C.I.R.M. Théorie des Nombres et applications 14/18 janvier 2002

Some applications of computers to Number Theory

Marc Deléglise

17 janvier 2002, 60 ans de J.L Nicolas

deleglise@euler.univ-lyon1.fr

M. Deléglise, J. Rivat et X. Roblot remercient Jean-Louis Nicolas pour sa gentillesse, son optimisme, et ses encouragements. Dès son arrivée à Lyon, il a réussi à mettre en place d'excellentes conditions de travail, et développé l'utilisation des ordinateurs en Théorie des Nombres. Les travaux présentés ci dessous, lui doivent beaucoup.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recouvrement optimal du cercle par les multiples d'un intervalle

Problem : Let *h* be a positive integer, find an interval *I* on the torus \mathbb{R}/\mathbb{Z} , as short as possible, such that $I, 2I, \ldots, hI$ cover the whole of the torus. Let L(h) and $\alpha(h)$ the length and the origin of *I*.

Origin : An additive number theory problem about asymptotic bases. (Erdős-Graham 1980).

G. Grekos proved that L(h) is bounded by

$$L(h) \leq \frac{3}{h^2}(1+o(1))$$

and conjectured with J.M. Deshouillers that

this bound is the best possible.

Figure: Recouvrement optimal du cercle : les deux solutions pour h = 8

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

It is easy to prove that the L(h) and $\alpha(h)$ are rational numbers with relatively small numerators, and not too large denominators. Starting from this, we computed L(h), for $1 \le h \le 35$, and found that

$$L(h) = \begin{cases} \frac{3}{h^2 + 2h} & \text{when } h \equiv 0, 1 \pmod{3} \\ \frac{3}{h^2 + 2h - 2} & \text{when } h \equiv 2 \pmod{3} \end{cases}$$
 Deléglise (1991).

That simple formula depending only on the class of h modulo 3 suggests the existence of an arithmetic proof. Indeed, we proved it, using the three-distance theorem.

Computing large values of $M(x), \Psi(x), \pi(x)$ in $O(x^{2/3\pm\epsilon})$

Exercice : How to compute efficiently a sum like

 $\sum_{n \le x} f\left(\left[\frac{x}{n}\right]\right)$

Solution : There are at most $2\sqrt{x} - 1$ different values for $\left\lfloor \frac{x}{n} \right\rfloor$.

Cost of this computation : (when the computation of one value of f is O(1)) $O(\sqrt{x})$ instead of O(x).

Computation of M(x)

Let

$$M(x) = \sum_{n \le x} \mu(n)$$

denote the summatory function of Möbius function.

 $\lim_{x\to\infty} M(x)/x = 0$ is equivalent to the Prime Number Theorem.

Mertens conjectured that $M(x) \le \sqrt{x}$. That was disproved by Odlyzko and Te Riele (1985).

Computation of one single value of M(x)F. Dress $O(x^{3/4})$ (1993) Deléglise-Rivat $O(x^{2/3})$ (1996)

$$M(x) = M(u) - \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} \le n \le \frac{x}{m}} M\left(\frac{x}{mn}\right)$$

The inner sum is a sum of the type

$$\sum_{n\leq y} f\left(\left[\frac{y}{n}\right]\right) \quad \text{with } f = M, \quad y = \frac{x}{m}.$$

Choose $u = x^{1/3}$. After sieving the whole interval $[1, x^{2/3}]$, $O(x^{2/3} \log \log x)$ operations, each value $M(\frac{x}{mn})$ is obtained with cost O(1). So the inner sum is computed in time

$$\sum_{1 \le m \le x^{1/3}} \sqrt{\frac{x}{m}} = O(x^{2/3})$$

and the total cost is

 $O(x^{2/3} \log \log x)$, Deléglise-Rivat (1996).

With the same ideas, using the following formula of Vaughan :

$$\psi(x) = \sum_{\substack{n \le u}} \Lambda(n) + \sum_{\substack{m \le u \\ mn \le x}} \mu(m) \ln n$$
$$+ \sum_{\substack{l \le u \\ m \le u}} \mu(l) \Lambda(m) \left[\frac{x}{lm}\right] + \sum_{\substack{u < m \le x \\ u < n \le x \\ mn \le x}} \Lambda(m) \sum_{\substack{d \mid n \\ d \le u}} \mu(d)$$

we can compute $\psi(x)$ in time $O(x^{2/3+\epsilon})$ (Deléglise-Rivat 1998).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation of $\pi(x)$

Let $x \in \mathbb{R}$ and $b \in \mathbb{N}$. Define

 $F(x,b) = \operatorname{card}\{n \le x, \quad p \mid n \implies p > p_b\}$

F(x, b) is the number of integers that remain after sieving the interval [1, x] by the *b* first prime numbers p_1, p_2, \ldots, p_b . Denote also

 $P_2(x,b) = \operatorname{card}\{n ; n \le x; n = p_i p_j, p_i, p_j > p_b\}.$

Choose $a = \pi(x^{1/3})$, and sieve [1, x] by p_1, \ldots, p_a . Partitioning the integers that remain according to the number of their prime factors, we get

and Meissel's formula :

 $\pi(x) = F(x, a) + a - 1 - P_2(x, a).$

Computation of $P_2(x, a)$

The easy part. We have to count the couples of primes (p, q) such that

$x^{1/3} and <math>pq \le x$.

