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Abstract

We revisit a problem solved in 1963 by Zaanen & Luxemburg in this
monthly: what is the largest possible length of the graph of a monotonic
function on an interval? And is there such a function that attains this
length?

This is an interesting and intriguing problem with a somewhat sur-
prising answer, that should be of interest to a broad spectrum of mathe-
maticians starting with upper level undergraduates.

The proof given by Zaanen & Luxemburg is very short and elegant but
not accessible to an undergraduate. We give here a longer, but elementary,
proof.

MSC Primary 26A30, 26A48, 28A10

1 Introduction.

This article concerns a simply stated but fascinating problem in analysis. The
problem concerns monotonic functions, which are functions that are either non-
increasing or nondecreasing.

Problem (Arc Length Problem).
Let [a, b] be a closed interval. What is the maximum arc length that can be

attained by a monotonic function f : [a, b] → [f (a) , f (b)]? Is there a function
that attains this maximum?

This problem was solved by A. C. Zaanen and W. A. J. Luxemburg [3], [4]
in 1963. The problem was also mentioned by P. R. Halmos in an interesting
article about teaching mathematics [1, p. 467].

Although Zaanen and Luxemburg stated their theorem only in the continu-
ous case, we believe that their proof is valid, without modification, in the case
of a discontinuous monotonic function. The proof given here applies to this
general case.
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2 Notation and Prerequisites.

The minimum prerequisite for reading this paper is to know the definition of
Lebesgue measure on the real line, which we denote by `, and the definition
and elementary properties of sets of measure zero, which we also call null sets.
Recall that a statement is said to be true almost everywhere if it is true on the
complement of a set of measure zero. The elementary properties of null sets
that we require are:

1. The union of countably many sets of measure zero is of measure zero.

2. A subset of a set of measure zero is of measure zero.

The length of a measurable subset of the line is its Lebesgue measure, and
in particular the length of an interval I = [a, b] is ` (I) = b− a.

Definition 2.1. A function f : [a, b] → R is said to be nondecreasing if x <
y =⇒ f (x) ≤ f (y) for all x, y ∈ [a, b]. Reversing the second inequality defines
a nonincreasing function.

We say that a function is monotonic if it is either nondecreasing or nonin-
creasing.

If the inequality f (x) ≤ f (y) is strict, f (x) < f (y) for all x, y ∈ [a, b], then
we say that f is strictly increasing

Definition 2.2. A partition of an interval [a, b] of R is a finite increasing se-
quence (x0, x1, x2, . . . , xn) where n is an arbitrary positive integer and x0 = a
and xn = b.

A subinterval of a partition is of the form [xj−1, xj ].

Definition 2.3. Let f be a function defined on the interval [a, b]. If X =
(x0, x1, x2, . . . , xn) is a partition of [a, b], then we let

λf (X) =

n∑
j=1

√
(xj − xj−1)2 + (f(xj)− f(xj−1))2.

The arc length of the function f : [a, b]→ R is defined as

Λf (a, b) = sup λf (X)

where the supremum is taken over all the partitions X of [a, b].

If I = [a, b] we also write Λf (I) for Λf (a, b). If there is no confusion we drop
the subscript f from the notation.

Definition 2.4. A function f : [a, b] → R is said to be of bounded variation if
it is the difference of two nondecreasing functions.
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It can be shown that Λf (a, b) is finite, if and only if f is of bounded variation.
In particular Λf (a, b) is finite for each nondecreasing function f . Proposition
3.1 gives an effective prove of this result.

It can be shown that arc length is additive: If c ∈ [a, b], then

Λf (a, b) = Λf (a, c) + Λf (c, b) . (2.1)

We use Lebesgue’s theorem on the derivative of a monotonic function, Fu-
bini’s theorem on term by term differentiation of an infinite series, and the
elementary theory of interval functions. Although we state these results, the-
orems 1, 2, and 3, without proof, the interested reader may find a short and
beautiful treatment of these topics in only 19 pages in the book of F. Riesz and
B. Sz.-Nagy [2, pages 3 - 21].

Theorem 1 (Lebesgue). A monotonic function has a finite derivative almost
everywhere.

Theorem 2 (Fubini). Let fn be a sequence of nondecreasing functions such
that the series

s (x) =

∞∑
n=1

fn (x)

is pointwise convergent on the interval [a, b]. Then has a finite derivative almost
everywhere. Moreover the series may be differentiated term by term in the sense
that the equation

s′ (x) =

∞∑
n=1

f ′n (x)

is true almost everywhere.

The theory of interval functions is a useful tool that leads easily to important
results in other areas such as Riemann integration, total variation, and arc
length. This theory was in vogue in the early twentieth century, but it has
lately fallen into obscurity.

Definition 2.5 (Interval Functions). An interval function is a real valued func-
tion defined on the family of closed subintervals of a fixed closed interval [a, b].

A simple example is f [c, d] = d− c for every closed interval [c, d] contained
in [a, b].

By convention, if a ≥ b, then we let f [a, b] = −f [b, a].

