The length of the graph of an increasing function with an almost everywhere zero derivative.

Marc Deléglise*

1 A general result.

We recall Lebesgue's theorem about the derivation of monotonic functions, whose proof is elementary and uses no more than the definition of derivative and the definition of a null set.
Theorem 1 Let f be an increasing function defined on $[a, b]$. Then f has almost everywhere a finite derivative.

Assuming Theorem (1), prove the following :
Problem 1 Let f be a continuous, strictly increasing function, defined on $[a, b]$, with a zero derivative at almost every point of $[a, b]$. Then f is of bounded variation. Its graph has a length. Prove that this length is $b-a+f(b)-f(a)$.

Remark: The conclusion is still true assuming only f non decreasing.

2 An example.

Let $0<u<1$, and $u=1-v$. Riesz and Nagy, in their book, Leçons d'Analyse Fonctionelle, give the construction of a function f, satisfying, when $u \neq 1 / 2$, the hypothesis of problem (1), with $[a, b]=[0,1]$ and $f(0)=0, f(1)=1 . f$ is constructed by the following way:

Let be the sequence $\left(f_{n}\right)$ of polygonal functions defined on $[0,1]$ by

1. $f_{1}(t)=t$.
2. f_{n} is affine on each $\left[k 2^{-n},(k+1) 2^{-n}\right]$ with $0 \leq k \leq 2^{n}-1$.
(a) $f_{n}\left(\frac{2 k}{2^{n}}\right)=f_{n-1}\left(\frac{k}{2^{n-1}}\right)$
(b) $f_{n}\left(\frac{2 k+1}{2^{n}}\right)=u f_{n-1}\left(\frac{k}{2^{n-1}}\right)+v f_{n-1}\left(\frac{k+1}{2^{n-1}}\right)$

It can be easily shown that the sequence $\left(f_{n}\right)$ is convergent. The function f is the limit of $\left(f_{n}\right)$. The length of f_{n} 's graph is

$$
L_{n}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} \sqrt{1+4^{n} u^{2 k} v^{2 n-2 k}}
$$

and the length of the graph of f is $\lim _{n \rightarrow \infty} L_{n}$. Using the result of problem (1) we know that (for $u \neq 1 / 2), \lim L_{n}=2$. It is interesting to find a "direct" proof of this, ignoring the interpretation of L_{n}, as the length of f_{n} 's graph.
Problem 2 Discuss the existence and value of the following limit

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} \sqrt{1+4^{n} u^{2 k} v^{2 n-2 k}}
$$

with u, v positive parameters.

[^0]
[^0]: *Institut Girard Desargues (UPRES-A 5028 du CNRS)
 UFR de Mathématiques, Université Lyon 1
 43 Bld du 11 Novembre 1918, 69622 Villeurbanne cedex France.
 deleglise@desargues.univ-lyon1.fr

