynomial in 2n non commuting variables,

T(P(x1,...xn,27,...2) =T (P(WY1s- - Yns Yls---Up)) - (1.38)
This theorem relies on Lemma and on the following Lemma:

Lemma 1.24. Let N,«a € N be integers such that N > 1 and o < N/2. Then if p is a
positive number such that p ¢ 2N or p > 2(N — «), then

Proof. Take o, N and p as in the Lemma. Since (N — k) (Af/f’k) =p/2 (1\?/721;11)7 showing the
Lemma is the same as showing that

za: (Np/f ];i 1) (Z) £0. (1.39)

k=0

For every real number 3, let us consider the left-hand side of where /2 — 1
is replaced by (. Since (g ) is a polynomial function in 8 of degree n, the expression
P(B) o o (N_ﬁk_l) (2‘) is a polynomial in 3 of degree N — 1. To prove that it takes
nonzero values for § = p/2 — 1, we show that it has N — 1 roots different from p/2 — 1.
More precisely, we show that if 8 is an integer such that —a < § < N — a — 2, then
P(8) = 0.

First if § is an integer between 0 and N — « — 2 included, then for any 0 < k < «, it is
immediate to check from the definition that ( Niﬁkil) = 0, which implies P(3) = 0.
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The second fact to check is that if [ is an integer such that 1 <1
Let us fix such an [. Then writing (N—kl—1) = (=1)N-h- 1( k’+l 2)

P(_) = Za: (N :]j ) 1> (Z) _ za: (Z) (_1)N-k-1 <N —lk:rll - 2>'

k=0 k=0

Soz then P(-1)=0.
we

It only remains to note that [ and N being fixed, (N 7;?:3172) is (as a function of k)

a polynomial of degree | — 1 < a. The equality P(—I) = 0 arises from the fact that if

- 5 (¢)iv o

Theorem [1.23] follows:

Proof of Theorem[1.23. By linearity it is enough to prove ((1.38) when P is a monomial.
The fact to be proved is that for every finite sequence i1, ...ix of indices between 1 and
n, and for every sequence €1, ...enx € {1, x},

(1) = (1 )

But from lemmal[1.7] if v is the number of indices k such that e, = * and €441 mod N =
1, we have

(H x) ;) (N — k) (Np/_Q k) (Z) _ 5 (1;[ y;:;> g)(zv — k) (Np/_z k) @

This implies that 7 <sz :L‘f:) =T (Hk yf}f) since from Lemma |1.24]if p ¢ 2N

Sonl, () o

k=0

O]

Theorem [I.3]is an immediate consequence of Theorem [1.23] Theorem [I.16] and of the
following well-known lemma:

Lemma 1.25. Let (M, 1) and (N,T) be two von Neumann algebras equipped with faithful
normal tracial states, and let (x;)icr € M and (y;)icr € N be noncommutative random
variables that have the same x-distribution. Then the von Neumann algebras generated
respectively by the x;’s and the y;’s are isomorphic, with a normal isomorphism sending
x; on y; and preserving the trace.

Proof of Theorem[1.3. Let (x;)ie; be a family spanning E. If y; = u(x;) for any i € I,
then Theorem shows that ||yi||cc < 00, which is equivalent to the fact that y; € N.
By Theorem the families (z;,2]) and (y;,y;) have the same distribution and so by
Lemma [1.25) u extends to a trace preserving isomorphism between the von Neumann

algebras generated by the x;’s and y;’s respectively. O

It is also possible to get some approximation results using ultraproducts:
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1.3.1 Approximation results

Corollary 1.26. Let (Mg, Ta)aca be a net of von Neumann algebras equipped with normal
faithful normalized traces. Let I be a set, and for all o, let (x5');er € Myt such that for
all i € I, the net (x$)q is uniformly bounded, i.e. sup, ||z$|| < co. Assume that there is a
family (yi)ier in a von Neumann algebra (N,7T) and a p ¢ 2N such that for all integer n
and all finitely supported family (a;)icr € My, the following holds:

i 143 a1 @ 2y = 1+ Y © il (1.40)
(2 (2
Then the net ((xf');), converges in *-distribution to (y;);. Moreover (1.40)) holds with
p replaced by any 0 < q < o0.

Proof. Indeed let U be any ultraproduct on A finer that the net («), and for i € I consider
x; the image of (2§")ac 4 in the von Neumann ultraproduct M = [],, Mq. If M is equipped
with the tracial state 7 = limy 7, then the assumption (1.40) implies that for all m and

all a; € M,,,
11 —i—Zai ® zillp = |11 +Zaz‘ ® Yillp-
i [

Lemma implies that (z;); and (y;); have the same *-distribution. This exactly
means that (z%); converges in *-distribution to (y;); as o € U.

Since this holds for any ultrafilter ¢ finer than the net («), this proves the convergence
in *-distribution of the net ((x{");),, to (y;);. The fact that then holds with p replaced
by any 0 < g < oo is immediate. O

Theorem [I.3] can also be reformulated in the operator space setting:

1.3.2 Reformulation in the operator space setting

Let M C B(H) be a von Neumann algebra equipped with a normal faithful trace 7
satisfying 7(1) = 1. Let E be a linear subspace of M. There are several “natural”
operator space structures on E:

For all 1 < p < oo, the noncommutative LP-spaces LP(M,T) are equipped with a
natural operator space structure (see [44, chapter 7]). (when p = co, LP(M, 1) is the von
Neumann algebra M with its obvious operator space structure).

Then the linear embedding £ C LP(M,7) allows to define, for all 1 < p < oo, an
operator space structure on E, which we denote by O,(E).

In this setting, Theorem [I.3] states that if F is a linear subspace of M containing the
unit and if 1 < p < oo and p ¢ 2N, then the operator space structure Op(E) together
with the unit entirely determines the von Neumann algebra generated by E and the trace
on it. In particular it determines all of the other operator space structures Oy (E) for all
1 <¢g< o0

More precisely:

Corollary 1.27. Let 1y € E C M be as above, (N,T) be another von Neumann algebra
equipped with a normal faithful tracial state, u : E — N be a unit preserving linear map
and 1 < p < oo with p ¢ 2N.

If u: Op(E) — LP(N,T) is a complete isometry, then u uniquely extends to an iso-
morphism between the von Neumann subalgebras generated by E and its image; moreover
u s then trace preserving. In particular, for all 1 < q¢ < oo, u : Oy(E) — LN, T) is a
complete isometry.



44 CHAPTER 1. SUBSPACES OF NONCOMMUTATIVE LP-SPACES

Proof. The proof is a reformulation of Theorem [1.3]once we know the two following results
from the theory of noncommutative vector valued LP-spaces developed in [42]:

A map u: X— > Y between two operator spaces is completely isometric if and only
if for all n, the map u ®id : Sj(X) — S)(Y) is an isometry (Lemma 1.7 in [42]). More
precisely, for any n € N and any 1 < p < oo,

|u@id: S}H(X)— SpY)|| = lu®@id: My (X) — M, (Y)]|

The second result is Fubini’s theorem, which states that isometrically (and even completely
isometrically, but this is of no use here) S}/ (Lp(./\/l, T)) ~ [P (Mn®A, trn®7). See Theorem
1.9 in [42).

These two results together prove that the hypotheses in Corollary imply those in
Theorem [I.3] and thus the result is proved. O

1.3.3 On the necessity of taking matrices of arbitrary size

Here we discuss the necessity of taking matrices of arbitrary size in Theorem In view
of Theorem [I.3] a natural question is thus:

Let p € R. Consider the class &, 1 of all linear maps u between subspaces of noncommu-
tative LP spaces constructed on von Neumann algebras equipped with a n.f.f. normalized
trace. Is there an integer n such that for any such v : E — F, if holds for all
x € My, (E), then it holds for any m and any = € M,, (E)? The smallest such integer will
be denoted by n,, 1.

A similar question is:

Let p € R. Consider the class &, of all linear maps u between subspaces of noncommu-
tative LP spaces constructed on von Neumann algebras equipped with a normal semifinite
faithful normalized trace. Is there an integer m such that for any such u € &,, if u is
n-isometric, then u is completely isometric? The smallest such integer will be denoted by
Np.

As was noted in the introduction, the transposition map from M, to M,, (n > 2) shows
that, except for p = 2, we necessarily have n,1 > 1 and n, > 1.

When p ¢ 2N, it is not clear whether n),; < co (or n, < 00).

In the opposite direction, as announced in the introduction, when p = 2m € 2N, then
it is not hard to prove that n,; < m and n, < m.

Theorem 1.28. Let p =2m € 2N. Let (M, 1), (N,7) be as in Theorem[1.3
Let E C LP(M, 1) be a subspace and u: E — LP(N,T) be a linear map.
Assume that for all x € M, (E), the following equality between the p-norms holds:

Ve € My, (E),  ||[1m @ I + 2llom = |1 @ Iy + (id @ u)(2)||2m.- (1.41)
Then in fact this equality holds for x € M, (E) for every n € N:
1 @ L + zllom = [[1n @ Ly + (id @ u)(2)||2m.

Theorem 1.29. Let p = 2m € 2N. Let (M, 1), (N,T) be (exceptionally) von Neumann
algebras with normal faithful semifinite traces.

Let E C LP(M,T) be a subspace and v : E — LP(N,T) be a linear map.

If uw is m-isometric (i.e. ||z|| ooy = [[(iId@w) (@) Lo z0m)) for any z € My (E)), then
u is completely isometric.
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Remark 1.30. Note that Theorem [1.28| is not a formal consequence of Theorem [1.29
Indeed, when 1 ¢ E, assuming for any z € M,, (F) is stronger that assuming that
u: F — LP(T) is m-isometric, and is weaker than assuming that the map @ : span(1, E) —
LP(T) that extends u by u(1) = 1 is m-isometric. We therefore give a proof of the two
results.

We first provide the proof of Theorem [1.29| which is simpler:

Proof of Theorem[1.29, Assume that u is m-isometric. By Lemma [[.25] it clearly suffices
to prove that if x1,...x9, € E and y; = u(z;), then

* * * ~ * * *
T(T10223T4 « - - T3y _1T2m) = T(Y1Y2Y3Y4 - - - Yo —1Y2m)-

But this is easy to get if one takes aj...as, € M,, satisfying ([L.5) and one applies
lz|l2m = [|(id @ w)(z)||2m to x = x(21, ... 22m) € My, (E) defined by

m
—_— %
T = E 22j—109;_1 @ T2j—1 + 22502; @ T2j—1
Jj=1
for any (21, ...20m) € C?™,
Indeed, ||z||3™ is a polynomial in the complex numbers z; and zj, the coefficient in
front of z122... 29, is T(ziToxiTs ... 25, Tom). O

Proof of Theorem [1.28 Roughly, the idea of the proof is the same as the previous one:
the 2m norm of 1 + ) a; ® z;, depends, as a function of the z;’s, only on a finite number
of moments of the x;’s. And Lemma@ shows that these moments can be computed from
the 2m-norm of 1+ y when y describes the set of m x m matrices with values in the linear
space generated by the z;’s.

But the description of these particular moments is not as simple as in Theorem [1.29
and the computations are more complicated.

Take x € M, (E), say ¢ = 1 + Eévzl a; ® x; where a; € M, and z; € E. Denote by
yj = u(z;). First compute

|14 z]2m = T(")((l +x+a*+az')")
The same kind of enumeration as in the proof of Lemma [I.6]shows that for any integer
Js

27 .
(n) + 4zt VAR j<a(5)> (m) (.1 ,.€2 L xERY
T ((w ¥+ 2*x) ) Z e\ T (2% xk)

k=] (e1,.en)E{1,4}F

Multiplying the above equation by (T]”) and summing on j yields to

() ((1 +xz+x"+ $*l‘)m) =

2m .
c e 1 (m ale
Z Z tr, (aflla”’:)T(xfllxl:) Z k(])(k(—?7> (1.42)
k=0 €1,...,€k € {1,*} 0=j<k
i1,...1 € {1,N}

But the assumption ([1.41]) together with Lemma (and Remark imply that for
any k < 2m, any € € {1,*}* and any (i1,...4;) € {1,... N}*,

T(x;l...xj:) Zk‘]z@)(;g)—?(yff~--y§§> > 2(?)(,?36;)

0<5< 0<j<k
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Remembering (1.42]), we get that
1T+ 2] oy = 11+ 6™ (@) oy
Since this holds for any n and any x € M, (F), we have the desired conclusion. O

Now we discuss the case of p ¢ 2N. We are unable to determine whether n, < oo (or
np1 < 00), but we are able to show that the assertion n,; < oo is related to an assertion
concerning the x-distributions of single matricial operators, which we detail below.

If (z;)icr € M! and (y;)ier € N are two families of operators in von Neumann algebras
with n.f.f. traces, the same arguments as in Lemma show that these families have the
same *-distribution if for any integer n, and any (finitely supported) family (a;);e; € M/,

s —dist(Y a4 @ a) = x — dist(> _ a; @), (1.43)

iel i€l

It is also natural to ask: is there an integer n such that for all a; € M, imply
that (z;) and (y;) have the same *-distribution? In the same way as above, the smallest
such integer will be denoted by N. (If such integer does not exist, take N = o).

Since implies that |14 Y a; ® i, = | > 1 + a; ® yil|p, Theorem [L.23] shows
that when p is not an even integer, N < n, 1. To show that n, = oo, it would thus be
enough to show N = oo.

1.4 Other Applications

In this section we prove some other consequences of Lemma [I.7] and Lemma [I.12] In
particular we prove a noncommutative (weaker) version of Rudin’s Theorem Theorem
A result of the same kind (dealing with bounded operators only) and using the same
ideas has already been developed in [30]. The main difference is that in [30], the author
stays at the Banach space level (as opposed to the operator space level, i.e. he does not
allow matrix coefficients in )

Theorem 1.31. Let (M, 1) and (N, 7) be as in Theorem[1.3 Let0 < p < co andp # 2, 4.
Let M C LP(M,T) be a subalgebra (not necessarily self-adjoint) of LP(M,T) containing
1m, and let w: M — LP(N,T) be a linear map such that u(1) = 1.

Assume that u'?) = id@u : My (M) — My (LP(N,7)) is an isometry for the p-“norms”:

Va € My (M) Jall, = [[u®(a)]],- (1.44)

Assume moreover that M C L*(M,T).
Then for all a,b € M

u(ab) = u(a)u(b).

Proof. The proof is based on Lemma Theorem implies that u(M) C LN, 7).
If a,b € M, note that

lu(ab) — u(@)u(b)[|3 = 7(u(b) u(a) u(a)u(b)) + 7(u(ab) u(ab))
— T(u(b)*u(a)*u(ab)) — 7(u(ab) *u(a)u(d)). (1.45)
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Apply Lemma with n = 4, (e1,€2,€3,64) = (*,%,1,1) (so that with the notation
of Lemma a=1), m=n/2=2and with (z, z9, x3,24) = (b,a,a,b) on the one hand
and (x1,x9,x3,14) = (u(b),u(a),u(a),u(d)) on the other hand. One gets:

(5 a*ab) < A <pf;2> +3<péz)> _
7(u(b) u(a) u(a)u(b)) (4 <pz/12) 7 (pf) ) '

But 4("%) + 3(*%) = p*(p/2 — 1)(p/2 — 2)/24 # 0 if p # 0,2, 4. Thus,
T(u(b)*u(a)*u(a)u(b)) = 7(b*a*ab).
The same argument yields to
T(u(ab)*u(a)u(b)) = 7((ab)*ab) = 7(b*a*ab),
T(u(b)*u(a)*u(ab)) = 7(b*a*ab),
T(u(ab)*u(ab)) = 7(b*a*ab).
Thus, remembering , one gets
lu(ab) — u(a)u(b)||3 = 0.
Since 7 is supposed to be faithful, this implies u(ab) = u(a)u(b). O
For unital isometries defined on self-adjoint subspaces, the situation is also nice:

Lemma 1.32. Let 1 < p < oo and p # 2. Let (M,7) and (N,T) be as in Theorem
[1.3 Let E C LP(7) be a unital and self-adjoint subspace (i.e. x € E = z* € E) and
u: E — LP(T) a unital isometric map.

Then for any x € E such that ||z||2 < oo, u(z*) = u(x)*.

Proof. The proof is of the same kind of the one above: take 2 € E N L?(M), and first
apply Theorem to show that [ju(z)2, ||u(x*)||]2 < oo. Then the proof consists in
applying Lemma in order to prove that |[u(x*) — u(x)*||3 = 0. The details are not
provided. O

When the unital completely isometric map w in Theorem [I.3]is defined on the whole
LP space, we recover some very special cases of known results by Yeadon [52, Theorem 2]
for isometries and Junge, Ruan and Sherman [25, Theorem 2] for 2-isometries:

Theorem 1.33. Let p € RT, p # 2. Let u: LP(M, 1) — LP(N,7) be a linear map such
that w(1pg) = Ly

e Ifp > 1 or u maps self-adjoint operators to self-adjoint operators, and if u is iso-
metric, then u maps M into N and preserves the trace, the adjoint and the Jordan
product: for any a,b € M

T(u(a)) = 7(a), u(a®) = u(a)* and u(ab + ba) = u(a)u(b) + u(b)u(a)

o If u is 2-isometric (i.e. u® is isometric) and p # 2, then the image of M is a
von Neumann algebra and the restriction of u to M is a von Neumann algebra trace
preserving isomorphism.
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Proof. We start by the first point. Take u as above. Note that by Lemma ifp>1
then u preserves the adjoint.

For any a € M such that a* = a, apply the commutative Theorem to the unital
isometric map u from the commutative unital subalgebra of LP(M) generated by a into the
commutative unital subalgebra of LP(N') generated by u(a). One gets that ||u(a)||eo < o0
and that u(a?) = u(a)? for any self-adjoint a € M. By polarization, this implies that for
any self-adjoint a,b € M,

u(ab + ba) = u(a)u(db) + u(b)u(a).

By linearity this equality extends to any a,b € M, and |lal|cc < oco. The fact that u
preserves the trace is an application of Lemma [1.12| with n = 1.

Assume now that u is 2-isometric (with 0 < p # 2 < o0). By Theorem and
Lemma u (and hence u(z)) preserves the adjoint map. We can apply the isometric
case above for u@. Thus uiQ) is a trace preserving Jordan map. If a,b € M, the equation
u@ (@b + ba) = u@ (@) u® (b) + u® (b)u?(a) for

- 0 a ~ 0 0
a-(o 0) andb-(b 0>

yields to u(ab) = u(a)u(b) (and u(ba) = u(b)u(a)). Thus u is a *-isomorphism from the
von Neumann algebra M onto its image, and it preserves the trace. This implies, by
Lemma[1.25] that u(M) is a von Neumann subalgebra of A" and that u is a von Neumann
algebra isomorphism. O

1.4.1 Applications to noncommutative H? spaces

The main result also applies in the setting of noncommutative H? spaces (see [6]).

Definition 1.34. Let (M, 7) be, as above, a von Neumann algebra with a faithful normal
normalized trace. A tracial subalgebra A of (M, 7) is a weak-* closed unital subalgebra
such that the conditional expectation ¢4 : M — AN A* satisfies ¢p4(ab) = pa(a)pa(b) for
any a,b € A.

A noncommutative H? space is the closure, denoted [A],, of a tracial subalgebra A in

LP(M, 7).

Since by definition, a noncommutative HP space is a unital subspace of LP(M,7) in
which the subset of bounded operators is dense, Theorem [I.3] automatically implies the
following, which gives a beginning of answer to a question raised in [6] and [30]:

Theorem 1.35. Let p ¢ 2N.

A unital complete isometry between noncommutative HP spaces extends to an isomor-
phism between the von Neumann algebras they generate.

Moreover, if a non commutative HP space is unitally completely isometric to a unital
subspace E of a noncommutative LP space, then E is a noncommutative HP space.

For a 2-isometric map between noncommutative HP-spaces, we also get something:

Theorem 1.36. Let p € R, p # 2,4.
Let u be a 2-isometric and unital map from a noncommutative HP space [A], into a
noncommutative LP space LP(N,T).
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Then the image of A is a subalgebra B of LP(N') such that for any a,b € A,
u(ab) = u(a)u(d).

Moreover, BN B* = u(AN A*) is a von Neumann algebra such that the restriction to
B of the conditional expectation ®p : LP(N) — LP(B N B*) satisfies, for any a € M

Pp(u(a)) =u(®a(a)) € NN B*.

In the case when p is not an even integer, B is contained in N .

def

Proof. The fact that B = u(A) is contained in N' when p ¢ 2N follows from Theorem
.16l

Theorem implies that B is an algebra and that u(ab) = u(a)u(b).

The fact that BN B* = u(AN A*) is immediate from Lemma and Theorem [1.33]

shows that u(A N A*) is a von Neumann algebra.
Recall that the conditional expectation ®5 : N' — BNB* coincides with the orthogonal
projection from L?(N) to L?(B N B*). To check the last equation

Pp(u(a)) = u(Pa(a))

we thus have to show that for any z € BN B*,

T (zu(a)) =7 (zu(P4(a))) .

