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Abstract. We study perfect crystals for the standard modules of the affine Lie algebra A
(1)
1 at all

levels using the theory of multi-grounded partitions. We prove a family of partition identities which

are reminiscent of the Andrews–Gordon identities and companions to the Meurman–Primc identities,

but with simple difference conditions involving absolute values. We also give simple non-specialised
character formulas with obviously positive coefficients for the three level 2 standard modules.

1. Introduction and statement of results

The content of this paper lies within in intersection of combinatorics (in particular, the study of parti-
tion identities) and the representation theory of affine Kac–Moody algebras. Every since Lepowsky and
Wilson’s foundational work [LW84, LW85] a productive relationship has been established between these
two fields. We now recall some background and provide a brief description of the principal mechanism
through which this interaction takes place.

A partition of a positive integer n is a non-increasing sequence of natural numbers whose sum is n.
For example, the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). Among the most famous
and ubiquitous partition and q-series identities are those of Rogers–Ramanujan [RR19]. In q-series form,
they can be stated as follows:

Theorem 1.1 (The Rogers–Ramanujan identities). Let i = 0 or 1. Then∑
n≥0

qn
2+(1−i)n

(q; q)n
=

1

(q2−i; q5)∞(q3+i; q5)∞
.

Here and throughout the paper, we use the standard q-series notation: for n ∈ N ∪ {∞} and j ∈ N,

(a; q)n :=

n−1∏
k=0

(1− aqk),

(a1, . . . , aj ; q)n := (a1; q)n · · · (aj ; q)n.
Interpreting the product side of the Rogers–Ramanujan identities as the generating function for parti-

tion with congruence conditions and the sum side as the generating function for partition with difference
conditions yields the combinatorial identities:

Theorem 1.2 (Rogers–Ramanujan identities, combinatorial version). Let i = 0 or 1. For every natural
number n, the number of partitions of n such that the difference between two consecutive parts is at least
2 and the part 1 appears at most i times is equal to the number of partitions of n into parts congruent
to ±(2− i) mod 5.

These identities were given many proofs and generalisations, see e.g. [And74, And89, Bre83, Cor17,
GM81, Gor61, GOW16], including the famous Andrews–Gordon identities [And74]:

Theorem 1.3 (Andrews–Gordon identities). Let r and i be integers such that r ≥ 2 and 1 ≤ i ≤ r. Let
Gi,r(n) be the number of partitions λ = λ1 + λ2 + · · ·+ λs of n such that λj − λj+r−1 ≥ 2 for all j, and
at most i− 1 of the λj are equal to 1. We have∑

n≥0

Gi,r(n)qn =
(q2r+1, qi, q2r−i+1; q2r+1)∞

(q; q)∞
.

Note that the Rogers–Ramanujan identities correspond to the particular case r = 2 in Theorem 1.3.
In [Bre79], Bressoud found an even-moduli counterpart to the Andrews–Gordon identities.
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Theorem 1.4 (Bressoud). Let r and i be integers such that r ≥ 1 and 1 ≤ i ≤ r. Let Bi,r(n) be the
number of partitions λ = λ1 + λ2 + · · ·+ λs of n such that λj − λj+r−1 ≥ 2 for all j, if λj ≤ λj+r−2 + 1
then λj + · · ·+ λj+r−2 ≡ i− 1 mod 2, and at most i− 1 of the λj are equal to 1. We have∑

n≥0

Bi,r(n)qn =
(q2r, qi, q2r−i; q2r)∞

(q; q)∞
.

