C.I.R.M. Théorie des Nombres et applications 14/18 janvier 2002

Some applications of computers to Number Theory

Marc Deléglise

17 janvier 2002, 60 ans de J.L Nicolas
deleglise@euler.univ-lyon1.fr
M. Deléglise, J. Rivat et X. Roblot remercient Jean-Louis Nicolas pour sa gentillesse, son optimisme, et ses encouragements. Dès son arrivée à Lyon, il a réussi à mettre en place d'excellentes conditions de travail, et développé l'utilisation des ordinateurs en Théorie des Nombres. Les travaux présentés ci dessous, lui doivent beaucoup.

Recouvrement optimal du cercle par les multiples d'un intervalle
Problem : Let h be a positive integer, find an interval / on the torus \mathbb{R} / \mathbb{Z}, as short as possible, such that
$I, 2 I, \ldots, h l$ cover the whole of the torus. Let $L(h)$ and $\alpha(h)$ the length and the origin of I.

Origin : An additive number theory problem about asymptotic bases. (Erdős-Graham 1980).
G. Grekos proved that $L(h)$ is bounded by

$$
L(h) \leq \frac{3}{h^{2}}(1+o(1))
$$

and conjectured with J.M. Deshouillers that
this bound is the best possible.

Figure: Recouvrement optimal du cercle: les deux solutions pour $h=8$

It is easy to prove that the $L(h)$ and $\alpha(h)$ are rational numbers with relatively small numerators, and not too large denominators. Starting from this, we computed $L(h)$, for $1 \leq h \leq 35$, and found that
$L(h)=\left\{\begin{array}{lll}\frac{3}{h^{2}+2 h} & \text { when } & h \equiv 0,1 \\ \frac{3}{h^{2}+2 h-2} & (\bmod 3) \\ \text { when } & h \equiv 2(\bmod 3)\end{array}\right.$
Deléglise (1991).

That simple formula depending only on the class of h modulo 3 suggests the existence of an arithmetic proof. Indeed, we proved it, using the three-distance theorem.

Computing large values of $M(x), \Psi(x), \pi(x)$ in $O\left(x^{2 / 3 \pm \epsilon}\right)$

Exercice: How to compute efficiently a sum like

$$
\sum_{n \leq x} f\left(\left[\frac{x}{n}\right]\right)
$$

Solution : There are at most $2 \sqrt{x}-1$ different values for $\left[\frac{x}{n}\right]$.
Cost of this computation : (when the computation of one value of f is $O(1)$)

$$
O(\sqrt{x}) \text { instead of } O(x)
$$

Computation of $M(x)$

Let

$$
M(x)=\sum_{n \leq x} \mu(n)
$$

denote the summatory function of Möbius function.
$\lim _{x \rightarrow \infty} M(x) / x=0$ is equivalent to the Prime Number Theorem.
Mertens conjectured that $M(x) \leq \sqrt{x}$. That was disproved by Odlyzko and Te Riele (1985).

Computation of one single value of $M(x)$
F. Dress
$O\left(x^{3 / 4}\right)$
(1993)
Deléglise-Rivat $O\left(x^{2 / 3}\right) \quad(1996)$

$$
M(x)=M(u)-\sum_{m \leq u} \mu(m) \sum_{\frac{u}{m} \leq n \leq \frac{x}{m}} M\left(\frac{x}{m n}\right)
$$

The inner sum is a sum of the type

$$
\sum_{n \leq y} f\left(\left[\frac{y}{n}\right]\right) \quad \text { with } f=M, \quad y=\frac{x}{m}
$$

Choose $u=x^{1 / 3}$. After sieving the whole interval $\left[1, x^{2 / 3}\right]$, $O\left(x^{2 / 3} \log \log x\right)$ operations, each value $M\left(\frac{x}{m n}\right)$ is obtained with cost $O(1)$. So the inner sum is computed in time

$$
\sum_{1 \leq m \leq x^{1 / 3}} \sqrt{\frac{x}{m}}=O\left(x^{2 / 3}\right)
$$

and the total cost is

$$
O\left(x^{2 / 3} \log \log x\right), \quad \text { Deléglise-Rivat (1996). }
$$

With the same ideas, using the following formula of Vaughan :

$$
\begin{aligned}
\psi(x)=\sum_{n \leq u} \Lambda(n) & +\sum_{\substack{m \leq u \\
m n \leq x}} \mu(m) \ln n \\
& +\sum_{\substack{l \leq u \\
m \leq u}} \mu(I) \wedge(m)\left[\frac{x}{I m}\right]+\sum_{\substack{u<m \leq x \\
u<n \leq x \\
m n \leq x}} \Lambda(m) \sum_{\substack{d \mid n \\
d \leq u}} \mu(d)
\end{aligned}
$$

we can compute $\psi(x)$ in time $O\left(x^{2 / 3+\epsilon}\right)$ (Deléglise-Rivat 1998).

