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M. Deléglise, J. Rivat et X. Roblot remercient Jean-Louis Nicolas
pour sa gentillesse, son optimisme, et ses encouragements.
Dès son arrivée à Lyon, il a réussi à mettre en place d’excellentes
conditions de travail, et développé l’utilisation des ordinateurs en
Théorie des Nombres. Les travaux présentés ci dessous, lui doivent
beaucoup.



Recouvrement optimal du cercle par les multiples d’un intervalle

Problem : Let h be a positive integer, find an interval I on the
torus R/Z, as short as possible, such that
I , 2I , . . . , hI cover the whole of the torus. Let L(h) and α(h) the
length and the origin of I .

Origin : An additive number theory problem about asymptotic
bases. (Erdős-Graham 1980).

G. Grekos proved that L(h) is bounded by

L(h) ≤ 3

h2
(1 + o(1))

and conjectured with J.M. Deshouillers that

this bound is the best possible.



h = 8   solution 1/2                    

L = 3/(h^2 +2h -2)  = 0.038                         

R = 0.384         

a =  (h-1)L         

t   = 7       

h-t = 1       
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h = 8   solution 2/2                    

L = 3/(h^2 +2h -2)  = 0.038                         

R = 0.384         

a =  (h+2)L         

t   = 5       

h-t = 3       
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Figure: Recouvrement optimal du cercle : les deux solutions pour h = 8



It is easy to prove that the L(h) and α(h) are rational numbers
with relatively small numerators, and not too large denominators.
Starting from this, we computed L(h), for 1 ≤ h ≤ 35, and found
that

L(h) =


3

h2 + 2h
when h ≡ 0, 1 (mod 3)

3

h2 + 2h − 2
when h ≡ 2 (mod 3)

Deléglise (1991).

That simple formula depending only on the class of h modulo 3
suggests the existence of an arithmetic proof. Indeed, we proved it,
using the three-distance theorem.



Computing large values of M(x), Ψ(x), π(x) in O
(
x2/3±ε

)
Exercice : How to compute efficiently a sum like∑

n≤x

f
([x

n

])

Solution : There are at most 2
√

x − 1 different values for
[

x
n

]
.

Cost of this computation : (when the computation of one value
of f is O(1))

O(
√

x) instead of O(x).



Computation of M(x)

Let
M(x) =

∑
n≤x

µ(n)

denote the summatory function of Möbius function.

lim
x→∞

M(x)/x = 0 is equivalent to the Prime Number Theorem.

Mertens conjectured that M(x) ≤
√

x . That was disproved by
Odlyzko and Te Riele (1985).

Computation of one single value of M(x)

F. Dress O
(
x3/4

)
(1993)

Deléglise-Rivat O
(
x2/3

)
(1996)



Let 1 ≤ u ≤ x . We start from the formula

M(x) = M(u)−
∑
m≤u

µ(m)
∑

u
m
≤n≤ x

m

M
( x

mn

)

The inner sum is a sum of the type∑
n≤y

f
([y

n

])
with f = M, y =

x

m
.

Choose u = x1/3. After sieving the whole interval [1, x2/3],
O(x2/3 log log x) operations, each value M

(
x

mn

)
is obtained with

cost O(1). So the inner sum is computed in time

∑
1≤m≤x1/3

√
x

m
= O(x2/3)

and the total cost is

O(x2/3 log log x), Deléglise-Rivat (1996).



With the same ideas, using the following formula of Vaughan :

ψ(x) =
∑
n≤u

Λ(n) +
∑
m≤u
mn≤x

µ(m) ln n

+
∑
l≤u
m≤u

µ(l)Λ(m)
[ x

lm

]
+

∑
u<m≤x
u<n≤x
mn≤x

Λ(m)
∑
d |n
d≤u

µ(d)

we can compute ψ(x) in time O(x2/3+ε) (Deléglise-Rivat 1998).



Computation of π(x)
Let x ∈ R and b ∈ N. Define

F (x , b) = card{n ≤ x , p | n =⇒ p > pb}

F (x , b) is the number of integers that remain after sieving the
interval [1, x ] by the b first prime numbers p1, p2, . . . , pb.
Denote also

P2(x , b) = card{n ; n ≤ x ; n = pipj , pi , pj > pb}.