We now explain how these partition identities have been related to representation theory. We assume
that the reader is familiar with the notion of a Kac–Moody algebra, the standard reference text is [Kac90].
Let g be a affine Kac–Moody algebra with positive roots ∆+ ⊂ h∗, where h is a Cartan subalgebra in g.
Let P (resp. P+) be the corresponding set of integral (resp. dominant integral) weights and let L(λ) an
irreducible highest weight g-module of highest weight λ ∈ P+. The character of L(λ) is defined as

chL(λ) =
∑
µ∈P

dimL(λ)µ · eµ,

where e is a formal exponential and L(λ)µ is the weight space corresponding to µ. A well studied problem
within representation theory is the development of so-called character formulas i.e. explicit algebraic
expressions for chL(λ). An well-known example is provided by the Weyl–Kac character formula [Kac90,
Proposition 10.10]

chL(λ) =

∑
w∈W sgn(w)ew(λ+ρ)−ρ∏
α∈∆+(1− e−α)multα

, (1.1)

where W is the Weyl group and ρ is the Weyl vector. An important feature of the Weyl–Kac character
formula is that it overcounts, i.e. the sum is alternating. Finding a non-overcounting character formula is
a difficult task, partial results may be obtained using the theory of vertex operator algebras and equating
the resulting formulas with the Weyl–Kac character formula gives rise to certain partition identities. This
was the basic strategy employed by Lepowsky and Wilson [LW84, LW85] to derive the Rogers–Ramanujan

identities from character formulas for level 3 modules over A
(1)
1 . Subsequently, other partition identities

were obtained (some of which were previously unknown to the combinatorics community) using different
levels and algebras, see, for example, [Cap93, MP87, MP99, MP01, Nan14, Pri94, PŠ16, Sil17]. More
detail on the history of this interaction can be found in the introduction of [DK19a].

Let us state in detail a partition identity which was obtained by Meurman and Primc [MP99] through

the study of vertex operator algebras for higher level modules of A
(1)
1 . An integer partition can equiva-

lently be defined in terms of frequencies, i.e. by a sequence (f1, f2, f3, ...) where for every natural number
k, fk denotes the number of appearances of k in the partition. Meurman and Primc’s result reads as
follows (slightly reformulated):

Theorem 1.5 (Meurman–Primc 1999). Let n and i be non-negative integers such that 0 ≤ i ≤ n. Let
Mi,n(m) denote the number of partitions of m in two colours, plain and underlined, such that their
frequencies (f1, f2, f3, ...) satisfy, for all k ≥ 1:

f2k = 0,

f2k+1 + f2k + f2k−1 ≤ n,
f2k + f2k−1 + f2k−1 ≤ n,
f2k+1 + f2k+1 + f2k ≤ n,
f2k+1 + f2k + f2k−1 ≤ n,

and
f1 ≤ i, f1 ≤ n− i.

Then we have the identity ∑
n≥0

Mi,n(m)qm =
(qi+1, qn−i+1, qn+2; qn+2)∞

(q; q2)∞(q; q)∞
. (1.2)

Note that up to the factor 1/(q; q2)∞, the product side of (1.2) is exactly the product side of the
Andrews–Gordon and Bressoud identities. Meurman and Primc’s identity is a great example of a parti-
tion identity for which it seems highly unlikely that guessing the identity using only the combinatorics
of integer partitions would have been possible, and where representation theory plays a key role in the
shape of the difference conditions.
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An alternative approach to finding a non-overcounting character formula is provided by the theory of
crystal bases, a good reference text for which is [HK02]. Said theory allows one to describe the character
chL(λ) in terms of a crystal i.e. a directed graph B together with a weight function wt: B → P satisfying
certain conditions (see, e.g. Defintion 4.5.1 in [HK02]). In particular, the crystal graph B(λ) of a crystal
basis of L(λ) will satisfy

chL(λ) =
∑

b∈B(λ)

ewt b.

Kashiwara [Kas91] proved the existence and uniqueness of crystal bases. Therefore, understanding
the structure of the corresponding crystal graph automatically grants one a non-overcounting character
formula. Kashiwara et al. [KKM+92b] then provided a description of B(λ) in terms of certain particularly
well-behaved crystals for the associated classical algebra, called perfect crystals. As before, equating the
resulting crystal character formula with the Kac–Peterson formula can lead to a partition identity. This

was first accomplished by Primc [Pri99], using level 1 modules over A
(1)
1 and A

(1)
2 . This work was later

generalised to level 1 modules over A
(1)
n by the first and third authors in [DK19a, DK19b], and generalised

to treat other modules in [DK21] (more on this in Section 2). In this paper, we study different perfect

A
(1)
1 crystals of arbitrarily high level and provide new partition identities and non-overcounting character

formulas.