Write z = u(b) for b € M. The above equation arises from the definition of ®4(a),
from the multiplicativity of u and from the fact that, by Lemma [1.12} 7o u = 7:

7(zu(a)) = 7 (u(ba))
= 7 (ba)
= 7(b®a(a))
7(
(

u(b®(a)))
zu(®a(a))).

This concludes the proof. ]

VWM A AW

We end this chapter with some additional remarks and questions related Yeadon’s
result. The main theorem of [52] in particular contains the following:

Lemma 1.37. Let u be an isometry from an LP-space LP(M) constructed on a von Neu-
mann algebra (M, 1) with a n.ff. trace to an LP-space LP(N') constructed on a von
Neumann algebra (N, o) with a normal semifinite faithful trace.

Then if u(1l) = b is positive, then b commutes with uw(LP(M)) and has full support.

Remark 1.38. This also holds if N does not carry a semifinite trace and LP(N) is
Haagerup’s generalized LP space (see [25, Theorem 3.1]).

This fact allows to reduce the general case to the unital case. Here are the details: if
one denotes by b = u(1) > 0 € LP(M), by s € N the support projection of b, and by N
the von Neumann subalgebra of sN's generated by b~1u(M), then N carries a n. f.f. trace
given by

o) = { o(bPx) if o was a semifinite trace on N
tr(bPx) in Haagerup’s construction
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(in Haagerup’s construction, tr is the trace functional on L!(N)).

The assumption that u is an isometry exactly means that (the unital linear map) bt
is an isometry from LP(M, 1) to LP(N,T).

Thus Yeadon’s Lemma m (resp. with the preceding remark) and Theorem of
this chapter are enough to recover Yeadon’s result (resp. Junge, Ruan and Sherman’s
result with the restriction that the first LP-space be semifinite). Of course, all this is not
surprising at all since Lemma contains most of the results from [52], and we therefore
do not provide more details. But this leads naturally to the question: to what extend
Lemma can be generalized when w is only defined on a unital subspace of LP(M,1)?

As justified above, it is natural to wonder whether the same result holds for isometries
between subspaces of noncommutative LP spaces. More precisely, let 1 € E € LP(M,T) be
a unital subspace of a noncommutative L? space with 7 a n.f.f. trace. Let u: E — LP(N)
be an isometry between E and a subspace of an arbitrary noncommutative LP space such
that u(1) > 0. Then is it true that u(1) commutes with u(E) and has full support in
u(E)? (that is: if s is the support projection of u(1), then su(z) = u(z)s = u(z) for any
x € E). As noted above, this would allow to use all the results of this chapter for v and
would have several interesting consequences.

It should be noted that Yeadon’s proof (as well as the generalization in [25]) consists
in applying the equality condition in Clarkson’s inequality for projections with disjoint
supports. This of course is not possible for a general subspace of LP(M) since it may not
contain any nontrivial projection.



Chapter 2

Strong Haagerup inequalities with
operator coefficients

Introduction

Let F, be the free group on r generators and | - | the length function associated to this set
of generators and their inverses. The left regular representation of F, on £2(F,) is denoted
by A, and the C*-algebra generated by A(F}) is denoted by C¥(F}). In [19] (Lemma 1.4),
Haagerup proved the following result, now known as the Haagerup inequality: for any
function f : F,, — C supported by the words of length d,

> f9A9) < (d+ D2 (2.1)

GF’V‘ *
9 C5(Fy)

This inequality has many applications and generalizations. It indeed gives a useful
criterion for constructing bounded operators in C¥(F)) since it implies in particular that
for f: F, - C

> F9Ag) <2 > (lgl+ D4 f(9)

geF, C;“(F,») geF,

and the so-called Sobolev norm \/ZQGFT(‘Q‘ + 1)4f(9)|? is much easier to compute that

the operator norm of A\(f) = > f(g)A(g). The groups for which the same kind of inequality
holds for some length function (replacing the term (d+1) in by some power of (d+1))
are called groups with property RD [22] and have been extensively studied; they play for
example a role in the proof of the Baum-Connes conjecture for discrete cocompact lattives
of SL3(R) [31].

Another direction in which the Haagerup inequality was studied and extended is the
theory of operator spaces. It concerns the same inequality when the function f is allowed
to take operator values. This question was first studied by Haagerup and Pisier in [20],
and the most complete inequality was then proved by Buchholz in [§]. One of its interests
is that it gives an explanation of the (d + 1) term in the classical inequality. Indeed, in
the operator valued case, the term (d + 1)||f||2 is replaced by a sum of d + 1 different
norms of f (which are all dominated by || f||2 when f is scalar valued). More precisely if S
denotes the canonical set of generators of F, and their inverses, a function f : F,, — M, (C)
supported by the words of length d can be viewed as a family (a(h1,---,hd))(hl,...,hd)esd of
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matrices indexed by S? in the following way: U(hy,.hg) = f(h1h2 .. hg) if [y .. hy| =d
and a(p, .. n,) = 0 otherwise.

The family of matrices a = (ap),cge can be seen in various natural ways as a bigger
matrix, for any decomposition of S% ~ S* x S%=!_ If the ap’s are viewed as operators on a
Hilbert space H (H = C™), then let us denote by M; the operator from H ® ¢%(S)®?! to
H ® (%(S)®! having the following block-matrix decomposition:

M, = (a(s,t))sesliesdfl .

Then the generalization from [§] is

Theorem 2.1 ([§],Theorem 2.8). Let f : F, — M, (C) supported by the words of length d
and define (ap)pege and M for 0 <1 <d as above. Then

d

> flg) @A) <> 1Ml

The same result has also been extended in [33] to the LP-norms up to constants that
are not bounded as d — co. See also [48] and [24].

More recently and in the direction of free probability, Kemp and Speicher [27] dis-
covered the striking fact that, whereas the constant (d + 1) is optimal in , when
restricted to (scalar) functions supported by the set WJ of words of length d in the gen-
erators gi, ..., g, but not their inverses (it is the holomorphic setting in the vocabulary
of [26] and [27]), this constant (d + 1) can be replaced by a constant of order v/d.

Theorem 2.2 ([27],Theorem 1.4). Let f : . — C be a function supported on W . Then

S F(9)A) < VeVdF 1| £z

gEW; C; (F))

A similar result has been obtained when the operators A(g1),...,A(gr) are replaced
by free Z-diagonals elements: Theorem 1.3 in [27]. These results are proved using combi-
natorial methods: to get bounds on operator norms the authors first get bounds for the
norms in the non-commutative LP-spaces for p even integers, and make p tend to infinity.
For an even integer, the LP-norms are expressed in terms of moments and these moments
are studied using the free cumulants.

In this paper we generalize and improve these results to the operator-valued case. As
for the generalization of the usual Haagerup inequality, the operator valued inequality we
get gives an explanation of the term +/d + 1: for operator coefficients this term has to be
replaced by the /2 combination of the norms || M;|| introduced above. A precise statement
is the following. We state the result for the free group F,, on countably many generators
(gi)ien, but it of course applies for the free group with finitely many generators.

Theorem 2.3. For d € N, denote by WJ C Fy the set of words of length d in the g;’s
(but not their inverses). For k = (ki,...,kq) € N let g = gk, - .. gk, € Wj.

Let a = (ak)ena be a finitely supported family of matrices, and for 0 <1 < d denote
by M; = (a(]fl7---7kl),(kl+17---7kd)) the corresponding N* x Nt block-matriz. Then

1/2
D @ Mgr)|| <4°Ve (Z ||M1H2> : (2.2)

keNd
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Note that even when a; € C, this really is (up to the constant 4%) an improvement
of Theorem Indeed it is always true that for any I, | M;||> < Tr(M;M;) = >, |ax|?.
There is equality when [ = 0 or d but the inequality is in general strict when 0 < [ < d.
Thus if the ag’s are scalars such that ||(ax)|l2 = 1 and | M;]| < 1/v/d for 0 < I < d, the
inequality in Theorem becomes ||, cna axA(gr)|| < 4°v/3e||(ak)|l2- Since the reverse
inequality || ,cne axA(ge)|| = [(ax)||2 always holds, we thus get that ||, cna axA(gr) || =
l(ar)||2 with constants independent of d. An example of such a family is given by the
following construction: if p is a prime number and ay, ., = exp(2ink; . . ka/p)/p¥?
for any k; € {1,...,p} and ap = 0 otherwise then obviously Y, |ax|> = 1, whereas a
computation (see Lemma shows that ||M;]|? < d/p if 0 <1 < d. Tt is thus enough to
take p > d?.

As in [27], the same arguments apply for the more general setting of x-free Z-diagonal
elements (*-free means that the C*-algebras generated are free). Moreover we get signifi-
cant results already for the LP-norms for p even integers. Recall that on a C*-algebra A
equipped with a trace 7, the p-norm of an element = € A is defined by |z||, = 7(|=|?)'/?
for 1 < p < oo, and that for p = oo the L® norm is just the operator norm. In the
following the algebra M, ® A will be equipped with the trace Tr ® 7. The most general
statement we get is thus:

Theorem 2.4. Let ¢ be an Z-diagonal operator and (ci)ren @ family of x-free copies of
¢ on a tracial C*-probability space (A, 7). Let (ag)pene be as above a finitely supported
family of matrices and M; = (a(k17---7kl)7(kl+l7---7kd)) for0 <1< d the corresponding N x N4~
block-matrix.
For k = (ki,...,kq) € N denote ¢y, = cy, ...
Then for any integer m,

d 1/2
_ d
Yoar@a| < AYellFPllel3mey/1 + p- (Z ||M1|!§m> : (2.3)
1=0

keNd om

4

For the operator norm,

d 1/2
D ar@ || < 4Ylell3?llel*Ve (Z !MzH2> : (2.4)
1=0

keNd

When the ¢t ’s are circular these inequalities are valid without the factor 4°||c[|972(|¢||2.

The outline of the proof of Theorem [2.4]is the same as the proof of Theorem 1.3 in [27]:
we first prove the statement for the LP-norms when p = 2m is an even integer (letting
p — oo leads to the statement for the operator norm). This is done with the use of
free cumulants that express moments in terms of non-crossing partitions (the definition of
non-crossing partitions is recalled in part . More precisely to any integer n, any non-
crossing partition m of the set {1,...,n} and any family by, ...,b, € A the free cumulant
Krlb1,...,by] € C is defined (see [32] for a detailed introduction). When 7 = 1,, is the
partition into only one block, x, is denoted by x,. The free cumulants have the following
properties:

o Multiplicativity: 1f 7 = {V1,..., Vs}, Kxlb1, ..., bn] = I1; 51y [(Ok)kev;]-

e Moment-cumulant formula: (b1, ..., by) = EﬂeNC(n) Rrlbiy ..., b
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e Characterization of freeness: A family (A;); of subalgebras is free iff all mixed cumu-
lants vanish, i.e. for any n, any b, € A;, and any 7 € NC(n) then rkr[b1,...,b,] =0
unless i, = 7; for any k£ and [ in a same block of 7.

The first two properties characterize the free cumulants (and hence could be taken as a
definition), whereas the third one motivates their use in free probability theory. Since the
x-distribution of an operator ¢ € (A, ) is characterized by the trace of the polynomials
in ¢ and ¢*, the cumulants involving only ¢ and ¢* (that is the cumulants x.[(b;)] with
b; € {c,c*} for any i) depend only on the x-distribution of c.

In order to motivate the combinatorial study of certain non-crossing partitions in the
first section, let us shortly sketch the proof of the main result. For details, see part
With the notation of Theorem let A =>ar®cp. For k= (k(1),...,k(d) € N
set dx = a(k(d),..k(1) and Gk = Cp(q) - - - Cr1) SO that (c)* = CZ(l)"'CZ(d)' Then A* =
> opay ® ¢, and for p = 2m the p-th power of the p-norm of A is just the trace Tr ® 7
of (AA*)™, which can be expressed by linearity as the sum of the terms of the form
Tr(ay,ay, . .- Qky,, 1 g, )@T(CkyChy « - - Chyp 1 Cr, ). The expression ¢k, ¢y, . . . Chy,,, 1 Cp,, 18
the product of 2dm terms of the form ¢; or ¢ (for i € N). Apply the moment-cumulant
formula to its trace. Using the characterization of freeness with cumulants and then the
multiplicativity of cumulants and the fact that cumulants only depend on the #-distribution
we thus get

2m

Z ap Q cg = Z Ry [Cd,m] Z Tr(ak161§2 T a;:’zm)’

kENd om  TENC(2dm) (k1yeeeykom ) <m

d:efS(a,ﬂ,d,m)

where for k € N2 and m € NC(2dm) we write k < 7 if k; = k; whenever i and j belong
to the same block of m and where

2m groups

Cdm = C c,c* c,...,¢c c,c* c*

yo ey yeeiyCyieyCyontyCyCyL L, C
d d d d

Up to this point we did not use the assumption that ¢ is R-diagonal. But as in [27],
since the R-diagonal operators are those operators for which the list of non-zero cumulants
is very short (see part for details), we get that the previous sum can be restricted
to a sum over the partitions in the subset NC*(d,m) C NC(2dm), which is defined and
extensively studied in part 2.1.2}

2m

Z ay, ® ¢, = Z Krlcam]S(a, 7, d, m). (2.5)

keNd om  TENC*(d;m)

The term krlcqm] is easy to dominate (Lemma . When the a;’s are scalars the
second term S(a,,d, m) can be dominated by ||(a)[|2" (by the usual Cauchy-Schwarz
inequality). This is what is done in the proof of [27]. But here the fact that we are dealing
with operators and not scalars forces to derive a more sophisticated Cauchy-Schwarz type
inequality that may control explicitly the expressions S(a,7,d, m) in terms of norms of
the operators M;. This is one of the main technical results in this paper, Corollary [2:29]
This Corollary states that

2m

d
[S(a,m,d,m)| < Tl Ml (2.6)
=0
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for some non-negative p; with ),y = 1. Moreover the p; are explicitely described
by some combinatorial properties of m. This inequality is proved through a process of
“symmetrization” of partitions. The basic observation is that if one applies a simple
Cauchy-Schwarz inequality to S(a, ,d, m) (Lemma, this corresponds on the level of
partitions to a certain combinatorial operation of symmetrization that is studied in the
part This observation was already used implicitely in [9], Lemma 2, in some special
case: Buchholz indeed notices that for d = 1 and if 7 is a pairing (i.e. has blocks of size 2),
this Cauchy-Schwarz inequality corresponds to some transformation of pairings (for which
he does not give a combinatorial description), and that iterating this inequality eventually
leads to an domination of the form (for d = 1) but in which he does not compute
the exponents pg and p.

In our more general setting it also appears that repeating this operation in an appro-
priate way turns every non-crossing partition 7 € NC*(d,m) into one very simple and
fully symmetric partition for which the expression S(a,w,d, m) is exactly the (2m-power
of the 2m-) norm of one of the M;’s. This is stated and proved in Corollary and
Lemma [2.26] One important feature of our study of the symmetrization operation on
NC*(d,m) is the fact that we are able to determine some combinatorial invariants of this
operation (see part [2.1.3). This allows to keep track of the exponents of the || M]]|2,, that
progressively appear during the symmetrization process, and to compute the coefficients
p in (2.6).

The second technical result that we prove and use is a finer study of NC*(d,m).
The main conclusion is Theorem which expresses that partitions in NC*(d, m) have
mainly blocks of size 2 and that NC*(d,m) is not very far from the set NC(m)@ of
non-decreasing chains of non-crossing partitions on m (in the sense that there is a natural
surjection NC*(d,m) — NC(m)@ such that the fiber of any point has a cardinality
dominated by a term not depending on d). This combinatorial result is then generalized
in Theorem and Lemma and then used to transform the sum in into a sum
over NC(m)@ for which the combinatorics are well known by [I1].

We prove also the following results, which are extensions to the non-holomorphic case of
the previous results and their proofs. Let ¢ be an %Z-diagonal operator and (¢ )ken a family
of *-free copies of ¢ on a tracial C*-probability space (A, 7). For e = (e1,...,&4) € {1, *}¢
and k = (ki,...,kq) € N? denote Che = cill .. ci‘; . The result is an extension of Haagerup’s
inequality for the space generated by the ¢ . for the k, e satisfying k; = ki1 = &, = €541,
i.e. for which A(g)xc has length d. Denote by I the set of such (k,¢).

Theorem 2.5. Let (a(r.c))(k,e)c(nx{1,4})¢ be a finitely spported family such that ag oy =0
for (k,e) ¢ 1. For 0 <1 <d, let M be the matriz formed as above from (a(c)) for the
decomposition (N x {1,x})% = (N x {1,*})! x (N x {1, *})?".

Then for any p € 2N U {oo}

S are@ene| < Clelleld @+ 1) max M),
(k) E(Nx{1,5})1 » o

Similarly for self-adjoint operators we have:

Theorem 2.6. Let p be a symmetric compactly supported probability measure on R, and
c a self-adjoint element of a tracial C*-algebra distributed as p.

Let (ci)ken be self-adjoint free copies of ¢ and (ak, .k, )k, ksen be a finitely supported
family of matrices such that ay,,. k, = 0 if k; = kiy1 for some 1 < i < d. Then for any
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p € 2N U {0}

511 112 (] A||d—2
Do Gk, @k ocry|| < AelFllells (@ + 1) max My, (2.7)
(kl,...,kd)ENd p -
For the case of the semicircular law and scalar coefficient aj, this result is not new.
It is due to Bozejko [7], and was reproved using combinatorial methods by Biane and
Speicher, Theorem 5.3.4 of [4]. Our proof is a generalization of their proof and uses

it. Note also that the condition that ay, .k, = 0 if k; = k;;1 for some i is crucial
to get (2.7): indeed if ay,,. x, = 0 except for a;. .1 = 1 then we have the equality
| pend b @ chy - crglly = Icfllp = ||cng, whereas max; || M|, = 1 and if p is not a

Bernoulli measure HcH%HcHg_Q(d +1) = o(Hcng) when d — oco. The inequality thus
does not hold for this choice of (ag), even up to a constant.

These results are of some interest since they prove a new version of Haagerup’s in-
equality in a broader setting, but they are still unsatisfactory since one would expect to
be able to replace the term (d + 1) maxg<;<q || M;]| by Z?:o || Mi]].

The paper is organized as follows: the first part only deals with combinatorics of non-
crossing partitions. In the second part we use the results of the first part to get inequalities
for the expressions S(a, m, d, m). In the third and last part we finally prove the main results
stated above.

Although some definitions are recalled, the reader will be assumed to be familiar with
the basics of free probability theory and more precisely to its combinatorial aspect (non-
crossing partitions, free cumulants, R-diagonal operators...). For more on this see [32].
For the vocabulary of non-commutative LP spaces nothing more than the definitions of
the p-norm, the Cauchy-Schwarz inequality |7(ab)| < ||a||2]/b]|2 and the fact that ||z]|e =
limy, 0 |||, will be used.

2.1 Symmetrization of non-crossing partitions

For any integer n, we denote by [n] the interval {1,2,...,n}, which we identify with
Z/nZ and which is endowed with the natural cyclic order: for ki,...,k, € [n] we say
that k1 < ko < --- < k, for the cyclic order if there are integers [1,...[, such that

L <lp<--- <l ki =1; modn and I, —; < n. In other words, if the elements of [n]
are represented on the vertices of a regular polygon with n vertices labelled by elements
of [n] as in Figure then we say that k1 < ko < --- < k, if the sequence ki, ...k, can
be read on the vertices of the regular polygon by following the circle clockwise for at most
one full circle.

If 7 is a partition of [n], and i € [n], the block of 7 to which 7 belongs is denoted by
m(2). We also write i ~, j if ¢ and j belong to the same block of the partition 7.

If the elements of [n] are represented on the vertices of a regular polygon with n
vertices, a partition 7 of [n] is then represented on the regular polygon by drawing a path
between i and j if i ~, j. See Figure for an example.

2.1.1 Definitions and first observation

We introduce the operations Py on the set of partitions of an even number n = 2N. This
definition is motivated by Lemma [2.25
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Figure 2.1: The partition {{1,3,12},{2,4,8,10},{5,7},{6},{9,11}} represented graphi-
cally.

Figure 2.2: The operation P; on the partition {{1,3,12},{2,4,8,10},{5,7},{6},{9,11}}.

Definition 2.7. Let k € [2N], and I}, the subinterval of [2N] of length N and ending with
k, Iy ={k—N+1,k—N+2,...,k} and s,(CN) (or simply s when no confusion is possible)
the symmetry si(i) = 2k + 1 — i (note that s; is an involution of [2N] that exchanges
I and [2N]\ Ii). For a partition m of [2N], sx(7) is the symmetric of m: A € si(m) if
s; 1(A) = s(A) € 7. In other words i ~ep(r) J if and only if sx (i) ~r sk().