Choose a = π(x1/3), and sieve [1, x ] by p1, . . . , pa. Partitioning
the integers that remain according to the number of their prime
factors, we get

F (x , a) = 1︸︷︷︸
0 prime

+π(x)− a︸ ︷︷ ︸
1 prime

+P2(x , a)︸ ︷︷ ︸
2 primes

,

and Meissel’s formula :

π(x) = F (x , a) + a− 1− P2(x , a).



Computation of P2(x , a)

The easy part. We have to count the couples of primes (p, q)
such that

x1/3 < p ≤ q and pq ≤ x .

The primes p satisfy y < p ≤ x1/2, and for each value of p, q
satisfies p ≤ q ≤ x/p. Henceforth

P2(x , a) =
∑

x1/3<p≤
√

x

[
π

(
x

p

)
− (π(p)− 1)

]

Computation: Sieve the interval [1, x2/3].
Cost of this computation :

O
(
x2/3 log log x

)



Recurrence formula for F (x , b).

Partitioning the integers less than x counted by F (x , b) in two
classes

1. the ones that are multiple of pb+1,

2. the ones that are not multiple of pb+1.

We get the formula

F (x , 0) = [x ]

F (x , b + 1) = F (x , b)− F

(
x

pb+1
, b

)



Computation of F (x , a)

To compute F (x , a), there are two opposite extreme ways:

1. To sieve the whole interval [1, x ] by all the primes 2, 3, . . . , pa

2. To use only the recurrence equation.

Both of these methods cost more than x1−ε.

The new idea, introduced by Lagarias, Miller, Odlyzko, is to mix
both methods to get an O

(
x2/3/ log x

)
algorithm (1985).



Improvement in O
(
x2/3/ log2 x

)
A careful analysis of LMO’s algorithm shows that the essential part
of the computation’s time is the computation of the sum∑

x1/4≤p <x1/3

∑
p <q≤min(x/p2,x1/3)

π

(
x

pq

)

The inner sum is of the type
∑

f (x/n). For each fixed value of p,
the different values π(x/pq) are much fewer that the number of
values of q. Speeding up the computation of this sum with the
same trick than before, the total cost becomes

O
(
x2/3/ log2 x

)
Deléglise, Rivat(1996),

gaining a factor log x , and the value

π(1018) = 24 739 954 287 740 860.



Counting primes in arithmetic progressions

P. Dusard noticed that Meissel’s formula can be adapted to the
computation of

π(x , k, l)

the number of primes congruent to l mod k up to x .
With X.-F. Roblot, we wrote a program and computed values of
π(x , 4, 1) and π(x , 4, 3) for x up to 1020.

The difference
δ(x) = π(x , 4, 3)− π(x , 4, 1)

has an infinity of changes of sign (Littlewood (1914)). Nevetherless
it is more often positive than negative. Until recently, there were
only 7 regions known (up to 1012) where δ(x) < 0. We found 2
new regions, one around 9 · 1012, and the other one around 1018.



x π(x , 4, 1) π(x , 4, 3) δ(x)
109 25 423 491 25 424 042 551
1010 227 523 275 227 529 235 5 960
1011 2 059 020 280 2 059 034 532 14 252
1012 18 803 924 340 18 803 987 677 63 337
1013 173 032 709 183 173 032 827 655 118 472
1014 1 602 470 783 672 1 602 470 967 129 183 457
1015 14 922 284 735 484 14 922 285 687 184 951 700
1016 139 619 168 787 795 139 619 172 246 129 3 458 334
1017 1 311 778 575 685 086 1 311 778 581 969 146 6 284 060
1018 12 369 977 142 579 584 12 369 977 145 161 275 2 581 691
1019 117 028 833 597 800 689 117 028 833 678 543 917 80 743 228
1020 1 110 409 801 150 582 707 1 110 409 801 410 336 132 259 753 425



Figure: Graph of δ(log 10)(x))/( sqrtx ln x) for 1 ≤ log10(x) ≤ 18.2.



Density of abundant integers
σ(n) denotes the sum of all divisors of n ∈ N.
n is abundant if

σ(n) ≥ 2n,

(more generally n is α−abundant if σ(n)/n ≥ α). The proportion
of abundant numbers between 1 and x has a limit when x →∞
(Davenport 1933)

A(2) = lim
x→∞

1

x
card {n ≤ x ; n abundant}

But it is strange that this constant is difficult to compute.
0.241 < A(2) < 0.314 Behrend (1933)
0.244 < A(2) < 0.291 Wall (1972)
0.2474 < A(2) < 0.2480 Deléglise (1996)

A good method is still to be found.