Definition 2.6 (Integral of an Interval Function). A real number I is the
integral of an interval function f on [a, b], denoted by

∫
f [a, b], if for every

ε > 0 there is a δ > 0 such that for every partition x0, x1, . . . , xn of [a, b] with
maximum subinterval length < δ it is true that∣∣∣∣∣∣

n∑
j=1

f [xj−1, xj ]− I

∣∣∣∣∣∣ < ε. (2.2)
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Example 2.1 (An interval function with all nonnegative terms and with integral
equal to zero). Let f be a function of bounded variation on [a, b]. Define g [c, d] =

Λf (c, d)−
√

(d− c)2
+ (f (d)− f (c))

2
. The integral of g is zero, because∣∣∣∣∣∣

n∑
j=1

g [xj−1, xj ]− 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

Λf (xj−1, xj)−
n∑

j=1

√
(xj − xj−1)

2
+ (f (xj)− f (xj−1))

2

∣∣∣∣∣∣ .
By additivity of arc length (2.1),

n∑
j=1

Λf (xj−1, xj) = Λf (a, b) and thus the

previous expression is∣∣∣∣∣∣Λf (a, b)−
n∑

j=1

√
(xj − xj−1)

2
+ (f (xj)− f (xj−1))

2

∣∣∣∣∣∣ .
By the definition of arc length, for every ε > 0 we can find δ > 0 such that for
every partition of [a, b] with maximum interval length < δ,∣∣∣∣∣∣Λf (a, b)−

n∑
j=1

√
(xj − xj−1)

2
+ (f (xj)− f (xj−1))

2

∣∣∣∣∣∣ < ε.

This shows that
∫
g [a, b] = 0.

Definition 2.7 (Derivative of an Interval Function). We say that the interval
function f is differentiable at c with derivative f ′ (c) if the limit

f ′ (c) = lim
x→c

f [c, x]

x− c
exists.

Theorem 3 (First Fundamental Interval Function Theorem). Let f be an in-
terval function on [a, b] that satisfies the two conditions:

1. f has nonnegative values, and

2.
∫
f [a, b] = 0.

Then, the derivative of f is zero almost everywhere.

3 Characterization of Monotonic Functions with
Maximum arc length.

In this section we prove Theorem 4, stated and proved by Zaannen & Luxem-
burg’s in [3] and [4].
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Theorem 4. [Zaanen & Luxemburg] Let f be a continuous, monotonic function
defined on the closed interval [a, b].

Then f has the maximum arc length (b− a) + |f (b)− f (a)| if and only if it
has a zero derivative almost everywhere.

Possibily replacing f by −f , it is sufficient to prove this theorem in the
case of nondecreasing functions. Our proof is divided in a proof of sufficiency,
Theorem 5, and a proof of necessity, Theorem 6.

Proposition 3.1. Let f : [a, b]→ R be a nondecreasing function. Then Λf (a, b)
is bounded above by b− a+ f (b)− f (a) and is bounded below by both b− a and
f (b)− f (a).

Proof. Let x0, x1, x2, . . . , xn be a partition of [a, b]. By the triangle inequality
and the hypothesis that f is nondecreasing, for each j, 1 ≤ j ≤ n,

xj−xj−1 ≤
√

(xj − xj−1)2 + (f(xj)− f(xj−1))
2 ≤ xj−xj−1 +f(xj)−f(xj−1).

Adding these inequalities we get

b− a ≤
n∑

j=1

√
(xj − xj−1)2 + (f(xj)− f(xj−1))

2 ≤ b− a+ f(b)− f(a). (3.1)

Since Λf (a, b) is the least upper bound of

n∑
j=1

√
(xj − xj−1)2 + (f(xj)− f(xj−1))

2

taken on all partitions of [a, b], by inequality (3.1) we obtain

b− a ≤ Λf (a, b) ≤ b− a+ f(b)− f(a).

In the same way, starting from

f(xj)− f(xj−1) ≤
√

(xj − xj−1)2 + (f(xj)− f(xj−1))
2

we get f(b)− f(a) ≤ Λf (a, b).

Proposition 3.2. Let f be a nondecreasing, continuous function defined on an
interval [a, b] of R. If U is a set on which f has a zero derivative, then f(U) is
a null set.

Proof. In the case where f is strictly increasing, the proof of theorem 3.2 is
particularly simple. We define g = f−1, the reciprocal function of f . If y = f(x)
with x ∈ U , from f ′(x) = 0 we deduce g′(y) =∞ . Thus, for each y ∈ f(U), g
does not admit a finite derivative at y, and f(U) is a subset of the set of points
where g has no derivative. By Lebesgue’s theorem, this is a null set, and this
ends the proof in this case.
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In the case where f is not strictly increasing, we have to work a little more.
Because f is nondecreasing and continuous, f−1(y) is a closed interval for each
y ∈ f([a, b]), and we define a function g : [f(a), f(b)] 7→ [a, b] by

g(y) = the right end point of the interval f−1(y).