For any partition 7 of [2N], we denote by Py () the partition of [2N] that we view as
a symmetrization of m around k, and which is formally defined by the following: if one

denotes ' = Py(r), then

for i,j € I, i~y 7 if and only if i ~; j (2.8)
for i,j € 2N]\ I i~ j if and only if s; (i) ~x sk(4) (2.9)
fori € I, j ¢ I i~y jifand only if i ~; sx(j)and 3 & Iy, i~ L. (2.10)

It is straightforward to check that this indeed defines a partition of [2N], and that it
is symmetric with respect to k, that is si(7') = 7.

The operation P is perhaps more easily described graphically: represent 7 on a reg-
ular polygon as above, and draw the symmetry line going through the middle of the
segment [k, k + 1]. A graphical representation of Py (7) is then obtained by erasing all the
half-polygon not containing k and replacing it by the mirror-image of the half-polygon
containing k. See Figure for an example.

The following lemma expresses the fact that applying sufficiently many times appro-
priate operators P, one can make a partition symmetric with respect to all the s;’s. See
Figure to see an example of this symmetrization process.

Lemma 2.8. Let m be a positive integer.
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Figure 2.3: The symmetrization process starting from the partition
{{1,3,12},{2,4,8,10},{5,7},{6},{9,11}}.

Let k € N such that 28 > m. Then for any partition 7 of [2m], the partition 7, =
Py Pyr—1 ... PyP Py, () is one of the four following partitions:

T =02 = {{j},j € 2m]}

T =Cn = {{2j§2j + 1}aj € [TTL]}
T =rm = {{27 —L2j},j € [m]}
Tk = loy, = {[2m]}

Proof. Let A = I, Nmw(1) \ {1} and B = ([2m] \ I,,) N 7w(1). The four cases correspond
respectively to the four following cases:

1. A=B=0.
2. A=( and B # 0.
3. A# () and B = 0.

4. A# () and B # 0.

In the first case, it is straightforward to prove by induction on k that 7 includes the
blocks {i} for any i € {1,...,2F 1}

If A =0 and B # 0, then P, (m) includes the block {0,1} and this implies that
Py P, (m) includes the blocks {0,1} and {2,3}, which in turn implies that PP P, ()
includes the blocks {0, 1},{2,3} and {4,5}... More generally 7, includes the blocks {0, 1},
{2,3} ,..., {2k 2k+1 4 1} (this can be proved by induction). For 281 > 2m this is
exactly mp = ¢,,,. We leave the details to the reader.

In the same way, in the third case it is easy to prove by induction on k that 7 includes
the blocks {21 — 1,21} for I € {1,...,2*}.

The fourth case follows from a similar proof by induction that {0,1,2,...,2*1 41} is
contained in 7 (1). The details are not provided. O
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Figure 2.4: The partitions 019, 76, c¢g and 199.

Although Py () is defined for any partition 7, we will be mainly interested in the case
when 7 is a non-crossing partition, and more precisely when = € NC*(d, m).

2.1.2 Study of NC*(d,m)

We first recall the definition of a non-crossing partition. A partition 7 of [IN] is called non-
crossing if for any distinct ¢ < j < k <1 € [N], i ~; k and j ~, [ implies i ~, j (in this
definition either take for < the usual order on {1,..., N} or the cyclic order since it gives
to the same notion). More intuitively 7 is non-crossing if and only there is a graphical
representation of 7 (on a regular polygon with n vertices as explained in the beginning of
section such that the paths lie inside the polygon and only intersect (possibly) at the
vertices of the regular polygon. For example the partitions of Figures [2.1] 2.2 are crossing,
whereas the partitions in Figures are all non-crossing. The set of non-crossing
partitions of [N] is denoted by NC(N). The cardinality of NC(N) is known to be equal
to the Catalan number (2NV)!/(N!(N + 1)!) (see [29]), but we will only use that it is less
that 4V,

Following [27], we introduce the subset NC*(d, m) of NC(2dm).

In the following, for a real number x one denotes by |z| the biggest integer smaller
than or equal to z.

Divide the set [2dm] into 2m intervals Jj...Joy, of size d: the first one is J; =
{1,2...,d}, and the k-this J, = {(k — 1)d + 1,..., kd}.

To each element of [2dm| we assign a label in {1,...,d} in the following way: in any
interval J; of size d as above, the elements are labelled from 1 to d if k is odd and from d
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to 1 if k is even. We shall denote by Aj the set of elements labelled by k.

Definition 2.9. A non-crossing partition 7 of [2dm] belongs to NC*(d, m) if each block
of the partition has an even cardinality, and if within each block, two consecutive elements
7 and j belong to intervals of size d of different parity. Formally, the last condition means
that [(i —1)/d| # |(j —1)/d] mod 2 or equivalently k(i) # k(j) mod 2 when i € Jy;
and j € Jk(j)-

Here are some first elementary properties of NC*(d, m):

Lemma 2.10. If d = 1, a non-crossing partition 7 € NC(2m) belongs to NC*(1,m) if
and only if it has blocks of even cardinality.

A non-crossing partition of [2dm)| is in NC*(d, m) if and only if it has blocks of even
cardinality and it connects only elements with the same labels (i.e. it is finer than the
partition {A1, ..., Aq}).

Proof. The first statement is a particular case of the second statement, which we now
prove. For any i € [2dm] denote by k(i) the integer such that i € Jy;): k(i) = 1 +
|(i—1)/d]. Let m € NC*(d,m). Then by the definition of NC*(d, m) every block of =
contains as many elements ¢ such that k(i) is odd than elements i such that k() is even.
We have to prove that if s and ¢t are two consecutive elements of a block of 7, then s and
t have the same labellings. Assume for example that s belongs to an odd interval, i.e.
k(s) is odd, and denote by I(s) the label of s. Then s = (k(s) — 1)d + I(s). In the same
way, k(t) is then even and if [(¢) is the label of ¢, we have that t = k(t)d + 1 — [(¢). Hence
the number of elements i € {s + 1,...,¢ — 1} such that k(i)( = 1+ [(i — 1)/d]) is odd is
equal to d —I(s) +d - (k(t) — k(s) —1)/2, and the number of elements i such that k(i) is
even is equal to d — I(t) + d - (k(t) — k(s) — 1)/2. But since 7 is non-crossing, the interval
{s+1,...,t—1} is a union of blocks of m and therefore contains as many elements ¢ such
that k(7) is odd than elements ¢ such that k(7) is even. This implies [(s) = I(t). The proof
is the same if k(s) is even.

Now assume that m € NC(dm) has blocks of even cardinality and that 7 is finer than

the partition {A1,..., A4}. Let s and ¢ be two consecutive elements of a block of 7. Then
there is ¢ such that s,¢ € A;. Since 7 is non-crossing and 7 is finer than {Ay,..., A4},
the set {s+1,...,t — 1} N A; is a union of blocks of 7, and in particular it has an even

cardinality. But {s+1,...,t — 1} N A; is the set of elements labelled by ¢ in the union
of the intervals Ji for k(s) < k < k(t) (for the cyclic order). Hence its cardinality is
k(t) — k(s) — 1. Hence k(t) — k(s) is odd. Since s and ¢ are arbitrary, this proves that

m € NC*(d, m). O
Thus to any m € NC*(d,m) we can assign d partitions 7|4, ,...,7|a,, which are the
restrictions of m to Ay, ..., A4 respectively. It is immediate that for any i € {1,...,d},

m|la, € NC*(1,m). See Figure for an example. To study NC*(d,m), we thus begin
with the study of NC*(1,m).
The first lemma shows that if k£ is a multiple of d, then P, maps NC*(d, m) into itself:

Lemma 2.11. If k € N and m € NC(2N) then Py(m) € NC(2N).
If k € N then for any m € NC*(d,m), Pra(m) € NC*(d,m).
Moreover if m € NC*(d, m), then for any i€ {1,...d}:

Bra(m)|a; = Pi(x[a;)-
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Figure 2.5: A graphical representation of a partition 7 in NC*(3,6) and the corresponding
restrictions 7|4, , 7|4, and 7|4, .

Sketch of Proof. The first statement is obvious from the graphical point of view: if there
are no crossing, the symmetrization map will not produce one.

The second statement follows from the characterization of Lemma .10} it is not hard
to check that if 7 has blocks of even cardinality then Pyq4(7) also has. The fact that Pyq(m)
is finer that {4;,..., A4} if 7 is follows from the fact that spq(A;) = A; for any k and
1<i<d.

The third statement follows from the fact that sl(jlm) is characterized by the properties

that for any 1 < j < 2m, s,gilim)(Ji) = Js(m)(i) and sgflm)(A,-) =A; for 1 <i<d. O
k

We have the following corollary of Lemma

Corollary 2.12. Let 7 € NC*(d,m). Then for 2* > m, the partition
Tk — PdePT“—ld e Pgdpdpmd(ﬂ'>

is one of the 2d+1 partitions Ul(d’m) forl=0,1,...,d and &l(dm) forl=1,2,....d defined
by:
(d,m) _Joem 10
7 |&_{Tmiﬂ<i§¢
em if1<i<l
o, " A, = lom difi=l
rm ifl<i<d.
(d7

Moreover for any integer i, Piy(m) = 7 when 7 is one of the partitions o, m) for

1=0,1,....d and 5.*™ for1=1,2,...,d.
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Proof. Let k and 7 as above. By Lemma Tila, = PorPyr—1 ... PoP1 Py (7|4, ), which
is by Lemma [2.8 one of 02y, 7, ¢ and lgy,. But since g, does not have blocks of even
sizes, only the three 7,,, ¢, and 1g,, are possible.

Let 1 <i < j <d. If mg|a, = rm or lay, then in particular ¢ ~r, 2d + 1 — 4. Since 7,
is non-crossing, j ~x, 1 — j, which implies that ﬂk}Aj # Cm, lom. Thus Wk‘A]. = 7rm. In
the same way if TI'k‘ A; = Cp or lop, then 7|4, = ¢ This concludes the proof.

Similarly, the second claims follows from the fact (easy to verify) that P;(w) = 7 for
any i € [2m] when m = 1oy, 7y, OF . d

An important subset of NC*(d, m) is the subset NC5(d, m) of partitions in NC*(d, m)
with blocks of size 2. As explained in part 3.1 of [27], NC5(d, m) is naturally in bijection
with the non-decreasing chains (for the natural lattice structure on NC(m)) of length d
of non-crossing partitions of [m]. Let us denote by NC(m)® this set of non-decreasing
chains in NC(m), for the order of refinement, given by 7 < 7’ if 7/ is finer that 7. The
bijective map NC3(d,m) — NC(m)@ extends naturally to a (of course non-bijective)
map NC*(d,m) — NC(m)¥ which is of interest. We now describe the construction of
this map.

Let m € NC*(1,m), that is a non-crossing partition of [2m] with blocks of even size.
Then ®(7) is the partition of [m] defined by the fact that ~g(, is the transitive closure
of the relation that relates k and [ if 2k ~, 2l or 2k — 1 ~, 2]l or 2k ~, 2l — 1 or
2k — 1 ~ 2l — 1. That is ®(7) is the partition obtained by identifying the 2k — 1 and 2k
in [2m] to get k € [m].

If = € NC*(d,m), we define the map P by P(n) = (®(7|4, ), ..., P(7]|4,)). See Figure
2.6

5 e

Figure 2.6: The map P for the partition 7 € NC*(3,6) of Figure

The map P is a good tool to make a finer study of NC*(d, m).
The main result in this section is that partitions in NC*(d, m) are not far from be-
longing to NC35(d, m):

Theorem 2.13. For any o € NC3(d, m) there are less than 4™ partitions 7 € NC*(d, m)
such that P(m) = P(0).
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Moreover for such a w, the partition o is finer than w and the number of blocks of ™
of size 2 is greater than dm — 2m, and every block has size at most 2m.

Remark 2.14. The remarkable feature of NC*(d, m) illustrated in this Theorem is that
the bounds we get on the number of 7 € NC*(d, m) such that P(m) = P(c) and on the
elements of [2dm] that do not belong to a block of size 2 of 1 € NC*(d, m) do not depend
on d.

In particular since the cardinality of NC5(d, m) is equal to the Fuss-Catalan number
1/m(m<d+1)) which is less that " (d 4+ 1)™ (Corollary 3.2 in [27]) the first statement of

m—1

the Theorem implies that the cardinality of NC*(d,m) is less that (16e(d +1))™".

This Theorem will follow from a series of lemmas. Here is the first one, which treats
the case d = 1:

Lemma 2.15. Let 0 € NC5(1,m) and m € NC*(1,m) such that ®(w) = ®(c). Then o
is finer than .

More precisely if m € NC*(1,m) and if {k1 < ka--- < kp} is a block of ®(w), then for
any i, 2k; ~z 2kiy1 — 1 (with the convention kpy1 = k1 ).

Proof. The first statement follows easily from the second one. We thus focus on the second
statement. At least as far as partitions in NC5(1,m) are concerned, this is explained
in the discussion preceding Corollary 3.2 in [27]. The proof is the same for a general
m € NC*(1,m), but for completeness we still provide a proof.

It is clear that ®(7)(k) = {k} implies that 2k ~, 2k — 1. Thus to prove the statement
we have to prove that if k£ and [ are consecutive and distinct elements of a block of & ()
then 2k ~, 21 — 1.

The first element in 7(2k) after 2k is odd, that is of the form 2p — 1, because 2k is even
and the parity alternates in blocks of m. We claim that p = [. Note that we necessarily
have k < [ < p (again for the cyclic order) because k ~a(r) p- Suppose that k <1 < p. We
get to a contradiction: indeed since | ~g () k and {201 —1,2l} C {2k +1,2k+2...,2p—2}
there is at least one j € {2k + 1,2k +2...,2p —2} and i € {2p — 1,2p...2k} such that
1 ~5 j. But by definition of p, 7 =, 2k and j ~, 2p — 1. This contradicts the fact that m
is non-crossing. O

We can now check that P is well-defined:
Lemma 2.16. The map P from NC*(d, m) takes values in NC(m)@.

Proof. Let 7 € NC*(d, m); we have to prove that if 1 <i < j < d then ®(r|4,) is finer
than @ (7|4, ).

Let {k1 < ka--- < kp} be a block of ®(r|4,). Suppose that ®(rw|a,)(k1) is not
contained in {ki, ks ...kp}. Then there exist 1 <s < pand [ ¢ {ki,ks...kp} such that k,
and [ are consecutive elements of ®(r|4,)(k1) (for the cyclic order). If 1 <t < p is such
that k; < [ < ki1 (with again the convention kp4q = k1), we have by Lemma that
2k, ~rla, 2ki+1—1 and 2k, Nw)A, 20 — 1, which contradicts the fact that « is non-crossing.

J
This shows that <I>(7r’Aj J(k1) € {ki,ka...kp} = ®(m|a,)(k1). Since ki was arbitrary, the
proof is complete. O

Here is a last elementary lemma concerning general non-crossing partitions:

Lemma 2.17. Let N € N and 7 € NC(N) with « blocks. Then the number of k € [N]
such that k ~r k + 1 is greater or equal to N —2(a — 1).
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Proof. For m € NC(N), let us denote by ¢(m) the number of k € [N] such that k ~, k+ 1.
We prove by induction on « that if 7 € NC(N) has a blocks, then ¢(7) > N — 2(a — 1).
If a = 1, this is clear since ¢(m) = N.

Assume that the statement of the lemma is true for all N and all # € NC(N) with «
blocks. Take m € NC(N) with av+ 1 blocks. Since 7 is non-crossing there is a block of 7,
say A, which is an interval of size S. If 77‘ (V)\4 is regarded as an element of NC'(N —S) then
e(m)>S—1 —|—c(7r‘[N}\A) — 1. By the induction hypothesis c(ﬂ[N]\A) >N-S-2(a-1),
which implies ¢(7m) > N — 2« and thus concludes the proof. O

The next Lemma is the main result of this section, and Theorem will easily follow
from it:

Lemma 2.18. Let 0 € NC5(d,m). Then there is a subset A of [2dm] of size greater than
2dm — 4m, which is a union of blocks of o, and such that for any m € NC*(d, m) with
P(m) =P(o) and any k € A, w(k) = o(k).

Proof. For any 1 < j < d, denote by o; = (I)(J‘Aj). Denote by o411 = 05, Fix now
1<i<dand {ki < ks <---<kp} ablock of o;. As usual we take the convention that
kpt1 = k1. We claim that if ks ~4,, | ksy1 then for any 7 € NC*(d, m) with P(m) = P(0),
7(2dky — i +1) = {2dks — i + 1, 2dkqy1 — 2d + i} (= 0(2dks — i + 1) by Lemma [B.15).

Let us first check that this claim implies the Lemma. By Lemmal[2.16] ;1 is finer than
o; and in particular its restriction to {ki, ka,...,kp} makes sense. By Lemma the
number of s’s in {1,...,p} such that ks ~5,_ , ks is greater than p—2(|0z‘+1‘{k1,k2,...,kp} |—
1) where |o| is the number of blocks of o. Thus summing over all blocks of o; we get at
least 2m — 4(|oj4+1| — |o;|) elements k in A; such that 7(k) = o(k) for any 7 € NC*(d, m)
with P(7) = P(c). This allows to conclude the proof since

(2m — 4(|oit1| — |oi])) = 2md — 4|0 g41| + 4]o1| > 2md — 4m.

d
=1

2

Note that A is constructed as a union of blocks of o.

We now only have to prove the claim. Assume that ks ~,., ksi1 and take 7 €
NC*(d,m) such that P(m) = P(c). By Lemma applied to ®(o|a,) = o4, 2dks —
i+ 1 ~; 2dksy1 — 2d + i. Thus we only have to prove that if ks ~ ksy1 there is no
ke {ki,... kp} \ {ksy1} such that 2dks — i+ 1 ~; 2dk — 2d + .

But if ks ~o,,, kst1 then i # d (because 0441 = 0,,) and by Lemma ks and kgyq
are consecutive elements in 0,41 (ks). Thus by Lemma 2dks—1i ~gp 2dksi1 —2d+i+1.
The condition that 7 is non-crossing implies the claim since for k € {k1,...,kp} \ {kss1},

Oit+1

2dks — 1 < 2dks —i+1 < 2dksy1 —2d + 1+ 1 < 2dk — 2d + 4,

that is (2dks — i + 1,2dk — 2d + i) and (2dks — i, 2dksy1 — 2d + i + 1) are crossing.

We can now prove the Theorem.

Proof of Theorem[2.13. Let o € NC5(d,m). If = € NC*(d, m) satisfies P(7) = o then
Lemma applied to o|4, and 7|4, for i = 1,...,d proves that o is finer than =, and
2.18 implies that 7 has at least dm — 2m blocks of size 2. The fact that every block of 7

has size at most m just follows from the definition of NC*(d, m): m is indeed finer than
{Al, ce Ad} with ’AJ’ = 2m.
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We now prove the first statement of Theorem Let A be the subset of [2dm] given
by Lemma [2.18 Then there is an injection:

(r € NC*(d,m),P(x) = P(o)} — NC([2dm]\ A)
m = T f2am)\ A

In particular since there are less than 4" non-crossing partitions on [N], the first statement
of the Theorem follows with 42 replaced by 4*™ because [2dm] \ A has cardinality less
than 4m. To get the 4™ just replace [2dm]\ A by a set B that contains exactly one
element of o(k) for any k € [2dm] \ A. Then B has cardinality less than 2m because
[2dm]\ A is a union of blocks (=pairs) of o, and the previous map is still an injection since
m € NC*(d,m) and P(mw) = P(o) implies that o is finer that . O

2.1.3 Invariant of the P.’s

Motivated by Lemma we are interested in invariants of the operations Pyq (k € [2m])
on NC*(d,m). For m € NC*(1,m) let B(w) be the number of blocks in ®(). This is the
fundamental observation:

Lemma 2.19. For any m € NC*(1,m),

1
B(m) = 5 (B(Pi(m)) + B(FPiam(m))) .-
This Lemma is a consequence of the following description, which proves that for any
k, the set of blocks of ®(7) but one is in bijection with the set of blocks of 7 that do not

contain k and that begin with an odd element (after k for the cyclic order):

Lemma 2.20. Let k € [2m] and m € NC*(1,m). Then B(w) — 1 is equal to the number
of l € [2m]\ {k} such that | is odd and such that for any ' ~; 1, 1 <1 < k (for the cyclic
order).

Proof. Indeed the set of odd I’s different from k such that I’ ~; | = [ <1’ < k (for the
cyclic order) is in bijection with the blocks of ®(7) that do not contain |(k + 1)/2].

The direct map consists in mapping to any such [ the block ®(7)(|(I + 1)/2]) and the
reverse map gives to any block A of ®(7) no containing | (k + 1)/2] the smallest [ greater
than k (again for the cyclic order) such that |(I + 1)/2] € A. The reader can check using
Lemma [2.15] that these maps are indeed inverses of each other. O

Proof of Lemma[2.19. We use Lemma[2.20| with k+1 instead of k. For any 7 € NC*(1,m)
we denote by F(m, k) the set of odd I € [2m]\{k+1} such that I’ ~; I =1 <1’ < k+1. We
know that |F'(m, k)| = B(mw) — 1. Moreover let us decompose F(m, k) as the disjoint union
of Fi(m, k) and Fy(m, k) defined by: [ € Fi(n, k) if and only | € F(m, k) and 7(l) C Ixim;
and Fy(m, k) is the set of | € F(m, k) such that = (1) N I; # (.