The primes *p* satisfy y , and for each value of*p*,*q* $satisfies <math>p \le q \le x/p$. Henceforth

$$P_2(x,a) = \sum_{x^{1/3}$$

Computation: Sieve the interval $[1, x^{2/3}]$. Cost of this computation :

 $O\left(x^{2/3}\log\log x\right)$

Recurrence formula for F(x, b).

Partitioning the integers less than x counted by F(x, b) in two classes

1. the ones that are multiple of p_{b+1} ,

2. the ones that are not multiple of p_{b+1} .

We get the formula

$$F(x,0) = [x]$$

$$F(x,b+1) = F(x,b) - F\left(\frac{x}{p_{b+1}},b\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computation of F(x, a)

To compute F(x, a), there are two opposite extreme ways:

- 1. To sieve the whole interval [1, x] by all the primes $2, 3, \ldots, p_a$
- 2. To use only the recurrence equation.

Both of these methods cost more than $x^{1-\epsilon}$.

The new idea, introduced by Lagarias, Miller, Odlyzko, is to mix both methods to get an $O(x^{2/3}/\log x)$ algorithm (1985).

Improvement in $O(x^{2/3}/\log^2 x)$

A careful analysis of LMO's algorithm shows that the essential part of the computation's time is the computation of the sum

$$\sum_{x^{1/4} \le p < x^{1/3}} \sum_{p < q \le \min(x/p^2, x^{1/3})} \pi\left(\frac{x}{pq}\right)$$

The inner sum is of the type $\sum f(x/n)$. For each fixed value of p, the different values $\pi(x/pq)$ are much fewer that the number of values of q. Speeding up the computation of this sum with the same trick than before, the total cost becomes

 $O(x^{2/3}/\log^2 x)$ Deléglise, Rivat(1996),

gaining a factor $\log x$, and the value

 $\pi(10^{18}) = 24\ 739\ 954\ 287\ 740\ 860.$

Counting primes in arithmetic progressions

P. Dusard noticed that Meissel's formula can be adapted to the computation of

$\pi(x,k,l)$

the number of primes congruent to $l \mod k$ up to x. With X.-F. Roblot, we wrote a program and computed values of $\pi(x, 4, 1)$ and $\pi(x, 4, 3)$ for x up to 10^{20} .

The difference

$$\delta(x) = \pi(x, 4, 3) - \pi(x, 4, 1)$$

has an infinity of changes of sign (Littlewood (1914)). Nevetherless it is more often positive than negative. Until recently, there were only 7 regions known (up to 10^{12}) where $\delta(x) < 0$. We found 2 new regions, one around $9 \cdot 10^{12}$, and the other one around 10^{18} .

Х	$\pi(x,4,1)$	$\pi(x, 4, 3)$	$\delta(x)$
10 ⁹	25 423 491	25 424 042	551
10^{10}	227 523 275	227 529 235	5 960
10^{11}	2 059 020 280	2 059 034 532	14 252
10 ¹²	18 803 924 340	18 803 987 677	63 337
10 ¹³	173 032 709 183	173 032 827 655	118 472
10^{14}	1 602 470 783 672	1 602 470 967 129	183 457
10^{15}	14 922 284 735 484	14 922 285 687 184	951 700
10^{16}	139 619 168 787 795	139 619 172 246 129	3 458 334
10^{17}	1 311 778 575 685 086	1 311 778 581 969 146	6 284 060
10 ¹⁸	12 369 977 142 579 584	12 369 977 145 161 275	2 581 691
10^{19}	117 028 833 597 800 689	117 028 833 678 543 917	80 743 228
10 ²⁰	1 110 409 801 150 582 707	1 110 409 801 410 336 132	259 753 425

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Figure: Graph of $\delta(\log 10)(x))/(\operatorname{sqrtx} \ln x)$ for $1 \leq \log_{10}(x) \leq 18.2$.

▲□▶ ▲圖▶ ▲厘▶ ▲

Density of abundant integers

 $\sigma(n)$ denotes the sum of all divisors of $n \in \mathbb{N}$. *n* is abundant if

 $\sigma(n) \geq 2n,$

(more generally *n* is α -abundant if $\sigma(n)/n \ge \alpha$). The proportion of abundant numbers between 1 and *x* has a limit when $x \to \infty$ (Davenport 1933) $A(2) = \lim_{x \to \infty} \frac{1}{x} \operatorname{card} \{n \le x; n \text{ abundant}\}$

 $(\gamma _{X \to \infty} X) = (\gamma _{X \to \infty} Y)$

But it is strange that this constant is difficult to compute.0.241 < A(2) < 0.314Behrend (1933)0.244 < A(2) < 0.291Wall (1972)0.2474 < A(2) < 0.2480Deléglise (1996)

A good method is still to be found.