We now describe our main results. Let n be a non-negative integer. Let Cn denote the set of (n+ 1)-
coloured partitions (λ1, · · · , λs), where each part has a colour taken from {c0, c1, . . . , cn}, such that for
all 1 ≤ i ≤ s− 1,

λi − λi+1 = |ui − ui+1|,
where for all i ∈ {1, . . . , s}, λi has colour cui . Similarly, let C≥n denote the set of (n + 1)-coloured
partitions such that λi − λi+1 ≥ |ui − ui+1|.

Our main result is a new family of partition identities which are companions (i.e. same infinite product
but other difference conditions) to the Meurman–Primc identity.

Theorem 1.6. Let n and i be non-negative integers such that 0 ≤ i ≤ n. Let Ci,n(m) be the number of
(n + 1)-coloured partitions of m in Cn such that the last part is 0ci and the penultimate part has colour

different from ci. Let C≥i,n(m) be the number of (n+ 1)-coloured partitions of m in C≥n such that the last
part is 0ci and the penultimate part is different from 0ci . Then, we have the identities∑

n≥0

Ci,n(m)qm =
(qi+1, qn−i+1, qn+2; qn+2)∞

(q; q2)∞(q; q)∞
, (1.3)

∑
n≥0

C≥i,n(m)qm =
(qi+1, qn−i+1, qn+2; qn+2)∞

(q; q2)∞(q; q)2
∞

. (1.4)

Just like for the Meurman–Primc identity, up to the factor 1/(q; q2)∞ (resp. 1/((q; q2)∞(q; q)∞)), the
product on the right-hand side of (1.3) (resp. (1.4)) is exactly the product side of the famous Andrews–
Gordon and Bressoud identities. On the other hand, it is – at least to the extent of our knowledge – the
first time in the literature that difference conditions involving absolute values arise in partition identities.
It is also interesting to note that our difference conditions are very different from those of Theorem 1.5,
and arguably more simple. This highlights the fact that the approaches via vertex operator algebras and
crystal bases, though both in the realm of representation theory, are very different and give rise to very
different results.

To prove Theorem 1.6, we use energy matrices for level n perfect crystals of A
(1)
1 and the theory

of grounded partitions introduced by the first and third authors [DK19b] to express the characters of
standard modules as generating functions for coloured partitions, which gives the left-hand side of (1.3).
The right-hand side of (1.3) comes from the principal specialisation of the Weyl–Kac character formula.

Building up on recent work of the first and third authors on multi-grounded partitions [DK21], we
also give simple non-specialised character formulas with manifestly positive coefficients for all level 2

standard modules of A
(1)
1 .

Let G = G(x1, . . . , xn) be a power series in several variables x1, . . . , xn. For k ≤ n, we denote by
Ex1,...,xk(G) the sub-series of G where we only keep the terms in which the sum of the powers of x1, . . . , xk
is even. If G has only positive coefficients, then for all k, Ex1,...,xk(G) also has positive coefficients and
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can be obtained easily from G via the formula

Ex1,...,xk(G) =
1

2

(
G(x1, . . . , xk, xk+1, . . . , xn) +G(−x1, . . . ,−xk, xk+1, . . . , xn)

)
. (1.5)

Our character formulas can be stated as follows,

Theorem 1.7. Let Λ0,Λ1 be the fundamental weights and α0, α1 be the simple roots of A
(1)
1 . Let δ =

α0 + α1 be the null root. We have

e−(Λ0+Λ1) chL(Λ0 + Λ1) = (−e−α0 ,−e−α1 ,−e−δ; e−δ)∞, (1.6)

e−2Λ0 chL(2Λ0) =
1

2

[
(−e− δ2 +α1 ,−e− δ2−α1 ,−e− δ2 ; e−δ)∞ + (e−

δ
2 +α1 , e−

δ
2−α1 , e−

δ
2 ; e−δ)∞

]
,

(1.7)

e−2Λ1 chL(2Λ1) =
1

2

[
(−e− 3δ

2 +α1 ,−e δ2−α1 ,−e− δ2 ; e−δ)∞ + (e−
3δ
2 +α1 , e

δ
2−α1 , e−

δ
2 ; e−δ)∞

]
.