If ] € Iy, then | € F(Pyyp (), k) if and only if I € F(m, k) because if k +1 <1’ <,
then I ~p . (r) 1 if and only if I ~7 [.

Take now | ¢ Iji,,. By definition of F(-,k), [ is in F(Pgym(7),k) if and only if I
is odd and [ is the first element (after k£ + 1 for the cyclic order) of a block of Py, ()
contained in Iy, which is equivalent to the fact that sx(l) = 2k + 1 — [ is even and is the
last element of a block of 7 contained in Ij,,. Such a block then has first element odd,
and thus belongs to Fi(m, k) except if it is equal to k 4+ 1. To summarize, we have thus
proved that

[F (P (7). B)] = |F(m B) O L] + Fi (o, )] 4+ 1 (2.11)
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ifk+1lisoddand 7(k+1) C Iy1m ={k+1,k+2,...,k+m}, and
[F(Pesm(r), K)| = |F (e, ) 0 Tl + Fi (7, B) (212)

otherwise.

We now compute |F(Py(m),k)|. If I € I} then as above | € F(Py(m), k) if and only if
l € F(m, k). If I ¢ Ij, then | € F(Py(m), k) if and only if [ is odd and [ is the first element
strictly after & + 1 (in the cyclic order) of a block of Py(m) not containing k + 1. By
construction of Py (7) this is equivalent to the fact that si(l) = 2k + 1 — [ is even, belongs
to Iy, is different from k and is the last element before k in a block of . The first element
(strictly after k in the cyclic order) of such a block is then in Fy(7, k) except if it is equal
to k+ 1. Reciprocally, if " is the last element of a block containing an element of Fy (7, k)
then | = si(I') € F(Py(m), k) except if ' = k. The same is true if m(k + 1) € Iy, k+1
is odd and if I’ denotes the last element in 7(k + 1). Thus

|F(Pk(ﬂ'),]{7)‘ = ‘F(ﬂ—7 k) mIk‘ + ’FQ(T(ak)‘ - 1k is even 1 1k is even and 7r(k+1),¢[k+m
= ‘F(ﬂ—? k) N Ik‘ + ’FQ(Wa k)‘ — 11 is even and w(k4+1)CIgym

Summing this last equality with (2.11) or (2.12]) yields

|F(Pe(m), k)| + [F (P (), k)| =
[F(m, k) O L] + [Fo(m, k)| + |F (0, k) 0 D | + [Fy (7, B)| = 2| F (7, B

This concludes the proof since by Lemma for any 0 € NC*(1,m), |F(o,k)| =
B(o) — 1. O

2.1.4 Study of NC(d,m)

Another relevant subset of NC(2dm) is the set NC(d, m) of partitions m with blocks of
even cardinality and that connect only elements of different intervals Jg. In other words
for all 4,5 € [2dm], i = j if i,j € Jy.

The following observation is very simple but, in view of Theorem or it is the
motivation for the introduction of NC(d, m) :

Lemma 2.21. Let 7 € NC(2dm) with blocks of even cardinality. Then m € NC(d,m) if
and only if m does not connect two consecutive elements of a same subinterval J;. In other
words, i ~r ¢+ 1 only if i is a multiple of d.

Proof. The only if part of the proof is obvious. The converse follows from the fact that a
non-crossing partition always contains an interval (if 7 is non-crossing with blocks of even
size, and s < t € J; with s ~; t and t # s + 1, apply this fact to 7T‘{575+17m7t_1}). O

The purpose of this section is to generalize Theorem [2.13] Namely we prove

Theorem 2.22. The cardinality of NC(d,m) is less than (4d + 4)?™.
Moreover for any m € NC(d,m) the number of blocks of m of size 2 is greater than
(d—2)m.

The idea of the proof is similar to the proof of Theorem [2.13} we try to reduce to
the subset of NC(d,m) consisting of partitions into pairs. For this we introduce the
map Q = QW) from the set of non-crossing partitions of [2N] into blocks of even sizes
to the set of non-crossing partitions of [2N] into pairs. The map @ has the property
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that if 7 € NC(2N) has blocks of even sizes, then Q(m) is finer than 7 and any block
{k1,... kop} of m with 1 < k; < -+ < kg, < 2N becomes p blocks of Q(7), namely
{k1,ka}, ..., {kop—1,kop}. It is straightforward to check that this indeed defines a non-
crossing partition of [2N] into pairs. Note that unlike in the rest of the paper here the
element 1 € [2N] plays a specific role in the definition of @ and we abandon the cyclic
symmetry of [2N]. But this has the advantage to allow to define an order relation on
the set of pairs of elements of [2N]: we will say that a pair (i,j) covers a pair (k,l) if
1<i<k<l<j<2N.

A noteworthy property of @ is that if o = Q(7) then two blocks (=pairs) of o cannot
be contained in the same block of 7 if one covers the other. In other words if 1 <i < k <
[ <j<2N withi~, jand k ~, [ then 7 = k.

Following the notation of section 3.1 in [27], the image Q(NC(d,m)) is denoted by
& (d, m); it is the set of partitions of 7 into pairs that do not connect elements of a same
subinterval Ji for k = 1,...,2m. We are not aware of any nice combinatorial description
of #(d,m) as for NC5(d,m), but a precise bound for its cardinality is known: by the
proof of Theorem 5.3.4 in [4], the cardinality of . (d,m) is equal to 7(Ty(s)*™) where Ty
is the d-th Tchebycheff polynomial and s is a semicircular element of variance 1 in a tracial
C*-algebra (A, 7). In particular since ||T;(s)|| = d+ 1 we have that |.#(d,m)| < (d+1)%>™.
Theorem [2.22] will thus follow from the following more general statement:

Lemma 2.23. Suppose that [2N] is divided into k non-empty intervals S1, ..., Sk and let
o be a non-crossing partition of [2N] into pairs that do not connect elements of a same
subinterval S;. Then there are at most 45=2 non-crossing partitions m of [2N] that do not
connect elements of a same subinterval S; and such that Q(m) = o. Moreover for such a
7 there are at most 2k — 4 elements i € [2N] for which (i) is not a pair.

Proof. We prove this statement by induction on N. For simplicity of notation we will
assume that the intervals S1,..., Sk are ordered, i.e. that if i € S5 and j € Sy with s < ¢
then 7 < j.

If N =1 and o is as above then o = 1, kK = 2, and there is only one # € NC(2) with
Q(7) = o. This proves the assertion for N = 1.

Assume that the above statement holds for 1,2, ..., N—1 and take o as above. Consider
the set {{s;,t;},i =1...p} of outermost blocks (=pairs) of o, i.e the set of pairs of o that
are not being covered by another block of o. If we order the s;’s and t;’s so that s; < t;
and s; < s;41 then we have that s; =1, s;41 =¢; +1 and t, = 2N.

By the property of () mentioned above, a partition 7 € NC(2N) that does not connect
elements of the same interval S; (for j = 1,...,k) satisfies Q(7) = o if and only if the
following properties are satisfied:

e Forany 1 < i <p, {s; +1,...,t; — 1} is a union of blocks of 7, the non-crossing
partition 7"’{51-4—1,...1&1-—1} does not connect elements of the same subinterval S; N {s; +

1,...t; =1} for j=1,...,k, and Q(W}{SiJrl,...tfl}) = U|{sz~+1,...t¢fl}~

e Any block of 77‘{Sl’thSQ’th,Sp,tp} is a union of pairs {s;,t;} and does not contain 2

elements of a same interval S;.

Define k(i) and k(i) for 1 <i <pby s; € Sy_(;) and t; € Sy ;). Then for any 1 <7 < p,
k_(i) < k4 (i) and for i < p, k+(i) < k_(i +1).

Since {s;+1,...t;—1} intersects at most k(i) —k_(i)+1 different intervals S, we have
by the induction hypothesis that the number of non-crossing partitions of {s;+1,...,t;—1}
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that satisfy the first point above is at most 45+(@=k-()=1 anq for such a partition at most
2(k4(i) — k—(i) — 1) elements of {s; +1,...t; — 1} do not belong to a pair.

Moreover the set of non-crossing partitions of {sy,t1, s2,%2,...,sp, t,} that satisfy the
second point is in bijection with the set of non-crossing partitions of {s;,i = 1...p}
such that s; »~ s;41 if k(i) = k_(i +1). Its cardinality is in particular less than (or
equals) the number of non-crossing partitions of [p], which is less than 4P~1. Therefore
the total number of non-crossing partitions 7 of [2N] that do not connect elements of a
same subinterval S; and such that Q(7) = o is less than

p
4p—1 H4k+(i)—k,(i)—1 < 41@—2‘
=1

We used the inequality Y 0 k(i) —k_(i) =1 <k—1—p.

To prove that for such a 7 at most 2k — 4 elements of [2N] do not belong to a pair of 7,
note that for an element j € [2N] the block 7(j) is not a pair either if j € {s1,t1,...,5p,tp}
or if 7 belongs to a block of W‘{si+17...ti_1} which is not a pair for some 1 < ¢ < p. If
k4 (i) < k—(i+1) for some i then we are done since 2p+ Y 7_; 2k (i) —2k_(i) —2 < 2k — 4.
To conclude the proof we thus have to check that if k(i) = k_(i+ 1) for any 1 <i < p

then there are at least 2 elements of {si,t1,...,5p,tp} that belong to a pair of 7. But
this amounts to showing that a non-crossing partition of [p] such that i ~ i + 1 for any
1 <7 < p contains at least one singleton, which is clear. O

The following Lemma is also an easy extention of Lemma [2.8f Remember that the

partitions al(d’m) and 5l(d’m) are defined in Corollary

Lemma 2.24. Fix integers d and m.
For any k € [2m] and m € NC(d,m) the partition Pyq(m) also belongs to NC(d,m).
Let k € N such that 28 > m. Then for any partition 7 € NC(d,m), the partition
Tk = Pok Por—1 ... Po Py P (7) is one of the 2d + 1 partitions al(d’m) for0<1<d or El(d’m)
for1 <l <d.

Proof. The first point is straightforward.

The proof of the second point is the same as Lemma depending on the fact that
{1,2,....,dm}Nx(i)\ {i} and {dm +1,...,2dm} Nx(i) are empty or not for i = 1,...,d,
we prove by induction on k that 7 has the right properties. The details are left to the
reader. O

2.2 Inequalities

For any partition 7 of [2N], and any k = (ki,...,kan) € N2V we write k < 7 if for any
i,j € [2N] such that i ~ j, k; = kj.

Let a = (ak)enn be a finitely supported family of matrices. For any k = (k1,...,kN) €
N¥ let 6k = Qkn kn_1,00k1)"

For such a and for a partition 7 of [2N], we denote by S(a,m, N,1) the following
quantity:

S(a,m,N,1)= > Tr(aa;). (2.13)
kJENN (k,1)<m
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More generally for integers m, d, for a finitely supported family of matrices a = (a)pend
and a partition 7 of [2dm], we define

S(a,n,d,m) = > Tr(ak, ap, Qg - - - Qkyyy gy, )- (2.14)
k1. kom€ND (k1,....kom )<
In this equation and in the rest of the paper an element k = (ki,...,ko,) € (N%)?™ is
identified with an element of N2 Therefore the expression k < 7 has a meaning for
m € NC(2dm).

The following application of the Cauchy-Schwarz inequality is what motivates the
introduction of the operations Py on the partitions of [2N]. The same use of the Cauchy-
Schwarz inequality has been made in the second part of [9].

Lemma 2.25. For a partition © of [2N] and a finitely supported family of matrices a =

(ak)keNN:
1S(a, 7w, N,1)| < (S(a, Po(r), N, 1))/% (S(a, Px(r), N, 1))/2.

More generally for a partition w of [2dm], for a finitely supported family of matrices
a = (ak)pene and any integer i

1/2

1S(a, 7, d,m)| < (S(a, Pai(r),d, m))"'? (S(a, Pynyiya(r), d,m)) (2.15)

Proof. The second statement for ¢ = 0 follows from the first one by replacing N by dm.
Indeed for any and k = (ki,. .., ky) € (N9)™ ~ N9™_denote 3 = g, g, Ak - - - A, if M 8
odd and By = ay, ay,ak, ... ay, if m is even. We claim that S(a,r,d,m) = S(3,7,dm,1).
We give a proof when m is odd, the case when m is even is similar. It is enough to prove
that if k = (k1,...,kp) € (N9)™ then 3 = ag Ak, -.-ay . Butif r: N¢ — N¢ denotes the
map 7(s1,...,8q4) = (84, --.,81) we have that
B = Bitemyrter) = (Grhn) -+ Oy Or(h))
= a:(kl)'dr(kQ) e a:f(km)
= 5;1%2 .. E}QM

For a general i the following argument based on the trace property allow to reduce to
the case i = 0: for a partition 7 of [2dm| and any n € [2dm| denote 7,(7) the partition
such that s ~ () ¢ if and only if s +n ~r t +n, so that P,yi(7) = (7,1 0 Py om,)() for
any integer k. Moreover by the trace property S(a,7,d,m) = S(a, 74 (7),d, m) if n is even
and S(a,m,d,m) = S(a*,74i(m),d,m) if i is even (here a* denotes the family (a})zcna)-
Therefore if one assumes that the inequality is satisfied for any 7 and any a but only
for i = 0, then we can deduce it for a general i in the following way. Denote b = (ay)iene
if i is even and b = (a})pene if 7 is odd and :

|S(a,7r,d,m)\2 = |S(b,7di(7r),d,m)\2
< S(b> PO(Tdi(Tr))vda ’I?’L)S(b, Pdm(Tdi(ﬂ-))acL m)
= S(b, 7ai(Pai(m)), d, m)S(b, 7ai(Pam-+ai (7)), d, m)
= S(CL, Py (ﬂ-)v d, m)S(a, P(m+i)d(77)a d, m)
We now prove the first statement. We take the same notation as in Definition

Let us clarify the notation for the rest of the proof. In the whole proof, for a set X we
see a k € NX as a function from X to N, and for an integer N we will identify NV with
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NI, In particular, if X and Y are disjoint subsets of a set Z, and if k € N¥ and [ € NY,
[k, 1] will denote the element of NXYY corresponding to the function on X UY that has k
as restriction to X and [ as restriction to Y.

Let us denote by A the union of the blocks of 7 that are contained in Iy = {1,... N},
by B the union of the blocks of 7 that are contained in 2N]\ Iy = {N+1,...,2N} = oy
and by C' the rest of [2N]. In the following equations, s will vary in N4, ¢ in N/~¥\A 4 in
NB and v in N2¥\B_ For such s,t,u and v and with the previous notation, [s,t,u,v] <
if and only if s < 7|4, [t,v] < 7|¢ and u < 7|g. For k € N2¥ (je. k is a function
k: Iy — N), we will also abusively denote ay, S A(k(N+1),...k(2N))- With this notation the

definition in ([2.13) becomes 7.

S(CL, ™, N, ].) = Z Tr(a[s,t]aru,v})
seNA t e NIM\A 4 e NB y € Nl2v\B
[s,t,u,v] <

= Yoo T (Y apg)( Y )

t,v s=<T|a u<7|p
[ta U] = 7T|C

Thus

|S(a,7r,N,1)\ < Z Tr ( Z a[sﬂ)( Z a[“v”])*

[t,U]<ﬂ"C S<7T‘A u<7T|B

Applying the Cauchy-Schwarz inequality for the trace, we get

|S(a>7T7N7 1)‘ < Z Z A[s,1] Z a[u,v}

[t,U]<7T‘C 8<7T|A 2 ’LL<7T|B 2
The classical Cauchy-Schwarz inequality yields
|S(a, 7, N, 1) < (1)"/?(2)1/?

where

2
W = > >
[tv]=<mle ||s=<7|a 9
2
[tw]<wle ||u<7|B 9

We claim that (1) = S(a, Py(7), N, 1) and (2) = S(a, Po(7), N,1). We only prove the first
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equality, the second is proved similarly (or follows from the first). But

2
M = D |2
lt0)=<lc ||s<mla )
= > Tr{( D apg) (D apa)
[t,v]<7|e s=<m|a s=<m|a

= Tr| >, > > aenajy

[tv]<m|o s<m|a §'<7|a

= Tr| > > D apganwa |

[t,U]<7T‘C S<7T|A 8/<7T|A

where on the last line for any k = (kq,...,kx) € NN r(k) € NI~ is defined by r(k) =
(kN kn—1,...,k1).

By definition of B, for any j € Iyn \ B there is ¢ € In \ A such that i ~, j. Thus for
any ¢t € N/V\4 there is exactly one or zero v € N/2¥\B guch that [t,v] < m¢, depending
whether ¢ < 77\ 4 or not.

The claim that (1) = S(a, Pn(m), N,1) thus follows from the observation that for
k,1 € NV (k1) < Py(m) if and only there are s,s € N4 and ¢ € NIV such that

k=st],l=r(s,t]) and s < 7|a, s < 7|4 and ¢ < ﬂ"[N\A. d
We now have to observe that the quantities S(a, al(d’m),d, m) for [ = 0,...,d and
S(a, EI(d’m), d,m) for [ =0, ...,d have simple expressions.

A (finitely supported) family of matrices a = (ax),cne can be made in various natural
ways into a bigger matrix, for any decomposition of N¢ ~ N! x N4~ If the a;,’s are viewed
as operators on a Hilbert space H (H = C* if the a;’s are in M,(C)), then let us denote
by M; the operator from H ® ¢2(N)®?~! to H ® ¢*>(N)® having the following block-matrix
decomposition:

Note that since (ay) has finite support, the above matrix has only finitely many nonzero
entries, and hence corresponds to a finite rank operator. In particular, it belongs to
Sp (H @ (2(N)®4=1; H @ (2(N)®!) for any p € (0, 00].

Lemma 2.26. Letd, m, a = (ax)ene and M as above, and o; and &; defined in Corollary

[2.13 Then forl € {0,1,...,d}:

dm m
S(a,0!®™ d,m) = HMZ||gm(HWQ(N)M,Z;HW(N)@Z) .

Moreover forl € {1,...,d}

~(d,m m
S(CL, Ul( ), d, m) < HMlH?S‘gm(H®Z2(N)®’1*l;H®€2(N)®l) .

Remark 2.27. It is also true that

~(d,
S(aa Ul( m)a d> m) < ||Ml—1||§72nm(H®g2(N)®d—l;H®g2(N)®l) )

but we will only use the inequality stated in the lemma. This inequality follows from the
one stated by conjugating by the rotation k € [2dm] — k + d.
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Proof. We fix | € {0,...,d}. For any s = (s1,...,5;) € Nl we denote by Ay = (@s,t)pend—t
viewed as a row matrix. As an operator, A, thus acts from H ® ¢?(N)®4~! to H. For
s, € N if r(ky, ... kg) = (kag, ..., k1)

* ES _ ~x%
ASAS/ == E (Is7t(ls/7t == E CLSJCLT,(S/’t).

teNd—l teNd—!
Hence for sV, s@)_ .. (M) e Nt if s(mt1D) = (1)
m
* o ~x% ~x% ~x%
H As(i)As(i+1> - Z as(l)ﬂf(l)ar(s@),t(l))asu)yt@) ar(s<3>,t(2)) T ar(s“),t(m))‘
i=1 t(1) .. t(m) eNd—!

But for k € N2l [~ Jl(d’m) if and only if there exist sV, s®, ... s(M e N and

t(l),t(2), N ,t(m) S Ndil such that for all i, (kgdzqu, kgdlqrg, ey k2di+d) = (S(Z),t(l)) and
(dei-i-de dei+2d—17 e 7k2di+d+1) = (S(H_l), t(i)). Thus summing over 8(1), 8(2), cee ,S(m) S
N’ in the preceding equation leads to

m
* ~% ~%
§ H As(i)As(Hl) = § Ak, Ay Qg - - - Al 1 Ay, -

s,s@),....smeNt 1=1 (k1,---,k2m)<az(d’7n)

Taking the trace and using the trace property we get

S(a, O_l(d7m), d’ m) = Z T’]" (H A:(z) As(1)>

5(1)75(2> 77777 s(m)eNl =1
m
= Tr|[ > A4,
seN!

= Tr{(M; M;)™]

where the last identity follows from the fact that M; = >~ As ® es1. This concludes the

proof for Ul(d’m). For ﬁl(d’m) with 1 <[ < d, the same kind of computations yield to

m

~(d,m) . *
S(aa oy ,d, m) - Z Tr Z A(S,SZ)A(57SZ)

s1€N seNI—1
To conclude we only have to use Lemma [2.28] below. O
Lemma 2.28. Let X1, Xo... Xy be matrices. Then for any integer m > 1
N N
D Tr((X7X)™) < Tr((Y] X7 X)™).
i=1 i=1

Proof. This is a general inequality for the non-commutative LP-norms. Indeed, for any
a, N € N, and p € [2, 0], the map

T : MNJ(MQ(C)) — MN(MQ(C)
X1 X1 0 0

XN 0 0 Xy
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is a contraction for all p-norms. For p = 2, this is easy because T is an isometry. For
p = oo this is also obvious. For a general p € (2,00) the claim follows by interpolation.
Applied for p = 2m, this concludes the proof since for an integer m,

2m

Xl N

: =Tr((>_ X X)™)

XN 2m =

and

X 0 o \[" &
0 . 0 = Tr((X;X)™).
0 0 Xy o i=1

O]

We are now able to state and prove the main result of this section. Recall that for a
partition m of NC*(1,m), B(mw) was defined in part [2.1.3] as the number of blocks of the
partition ®(7) (the map ® was defined after Corollary [2.12)).