We begin by proving the following properties of g.
Property 1 : f(g(y)) = y for each y in [f(a), f(b)], by definition of g.
Property 2 : g is strictly increasing.
Let y1 < y2. Suppose, by contradiction, that g(y1) ≥ g(y2). Then, since f is

nondecreasing we may write y1 = f(g(y1)) ≥ f(g(y2)) = y2, which contradicts
y1 < y2.

Property 3 : If g is continuous at y, and y > f(a), then f−1(y) = {g(y)}.
By property 1, g(y) ∈ f−1(y). By contradiction, let us suppose that f−1(y) is

not reduced to g(y). Then, by definition of g(y), there is some c ∈ [a, b] such that
f−1(y) = [c, g(y)], with c < g(y). Since f(a) < y we may choose an increasing
sequence yn of points in [f(a), y) such that yn → y. Then g(yn) → g(y), by
continuity of g at y, and, for n sufficiently large, g(yn) ∈ [c, g(y)] = f−1(y).
Thus yn = f(g(yn)) = y, which is a contradiction.

Property 4 : If y ∈ f(U) \ f(a) then g is not differentiable at y.
By contradiction, let us suppose g is differentiable at y. Then f is also

differentiable at g (y) . This is because g is also continuous at y, and by property
3, f−1(y) consists of a single point x = g (y). But y ∈ f (U) and thus g (y) must
be in U . By the hypothesis on U it follows that f must be differentiable at g (y).
With the differentiability of g at y and f at g (y), we are justified in using the
chain rule:

1 = (f ◦ g)′(y) = f ′(g(y))g′(y). (3.2)

The left–hand side equals 1 because by property 1, f ◦ g is the identity function
on [f(a), f(b)].

As we have already observed, g(y) = x ∈ U and hence f ′ (g (y)) = f ′ (x) = 0
by the hypothesis on U . This together with (3.2) , gives the contradiction 0 = 1.

The proof of theorem 3.2 is completed as follows: since g is nondecreasing,
by Lebesgue’s theorem, the set of points where g is not differentiable is a null
set. By property 4, f(U) \ f(a) is a subset of this set, thus, it is a null set. The
singleton f(a) being also a null set, f(U) is a null set.

Theorem 5. If f is a nondecreasing, continuous, function defined on the closed
interval [a, b] that has a zero derivative almost everywhere, then Λf (a, b) is equal
to (b− a) + (f (b)− f (a)).

Proof. By proposition 3.1, Λf (a, b) ≤ b − a + f(b) − f(a). It remains to prove
the converse inequality. Before doing this we recall from theorem 3.2 that Fy =
f−1 (y) is a closed interval. The lengths of these intervals form an uncountable
positive family whose sum is convergent because the partial sums are bounded
by b − a. Therefore, at most countably many of the intervals Fy have positive
length.
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Choose any ε > 0. By the hypothesis that f ′ = 0 almost everywhere, there is
a sequence (In) of disjoint subintervals of [a, b] such that f has a zero derivative

on U = [a, b] \
∞⋃

n=1

In, and

∞∑
n=1

`(In) ≤ ε. (3.3)

We show that if n 6= m, then f (In)∩ f(Im) and f (U)∩ f(In) have measure
zero. Suppose that y ∈ f (In) ∩ f(Im). Then ∃s ∈ In, t ∈ Im such that y =
f (s) = f (t). Also, the distance between s and t is positive because In and Im
are disjoint open intervals. This means that y ∈ f (Fy) where the interval Fy

has positive length. Because there are only countably many such intervals Fy,
then there are only countably many y in f (In) ∩ f(Im). Thus the intersection
has measure zero. The set f (U)∩ f(In) has measure zero because it is a subset
of f (U), which has measure zero by proposition 3.2.

Now,

[f(a), f(b)] = f([a, b]) = f(U) ∪
∞⋃

n=1

f(In).

Therefore the length of [f(a), f(b)] is the linear Lebesgue measure of the set
f(U) ∪ f(In). If this union were disjoint, then we could use the additivity of
Lebesgue measure to find the length. However, in the weakly increasing case the
union is not disjoint. But fortunately, there are only countably many pairwise
intersections of the terms of the union, and we have shown that the Lebesgue
measure of each intersection is zero. Therefore, the measure of the union will
indeed be the sum of the measures of the terms.

Therefore,

f(b)− f(a) = ` (f ([a, b])) = ` (f (U)) +

∞∑
n=1

` (f(In)) .