(1.8)

Note that (1.7) and (1.8) are in the form of (1.5) and therefore have manifestly positive coefficients.

The paper is organised as follows. In Section 2, we recall the necessary background on (multi-)grounded

partitions. In Section 3, we study the energy matrices of level n perfect crystals of A
(1)
1 and prove Theorem

1.6. Finally, in Section 4, we prove the non-specialised character formulas of Theorem 1.7 and notice an
intriguing connection with Capparelli’s identity.

2. Background on perfect crystals and multi-grounded partitions

We start by briefly recalling the theory of perfect crystals. Let g be an affine Kac–Moody algebra
with simple positive roots α0, · · · , αn and with null root δ = d0α0 + · · · + dnαn. For λ ∈ P̄+, let B(λ)
the crystal graph of a crystal basis of L(λ). For an integer level ` ≥ 1 and a weight λ ∈ P̄+

` , Kashiwara
et al. [KKM+92b, Section 1.4] define the notion of a perfect crystal B of level `, an energy function
H : B ⊗ B → Z, and a particular element

pλ =
(
gk)∞k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0 ∈ B∞,

called the ground state path of weight λ (see Section 1.4 of their paper for precise definitions). From this
they consider all elements of the form

p = (pk)∞k=0 = · · · ⊗ pk+1 ⊗ pk ⊗ · · · ⊗ p1 ⊗ p0 ∈ B∞,
which satisfy pk = gk for large enough k. Such elements are called λ-paths; their collective set is denoted
P(λ). The crystal B(λ) can then be realised on the set of λ-paths, in particular the affine weight function
is given by the following theorem.

Theorem 2.1 ((KMN)2 crystal base character formula [KKM+92a]). Let λ ∈ P̄+
` , let H be an energy

function on B ⊗ B, let P(λ) be the set of λ-paths, and let p = (pk)∞k=0 ∈ P(λ). Then the weight of p is
given by the following expressions:

wt p = λ+

∞∑
k=0

(
wt pk − wt gk

)
− δ

d0

∞∑
k=0

(k + 1)
(
H(pk+1 ⊗ pk)−H(gk+1 ⊗ gk)

)
,

= λ+

∞∑
k=0

((
wt pk − wt gk

)
− δ

d0

∞∑
`=k

(H(p`+1 ⊗ p`)−H(g`+1 ⊗ g`))

)
,

where wt is the weight function of B. As P(λ) ∼= B(λ), we obtain the character formula

chL(λ) =
∑

p∈P(λ)

ewt p.

In [DK19b], the first and third authors used bijections to transform the (KMN)2 crystal base character
formula into a formula expressing characters as generating functions for so-called “grounded partitions”,
in the case where the ground state path of the module considered was constant. In [DK21], they
generalised their theory to treat the cases of all ground state paths, thereby introducing multi-grounded
partitions. We directly explain this latter more general theory, which contains the former as a particular
case.

First, recall the definition of multi-grounded partitions.
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Definition 2.2. Let C be a set of colours, and let ZC = {kc : k ∈ Z, c ∈ C} be the set of integers coloured
with the colours of C. Let � be a binary relation defined on ZC . A generalised coloured partition with
relation � is a finite sequence (π0, . . . , πs) of coloured integers, such that for all i ∈ {0, . . . , s − 1},
πi � πi+1.

In the following, if π = (π0, . . . , πs) is a generalised coloured partition, then c(πi) ∈ C denotes the
colour of the part πi. The quantity |π| = π0 + · · · + πs is the weight of π, and C(π) = c(π0) · · · c(πs) is
its colour sequence.

Definition 2.3. Let C be a set of colors, ZC the set of integers coloured with colours in C, and �
a binary relation defined on ZC . Suppose that there exist some colors cg0 , . . . , cgt−1

in C and unique

coloured integers u
(0)
cg0
, . . . , u

(t−1)
cgt−1

such that

u(0) + · · ·+ u(t−1) = 0,

u(0)
cg0
� u(1)

cg1
� . . . � u(t−1)

cgt−1
� u(0)

cg0
.