Corollary 2.29. Let m € NC*(d,m). Then if a and M; are as in Lemma

d
2
=0

where 1y = (B(w|a,,, ) — B(w|a,))/(m—1) where we take the convention that B(w|a,) =1
and B(w|a,,,) =m.

Proof. The idea is, as in Lemma 2 and Corollary 3 of [9], to iterate the inequality of
Lemma except that here the combinatorial invariants (Lemma [2.19) of the map
7 +— (Prq(7), Prarma(m)) allow us to precisely determine the exponents of each || M;||2y,.

In the rest of the proof since no confusion is possible, we will simply denote o; = al(d’m) and

5 =5 %™ and S will denote the set {o7,0 < 1 < d}U{5;,0 <1 < d}. Fix 7 € NC*(d, m).

Maybe the clearest way to write out a proof is using the basic vocabulary of probability
theory (for a reference see for example [18]). Let us consider the (homogeneous) Markov
chain (7m,)n>0 on (the finite state space) NC*(d, m) given by mop = 7 and mp4+1 = Pa(my)
where 7 is uniformly distributed in [2m] and independent from (7 )o<x<p, (note that m,41 €
NC*(d,m) if 7, € NC*(d,m) by Lemma [2.11)). Corollary implies that the sequence
(mn)n is almost surely eventually equal to one of the o; or ;. Its second statement indeed
expresses that if m, € S then 7y = m, for all N > n; it suffices therefore to prove that
o E P, ¢ S) — 0as n — co. But if k is fixed with 252 > m, its first statement
implies that pr < 1 — (1/2m)* = ¢ < 1 for any starting state mo. From the equality
Ptk = PnP (i & S ‘7rn ¢ S) and the Markov property we get that p,.x < cp, for any
integer n € N, from which we deduce that p, < cln/kl 0 as n — oo.

Let us denote \i(w) = P (lim, 7, = 0y) and N(m) = P(lim, 7, = 67) for 0 < 1 < d
(take Ag(m) = 0); note that >, \j(m) + N(7) = 1.

Lemma [2.19and the last statement of Lemma[2.11]show that for any i € {1,...,d} the
sequence B(my|4,) is a martingale. In particular since 7o = 7, B(7|a,) = E[B(mp|a,)]
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for any n > 0. Letting n — oo we get

N(m)B(oi| ;) B(aia,)

B(rla,) =

M&
”M&

=0

)+ Mi( )) (1+(m—1)1)

Il
E_ﬂ\m

= m—1) Z)\l -1—)\1 (m).

0<I<i

We used the fact that B(oj|a,) = B(oi|a;) = 1+ (m — 1)1;;. This follows from the
observations that since ®(c¢,,) = ®(121) = 1, B(cm) = |1n| = 1 and that since ®(ry,) =
Om, B(rm) = m. Subtracting the equalities above for ¢ and i + 1 gives

(Ai(m) + Xi(m))(m — 1) = B(x

with the convention that B(rm|4,) = 1 and B(W}Adﬂ) =m.
On the other hand Lemma implies that the sequence M,, = log|S(a,my,d, m)| is
a submartingale. As above letting n — oo in the inequality My < E[M,] yields

Ait1 ) — B(T‘-|A¢) (2.16)

d
log |S(a,m, d,m)| < Z)\( )log|S(a,o01,d,m) ]—1—2)\1 )log|S(a, oy, d,m)|.
1=0 =1

If we denote simply by | M;||2;» the quantity ||Ml”ng(H®e2(N)®d4;H®e2(N)®1)v then by
Lemma [2.26] this inequality becomes

d
1S(a, 7, dym)| < T || My 2R,
=0

This inequality, combined with (2.16)), concludes the proof.

2.3 Main result

We are now able to prove the main results of this paper. We first treat the “holomorphic”
setting (Theorems and [2.4) for which the results we get are completely satisfactory.

2.3.1 Holomorphic setting

It is a generalization to operator coefficients of the main result of [27]. When the coefficients
ay, are taken to be scalars, the techniques of our Theorem [2.4] give a new proof and an
improvement of the theorem 1.3 of [27]. In [27], Kemp and Speicher introduce free Poisson
variables to get an upper bound, whereas our proof is more combinatorial and lies is the
study of NC*(d,m) that is done is part We refer to [32] or to the paper [27]
for definitions and facts on free cumulants and Z-diagonal operators. We just recall
that the x-distribution of a variable ¢ in a C*-probability space is characterized by its
free cumulants, which are the family of complex numbers k,[c°!, ..., "], for n € N and
g; € {1,%}. Moreover the R-diagonal operators are exactly the operators ¢ for which the
cumulants ,[c®!, ..., "] vanish except if n is even and if 1’s and «’s alternate in the
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sequence €1, . ..,&,. Since the family A(g1),...,A(gr) (where g1,..., g, are the generators
of the free group F,) form an example of *-free R-diagonal operators, Theorem is a
particular case of Theorem that is why do not include a proof.

Proof of Theorem[2.4} The start of the proof is the same as in the proof of Theorem 1.3
of [27], and was sketched in the Introduction. Fix p = 2m € 2N.

As in (2.14)), if &£ = (k1,...,kq) € N¢ denote by ax = A(kg,....k1) and ¢, = Clhg, k1) =

Ck, - - - Ck, - First develop the norms:
2m
* * * *
E ax ® ci, = E Tr(ag,ay, - ap, )T(ChyiChy - - Chy, )
keNd om k1,....kom €N
_ ~% ~% ~% ~
= E Tr(ag,ay, - - apy, )T(Cly Chy - - - Chy, )
k‘l,...,kaENd

Take ki,. .., kom € N% if k; = (ky(1), k(2), ..., ki(d)) then

~* ~* _ * * *
Ch1Chy + * Chapy = CR1(1)Ck1(2) =+ Ch1(d) Cha(1) * * * Cha(d) * * * Cham (d)

and by the fundamental property of cumulants:

T(Chy Chy - -+ Chy, ) = Z H,TI—[Ckl(l),...,Ckl(d),c;;(l),...,C;;Q(d),...,CZQm(d)].
meNC(2dm)
Denote k = (ki,...,kam) € (N9)?™ ~ N24m_ Since freeness is characterized by the
vanishing of mixed cumulants (Theorem 11.16 in [32]), Kx[c, (1), - - -  Choam( d)] is non-zero

only if £ < 7, and in this case we claim that it is equal to kr[cgm] where

2m groups

* * * *
Cdm = Cyve ey G C Yy Cyi G, CC L, C (2.17)
d d

—— —— —— ——

d d

Relabel the sequence ki(1),...,kom(d) by ki,...,kogm, and denote also by e1,...,€24m
the corresponding sequence of 1’s and #’s, in such a way that nﬂ[ckl(l),...,czm(d)] =

mﬂ[(cz)KiQdm] and Kz [Cam] = Fr () | cicogm)- BY the definition of ki, we have

Hw[(cz)lgiggdm] - H R|V|[(02)i€\/}
Verm

where the products runs over by the blocks of 7. Similarly

KW[Cd,m] = H H\V|[(08i)i6\/]'

Ver

Our claim thus follows from the observation that if k& < 7 then for any block V' of 7 there
is an index s such that k; = s for all i € V, and the equality s y|[(c5))icv] = Ky [(c*)icv]
expresses just the fact that ¢ and ¢; have the same x-distribution and therefore the same
cumulants.

The next claim is that since ¢ is #-diagonal, kr[cq ] is non-zero only if 7 € NC*(d, m).
Since with the previous notation rr[cam] = [ cx K|v|[(c°?)iev], this amounts to showing
that if there is a block V' of m which is not of even cardinality or for which 1’s and *’s
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do not alternate in the sequence (e;)icy, then sy |[(c*")icv] = 0. But this is exactly the
definition of R-diagonal operators. Thus we get

2m

Z ag ® Ck == Z R [Cd,m] Z Tr(ak1altg cee aZQm)a

keNd om  TENC*(d;m) (k1o ko) <7

or with the notation introduced in ([2.14))

2m

Z ap @ cg = Z Krlcam|S(a, 7, d, m). (2.18)

keNd om  TENC*(dm)

Up to this point we have mainly reproduced the beginning of the proof of Theorem
1.3 of [27] (the authors of [27] only deal with scalar aj’s but there is no other difference).

We can now use the study of NC*(d, m) that we did in part Recall in particular
that there is a map P : NC*(d,m) — NC(m)@® the properties of which are summarized
in Theorem 2.13]

Take (01,...,04) € NC(m)® and denote p; = (|oy1|—|o7|)/(m—1) where |o| denotes
the number of blocks of o with the convention |og| = 1 and |og41| = m. If 7 € NC*(d,m)
and P(r) = (01,...,04) then by Corollary 1S (a, 7, d,m)| <TI0, | M|

Thus by the first part of Theorem [2.13] we have that

Z Kxlcdm|S(a, 7, d, m)
TeNC*(d,m),P(m)=(01,...,04)

d
< 42m M || 2 max Krlc )
< [ e Inlean)

But by the second statement of Theorem and Lemma below (recall that for
7(c) = K1[c] = 0 since ¢ is R-diagonal)

4m
|Kor[Cam]| < HcH%dm <16||C||2m> ’
llc[2

which implies

Kxlcam]S(a, 7, d, m)
meNC*(d,m),P(r)=(01,...,04)

d 4m
: Il
< aom T g e (1) ™. 20
=0

But by Theorem 3.2 in [11], for any non-negative integers so, ..., sq such that ). s; =
m— 1, the number of (01,...,0q4) € NC(m)@ such that |y 1| —|oy| = s; forany 0 < 1 < d

(with the conventions |og| = 1 and |o441| = m) is equal to (1/m) (Z)L) (:}) e (:Z) Thus
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from (2.18) we deduce
2m
10m 2dm HCHZWL o
dar@c| < 4|cl]3 el
keNd o 2
£ o)) (.
so+Fsq=m—1 0
Denote for 51mp11c1ty v = ||Ml||2m/ ™1 Since the number of 50, - -+, 84 € N such that
S0+ -+ 8q =m — 11is equal to (m+j 1), this inequality becomes
2m

lellam \ ™ (m+d -1
S awal <aomgn (Ll ;

keNd
o am () () (T

Now use the fact that for any integers N and n, (g) < (N/n)*(N/(N — n))N=" with
the convention (N/0)° = 1. For a fixed N, this can be proved by induction on n < N/2
using the fact that z € RT — zlog(1 + 1/z) is increasing. Thus

()= (M) =0 ()

2m

But since log is concave, if sg +---+sg=m — 1,

d m m—s;
H<m—sl) = exp((md+1 Z md - log(m/( —sl))>

=0

0
= exp ((md+1)log (1+ (m —1)/(md+1))) < exp(m)

d
< exp ((md +1)log (Zm/(md + 1))>

and

s d s
(271) = exp ((m—l)zmillog (m71/31)>

::j&

N
I
o

0

l
< exp ((m —1)log (m/(m — 1) ZM)

0
= (%+...w)m1< = >m—1

m—1
But (m/(m — 1))™~! < m for any m > 1. This leads to

2m

10m | .[|2dm llcll2m A
Z ar @ cgl| <473
ell2

keNd

2m
m

(1 + %)d (1 + i) exp(m) (o4 ...v)™ . (2.20)
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Noting that since 2m/(m — 1) > 2,

(o + )™ = NMllzm ) 0.y < DMz )il oy

and taking the 2m-th root in ([2.20]) one finally gets

m\ d/2m cllam 2
Zak@Ck §45 e(l—|—d/m) (14_3) HCHCQZ(H HQ >

lell2
keNd o

ICHMll2m)all 2 go,....ay) -

To conclude for the case m < oo, just note that (1 + %)d/m <e

Letting m — oo and noting that (1 + %)d/m — 1 concludes the proof for the operator
norm.

When the ¢;’s are circular, since krlcqn,| = 1 if 7 € NC5(d,m) and krlcqgm] = 0
otherwise, we can replace (2.19) by

d
3 ilcamlS(a,m,d,m)| < [T 120l
TENC*(d,m),P(7)=(01,....,04) =0

Following the rest of the arguments we get the claimed results. O

We still have to prove this Lemma that was used in the above proof.

Lemma 2.30. Let m € NC(n) a non-crossing partition that has at least K blocks of size
2 and in which all blocks have a size at most N.

Let c1,...,cy be elements of a tracial C*-probability space (A,T) that are centered:
7(ck) =0 for all k. Let my, = maxy, ||cg||p for p=2,N. Then

lkelct, ..., enl] < m3E (16my)" 2K . (2.21)

Proof. Since both m — k; and the right-hand side of are multiplicative, we only
have to prove when m = 1, with n < N. Then as usual x, is denoted by k,. If
n = 1 it is obvious since k1(c1) = ¢(c1) = 0.

If n =2, then K = 1 and ka(ck, ¢;) = 7(cxer) — 7(cx)7(c;) = 7(ckey). By the Cauchy-
Schwarz inequality we get |ka(cy, ;)| < m3.

We now focus on the case n > 2, and then K = 0. This is essentially done in the
proof of Lemma 4.3 in [27] but we have to replace the inequality |7(cg, .. .cg,)| < mi, by
Hoélder’s inequality |7(cg, - . . cx,)| < mly for any I < n < N. Following the proof of Lemma
4.3 in [27], we thus get that

Enlcly ... cn] < g1 Z mp” < 42"mpy".
ceENC(n)
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2.3.2 Non-holomorphic setting

Here we consider Theorems and We only sketch their proofs. The idea is the
same as in the holomorphic setting, except that here the relevant subset of non-crossing
partitions is the set NC(d, m) introduced and studied in part

Sketch of proof of Theorem[2.6, We will use that if ¢ has a symmetric distribution, then
¢ has vanishing odd cumulants. This means that x.[c,...,c| = 0 unless m has only blocks
of even cardinality. To check this, by the multiplicativity of free cumulants, we have to
prove that kyle,...,c] = k1, [e,...,c] = 0if n is odd. But this is clear: since —c and ¢
have the same distribution, kylc,...,c] = kp[—c¢,...,—c]. On the other hand since &, is
n-linear, ky[—c,...,—c] = (=1)"kyu[e, ..., c].

Take (cx)ken and (ag)pene as in Theorem and define a;, and ¢y, .1, as in the proof
of Theorem Assume for simplicity that cj is normalized by ||cx|l2 = 1. Denote by I
the set of k = (ki,...,kq) € N? such that for any 1 < i < d k; # kiy1. Then for p = 2m
we have that
2m

= Z Tr(ag,ay, - -, )T(ChyChy -+ - Chapy)-
om ki,...,kam€Il

Zak®ck

kel

Expanding the moment 7(cg, ... Ck,,, ) using cumulants we get

T(Chy Chey - - - Chyypy ) = Z K [Chi(1)s + - 5 Chy(d)s Cha(1)s - - + > Chia(d)> - - + s Chiamn (d))-
rENC(2dm)

By freeness of the family (ck)xen, by the assumption on the vanishing of odd moments and
by Lemma such a cumulant is equal to 0 except if 7 € NC(d,m) and (k1, ..., kam) <

7, in which case it is equal to kr[c,c...,c]. We get
2m
Zak@)ck = Z Krle,...,c]S(a,m d,m).
kel om TeNC(d,m)

But by Lemma Lemma and an iteration of Lemma we get that for any
m € NC(d,m)
d,m) < M;|3m.
S((I,ﬂ', am) = orglagxd” lHQm

On the other hand (remembering that ||c[|2 = 1), Theorem 2.22] and Lemma[2.30]imply
that for 7 € NC(d,m),
|xle, -] < (16]|cllam) ™™ .
This yields
2m

4
< Y 6l ma 2430
om TeENC(d,m) -

Zak@)ck

kel

But by Theorem NC(d,m) has cardinality less than 42 (d + 1)®™. Taking the
2m-th root in the preceding equation we thus get

Zak@)ck

< 45(d + 1)||c||? M;|2m.
2 <4°(d+ )IICHQmOIgngI 1ll2m

2m

This proves Theorem for the case when p € 2N. For p = co just make p — oo. O
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For Theorem the proof is the same except that we have to be slightly more careful
in the beginning. Recall that I; is the set of (ki,e1,...,kq eq4) € (N x {1,%})¢ such that
A( Gy )" .- Mgk, )®¢ corresponds to an element of length d in the free group Fio. For a
family of matrices (ak.e)k,e)er, denote by

ak,E = a(kdz"'7k1)’(§d7"'gl)

where ¥ = 1 and 1 = *. The motivation for this notation is the following: for (k,¢) € Iy
denote by ¢ . = cill . CZZ, so that if ¢ . is defined as a ., we have that é*,;}s = Cpe.

For k = (ki,...,kom) € (ND2" & = (e1,...,e9m) € ({1,%})?™ and 7 € NC(2dm)
with blocks of even cardinality we will also write (k,e) < 7 if k; = k; for all i ~ j and
if in addition for each block {i; < --- < igy} of m, 1’s and #’s alternate in the sequence

€i11€igs - -+ gy

Last we denote, for m € NC(d, m)
S(a,m,d,m) = E Tr(akhalé,’g%aak&gg .. dzmsgm).
(k)=
The proofs of Lemma [2.25 and Lemma [2.26] still apply with this notation:

Lemma 2.31. Let 1 € NC(d,m), and take a finitely supported family of matrices a =
(Ake)(ke)er, as above. For any integer i

S(a,7d,m)| < (8(a, Putr), d,m)) s (8(a, Ponialm).d. m))l/ ‘.

Lemma 2.32. Let d, m, a = (aye)(ke)er, and M be as in Theorem and oy and o}
as defined in Corollary . Then forl € {0,1,...,d}:

= dm m
S(a, O'l( )’ d, m) = ||Ml||i’zm(H®€2(N)®d*l;H®€2(N)®l) .

Moreover forl e {1,...,d}

= ~(d,m m
S(a, Ul( )7 d,m) < HMZHEQm(H®g2(N)®d—l;H®g2(N)®l) .

We leave the proofs to the reader.

Sketch of the proof of Theorem[2.5 Use the same notation as above. Take m € N. Then
as for the self-adjoint case we expand the 2m-norm as follows:

2m

E Qk.e & Ck,e =

(k,E)EId 2m

Uk vk
E : Tr(akhﬁ Akgeg -+ a‘ka,EQm)T(C’flyglck%EZ s Ckzm,EQm)'
(klzgl):mv(kayEQm)EId

By the freeness, the definition of I;, Lemma and the fact that the ¢;’s are #-diagonal,
the expression of the moment 7(cg, ¢, - - - Chy,n.e0,, ) Decomes simply

1 m(d
ke - Chomen) = D lwe<ahinleii(y) ()

TeNC(d,m)
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Where if (k,e) < 7 and ay,(c) = kanlc, ¥, ¢, ¢, ..., ¢, c*] = Kan[c", ¢, ¥, ¢, ..., c*, c] we have
that
e1(1) com(d)y _
R [Chy (1) -+ Chpm(a) = II e
V block of w

In particular this quantity (which we will abusively denote by k. (c)) does not depend on
(k,e). We therefore get

Zak@)ck

kel

2m

= Z kx[c]S(a, 7, d, m).

oam  wENC(d,m)

From this point the proof of Theorem [2.6] applies except that we use Lemma [2.32] and
an iteration of Lemma [2.31] instead of Lemma [2.26] and an iteration of Lemma 225 O

2.3.3 Lower bounds

Here we get some lower bounds on the norms we investigated before. For example the
following minoration is classical:

Lemma 2.33. Let (ci)ken be circular x-free elements with |||y = 1. Then for any finitely
supported family of matrices (ag, . k) k... keeN the following inequality holds:

H Z Aky,...kg @ Chy - ‘cde > Olglag}ii (| M.

Proof. We use the following (classical) realization of free circular elements on a Fock space.
Let H = Hy @2 Hs be a Hilbert space with an orthonormal basis given by (ex)renU (f&)ken
((ex) is a basis of Hy and (f;) of Hs). Let F(H) = CQ® @®,>1 H®" be the full Fock space
constructed on H and for k¥ € N s(k) (resp. s(k)) the operator of creation by ey (resp. fx).
Define finally ¢, = s;, + s5. It is well-known that (ci)ren form of -free family of circular
variables for the state (-2,€) which is tracial on the C*-algebra generated by the c’s.
Let K be the Hilbert space on which the ai’s act (K = C* if a; € M,(C)). Then
if P, denotes the orthogonal projection from F(H) — ng)k , for 0 < I < d the operator

(id® P)o Zkl kgeN @it kg @ Chy - - - Chy ’K®H®d—l corresponds to M; if it is viewed as an
Iey 1
operator from K@ H®! ~ K@2(N)®4~! to K@ HS' ~ K ®(?*(N)®! for the identification
Hy ~ (% and Hy ~ (? with the orthonormal bases (ej) and (fy).
This proves the Lemma. O

We also prove the following Lemma which was stated in the introduction.