By theorem 3.2, ` (f (U)) = 0 and hence f(b)− f(a) =
∑∞

n=1 `(f(In)). Because
of the convergence of this series, there is some integer p such that

p∑
n=1

`(f(In)) ≥ f(b)− f(a)− ε. (3.4)

After reindexing, if necessary, we can assume that the p intervals In = (an, bn) in
this sum are in increasing order. We then define V0 = [a, a1] , V1 = [b1, a2] , V2 =
[b2,a3] , . . . , Vp−1 = [bp−1, ap] , Vp = [bp, b]. We see that

[a, b] =

p⋃
n=1

In ∪ Vj (3.5)

and this union is disjoint. Thus

p∑
j=0

`(Vj) = b− a−
p∑

n=1

`(In) ≥ b− a− ε, (3.6)
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since, from (3.3),
∑p

n=1 `(In) ≤ ε. From the disjoint union (3.5), using the
additivity of arc length on disjoint intervals, theorem 3.1, inequality (3.4) and
inequality (3.6) we get

Λf (a, b) =

p∑
n=1

Λf (In) +

p∑
j=0

Λf (Vj)

≥
p∑

n=1

`(f(In)) +

p∑
j=0

`(Vj) ≥ f(b)− f(a)− ε+ b− a− ε.

Since ε is an arbitrary positive number this proves that Λf (a, b) ≥ f(b)−f(a)+
b− a and ends the proof of theorem 5.

Remark 3.1. The hypothesis of continuity was used in two places. Once to
apply Proposition 3.2, and once to guarantee that f([a, b]) is an interval so that
[f(a), f(b)] = f([a, b]).

Lemma 3.1. Let f be nondecreasing and suppose that the arc length of f is
equal to (b− a)+(f (b)− f (a)) on an interval [a, b]. Let c < x in [a, b]. Then the
length of f restricted to the subinterval [c, x] is equal to (x− c)+(f (x)− f (c)).

Proof. Case 1: c = a. Suppose for contradiction that there were a point x in
[a, b] such that Λ (a, x) were not equal to (x− a) + (f (x)− f (a)). By theorem
3.1, Λ (a, x) must be less than (x− a) + (f (x)− f (a)). Also by this theorem
Λ (x, b) ≤ (b− x)+(f (b)− f (x)). Because arc length is additive, then the total
arc length would satisfy

Λ (a, b) = (b− a) + (f (b)− f (a))︸ ︷︷ ︸
by hypothesis

= Λ (a, x) + Λ (x, b)

< (x− a) + (f (x)− f (a)) + (b− x) + (f (b)− f (x))

= (b− a) + (f (b)− f (a)) = Λ (a, b) .

This gives the contradiction Λ (a, b) < Λ (a, b). Thus Λ (a, x) = (x− a) +
(f (x)− f (a)).

Case 2: a < c ≤ b. By the preceding equation with x = c, we obtain
Λ (a, c) = (c− a) + (f (c)− f (a)). Thus

Λ (c, x) = Λ (a, x)− Λ (a, c)

= ((x− a) + (f (x)− f (a)))− ((c− a) + (f (c)− f (a)))

= (x− c) + (f (x)− f (c)) .
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The next result shows how to calculate the limit of the ratio of arc length
to abscissa length. This result may not be well known, although it is obvious
if you draw a picture. The proof requires the theory of interval functions, their
integrals, and derivatives as described in section 2.

Lemma 3.2. Let f be a function of bounded variation on an interval I. Then
for almost every c ∈ I,

lim
x→c

Λf (c, x)

|x− c|
=

√
1 + (f ′ (c))

2
.

Proof. Consider the interval function g (a, b) = Λf (a, b)−
√

(b− a)
2

+ (f (b)− f (a))
2
.

Because we defined g (c, x) = −g (x, c) it is easy to show that

g (c, x)

x− c
=

Λf (c, x)−
√

(x− c)2
+ (f (x)− f (c))

2

|x− c|
(3.7)

for x 6= c.
In example 2.1 we showed that g (a, b) has all nonnegative terms and its

integral is equal to zero. By the first fundamental theorem of interval functions,
the derivative of g exists almost everywhere with the value zero. By this and
equation (3.7), for almost every c in I, we have

0 = lim
x→c

g (c, x)

x− c
= lim

x→c

Λf (c, x)−
√

(x− c)2
+ (f (x)− f (c))

2

|x− c|
. (3.8)

Let c be a point where f is differentiable. Then

lim
x→c

√
(x− c)2

+ (f (x)− f (c))
2

|x− c|
=

√
1 +

(
lim
x→c

f (x)− f (c)

x− c

)2

=

√
1 + (f ′ (c))

2
.

Therefore if f is differentiable at c, and if equation (3.8) holds, then lim
x→c

Λf (c,x)
|x−c| =√

1 + (f ′ (c))
2

.
Because a function of bounded variation is the difference of monotonic func-

tions, then the Lebesgue differentiation theorem implies that f is differentiable
almost everywhere. Because the union of two measure zero sets has measure
zero, then at almost every c in I, it is true that both (3.8) is valid and f ′ (c)
exists. This proves that for almost every c

lim
x→c

Λf (c, x)

|x− c|
=

√
1 + (f ′ (c))

2
.
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Theorem 6. If a nondecreasing function f defined on [a, b] has graph length
(b− a) + (f (b)− f (a)), then f must have a zero derivative almost everywhere.