Computation of $\pi(x)$

Let $x \in \mathbb{R}$ and $b \in \mathbb{N}$. Define

$$
F(x, b)=\operatorname{card}\left\{n \leq x, \quad p \mid n \Longrightarrow p>p_{b}\right\}
$$

$F(x, b)$ is the number of integers that remain after sieving the interval $[1, x]$ by the b first prime numbers $p_{1}, p_{2}, \ldots, p_{b}$. Denote also

$$
P_{2}(x, b)=\operatorname{card}\left\{n ; n \leq x ; n=p_{i} p_{j}, \quad p_{i}, p_{j}>p_{b}\right\} .
$$

Choose $a=\pi\left(x^{1 / 3}\right)$, and sieve $[1, x]$ by p_{1}, \ldots, p_{a}. Partitioning the integers that remain according to the number of their prime factors, we get

$$
F(x, a)=\underbrace{1}_{0 \text { prime }}+\underbrace{\pi(x)-a}_{1 \text { prime }}+\underbrace{P_{2}(x, a)}_{2 \text { primes }}
$$

and Meissel's formula :

$$
\pi(x)=F(x, a)+a-1-P_{2}(x, a)
$$

Computation of $P_{2}(x, a)$

The easy part. We have to count the couples of primes (p, q) such that

$$
x^{1 / 3}<p \leq q \quad \text { and } \quad p q \leq x
$$

The primes p satisfy $y<p \leq x^{1 / 2}$, and for each value of p, q satisfies $p \leq q \leq x / p$. Henceforth

$$
P_{2}(x, a)=\sum_{x^{1 / 3}<p \leq \sqrt{x}}\left[\pi\left(\frac{x}{p}\right)-(\pi(p)-1)\right]
$$

Computation: Sieve the interval $\left[1, x^{2 / 3}\right]$. Cost of this computation :

$$
O\left(x^{2 / 3} \log \log x\right)
$$

Recurrence formula for $F(x, b)$.

Partitioning the integers less than x counted by $F(x, b)$ in two classes

1. the ones that are multiple of p_{b+1},
2. the ones that are not multiple of p_{b+1}.

We get the formula

$$
\begin{aligned}
F(x, 0) & =[x] \\
F(x, b+1) & =F(x, b)-F\left(\frac{x}{p_{b+1}}, b\right)
\end{aligned}
$$

Computation of $F(x, a)$

To compute $F(x, a)$, there are two opposite extreme ways: 1. To sieve the whole interval $[1, x]$ by all the primes $2,3, \ldots, p_{a}$ 2. To use only the recurrence equation.

Both of these methods cost more than $x^{1-\epsilon}$.

The new idea, introduced by Lagarias, Miller, Odlyzko, is to mix both methods to get an $O\left(x^{2 / 3} / \log x\right)$ algorithm (1985).

Improvement in $O\left(x^{2 / 3} / \log ^{2} x\right)$

A careful analysis of LMO's algorithm shows that the essential part of the computation's time is the computation of the sum

$$
\sum_{x^{1 / 4} \leq p<x^{1 / 3}} \sum_{p<q \leq \min \left(x / p^{2}, x^{1 / 3}\right)} \pi\left(\frac{x}{p q}\right)
$$

The inner sum is of the type $\sum f(x / n)$. For each fixed value of p, the different values $\pi(x / p q)$ are much fewer that the number of values of q. Speeding up the computation of this sum with the same trick than before, the total cost becomes

$$
O\left(x^{2 / 3} / \log ^{2} x\right) \quad \text { Deléglise, Rivat(1996), }
$$

gaining a factor $\log x$, and the value

$$
\pi\left(10^{18}\right)=24739954287740860
$$

Counting primes in arithmetic progressions

P. Dusard noticed that Meissel's formula can be adapted to the computation of

$$
\pi(x, k, l)
$$

the number of primes congruent to $I \bmod k$ up to x. With X.-F. Roblot, we wrote a program and computed values of $\pi(x, 4,1)$ and $\pi(x, 4,3)$ for x up to 10^{20}.

The difference

$$
\delta(x)=\pi(x, 4,3)-\pi(x, 4,1)
$$

has an infinity of changes of sign (Littlewood (1914)). Nevetherless it is more often positive than negative. Until recently, there were only 7 regions known (up to 10^{12}) where $\delta(x)<0$. We found 2 new regions, one around $9 \cdot 10^{12}$, and the other one around 10^{18}.

x	$\pi(x, 4,1)$	$\pi(x, 4,3)$	$\delta(x)$
10^{9}	25423491	25424042	551
10^{10}	227523275	227529235	5960
10^{11}	2059020280	205903532	14252
10^{12}	18803924340	18803987677	63337
10^{13}	173032709183	173032827655	118472
10^{14}	1602470783672	1602470967129	183457
10^{15}	14922284735484	14922285687184	951700
10^{16}	139619168787795	139619172246129	3458334
10^{17}	1311778575685086	1311778581969146	6284060
10^{18}	12369977142579584	12369977145161275	2581691
10^{19}	117028833597800689	117028833678543917	80743228
10^{20}	1110409801150582707	1110409801410336132	259753425

Figure: Graph of $\delta(\log 10)(x)) /(s q r t x \ln x)$ for $1 \leq \log _{10}(x) \leq 18.2$.

Density of abundant integers

$\sigma(n)$ denotes the sum of all divisors of $n \in \mathbb{N}$.
n is abundant if

$$
\sigma(n) \geq 2 n
$$

(more generally n is α-abundant if $\sigma(n) / n \geq \alpha$). The proportion of abundant numbers between 1 and x has a limit when $x \rightarrow \infty$ (Davenport 1933)

$$
A(2)=\lim _{x \rightarrow \infty} \frac{1}{x} \operatorname{card}\{n \leq x ; n \text { abundant }\}
$$

But it is strange that this constant is difficult to compute.

$$
\begin{array}{ll}
0.241<A(2)<0.314 & \text { Behrend (1933) } \\
0.244<A(2)<0.291 & \text { Wall (1972) } \\
0.2474<A(2)<0.2480 & \text { Deléglise (1996) }
\end{array}
$$

A good method is still to be found.