Lemma 2.34. Let p be a prime number and define ay, .., = exp(2ink; ... kq/p) for any

ki € {1,...,p}.
Then ||(ax)|l2 = p¥? and for any 1 < 1 < d — 1 the matriz M; defined by M; =
(a(kl,~-~7kl)7(kl+1a-~-,kd)) € Mplmd—l((C) satisfies || M;]| < p/2 (d—1)/p.

Proof. Since ||M;||* = [|[M;M;|| we compute the matrix M;M;" € M ,i(C).
For any s = (s1,...5) and t = (t1,...,t;) € {1,...,p}! the s, t-th entry of MM} is
equal to
Z exp (2im(sy...80 —t1...t)kir1 ... kq/p) .
(K141, ska) €{1,..p} 4~
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If s1...5, = t1...t; mod p then this quantity is equal to p®~! whereas otherwise, w =
exp (2im(sy...s; —t1...1;)/p) is a primitive p-th root of 1, and it is straightforward to
check that for such an w,

Z k k Z Zp K k ka
WhLRd (w I41-- d71)

(Kig1,eska)€{1,...,p}d= kig1,ekd—1 ka=1
= E plkHl...kd,l:O mod p
kii1,.ka1

= pp* " = (p-1)T ).
We therefore have that

MM} = (" = plo = 1) (1) e = ) (L)

s,t€p]! sitelpll
The norm of an N x N matrix with entries all equal to 1 is V.
Moreover if [p]' = {(s1,...,5)} is decomposed depending on the value of s;...s

modulo p, the matrix (1s,  5=¢,..4 l is a block-diagonal matrix with blocks having
s,te

all entries equal to 1. Its norm is therefore equal to

maXH(sl,...,sl) elpl,si...si =1 modp}’

i€lp]
= H(Sl,...,sl) € [P}l,sl---Sl :0}‘ :pl—(p—l)l,

By the triangle inequality the norm of M;M;" is thus less than

P = (=D 4+ p(p - TR - (p— 1))
=p’—plp—- 1" < (d—1)p*!

O]



Chapter 3

Operator space valued Hankel
matrices

Introduction

In this chapter I study Hankel matrices in the vector-valued non-commutative LP-space
SP[E]. The main result is a characterization of the norm of such matrices in terms of
vector-valued Besov spaces B (E), defined in the second section. The surprising fact is
that these norms only depend on the Banach-space structure of £. The main result is the
following.

If o =) cnanz" is a formal series with a, belonging to an operator space E, we
denote a, = @(n) (§(n) coincides with the Fourier coefficient of ¢ when ¢ € LY(T; E)),
the Hankel matrix I';, is defined by its matrix representation

Lo = (@ + k) r>0-

Theorem 3.1. Let 1 < p < oco. A Hankel matriz (aji);r>0 belongs to SP|E) if and only
if the formal series Y, <, anz" belongs to B;/p (E),.

More precisely there is a constant C' > 0 such that for any operator space E and any
formal series p =", <o arzk

-1
C HSOHBII,/p(E)_,_ S HFWHSP[E] S CpH(‘OHB;/p(E)+
Remark 3.2. In the first version of this thesis the inequality that was proved was
C_l H()OHB;/P(E)_F < ||F<PHSp[E] < Cp2 ”CPHB;/P(E)_‘_

I am grateful to Quanhua Xu for pointing out to me the improvement in page [94] allowing
to replace p? by p in the previous equation. I should also mention that after the final
version of this thesis was written, I managed to slightly change the proof and get a term
/D instead of p, and this |/p is optimal. The reader is refered to a forthcoming paper on
the subject for more on this.

As often for results on non-commutative LP spaces this result is proved using the
complex interpolation method. For p = 1 the above theorem can be proved directly. A
first natural attempt to derive the Theorem for any p would be to get something for p = oo.
Bounded Hankel operators are well-known with Nehari’s theorem and its operator valued
version, which states that for E C B(f?) and p = oo, I'y, belongs to B({?) @ E if and
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only if there is a function ¢ € L*(T; B(¢?)) such that @(k) = (k) for k > 0. But for
non-injective operator spaces, this seems very complicated (at least to me) to relate this
function v to properties of E. Another natural attempt would be to interpolate between
p = 2 and p = 1 since often for p = 2 results are obvious. But I would like to point out
that here the Theorem is non trivial for p = 2 as well. We are thus led to pass from a
problem with only one parameter p to a problem with more (3 here) parameters to “get
room” in order to be able to use the interpolation method. This is done with the so-called
generalized Hankel matrices.

For real (or complex) numbers «, 3 the generalized Hankel matrix with symbol ¢ is
defined by

e = (@) BB +R)

Our main theorem characterizes, for an operator space E and a 1 < p < oo, the
generalized Hankel matrices that belong to SP[E] under the conditions that o + 1/2p >
0,8+ 1/2p > 0.

Theorem 3.3. Let 1 < p < oo and «,F > —1/2p. Then for a formal series ¢ =
Y om0 P(n)z" with p(n) € E, Fg’ﬁ € SplE] if and only if ¢ € B;,/eraJrﬁ (B),.

More precisely, for all M > 0, there is a constant C = Cyy (depending only on M, not
on p, E) such that for all such ¢, all1 < p < oo and all a, B € R such that —1/2p < o, 3 <
M,

C

a,B <
SplE] — /(a4 1/2p) (B + 1/2)

-1
O™ el ga/mvas gy, < ||

Il gyvsasaey - (31)

Note that surprisingly, this theorem shows that the condition Fg’ﬁ € Sp[E] only de-
pends on the Banach space structure of E (whereas the Banach space structure of S,[E]
depends on the operator space structure of F).

These results extend results of Peller in the scalar case or in the case when E = SP
(134],[38],[35], [40]). In the scalar case Peller’s theorem indeed shows that the space of

Hankel matrices in SP is isomorphic to a Besov space B;ip . The case when E = SP shows
that this isomorphism is in fact a complete isomorphism. The results stated above show
that this isomorphism has the stronger property of being regular as well as its inverse
in the sense of [41]. In this chapter I made the choice to use the vocabulary of regular
operators, but one could easily avoid this notion.

These results should be considered as remarks on Peller’s proof rather than new the-
orems, since the steps presented here are all close to one of Peller’s proofs ([40], sections
8 and 9 of Chapter 6). There are still some adaptations to make since for example the
result for p = 2 is non-trivial here whereas it is obvious in Peller’s case. For completeness
we still provide a detailed proof.

Peller’s classical results also have an extension to the case 0 < p < 1. Here there are
some obstructions: we should first of all clarify the notion vector-valued non-commutative
LP spaces when for p < 1. But even then, since the proof given here really lies on the
duality and interpolation, some new ideas would be needed.

This chapter is organized as follows: in the first section we recall definitions and facts
on regular operators. In the second section we give definitions and classical results on
Besov spaces of analytic functions By ., that will be used later. All results are proved. In
the third and last section we prove the main result.
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3.1 Background on regular operators

3.1.1 Commutative case

We start by recalling the definition of regular operators in the commutative setting.
Definition 3.4. A linear operator v : A; — Ay between Banach lattices is said to be

regular if for any Banach space X, u ® idx : A1(X) — A1(X) is bounded. Equivalently
(taking for X = £2°), if there is a constant C such that for any n and fi,..., f, € Ay,

<C

sup |u(fi)| sup |fi|
k k

A2 Al

The smallest such C' is denoted by ||u]|,.

This theory applies in particular if Ay and A; are (commutative) LP spaces: when
p =1or p = o0 a map is regular if and only if it is bounded. Similarly, a map that
is simultaneously bounded L' — L' and L>® — L* is regular on LP. This is not far
from being a characterization since it is known that the set of regular operators: LP —
LP coincides with the interpolation space (for the second complex interpolation method)
between B(L>, L>) and B(L',L').

We refer to [2] for facts on the complex interpolation method.

3.1.2 Non-commutative case

Let S be a subspace of a non-commutative LP space constructed on a hyperfinite von
Neumann algebra. In the sequel for an operator space E we will denote by S[E] the
(closure of) the subspace S ® E of the vector valued non-commutative LP-space LP(7; E)
defined in [42].

Definition 3.5. A linear map u : S — T between subspaces of non-commutative LP
spaces as above is said to be regular if for any operator space E, u ® idg : S[E] — T[E]
is bounded. As in the commutative case ||ul|, will denote the best constant C' such that
lu ® ZdEHS[E]—»T[E] < (C for all E.

The set of regular operators equipped with this norm will be denoted by B,.(S,T).

Since classical LP spaces are special cases of non-commutative LP spaces, this notion
applies also for commutative LP spaces (but fortunately the two notions coincide). This
notion was defined and studied in [41]. In particular the following result was proved:

Theorem 3.6 (Pisier). Let (M, 7) and (N, T) be hyperfinite von Neumann algebras with
normal faithful traces. Then a map u : LP(T) — LP(T) is regular is and only if it is a
linear combination of bounded completely positive operators. Moreover isomorphically

B,(IP, L) ~ [CB(L>®,L®),CB(L", LY’ for 6 = 1/p.
The following result was also proved:

Theorem 3.7. Let 1 < p < oo. Then u : LP(1) — LP(T) is regular if and only if
w* : LV (1) — LV (1) is regular, and ||ull, = ||u*]),.
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3.2 Vector valued Besov spaces

In this section we introduce the Besov spaces of analytic functions By .. Before that we
need some facts on Fourier multipliers. Everything in this section is classmal (the results
are stated in [40], and they are proved for the real line instead of the unit circle in [2]), but
we give precise proofs in order to get quantitative bounds on the norms of the different
isomorphisms.

3.2.1 Fourier Multipliers on the circle

Here T will denote the unit circle: T = {z € C,|z| = 1} and will be equipped with its
Haar probability measure.

The Fourier multiplier with symbol (Ag)rez (Ax € C) is the linear map on the poly-
nomials in z and z denoted by M(,,), and mapping > okez apz® to > okez Apagpz®. For
1 < p < oo we say that the Fourier multiplier is bounded on L? if the map M,,), can be
extended to a bounded operator on LP(T) such that for f € LP(T), g = M,,), (f) satisfies
Gk) = M (k).

Similarly if X is a Banach space the multiplier My,), is said to be bounded on LP(T; X)
if My,), ®idx extends to a continuous map on LP(T; X) (which we still denote by My, )),
such that for f € LP(T; X), g = (My,), ® idx)(f) satisfies g(k) = )\kf(k)

In the vocabulary of part a multiplier M,,), is said to be regular on LP if it is
bounded on LP(T; X) for any Banach space X.

For example if Ay = fi(k) for some complex Borel measure y on T then My, is
bounded on LP(T; X) (1 < p < oo) for any Banach space X since it corresponds to the
convolution map f — pux f. Its regular norm on LP is therefore equal to the total variation
of .

k

The following Lemma will be essential.

Lemma 3.8. Let A = (M\p)rez € CZ satisfying ||M|2 < co. Then the Fourier multiplier
with symbol X\ is bounded on every LP and

[ Ma), HLHp_ \/HAIIQH k1 — Mokl

It is even reqular and its reqular norm on LP is less than 2//T\/|| M2l (Mkr1 — M)k ll2-

Proof. Since ||(Ag)||2 < oo, the function f: z +— >, Apz® is in L2 and || f|l2 = ||(Ak)]|2-
Similarly, the function g : z +— (1 — z) f(2) satisfies ||g||2 = ||(Ax — Ak+1)kezl|2-
Since the multiplier with symbol (Ag) corresponds to the convolution by f, by the

remark preceding the Lemma we only have to prove that ||f||? < ||f|l2/lgll2- But for any
0<s<1/2:

1 .
1l = /0 (3 dt
1-—s 1

_ / ’f(62i7rt)|dt+/ mKl _62i7rt)f(e2i7rt)|dt

S

1-s
1
v25||f||2+/ oz Atlgll2
s |1—€ |

IN
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by the Cauchy-Schwarz inequality. The remaining integral can be computed:

1-s 1 1/2 1
—dt = 2 ——dt
/S |1 — e2imt|2 /8 4sin(7t)
1 |:—COS(7Tt)]1/2 B 1 1

2 | wsin(nt) ~ 2mtan(ms) T 272s

where we used that tanz > x for all 0 < z < /2. Taking s = ||gl|2/27| fll2 < 1/2 we get
the desired inequality. O

The following consequence will be also used a lot:

Lemma 3.9. Let I = [a,b] C Z be an interval of size N and take (\;)rec € CZ. ~
Then for any 1 < p < oo, any Banach space X and any f € LP(T; X) such that f is
supported in I,

a<k<b

HM(M fHLp(T X) < 2 f|l, max (sup | Ak Nsup |Ak| sup |Ax — )\k+1|> (3.2)

In other words, the restriction of the multiplier M)y to the subspace of LP(T) of functions
with Fourier transform vanishing outside of I has a reqular norm less than the right-hand
side of this inequality.

Proof. Consider the multiplier M, with symbol (u)rez where py, = A if k € I, py, = 0 if
k<a—Norifk>b+ N, and p is affine on the intervals [a — N,a] and [b,b+ NJ.

Since M, and M) coincide on the space of functions such that f(k) = 0 for k& ¢ I,
the claim will follow from the fact that the regular norm of M, is less that the right-
hand side of (3.2). For this we use Lemma so we have to dominate ||(ug)|2 and
I|(tg+1—per)||2. Since both sequences (pug ) and (pg+1 — k) g are supported in Ja— N, b+ N]
which is of size less than 3V, their (?-norm is less than /3N times their £>° norm. The
inequality supy, |pr| < supper|Ax| is obvious by definition of ug. On the other hand we
have |pg+1 — pk]l = [Mes1 — el if & € [a,b], and |pps1 — px| < supger |[Ak|/N otherwise
since py, is affine on the intervals of size N + 1 [a — N, a] and [b,b+ NJ.

Thus by Lemma [3.8]

2v/3
M, < — A N A Ak — A
IMull o) — Lo (r ) < 7 max (SUP| Kl zl[lapb[| k)|Sup\ K k+1\>

This concludes the proof since 3 < 7. ]
For all n € N, n > 0 we define the function W,, on T by

27n+1(k. _ 2n71) if anl < k < on
Wn(k) =< 27n(2nH — k) if 2" <k <27l
0 otherwise.

We also define Wy(z) = z + 1.

Note that for all k € N, Y, . Wa(k) =1 (finite sum)..

Since for n > 0, ||(Wn(k))xll2 < V2" and ||[(Wy (k) — Wi (k + 1))i]l2 = 1/3/27, Lemma
implies the multiplier f — W, * f has regular norm less than 2\/3/7 < 2 on LP(T)
any 1 < p < co. The same is obvious for Wj.
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3.2.2 Besov spaces of vector-valued analytic functions

We define the weighted ¢, spaces E}’;(N; X) for p > 0, s € R and a Banach space X as the
space of sequences (n)neny € X" such that 1(@n)nlles v,y = 112" [|zn]| X )nenll, < oo

We will deal in this paper with Besov spaces of “analytic functions”, which are defined
in the following way. First note that the reader should take the term “analytic” with care.
Elements of the Besov spaces are indeed defined as formal series >, 22" with 2z € T.
The term analytic means that the formal series are indexed by N and not Z (in particular
this has nothing to do with analytic maps defined on the real analytic manifold T).

Let X be a Banach space; p,q > 0 and s real numbers. The Besov space B, , (X), is
defined as the space of formal series f(z) = >,y k2" with z; € X such that (27%||W,, *
fllp)nen € £q, with the norm [[(2"[[Wy + fllp)nenll,- Here by Wy x f we mean the (finite
sum) » s Wn(k)a:kzk, and this coincides with the obvious notion when f € L'(T; X).
Remark 3.10 (Elements of B, (X), as functions). It is easy to see that when s >
0, any f € B, (X), corresponds to a function belonging to LP(T;X) (and therefore
also to L'(T; X)). In this case the series > o, W;, * f indeed converges in LP(T; X)
(because Y. <o [Wn x fll, < 00). It is also immediate to see that for any s, ||zx||x <
C||f||B§’q(X)+/~c_s for some constant C' > 0, and thus that for any f € B, , (X),, > x>0 x2*
converges for all z in the unit ball D of C.

On the opposite when s < 0 there are elements f =3, rp2k e B, ,(X), such that
the sequence xy, is not even bounded (and thus cannot represent a function in L'(T; X)).

The space can be equivalently defined as a subspace of £, (N; LP(T; X)) with the iso-
metric injection

By, (X)), — £(N;LP(T; X))

f = (Wn *f)nEN

Moreover the image of By, (X) 4 in the isometric injection is a complemented subspace.
The complementation map is given by

P (N, LP(T; X)) — B, (X)),

(an) = (WO+WI>*CLO+Z<Wn—1 +Wn+Wn+1)*an

n>1

and has norm less than C22l%! for some constant C' < 20. Indeed, if V;, = W,,_1 +Wn+Whi1
if n > 1 and Vy = Wy + Wy, then W,,, xV,, = 0 if [n —m/| > 2, and moreover if [n —m| < 2,
|(Wi % Vi) % anllp < 4flan ||, by Lemma [.8] This implies that

ZVn*an

o Bj¢(X)

IN

Y 4l llantellp)nenl,

—2<e<2
+

< 4274270+ 14+ 2° 4 2%) (2%l ansellp)nenl,

When p = ¢, the Besov space B, , (X)Jr is also denoted by B, (X)Jr. In this case By, is
a subspace of £;(N; LP(T)) which is just the L” space of N x T with respect to the product
measure of the Lebesgue measure on T and the measure on N giving mass 2" to {n}.
Moreover (at least for p < oo) B, (X), is the closure of By, ® X in the vector-valued L?
space LP(N x T; X). This will allow to speak of regular operators between B, and an
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other (subspace of a) non-commutative LP space. Note in particular that the above remark
shows that B, is a complemented subspace of LP(N x T) and that the complementation
map P (which does not depend on p) is regular.

As a consequence of the complementation, we have the following property of Besov
spaces:

Theorem 3.11. The properties of the Besov spaces with respect to duality are: if p,q < 0o

B, (X), = B (X*), .

~

For the natural duality (f,g) =3, 5¢(f(n),g(n)).

For a real (or complex) number « and an integer n, we define the number DY by
D§ =1 and for n > 1,

po_ (@t D(@+2).. (a+n) :ﬁ<1+o.z>‘
et J

" n! J
J

For any t € R, we define the maps I; and I, by

It(z apz) = Z 1+ k)lagz".

k>0 k>0
It(z akz g Dkakz
k>0 k>0

The boundedness properties of the maps I; and ft are described by the following result:

Theorem 3.12. Let M > 0 be a real number. There is a constant C = Cypy (depending
only on M) such that for any 1 < p,q < oo, any |t| < M, any s € R, and any Banach
space X,

12 = By (X) . = By (X)L I B! (X)), — By (X), || < C.

Moreover if —1/2 <t < M,

e : By g (X), — By (X)L M2 Byg' (X)), — By g (X), || < C.
Proof. Fix M > 0 (and even M > 1) and take |[t| < M. Let us treat the case of I;.
Let f = > k>0 a2t € By, (X),. Since the maps f +— W, x f and f ~ I;f are both
multipliers, they commute, and we have that

e gy, = || @82 Wk D]

To show that ||I;|| < C, it is therefore enough to show that the multiplier I; /2™ (the symbol
of which is ((1 + k)/2")!) is bounded by some constant C' on the subspace of LP(T, X)
consisting of functions whose Fourier transform is supported in ]27~1, 2"+, This follows
from Lemma We indeed have ((1 + k)/2")t < 2l for k €]27~1,2"*1[. To dominate
the difference |((2 + k)/2")! — ((1 + k)/2™)t| for 271 < k < 27! — 1 just dominate the
derivative of = — (2/2") on the interval [271,27F1] by |¢[21t-1 /27 < M2M+1 /97 The
multiplier I, /2™ is thus bounded by 4v/M2M.
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This shows that

1L By (X), — Biat (X), || < 4V12M
Since I_; , the inequality for I_; follows.