Proof. By Lemma 3.2, lim
x→c

Λ(c,x)
|x−c| =

√
1 + (f ′ (c))

2
for almost every c. By lemma

3.1, Λ (c, x) = (x− c) + (f (x)− f (c)). Hence, for almost every c,√
1 + (f ′ (c))

2
= lim

x→c

Λf (c, x)

|x− c|
= lim

x→c

(x− c) + (f (x)− f (c))

|x− c|

= ±
(

1 + lim
x→c

f (x)− f (c)

x− c

)
.

Because the derivative of a monotonic function exists almost everywhere, then

the preceding equation shows that

√
1 + (f ′ (c))

2
= ± (1 + f ′ (c)) for almost

every c. Squaring this equation immediately shows that f ′ (c) = 0 for almost
every c.

It is not completely obvious that theorem 4 is not vacuous, ie that there exists
continuous nondecreasing functions f defined on [a, b] satisfying f(b) > f(a) and
whose derivative is almost everywhere zero. But it is not too hard to construct
them using theorem 2. The function l in figure 1 is such a function. It is
an example due to Riesz & Sz-Nagy. Thus, in spite of initial appearances,this
function has maximal length. We refer the reader to [2, pp. 48, 49] for the
precise construction and proof.

Figure 1: An increasing continuous function applying [0, 1] on itself, with a
derivative which is almost everywhere 0. Its arc length has the maximum value
1 + 1 = 2

.

10



4 The discontinuous case

We state in this section the more general form of Zaanen & Luxemburg’s The-
orem, applying to every monotonic functions. Therefore we are interested in
monotonic functions that may be discontinuous. The two curves at left of Fig-
ure 2 are the graphs of non decreasing functions g and f mapping 0 on 0, and 1
on 1. The function f is discontinous at 0, x1 = 0.2, x2 = 0.4, x3 = 0.7 and 1.

Figure 2: The graphs of g, f and the extended graph of f .

The arc length of every monotonic function given by Definition 2.3, is a well
defined real number. This could seem unnatural for a discontinuous function like
f . But it will appear that this number has a very simple interpretation : it is the
length of the continuous curve obtained from the graph of f by adding vertical
line segments at the jump discontinuities. We call this curve the extended graph
of f reading the two words as one, because this curve is no longer the graph of
a function. The third curve on Figure 2 is the extended graph of f .

We will use the classical decomposition of every monotonic function as the
sum of a step–fonction, whose discontinuity points are the discontinuity points of
f , which is called the jump function of f , and a continuous monotonic function,
the continous part of f . Figure 3 shows the graphs of f , of its jump–function,
and of its continuous part. The following definitions and results up to items 1
and 2 of Proposition 4.1 follow the text of the Riesz & Nagy’s book [2].

Figure 3: The fraphs of f , its jump function s and F = f − s.

Definition 4.1. Let f be a nondecreasing function defined on [a, b].

If x > a the left jump J−f (x) of f at x is J−f (x) = f(x)− limt→x− f(t)
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If x < b the right jump J+
f (x) of f at x is J+

f (x) = limt→x+ f(t)− f(x)

We define J−f (a) = J+
f (b) = 0, and Jf (x) = J−f (x) + J+

f (x) for x ∈ [a, b].

We write J+(x), J−(x), J(x), omitting the f symbol when there is no am-
biguity. Then f is continuous at x if and only if J(x) = 0, i.e., if and only if
J−(x) = J+(x) = 0.

The discontinuities of the function f of Figure 2 are : A positive right jump
at 0, x1, x2 and 1. A positive left jump at x2, x3 and 1.

Lemma 4.1. Let f be nondecreasing on [x, y], and x < t < y. The three
numbers

J+(x), J(t), J−(y) are bounded above by f(y)− f(x). (4.1)

Proof. We prove the first statement, the others are similar. Because y > x
and f is nondecreasing, then limt→x+ f(t) ≤ f (y). By definition J+(x) =
limt→x+ f(t)− f(x) and hence J+(x) ≤ f(y)− f(x).

Lemma 4.2. Let f be nondecreasing on [a, b] and a ≤ x < y ≤ b. The sum∑
x<t<y J(t) is convergent, and

J+(x) +

( ∑
x<t<y

J(t)

)
+ J−(y) ≤ f(y)− f(x). (4.2)

Proof. It is sufficient to prove that for each finite subset {t1 < t2 < · · · < tn} of
(x, y), we have

J+(x) +

n∑
i=1

J(ti) + J−(y) ≤ f(y)− f(x). (4.3)

For i = 0, 1, . . . , n, choose ai in (x, y) such that ai−1 < ti < ai for 1 ≤ i ≤ n.
Inequalities (4.1) give J+(x) ≤ f(a0)−f(x), J(ti) ≤ f(ai)−f(ai−1) for 1 ≤ i ≤
n, and J−(y) ≤ f(y)− f(an). Adding all these inequalities we get (4.3).

Definition 4.2. Let f be a nondecreasing function defined on [a, b].

1. The jump-function of f is the function s defined on [a, b] by

s(x) = J+
f (a) +

∑
a<t<x

Jf (t) + J−f (x) =
∑

a≤t<x

Jf (t) + J−f (x). (4.4)

It is nondecreasing because all the jumps of f are nonnegative.

2. The continuous part of f is the function F defined on [a, b] by

F (x) = f(x)− s(x). (4.5)

Remark 4.1. s(a) = 0 and s(b) is the sum of the lengths of the vertical segments
of the extended graph of f .
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Remark 4.2. The graph of F is the continuous curve obtained by joining the
connected components of the graph of f .

Lemma 4.3. Let f be nondecreasing on [a, b], and s its jump-function.

1. There are at most countably many points where f is discontinuous.

2. For each x ∈ [a, b], J−s (x) = J−f (x) and J+
s (x) = J+

f (x). In particular,
the functions f and s have the same discontinuity points.

3. The function s has almost everywhere a zero derivative.

Proof. Item 1. By (4.2) the sum
∑

a<t<b Jf (t) is convergent. Since the Jf (t)′s
are nonnegative, by theorem 5, there are at most countably many points t such
that Jf (t) > 0.

Item 2. We prove that J−s (x) = J−f (x). If x = a there is nothing to prove
because, by definition 4.1, in this case, the two numbers are zero. Thus we
suppose x > a. Let ε be an arbitrary positive number. By convergence of∑

a≤t≤b Jf (t), there exists a finite subset R = {x1, x2, . . . , xM} of [a, b] such
that

∑
t∈[a,b]\R Jf (t) < ε. Since R is finite, we can choose α < x such that

(α, x) has a void intersection with R. For u in (α, x), Equation (4.4) defining s
gives

s(x)− s(u) = J+
f (u) +

∑
u<t<x

Jf (t) + J−f (x). (4.6)

Since u and t are such that u < t < x, they do not belong to R, and we have
J+
f (u)+

∑
u<t<x Jf (t) < ε that, with (4.6), gives s(x)−s(u) ≤ J−f (x)+ε. From

(4.6) and the fact that jumps are nonnegative, J−f (x) ≤ s(x)− s(u). Thus, for
u in (α, x), we have

J−f (x) ≤ s(x)− s(u) ≤ J−f (x) + ε.

Since ε is arbitrary, this proves that J−s (x) = limu→x− s(x)− s(u) = J−f (x).
Similarly when x < b, choosing β > x such that (β, x) does not meet T , then

for v ∈ (β, x), J+
f (x) ≤ s(v)− s(x) ≤ J+

f (x) + ε, and that gives

J+
s (x) = lim

v→x+
s(v)− s(x) = J+

f (x).

Item 3. For each t ∈ [a, b] define the function χt by

χt(x) =


0 if x < t

J−f (t) if x = t

Jf (t) if x > t

.

Then, χt is nondecreasing, with a zero derivative at each x 6= t, and χt is a
nonzero function if and only if f is discontinuous at t. Let D be the set of
discontinuity points of f . Then (4.4) may be rewritten

s(x) =
∑
t∈D

χt(x),
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and, by the Fubini theorem (theorem 2), we have almost everywhere
s′(x) =

∑
χ′t(x) = 0, because each time χ′t(x) exists, its value is zero.

Proposition 4.1. Let f be a nondecreasing function on [a, b], s its jump-
function and F = f − s its continuous part.

1. F is continuous and nondecreasing.

2. F and f have almost everywhere the same derivative.

3. The arc-lentghs of f and F satisfy

ΛF (a, b) = Λf (a, b)− s(b). (4.7)

Remark 4.3. The fact that the arc length of f is the same as the length of its
extended graph results from Equation (4.7), with remarks 4.1 and 4.2

Proof.
Item 1. Let x ≥ a. By lemma 4.3, item 2, f and s have the same left-jump
at x and thus F = f − s is left continuous at x. In the same way, F is right
continuous at each x ≤ b. Thus F is continuous.

If a ≤ x < y ≤ b, by equation (4.4) defining s, equation (4.2) of lemma 4.2
may be written s(y)−s(x) ≤ f(y)−f(x), which is equivalent to F (y)−F (x) ≥ 0,
and thus F is nondecreasing.

Item 2. For almost every x, f ′(x) and s′(x) exist. Since, by item 3 of lemma 4.3,
s′(x) = 0 almost everywhere, we get almost everywhere F ′(x) = f ′(x)− s′(x) =
f ′(x)− 0 = f ′(x).

Item 3. Let X = (x0 = a, x1, . . . , xn) = b be a partition of [a, b]. For i =
1, 2, . . . , n, using complex notation and the triangle inequality

λF (xi−1, xi) = |xi − xi−1 + ı(F (xi)− F (xi−1))|
= |xi − xi−1 + ı(f(xi)− f(xi−1))− ı(s(xi)− s(xi−1))|
≥ |xi − xi−1 + ı(f(xi)− f(xi−1))| − |s(xi)− s(xi−1))| .

Since s is nondecreasing, we have |s(xi)− s(xi−1)| = s(xi) − s(xi−1). Adding
these inequalities we get λF (X) ≥ λf (X) − s(b) + s(a) = λf (X) − s(b), since,
s(a) = 0. Taking the supremum over all the partitions of [a, b] we get ΛF (a, b) ≥
Λf (a, b)− s(b).