By the same argument, to dominate the norms of I, (resp. its inverse), we have
to get a uniform bound on supy |A\g| and 2" supy, [Agr1 — Ax| where A\ = DI /2™ (resp.
A = 2™ /D}). This amounts to showing that there is a constant C'(M) (depending on
M only) such that 1/C(M) < |Dj/2"| < C(M) and |Dj_ /2" — DZ/Q"W < C(M)/2"
for 2771 < k < 2! (the inequality [2"/Dj}_, — 2" /Dj| < C(M)?/2" will follow from
the formula |1/x — 1/y| = |y — z|/|xy|). The first inequality can be proved by taking the
logarithm, noting that log(1+t/4) = t/j + O(1/42) up to constants depending only on M
if —1/2 <t < M, and remembering that Ziv 1/j =log N + O(1). The second inequality
follows easily since D}, — D} =t/(k +1)Dj. O

We also use the following characterization of Besov spaces of analytic vector-valued
functions:

Theorem 3.13. Let M > 0. Then there is a constant C = Cyps (depending only on M )
such that for all 0 < s < M, for all Banach spaces X, all1 <p<ocoandall f:T — X,

C’—1||f”B;; < H (1—|z)* l/pf‘

< — .
LP(D,dz; X) HfHB (X4

Proof. The left-hand side inequality is easier. For any 0 < r < 1, let f, denote the function

fr(0) = f(re'). Then
1 ) 1/p
— 1 — ps— r p .
. ( [a=nis Hprdr)

Let 1 —27" <7 <1-2""1 withn > 1. Then ||f:|l, > [[Wn* f|»/2. But f is the
image of f. by the multiplier with symbol (r7*)recz. Note that for 27~ < k < 2ntl
r~k < 2% and for 2" < k < 2ntl pmhel gk — (1 - p)pmhel < gl — gendS,
Thus since multipliers commute and since the Fourier transform of W, x f vanishes outside
of 127~ 271 Lemma [3.9| implies

(R E

Wi * fllp < 2Wa* frllp2° < 25 £l

Moreover (1 — r)P$=1 > 27Ps2=nsPHn_ Integrating over r, we thus get that for n > 1:

1—2-n-1
2P|, % fIE < CP / (1= PP |2rdr

where C' depends only on M. For n = 0 the same inequality is very easy. Summing over
p and taking the p-th root, we get the first inequality

115300, < C[|@— 17y

Lp(D,dz:X)

For the right-hand side inequality, note that since ) /Wn(k:) =1 for all &k > 0, we
have that for any » > 0

1 £ellp <D IWo % frllp-

n>0
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Then as above since W, x f, is the image of W,, x f by the Fourier multiplier of symbol
¥, Lemma again implies than

W % fillp < 202" max(1, /2011 — 7)) [ Wi % £l

If mis such that 1 — 2" <r <1 —2"""1 then
2n—m—2

7"27’:,71 _ ((1 . 2_m_1)2m+1> S 6_277,7777,72

and
max(1,y/2"1(1 — r)) < max(1 \/_nﬂm

If for k € Z one denotes by, = 2¢~ 2" max(1, \/§k+1)2k5 one thus has
[Wa x frllp < 2™°bn—m27 " [ Wi % frlp-

If ap, = 27"||W,, % fr||p for n > 0 and a,, = 0 if n < 0, summing the previous inequality
over n we thus get

1frllp <27 ) bo-man = 27 (a x b)m.

n>0

Let us raise this inequality to the power p, multiply by r(1 — r)Ps~1 < 2-mpsgm+1 and
integrate on [1 —27™ 1 — 27™71]. One gets
1_27'm71
[ @ g < e,
1-2-m

Summing over m this leads to

1/p

< P <
LoD d) Z (axb)p, < |lax bl z)

m>0

[CEE s

Now note that [laxbllez) < [lall,[|bll1 = HfHBP—;(X)Jer||1. We are just left to prove that

b€ (1(Z) and ||b]|; < C/s with some constant C' depending only on M. If k > 0, we have
Ib| < 2v/2e72"*2k(M+1/2) \which proves that > k>0 br < C1 for some constant depending
only on M. If k < 0, |b| < 2%, which proves that Yok<olbe] £2/(2° = 1) < Cy/s for
some universal constant. This concludes the proof. O

3.3 Operator space valued Hankel matrices

In this section we finally prove the main result stated in the Introduction, Theorem [3.3]
We prove the two sides of separately. We first show how we can derive the left-hand
side inequality from the right-hand side for a = § = 1 by duality.

For the right-hand side, we first recall a proof for the cases when p = 1 or p = oo (this
was contained in Peller’s proof since for non-commutative L' or L> spaces, regularity and
complete boundedness coincide). Then we derive the case of a general p by an interpolation
argument.
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3.3.1 Left-hand side of (3.1))

In this section we assume that the right-hand side of (3.1)) holds for & = 3 = 1, that is to
say the operator
1/p+2
By - S
p = Ty

is regular for every 1 < p < oo.

Fix now 1 < p < o0 and o, 3 > —1/2p. We prove that the map Fg’ﬁ —  is regular

from the subspace of SP formed of all the matrices of the form Ff‘o’ﬂ to B;j_p toth

For ¢ € B;,/ furz define the matrix
B potl B+1
Fl,l — J k . _|_ k
v ((1 e VTR)
J,k>0

- My | e TN gy )

First note that since sup_; j9<q<ps Sup;>o DJQ"H/(I + §)2T! < oo the assumption with p’

implies that the operator 7' : ¢ — filbl is also regular from le),/ f,” to SP' with regular
norm bounded by some constant depending only on M.

Recall that by Theorem |3.11 Bp_j/p 2~ (B;,/f +2)* if p > 1 (and (B;J:/p _2)* ~
le),/ f,+2 if p < 00). Since B;ip s complemented in Z;l,/ p-3 (N; LP) with a regular comple-
mentation map, Theorem E implies that the dual map 7% : SP — B;J:/p/_Q = B;ip_?’ is
also regular.

It is now enough to compute explicitly the restriction of T to the set of matrices of
the form Fg’ﬁ to conclude. Indeed for any analytic ¢ : T — C such that Fg’ﬁ € SP, and

any ¢ € Bll),/f +2

we have

(Tret0) = (127, Ty)
= > DYTIDIMG( + k) + k)
4,k>0

= ) D (n)(n)
n>0
= (latpts3p,¥).
We used that for all a, 8 € R, and all n € N
anb _ patp+l
Y DyD; =Dyt
jt+k=n

which follows from the equality Y-, o Daz" = (1 +2)~*"! for |z| < 1.

Z - -1
Thus we have that T*l“ff,”6 = I,4p+3p. By Theorem [3.12| the map (Ia+g+3) is

regular as a map from B;frp 3 to Bll,frp Te+8 Hence the map I‘ZZ’B — ¢ is regular from the

subspace of S? formed of all the matrices of the form Fg”g to B;,J/rp o This concludes
the proof (it is immediate from the proof that the regular norm of this map only depends
on M).
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3.3.2 Right hand side of (3.1) for p=1 and p =

Now we prove that for a formal series p =3, P(k)z* with §(k) € E, it is sufficient that

@ belongs to B;ip+a+ﬁ to ensure that I‘g’ﬁ € Sp[E]. Since for p =1 or p = oo, regularity
and complete boundedness coincide, the case p = 1 and p = oo are contained in Peller’s
result (see [40]). We will still provide a proof which is more precise as far as constants are
concerned.

Proof of sufficiency for p=1. Let E be an arbitrary operator space. Since (formally)
@ =0 Wpxp, and H(p|]B1+a+ﬂ(E) =350 2" D)W, x¢|l1, by the triangle inequality
1 + =

replacing ¢ by W, x ¢ it is enough to prove that, if p = >, apz" with ay, € E,

|

But we can write

f _ N B=i+k
re /T(@(Z)(l +7)*(1+k)"z )0§j,k§mdz

<c (1 +m)1+a+ﬁ
siEl T /(a+1/2)(B+1/2)

el (k)

75
re ‘

and compute, for z € T,

[COIEMRRIER

0<jk<m||g, [E)
- 14+ N1+ k ﬁ—j+k>
le@le (@ +ara+w®)
with
oot e @), L
[CER AR W IS (P i I [CERS0 M
Thus the lemma follows from the fact that
. 2 (1+m)2a+1
1 ). —_—
H(( +]) )]:0...m 2 = 2q + 1
for a constant C' which depends only on M = max{«, 5}. O

Proof of the sufficiency for p = co. Note that in this case «,3 > 0. Assume that F C
B(H) for a Hilbert space H. Then S, (E) is isometrically contained in B(¢?(H)). In this
proof we use the fact that HQH ~ B(H), isometrically through the duality (T,¢ @) =
(T, m).

Let ¢ € BSH (E),. We have that

HrgﬂHSw[E] = sup <Fg’ﬁ(ak)keNa (bk)keN>
| (ar)kenlle2(a
| (br)kenlle2(a)

<1 2(H)
<1
where the sup can be restricted to finitely supported families (ax)rey € ¢2(H) and
(br)ken € 2(H).

<Fg,ﬁ(ak), (bk)> =Y <(1 + )M+ k)53 + k)ay, bj>H

3,k=0
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Define the functions f: T — H and g: T — H by
f(z)= Z(l + k)Pagz.

k>0

g9(z) = D> (1+7)°b;%.

§>0

Then for the duality (T, ¢ ® ﬁ)B( ) HeT = = (T¢,n) between B(H) and H ® H, we have

that o
(T2 (@), (b)) = > (@m), F&g(m))

m>0

We thus have to show that f® g € B& (B(H))’.. But by Theorem B (B(H))
is the dual space of Bl_a_ﬁ (B(H)x),, so that from B(H), ~ H®H, we have to prove that

C
f ®9||E;;fkff(H®ﬁ)+ < \/T—ﬁ”(ak)ue?(m”(bk)He?(H)- (3.3)
From Theorem [3.13

1 @ 9l o ey, < ¢l —1ah 22

LY(D,dz;HOH)

By the Cauchy-Schwarz inequality, we get that

17 ® ol (msm), <O Q=107

(1= J2])=~"/2|

(3.4)

L2(D,dz;H) H

1/2fHL2(]D),dz;H) and H(l B |Z’)a71/2
could use again Theorem to get an inequality of the form

L2(D,dz; H)

To dominate the terms [[(1— [z])?~ one

g ‘ ‘ L2(D,dzH)
1
If ®g||31*0‘*ﬂ(1-]®ﬁ)+ N OTBH(%)HEQ(H)||(bk)||e2(H)

But these terms can be computed directly and this leads to a better bound (this was
kindly explained to me by Quanhua Xu ). Indeed,

1
02y = 7 B
k>0

1
Z llag|*(1 + k)25/0 (1 — 7)20- 12641 gy

k>0

Integrating by parts 2k + 1 times, one gets

2k+1

1
gtk (EHD2%kEE-1)..1 1
/0(1 L dr_26(2ﬁ+1)...(25+2k+1)_ZﬂZHI2ﬁ+z"

It is then easy to show that (1 + k)27 H?g’l i/(20 + i) is bounded above (and below) by
some constant depending only on M as long as § < M. This implies that

[ =121 Znakn?

The same computation for « together with (3.4]) leads finally to the desired inequality
(3.3). This concludes the proof.

O]
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3.3.3 Right hand side of (3.1) for a general p.

Let us first reformulate the right-hand side of (3.1} -
Denote by D the infinite diagonal matrix D;; = 1/(1 +j)and Dj, =0if j # k. Let

p, o and (3 as in Theorem. Define @ = o + 1/2p and ﬁ B+ 1/2p. Then for any ¢

B — pY/e1as pt
ref = pYTahpl/ee,

Moreover Theorem|3.12{implies that the map I ot BOH_’g — BY o+ 1s a regular isomorphism

(with regular norms of the map and its inverse dependlng only on M as far as a, 3 < M).
The main result of this section is thus

Lemma 3.14. Let M > 0. Take 0 < o, 6 < M and 1 < p < oo. The map
TI,:BISJr — SP

)+ R 1
p — D (SO(J k) D'
(L4 +E)> )50

is reqular, with regular norm less that C/\/af for some constant C depending only on M.

As explained above, this result is equivalent to the right-hand side inequality in .
More precisely the above Theorem for some o, 3 > 0 and 1 < p < 0o is equivalent to the
right-hand side inequality in for the same p but with « and £ replaced by oo — 1/2p,
B — 1/2p. In the proof below Pisier’s Theorem on interpolation of regular operators
is used, but the reader unfamiliar with regular operators can as well directly use complex
interpolation of vector-valued Besov spaces and Schatten classes.

Proof of Lemma[3.1f We have already seen that the map T}, is regular(=completely
bounded) when p = 1 or p = oo. Therefore up to the change of density given by D,
T, is simultaneously completely bounded on BY 14 and BY, +, which should imply that T,
is regular.

To check this more rigorously, we use Pisier’s Theorem Since the Besov space Bg .
is a complemented subspace of LP(N x T) (where N x T is equipped with the product of the
counting measure on N and the Lebesgue measure on T), and since the complementation
map P is regular and is the same for every p, T, naturally extends to a map 7}, o P :
LP(N x T) — SP which is still completely bounded for p = 1, cc.

To show that T), is regular, we show that T, o P € [CB(L>, B(¢*)),CB(L',S")],
(where the first L and L' spaces are L>(Nx T) and L'(N x T)). Since by the equivalence
theorem for complex interpolation [Ag, A1}y C [Ag, A1]? with constant 1 for any compatible
Banach spaces Ag, A1 (Theorem 4.3.1 in [2]), Theorem (3.6 will imply that T}, 0 P is regular
and hence its restriction to Bg . T} too.

Consider the analytic map f(z) with values in CB(L!, S') + CB(L>, B(¢?)) given by
f(2) = D*/?Toy 0 PD?/? (f takes in fact values in CB(L>°, B(¢2))). Then f(1/p) = T,o P.
The conjugation by a unitary is a complete isometry on B(£?) and on S'. Therefore
if Re(z) =0, [|f(2)lleBr=pe2) = [[Teo © Pllepre=.prz) < C/Vap and if Re(z) = 1,
1flenw s = ITy o PICB(LY, $1) < C/v/apb.

This proves that
||TpHBT(Lp,sp) < C/\/ af.






Appendix A

Some remarks and questions on
operator Lipschitz functions

Here we present some remarks and questions concerning operator Lipschitz functions. The
type of questions we are interested in is: given a norm on a von Neumann algebra and
a function f : R — R, is the function A — f(A) (defined for any self-adjoint A by the
continuous functional calculus) Lipschitz for the norm we are considering? (We will be
mainly interested in the operator norm or the LP norms). The reader is also refered to
the recent survey preprint [36].

This question can take two slightly different forms. The first one is: for a given norm,
give a necessary and sufficient condition for a function f to be Lipschitz for this norm.
The second one is: given a certain class of functions, for which spaces are these functions
operator Lipschitz? Of course if one can answer completely one of these questions the
answer to the other question will follow, but the fact is that there are still many open
problems. I would like to address a few in this Appendix. Except perhaps for Lemma
the material here is not new and contains mainly results that either are classical or
for which a reference is given.

For the operator norm, much has been done for the first question by Peller in [39]:
he indeed found some necessary condition and some sufficient condition (which do not
coincide!) for a function f to be operator Lipschitz on B(H), but there are still open
questions.

Here we will focus on the second question for the class of all Lipschitz functions f : R —
R (the case of functions of the Holder class was recently treated by Peller and Aleksandrov,
see [1]) . For this already much is known, and it has become quite clear that this is related
to the UMD property. For the operator norm, the following is classical and seems to go
back to Farforovskaya [13] (see Lemma below for a simple proof):

Theorem A.1. There are some Lipschitz functions R — R that are not operator Lipschitz
on B(€%), for example the map f(t) = |t|.

The following Theorem was proved very recently by Potapov and Sukochev, answering
a long-standing open question:

Theorem A.2 (Potapov and Sukochev). For any 1 < p < oo there exists a constant
Cp such that for any 1-Lipschitz function f : R — R and any two selfadjoint operators
A, B on (? with A — B belonging to p-Schatten class SP (i.e. such that |A — B, o
Tr(|A — BIP)'/? < o), f(A) — f(B) € SP and moreover

1F(A) = F(B)llp < CpllA = Bllp.
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The proof presented in the first preprint version of this result was based on an extrapo-
lation argument and a factorization result in non-commutative H? spaces. Studying their
proof I noticed that these two tools were not necessary and I found a shortcut to their
proofs. This same shortcut was also noticed independently by Potapov and Sukochev. I
present it here in section

These two results seem to answer completely the question. But I would like to raise
some questions related to the constants appearing.

Notation A.3. Let us denote by SPg, (resp. Sg, sa) the set of self-adjoint elements of SP
(resp. Sh).

For a function f : R — R we will denote by ||f||Lipse (vesp. |[|f]lL;psz) the best
constant C' such that the inequality ||f(A4) — f(B)|l, < C||A — B||, holds for any A, B
self-adjoint in B(¢?) such that A — B € SP (resp. for any A, B € S} s, self-adjoint). Take
I fl| Lip,sp = oo (vesp. ||fllLip sz = o0) if no such C exists.

The key observation is that these quantities | f| Lip.s» and [/ f[|1;, sz are closely re-
lated to the norms of Schur multipliers on S? and S5. Recall that the Schur multiplier
with symbol (a;;)1<i j<n is the linear map on M, mapping (z;;) to (a;;z;;), and de-
note by ||(ai;)|| Schur(sz) its norm.  For an infinite matrix we use the similar notation
||(ai,j)\|schur(sp). In the same way we denote by H(ai’j)HSchur(SP ) and ||(a¢7j)]|schw(spm)

their restrictions to the self-adjoint part of S5 and SP. One Wéy to relate operator Lip-
schitz functions with Schur multipliers is with the use of double operator integrals as
defined by Birman and Solomyak (see the survey [5]). If one restricts to finite matrices,
this is very simple. Take indeed self-adjoint A, B € M,, and a function f : R — R, and
decompose A = UD)\U* and B = V*D,V where U and V are unitary and D) (resp D,,) is
diagonal with diagonal entries Ay, ..., A, (resp. pi1,...,puy,). If M is the Schur multiplier
with symbol (f(Xi) — f(r))/(Ni — py) if Ai # p; and 0 otherwise (such a multiplier is
called multiplier of divided differences), then

J(4) = J(B) =U - M (U*(A~ B)V)-V".

This immediatly implies that | f| 1, sz is less than the supremum over all A; and p; of
the norm on Sk of the preceding Schur multiplier. In the following, in order to also get
easily the reverse inequality, we also present an alternative approach by differentiation to
relate operator-Lipschitz functions with Schur multipliers.

Let us first state some properties of operator-Lipschitz functions:

Proposition A.4. For any f: R — R, the following hold :
o forany 1 <p < oo, || fllLipse = If]Lip-

e For any integer n and any 1 < p < o0,

1l zip,sz < 1 lzip,sz, -

[ zip,sr = T ([ fllzip,s2-
[ fllpipsz < oo if fis Lipschitz, n € N and 1 <p < oo
 [fllzipsz = 1fllLip and if 2 < p < g < o0,

10 g5 < 1N i, g
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o if1/p+1/p =1, f is operator Lipschitz on Sh (resp. SP) if and only if f is operator
Lipschitz on S, (resp. S*') :

HfHLip,Sg = ||f”Lip,S£/’

1 zip,so = 1 f1l Lip,sv'-

Proof. The first equality is obvious since the self-adjoint part of S% coincides isometrically
with R. The second inequality || f]|1;, sz < [|flLip, s follows from the embedding of S%
into SP 41 for example in the upper-left corner of SP 4+1- The third inequality is just an
approximation argument and is left to the reader.

It is also easy to deduce from Lemmabelow that for any n, the quantities || f{| ;;, s»
and || f||Lip are equivalent for a C' function f that is Lipschitz (the case f arbitrary
Lipschitz follows by approximation). This will also be made more precise in Lemma

To prove the next inequality as well as the equality [|f|zip 52 = | fllLip We can also
restrict ourselves to the case when f is a C! function, and in this case the inequalities
follow also from interpolation and Lemma[A.F] since we even get, if 1/p = 6/2+ (1—6)/q,
that

0 —0
”f”Lip,Sﬁ'; < HfHLi,,,ngbep :

For the last equalities, we can restrict to the finite-dimensional case, and by a density
argument we can restrict to the case when f is of class C'. Since the Schur-multipliers
are self-dual (and more precisely since for a Schur multiplier with self-adjoint symbol ¢; ;,
| (d)i’j)HSchur(Sﬁym) = H(gbi’j)nschur(sﬁfm))’ the claim is a consequence of Lemma below.

O

Lemma A.5. If f is a C' function, then A — f(A) is also a C' function on the set of
self-adjoint n X n matrices, and its differential at a matriv A = diag(A1, ..., \n) (with
i € R) is equal to the Schur multiplier with symbol (f(Xi) — f(Nj))/(Ni — Aj) if Xi # A

For a general self-adjoint A, if A = UA'U* for a unitary U and a diagonal A’, the
differential Dfa at A is equal to AdU o D fyr o AdU*.

Here we denote by AdU the conjugation by the unitary U: AdU(B) = UBU*.