It remains to prove the opposite inequality. Let ε be an arbitrary positive
number. By the definition of Λf (a, b) and the definition of s (see (4.4)), there
exists a partition X = (x0, x1, . . . , xn) of [a, b] and a subset T = {t1, . . . , tk} of
[a, b] such that

λF (X) ≥ ΛF (a, b)− ε and

k∑
i=1

Jf (t) ≥ s(b)− ε. (4.8)
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The second inequality follows from the convergence of s(b) =
∑

t∈[a,b]

Jf (t).

We know that if we add a point to X we do not decrease λF (X), thus we
may suppose T ⊂ {x0, x1, . . . , xn}.

For each xi that is equal to some t in T we do the following : If xi < b and
J+
f (xi) > 0, we add at the right of xi = t, close to xi, a new x = tr. If t = xi > a

and if J−f (xi) > 0, we add at the left of t, close to t, a t`. We thus obtain a
partition X′ of [a, b], which is a refinement of X. We take care to choose these
t` and tr sufficiently close to t to ensure that in the new partition X′, each tr is
the right neighbor of t, and each t` is the left neighbor of t. Because T is finite,
we may also assume that there are no points of T between t and the new points.

Using the continuity of F we may suppose that

|tr − t| ≤ ε

k
,
∣∣t` − t∣∣ ≤ ε

k
, |F (tr)− F (t)| ≤ ε

k
,
∣∣F (t`)− F (t)

∣∣ ≤ ε

k
· (4.9)

We partition the pairs of consecutive points of X′ in three classes : Cr contains
the (t, tr) for t ∈ T with J+

f (t) > 0 ; C` contains the (t`, t) for t ∈ T with

J−f (t) > 0, and C0 all the other pairs of consecutive points of X′. We then write

λf (X′) =
∑

(x′,x”)∈C0

λf (x′, x”) +
∑

(t,tr)∈Cr

λf (t, tr) +
∑

(t`,t)∈C`

λf (t`, t). (4.10)

Subtracting from (4.10) the same equation with F instead of f , we get

λf (X′)− λF (X′) =
∑

(x′,x”)∈C0

λf (x′, x”)− λF (x′, x”) (4.11)

+
∑

(t,tr)∈Cr

λf (t, tr)− λF (t, tr) +
∑

(t`,t)∈C`

λf (t`, t)− λF (t`, t).

• For (x′, x′′) in C0, using that F and s are nondecreasing we write

λf (x′, x′′) = |x′′ − x′ + ı (F (x′′)− F (x′) + s(x′′)− s(x′))|
≥ |x′′ − x′ + ı (F (x′′)− F (x′))| = λF (x′, x′′). (4.12)

• If (t, tr) ∈ Cr, (4.9) gives λF (t, tr) = |tr − t+ ıF (tr)− F (t)| ≤ 2ε
k while,

using once more that F and s are nondecreasing,

λf (t, tr) = |tr − t+ ıF (tr)− F (t) + s(tr)− s(t)| ≥ s(tr)− s(t).

By (4.1) of lemma 4.1, s(tr) − s(t) ≥ J+
s (t). But from lemma 4.3, f and

s have the same jumps and therefore s(tr)− s(t) ≥ J+
f (t). Thus we get

λf (t, tr)− λF (t, tr) ≥ J+
f (t)− 2ε

k
· (4.13)

• If (t`, t) ∈ C`, (4.9), as in the previous case we get

λf (t`, t)− λF (t`, t) ≥ J−f (t)− 2ε

k
· (4.14)
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From (4.11), (4.12), (4.13), and (4.14) we deduce

λf (X′) ≥ λF (X′) +
∑

t∈T,J+(t)>0

(
J+(t)− 2ε

k

)
+

∑
t∈T,J−(t)>0

(
J−(t)− 2ε

k

)

≥ λF (X′) +

(∑
t∈T

J(t)

)
− 4ε.

Since X′ is a refinement of X we have λF (X′) ≥ λF (X), and using (4.8), we get

λf (X′) ≥ ΛF (a, b)− ε+ s(b)− ε− 4ε ≥ ΛF (a, b) + s(b)− 6ε.

This ends the proof because ε is arbitrary small.

Theorem 7. [General form of Zaanen & and Luxemburg’s Theorem] Let f be
a monotonic function defined on the closed interval [a, b].

Then f has the maximum arc length (b− a) + |f (b)− f (a)| if and only if it
has a zero derivative almost everywhere.

Proof. Without loss of generality we pay suppose that f is non decreasing. Let
s the jump function of f and F = f − s its continuous part. From equations
(4.7), (4.5) and s(a) = 0 we get

Λf (a, b)− [b− a+ f(b)− f(a)] = ΛF (a, b)− [b− a+ F (b)− F (a)] . (4.15)

Now, by point 2 of Proposition 4.1, f has an almost everywhere zero derivative
if and only F has an almost everywhere zero derivative. By Theorem 4, this is
equivalent to ΛF (a, b) − [b− a+ F (b)− F (a)] = 0. With (4.15), this ends the
proof.