Proof. We first treat the case when f is a polynomial; by linearity it is enough to do it if
f(t) =t™ for m € N. Then for any self-adjoint A, B € M, (C), we have

[y

f(A+B) - f(A) = = Ak g1k +o(B).
k=0

If A=diag(\1,...,\,) is diagonal this equation becomes

m—1
f(A+B) — f(A) = (Z AfA;”—l—’ﬂbi,j> + o(B).
k=0 ij<n
If \; # A, we recognize 221:—01 )\f)\;ﬁflfk = (A" = AT")/(Ai — Aj), whereas for A; = Aj,
e AEXPIE — mA ™Y The equation D faqy(ay = AdU o DfaAdU* is obvious.
For a general f, we use an approximation argument: fix some interval I of the real line
and take a sequence of polynomials P, such that P, and P, converge to f and f" uniformly
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on a neighbourhoud of I. From the first part for any k the differential of A — Pj(A) at A is
up to a unitary conjugation a Schur multiplier of divided differences. Since the derivative
of Py is uniformly bounded on I, we get a uniform bound on the differential of A — Py(A)
at every A the spectrum of which lie in I. In praticular, if the spectrum of A lie in I, we
get that

Py(A+ B) — Py(A) = DP,4(B) + o(B)

with a o(B) uniform in k. If we decompose A = UA'U* with A’ = diag(A\1,...,\n)
diagonal and U unitary, then the differential D Py, 4 is equal to AdU oS0 AdU* where S, is
the Schur multiplier with symbol (Pg(A;)—Pr(A;))/(Xi—X;) if \j # Aj and P/ (\;) if A; = ;.
As k — oo, we have that S, — S the Schur multiplier with symbol (f(X;)—f(X;))/(Ai—A;)
if \i # A\j and f(\;) if \; = A;. We therefore get

f(A+ B) — f(A) = (AdU o S o AdU™)(B) + o(B).
This concludes the proof. O

Theorem A.6. Assume that || f||Lip = 1. Then

(Wli#)

<1
1<<An

‘HfHLip,Sﬁ — sup
A Schur(Sh sq)

Proof. When f is a C! function Lemma implies that

The claim follows from the fact that the norm on S}, of the diagonal Schur multiplier with
symbol f'(A\;)1i=; is max; | f'(A(7)] < 1.

A general 1-Lipschitz function f can be approximated uniformly by C' 1-Lipschitz
functions. Therefore by Lemma for any A that has n different eigenvalues Aq,..., Ay,

A - By D - 10y
timsup = TR, HH( N, ]“#)

HfHLip,sg = sup

AL<<An SChUT(Sn sa)

Schur(Sh sq)

We therefore get that

1/ (A) — f(B)llp
<14 sup
|A =Bl A <<

(100100, )

Schur(Sn sa)

if there are only finitely many matrices C' on the segment [A, B] with an eigenvalue with
multiplicity greater than (or equal to 2). By a density argument this inequality is always
true.

For the reverse inequality, by the same approximation argument as above we get that
if A=diag(A1,..., ) with A} <--- < Ay

i sup ) = F By H< M1, )

— 1.
B—A ||A BHP )\.7

Schur(Sh sa)
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But note that for any linear map u : Sh — Sh we have that |Ju]| < 2|lulgr ||. Tt is

n,sa ”

therefore natural to introduce the following constants:

F) = F(\)
NN

(

Cp(n) = sup sup
IfllLip<1 A1<<An

Lizj)
Schur(Sh)

and similarly
Cp(00) = sup Cp(n) = lim Cp(n),
so that foralln >1and all 1 <p < o

Cp(n)/2=1< sup || fllLipsp <1+ Cp(n). (A1)
1£112ip<1

We also introduce

Cp(n) = sup
I Fllip<a

(f(i)—f(j)
i~

Lizj)
Schur(Sh)

and

Cp(o0) = 5171lp 6’p(n) = lirrln 5'p(n).
The following properties are very easy:
Proposition A.7. For anyn and any 1 <p <oo, if 1/p'+1/p <1
Cy(n) = Cyy ().
Moreover for any 1 < p < o0,
Cp(00) = Cp(00).

Proof. The first equality is obvious by duality; for the second one the inequality ép(oo) <
Cp(00) is also immediate. For the other direction note that

fG/q) = f(j/q)
i/q—j/q

Cp(N) = sup sup ||(
1 fllLip<1 9€EN

Liz;)

Schur(S%;)

because the map f — ¢f(-/q) induces a bijection of the set of 1-Lipschitz real functions.
On the other hand since Q is dense in R and by translation

fa) = F()

Cp(n) = sup sup l(Hli;ﬁj)
i T A

1fllLip<t 0<AL << AR €Q

Schur(Sh)

The claim thus follows from the fact that if (¢; ;)i j<n is a submatrix of (¢; ;); j<n then
the norm ||(¢ivj)HSchur(S£) is less than the norm H(@Z’i,j)||schur(5§{,)' O

The following result restates and precises Theorem [A2] and [A.]] with the previous
notation.

Theorem A.8. If1 < p < o0,
Cp(00) < 0.

For p=1 or p =00 there is a constant C' such that for n > 2,

C~ogn < Cy(n) < Clogn.
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A.1 Operator Lipschitz functions on S?

Here we prove Sukochev’s and Potapov’s Theorem [A2] or equivalently that with the
notation introduced above, Cp(n) < C), for some constant C), depending only on p. The
proof is strongly related to the UMD property of SP, and from the proof it is also easy
to show that if F is a rearragement-invariant sequence space such that the corresponding
space Sg is UMD, then all Lipschitz functions f : R — R remain Lipschitz on the self-
adjoint part of Sg

Here are the two main ingredients from [47] we will use. The first one is a Fourier-
transform trick (note that this kind of trick was already used in Lemma 1.7 of [23]):

Lemma A.9 ([47], Lemma 6). There ezists a function g : R — C such that:
o [xls|™|g(s)|ds < oo for any m € N.

e for any 0 < A < pu we have

A o
- = / g(s)Nu""*ds.
H R

The second ingredient is the following, which is a consequence of the vector-valued
Marcinkievicz multiplier theorem, due to Bourgain:

Lemma A.10 ([47], Lemma 5). Let 1 < p < co. There exists K, > 0 such that for s € R,
n € N and if M(s) the Schur multiplier on M,, with symbol |k — I|** (with the convention
0¥ =0). Then

1M (8)llsp—sp < Kp(1 + [s]).

Remark A.11. In [47] this lemma is stated for the Schur multiplier |k — [|**1j~,;, but
since |k — 1|"® = |k — I|**1j«; + |k — 1|** 13>, the above version follows from it.

Let us now prove the theorem:

Proof of Theorem[A.3 As explained above it is enough to show that for any n, any A; <
-++ < Apand any function f : R — R with || f||zip = 1, if ¢y = (f (M) —F( M)/ (A=) Lz
for Ag, Ny < n, then H<¢k,l)HSchur(Sﬁ) < Cp. In fact the proof gives that the completely
bounded norm of this Schur multiplier is less than C),. Since any 1-Lipschitz function
f : R — R is the difference of two non-decreasing 1-Lipschitz functions, it is also enough
to treat the case when f is non-decreasing (and even strictly increasing).

Then for k # [ since f is increasing and 1-Lipschitz we have 0 < ¢ ; < 1, and hence
Lemma [A.9] implies that

Pkl = /Rg@)‘f(/\k) - f(/\l)’is’)\k — )\z\_isds.

For any increasing sequence p; < --- < p, denote by M (s, (ux)x) the Schur multiplier
with symbol |ux — 14]*, so that

Mab:/Rg(S)M(& (FOe)k) M (=5, (Mk)k)ds.

Since [ [g(s)|(1 + |s])?ds < oo if we prove that M (s, (u)x) is bounded on S with norm
less than K, (1 + |s|) (with K, given by Lemma [A.10]) then we will be done since it would
imply that

|Myllspop < K2 /R l9(s)](1 + |s)2ds.
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By a density argument it is enough to prove the bound on the norm of M (s, (p)r) when
py are all rational numbers. But then if N is an integer such that Nuy € Z, the equality
| — |* = N7%|Npg — Npy|*® implies that we can assume that u; € Z for all k (end
even that pp € N by adding to the py’s a large enough number).

If 1 <y <--- < py are integers then the matrix (|ug — w|*)1<k1<n is a submatrix of
the matrix (|k — 1|**)1<ki<u,. The Schur multiplier M (s, (u)1<k<n) is thus a restriction
of the Schur multiplier M (s, (k)1<k<y, ), which is just the multiplier M (s) of Lemma[A.10]
with n replaced by p,, and which is therefore bounded by K,(1 + |s|). O

In fact, the above proof also applies to any semi-finite von Neumann algebra with a
trace:

Proposition A.12. Let M be a semi-finite von Neumann algebra with a normal faithful
trace 7. For 1 < p < oo there is a constant C, < oo such that for f : R — R

1f | zip,rmry < Coll fll i
where || f|| Lip, Lo,y @5 defined as || f||Lip,se (replacing SP by LP(M,T)).

Proof. Assume ||f||rip < 1. Since self-adjoint operators in M can be approximated in
LP(M) by self-adjoint operators with finite spectrum, it is enough to prove that

1F(A) = F(B)llp < CpllA = Bllp

for any self-adjoint operators A, B € M with finite spectrum (say A\; < --- < A, and
p1 < o < fim). Let A =3 NE; and B =), ujF; be its spectral decomposition, i.e.
the Ej’s (resp. the F}’s) are orthogonal projections with >, E; = 1 (resp. >, Fj = 1).
Then as explained in the introduction (and as is easy to check),
) — 4
wl)‘ini(A — B)F;.
i~ My

7

1) = £B) =Y

In other word if the elements of X € M are viewed as block matrices (E; X F})i<n,j<m, then
f(A) — f(B) is the image of A — B by the Schur multiplier with symbol %ﬁ“j)l&#w,
and the same proof as above shows that this Schur multiplier is completelyl b(;unded for
the p-norm by some constant C),. This yields the desired inequality. O

A.2 Operator Lipschitz functions on M,

Here we present the known results on the order of growth of Cx(n) = C1(n).

As was observed at least in [13], this constant Cs(n) is not bounded. Perhaps the
easiest proof is the one that relates this constant Coo(n) to the norm of the triangular
projection on M, (C) (it is well-known that the norm of the triangular projection on
M, (C) is of the order of logn);

Lemma A.13. Denote by T the triangular projection on My,(C): T(ai;) = (ai;li<j).
For any integer n
Coo(2n) = 2(|T| 51, (©)— nt(c) — 1-

Note that the proof below also applies to the constant Cp(2n), and is implies that
14 Cp(0c0) is greater than 2 times the norm of the triangular projection of S?.
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Proof. Take f(t) = |t| and A\, = (—A)¥ for k = 1,...2n, and consider the Schur multiplier
with symbol (f(A\;) — £(A;))/(Ai — Aj)1ix; which converges as A — oo to (—1)™&@I) 1, ..
We thus only have to show that the Schur multiplier with symbol (—1)max(i7j)1i¢j has
norm on Ma,(C) greater than 2|/, «c)—wm, () — 1-

If £, ={2,4,...,2n} (resp. O, = {1,3,...,2n — 1}) denotes the set of even (resp.
odd) integers less than 2n, consider the submatrix ((—l)max(i’j)1#]-)1.60”7].6}5”. It is an
n X n matrix, and if we take the indices in {1,...,n}, its (k,{) entry is 1 if £ <1 and —1
otherwise. In other words the Schur multiplier corresponding to this matrix is —Id + 27T
This concludes the proof. ]

For the other direction, Farforovskaya proved the following inequality. This is outdated
by Theorem [A.1§ below, but the proof is an example that questions on operator-Lipschitz
functions are related to the triangular projection.

Lemma A.14 (Farforovskaya, [14]). There is a constant C > 0 such that
Coo(n) < C(1 4 logn)?

Proof. Tt is enough to prove that Cuo(2") < Cn? for n > 1; in fact we prove by induction
on n > 1 that

Coo(2") < Nl T Myn (€)= Mgn () - (A.2)

For n = 1 this is follows from the observation that the multiplier with symbol <(1) (1)>

has norm less than 1.
Assume that (A.2) for n and take f : R — R with [[f||zip = 1 and A; < -+ < Agn1.
Decompose the matrix (f(X;) — f(A;))/(Ai — A;) into 4 2™ x 2™ block-matrices:

Aa)—f(N) (M) —f(Aanyj)
<f()‘z) - f()‘])) _ ( A=A )i,jgzn ( Ai=Agn 1 )i,j§2n
i — A . o F(Aan i) —F(N)) F(A2n i) —f(Aany )
J 71<2 +1 ( >\2”+i_>\j )Z]<2n ( >\2’ﬂ+i_>\i >ij<2”

- (@)

The norm of the Schur multiplier with symbol (61 g) is the maximum of the norms

of the Schur multiplier with symbol A and the one with symbol D, which is less than
Coo(2M).

The norm of the Schur multiplier with symbol (g g) is the maximum of the norms
of the Schur multiplier with symbol B and the one with symbol C. Let us for instance
treat the case of C'. For this write

fanii) — f(N;)  f(Aangi) — f(Aan) n f(Agn) — f()‘j).

Xongi — Aj Aon i — Aj Aongi — Aj

For a fixed i, the total variation norm of the sequence indexed by j, W is less
i Aj

than 1. In the same way, for any j the total variation norm of the sequence indexed by i,

M is less than 1. Lemma |A.15 below thus implies that

o+l AJ
(4
)\2”-‘,-1 j

< 2T atye-
Schur(Man)
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Putting the two inequalities together we get
Coo(2"F1) < Coo(2") + 2| T | ptn
which concludes the proof. ]

Lemma A.15. Take an integer n. For a (finite) sequence a = (ay,...,a,) € C" denote
by |lal|py its bounded variation norm, i.e. |lallp, = |ai| + Y2721 lags1 — ax|. Then for any
matriz of real number (¢; j)i<i j<n

1666 senuraeyy < 1T Nt max 1(15); e (A.3)

Moreover, the term max; ||(¢s;)illov in (A.3) can be replaced by max; ||(din+1—;5);lbv,
max; || (Pn+1-i5)illw, or max; [[(i)illbv-

Proof. We only prove the inequality with max; (s ;)il|s, the others are proved similarly
(or follow from the unitary invariance of the operator norm on M, (C)).

Consider the norm on C"* given by max; || (¢4,5)4llpv- It is enough to prove when
(¢4,5) is an extrem point of the corresponding norm, that is if for all ¢ there is a k; < n such
that ¢;; = 1j<,. Since reordering the rows on the matrix ¢; ; does not change the norm
(i)l Sehur(My(C))» We can assume that the sequence k; is non-decreasing. Then the ma-
trix (1j<g,) is a submatrix of the matrix (1;<;); j®(1); j<n. The norm of the corresponding
Schur multiplier is thus less than |7 ® id||av,em, = 1T leso,, ) = 1Tl M-, - O

The following is also true. This result is of course outdated by Theorem (but
was proved earlier). We still include it in this thesis; the idea is similar to the proof of
Theorem [A.18]

Lemma A.16. There is a constant C such that for all n
Coo(n) < Clogn.

In the proof, we will need the following classical result on Schur multipliers on M, (C)
(see [43] for a proof).

Theorem A.17. Let M, be the Schur multiplier on M, with symbol ¢;; € C for 1 <
1,7 <n. Then

| My || a1, (0)— M) = 1My lleB(a, €)M (€)) = inf sup ||@; || sup [|y;]|-
® © ©) ¢ (Mn(C),Mn(C)) oy € iy =pis i i ; j

In particular, if sup; [[(¢:5)illee < 1, then [|[My|| < 1.

Proof of Lemma[A.16. We prove by induction on n that 5’00(2") < 4n. The inequality
Cso(2) < Coo(2) < 1 has already been proved in the proof of Lemma

Take f : R — R with ||f|li;p = 1, and denote by ¢; ; = (f(i) — f(4))/(i — j)lixz; for
all 4,57 < 271 Let gog’j = Qs(i),s(j) Where s(i) is the smallest even integer greater than or
equal to i: s(2k) = 2k and s(2k —1) = 2k for any integer k. Let a;; = ¢; j—; ;. Then the
matrix (¢; ;); j<ont1 is constant equal to pay o in the 2x 2 blocks {2k — 1,2k} x {211, 21},
it therefore corresponds to the matrix (y2;25)ij<2» ® (1); j<2. The Schur multiplier on
Myn+1(C) with symbol cp; ; has thus a norm less that the completely bounded norm of the
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Schur multiplier on Mayn (C) with symbol ¢g; ;. Since the completely bounded norm of a
Schur multiplier is equal to its norm we thus get that

H(@;,j)i,jgznﬂ HSC;W(MQMI(C)) < Coo(2™).

We now dominate the norm ||(a;;); j<gn+1 using the criterion noted

”Schu'r(M2n+1 (©))
before the proof, We have have to bound |(a;;)i||,2 for any j. Note |a;;| < 1ifi = j
and a;; < 2/|i — j| otherwise; this implies that ||(a;;)ill2 < \/1 +2>°,514/n? < 4. We
therefore get that H(ai7j)HSChw(M2 <4

nt1) —
These two inequalities together imply that

[Ciidicorer | senurcany, oy < 4+ Coel2™).

Taking the supremum over f yields
Coo(2"H1) < 4+ Co (27).
This completes the proof. ]

In fact the following was proved very recently in [37].

Theorem A.18. There is a constant C' such that for all n > 2.
Cx(n) < Clogn.

Sketch of the proof. Since Cso(n) = C1(n) and since S} is the convex hull of operators of
rank one, it is enough to show that if T is a rank one and norm one operator, and if M
is a Schur multiplier of divided differences, the sequence s; > --- > s, of singular values
of M(T) satisfy s, < C||T||1/k for any k; i.e. M(T) belongs to the weak S' space S
with || M||1,00 < C[T[1.

A rank one operator in the unit ball of S} has the form (§7;);; with &€ = (¢1,...,&,)
and 7 = (11,...,M,) in the unit ball of 2. We are thus left to study a matrix of the form

i) — (A

for a 1-Lipschitz function f and A\; < --- < A,, and to show that its restriction to a
subspace of £2 of codimension less than Ck has norm less than C/k for some constant C
(of course not depending on n). For this it is enough to prove that there is a subspace of
codimension at most C'’k on which the restriction of S has Hilbert-Schmidt norm less than
C/Vk.

The first remark is that we can assume that |&;|,[n;| < 1/v/k for all i and j (because
the number of i’s (resp. j’s) such that this does not hold is less than k).

Then the idea is, as in Lemma[A.16] to use the fact that the coefficients /() =f(X;)/x; -2,
“do not change much” locally, so that S is close to a matrix of small rank. More precisely
it is possible to get a partition of {1,...,n} into at most k intervals I, ..., I} such that
the following holds: for any i € {1,...,n}, if i € I, = {a,a + 1,...,b} then denote
c(i) = (Aa + Xp)/2 and s(i) = Ay — Ag. Then the matrix S is close (i.e. has distance less
than C/vk for the Hilbert-Schmidt norm) to the matrix

A) = FO\ A) — fO
<§ian1s(i)>s(]’)> + (ginjwls(j)>s(i)> .

i,j<n
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It remains to check that these two matrices have rank less than 2k. For example for the
first one

OO0, N (6O (S0,
6177] )\Z_c(j) s(i)>s(j) )\z_c(]) s(3)>s(j) AZ_C(]) s(i)>s(j) | »

and both these matrices have rank less than k because for any i, both ¢(j) and Ls(iy>s(j)
remain constant when j € I; for any [, and because multiplication on the right can only
reduce the rank. I

A.3 Comment on the constants

Recall that the constants Coo(n) and Cp(c0) satisfy the property in (A.1). We are inter-
ested in the following questions:

Question A.19. What is the order of growth of Cy(c0) as p — 00?

Question A.20. Does the condition A — B € St imply that f(A) — f(B) € S for a
Lipschitz f?

This second question was raised in [37]. Nazarov and Peller’s result (Theorem
above) is a step in this direction since it proves that if A — B is of rank one then ||A —
B||g1.0c < C||T|l1. Note that this does not answer the question beacause | - || g1, is not a
norm (does not satisfy the triangle inequality).

From the proof of Theorem the bound we get on C)(00) of the order Kz, where K,
is the constant appearing in Bourgain’s vector valued Marcinkiewicz multiplier theorem
for SP.

In the proofs of section we saw that the behaviour of Cy(c0) is related to the
norm of the triangular projection. On the other hand since the triangular projection has
(completely bounded) norm of order log n on M, Theorem[A.18|can be (artificially) stated
as Cp(n) = ||T||cp(sz,szy if p=1 or p = co. It is therefore natural to wonder whether this
still holds for 1 < p < oo (for p = 2 this is obvious, and as noted after Lemma the
inequality Cp(n) 2 ||T||sr_gr is known to hold in full generality).

Since the (completely bounded) norm of the triangular projection on S? is of order p
for p > 2, this would imply that C)(oc0) is of order p, and hence it would reprove that Cp(n)
is of order logn. This follows from Hélder’s inequality, which implies that for p = logn
and A € My (C), [[Alloe < | Ally < | Alloon?/? = el| Al

On the other hand, as Pisier pointed out to me, if one can prove that Cp(co) grows
faster than p as p — oo, this would prove (by the real interpolation method) that the
condition A — B € S' does not imply that A — B € S,

Thus these two questions are strongly related.
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