5 Historical Notes.

The arc length problem has been in the folklore for a long time. Riesz and Sz.-
Nagy [2] certainly had the tools to solve the problem, but there is no mention
of it there. The first published references that the authors were able to find are
Zaanen and Luxemburg [3] and [4]. There is also a reference to the problem in
Halmos, [1, p. 467].

Zaanen and Luxemburg gave a short proof of Theorem 4 using deep results
in measure theory. Our aim was to present the proof using simpler methods.
For example, the proof of theorem 5, due to the first author in the continuous
monotonic case, only uses Lebesgue’s theorem and the definition of Lebesgue
measure. The proof of the converse, theorem 6 is due to the second author.

Zaanen and Luxemburg included the hypothesis that f be continuous. How-
ever, we believe that the proof in [4] is valid for the discontinuous case, but the
authors were either unaware of this or choose for some reason not to state the
result in full generality.
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6 Appendix : the theorem of Interval Functions

Proof. This is the proof given in [2, pp. 11-12] with a few added details. Let
f satisfying the hypothesies of Theorem 3. From (2.2) with I = 0, for each n
there exists δn such that ∣∣∣∣∣∣

p∑
j=1

f [xj−1, xj ]

∣∣∣∣∣∣ < 2−n (6.1)

for every partition of [a, b] with maximal interval length < δn.
Because f has nonnegative values, we can drop the absolute value sign, and

(6.1) is also true if x1, x2, . . . , xp is a partition of an arbitrary subinterval [c, d]
of [a, b].

Now define Fn(x) by

Fn(x) = sup

p∑
j=1

f [xj−1, xj ] (6.2)

where x0 = a, x1, . . . , xp = x is an arbitrary partition of [a, x] whose maximal
interval length is less than δn. We prove the following items:

• For each n and for all x ∈ [a, b], Fn(x) ≤ 2−n.

• For a ≤ x < y ≤ b, with y − x < δn, we have

Fn(x) + f [x, y]) ≤ Fn(y). (6.3)

• Fn is nondecreasing.

1. Item 1 is obvious by the defintions of δn and Fn.

2. To prove item 2 we observe that since |x− y| < δn, for every partition
x0, x1, . . . , xp of [a, x] with maximal interval length < δn, the sequence
x0, x1, . . . , xp, y is a partition of [a, y] with maximal interval length < δn.
Therefore, by definition of Fn(y)

p∑
j=1

f [xj−1, xj ] + f [x, y]) ≤ Fn(y).

Taking the supremum of the first member of this inequality over all the
partitions x0, x1, . . . , xp of [a, x] (with max |xj − xj−1| < δn) we get

Fn(x) + f [x, y]) ≤ Fn(y).

3. Item 3 is then an immediate consequence of item 2 and the hypothesis
that f is a nonnegative interval function.
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Now we prove that, for every c, x ∈ [a, b],

if |x− c| < δn then

∣∣∣∣f [c, x]

x− c

∣∣∣∣ ≤ ∣∣∣∣Fn(x)− Fn(c)

x− c

∣∣∣∣ · (6.4)

If x > c, (6.3) gives Fn(c)+ f [c, x]≤ Fn(x) and, since f [c, x] ≥ 0, this can

be written as

∣∣∣∣f [c, x]

x− c

∣∣∣∣ ≤ ∣∣∣∣Fn(x)− Fn(c)

x− c

∣∣∣∣. If x < c, then reversing the roles of x

and c in (6.3) gives the same equation.
From item 1, the Fn(x) form a convergent series s(x) =

∑∞
n=1 Fn(x) of

nondecreasing functions. By Fubini’s theorem s′(x) =
∑∞

n=1 F
′
n(x) for almost

every x. Let C be the set of x for which this true. It is sufficeny to prove that
f ′(c) = 0 for c ∈ C.

Let c ∈ C and ε > 0 be given. Because of the convergence of
∑∞

n=1 F
′
n(c),

there exists an n such that |F ′n(c)| < ε/2. By the definition of derivative, there
is a γ such that

if |x− c| < γ then

∣∣∣∣Fn(x)− Fn(c)

x− c
− F ′n(c)

∣∣∣∣ < ε

2
· (6.5)

Let x ∈ [a, b] be such that |x− c| < min(γ, δn). Then (6.4) and (6.5) are
satisfied and, with |F ′n(c)| < ε/2 we have∣∣∣∣f [c, x]

x− c

∣∣∣∣ ≤ ∣∣∣∣Fn(x)− Fn(c)

x− c

∣∣∣∣ ≤ ∣∣∣∣Fn(x)− Fn(c)

x− c
− F ′n(c)

∣∣∣∣+ |F ′n(c)| < ε.

Since ε is arbitrary small, this proves that limx→c
f [c, x]

x− c
= 0. Thus f ′(c) = 0

for every c ∈ C and this ends the proof.
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