Then a multi-grounded partition with colours C, ground cg0 , . . . , cgt−1
and relation� is a non-empty gener-

alised coloured partition π = (π0, · · · , πs−1, u
(0)
cg0
, . . . , u

(t−1)
cgt−1

) with relation�, such that (πs−t, · · · , πs−1) 6=
(u

(0)
cg0
, . . . , u

(t−1)
cgt−1

) in terms of coloured integers.

We denote by P�cg0 ···cgt−1
the set of multi-grounded partitions with ground g0, . . . , gt−1 and relation �.

We do not make the set of colours C explicit in the notation as it should be clear from the context.
Grounded partitions, which were introduced in [DK19b], are a particular case of multi-grounded

partitions where the ground is reduced to one colour cg0 (and therefore the smallest part has to be 0cg0 ).

We now recall the connection between multi-grounded partitions, ground state paths, perfect crystals
and character formulas.

For ` ≥ 1, let B be a perfect crystal of level ` and let λ ∈ P̄+
` be a level ` dominant classical weight

with ground state path pλ = (gk)k≥0 (which is always periodic). Let us set t to be the period of the
ground state path, i.e. the smallest non-negative integer k such that gk = g0. Let H be an energy
function on B⊗B. Since B⊗B is connected, H is uniquely determined by fixing its value on a particular
b̃⊗ b̃′ ∈ B ⊗ B.

We now define the function Hλ, for all b, b′ ∈ B ⊗ B, by

Hλ(b⊗ b′) := H(b⊗ b′)− 1

t

t−1∑
k=0

H(gk+1 ⊗ gk) . (2.1)

Thus we have
t−1∑
k=0

Hλ(gk+1 ⊗ gk) = 0.

The function Hλ satisfies all the properties of energy functions, except that it does not have integer
values unless t divides

∑t−1
k=0H(gk+1⊗ gk). With this new notation, we can rewrite the (KMN)2 formula

for the weight of a λ-path in the following way. Let m ≥ 0 and p = (pk)∞k=0 ∈ P(λ) such that pm′t+i = gi
for m′ ≥ m and i ∈ {0, . . . , t− 1}. We have

wt p = λ+

mt−1∑
k=0

wt pk +
mδ

d0

t−1∑
k=0

(k + 1)Hλ(gk+1 ⊗ gk)− δ

d0

mt−1∑
k=0

(k + 1)Hλ(pk+1 ⊗ pk). (2.2)

Note that for any energy function H, we always have

t−1∑
k=0

(k + 1)Hλ(gk+1 ⊗ gk) =

t−1∑
k=0

(k + 1)H(gk+1 ⊗ gk)− t+ 1

2

t−1∑
k=0

H(gk+1 ⊗ gk) ∈ 1

2
Z.

The quantity above is an integer as soon as t is odd, and is equal to 0 when t = 1. Thus we can choose
a suitable divisor D of 2t such that DHλ(B ⊗ B) ⊂ Z and 1

t

∑t−1
k=0(k + 1)DHλ(gk+1 ⊗ gk) ∈ Z. For the

entirety of this paper, D always denotes such an integer.
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Let us now consider the set of colours CB indexed by B, and let us define the relations m and � on
ZCB by

kcb m k′cb′ ⇐⇒ k − k′ = DHλ(b′ ⊗ b), (2.3)

kcb � k′cb′ ⇐⇒ k − k′ ≥ DHλ(b′ ⊗ b). (2.4)

We can define multi-grounded partitions associated with these relations, as can be seen in the next
proposition.

Proposition 2.4 ([DK21]). The set Pm
cg0 ···cgt−1

(resp. P�cg0 ···cgt−1
) of multi-grounded partitions with

ground cg0 , . . . , cgt−1
and relation m (resp. �) is the set of non-empty generalised coloured partitions π =

(π0, · · · , πs−1, u
(0)
cg0
, . . . , u

(t−1)
cgt−1

) with relation m (resp. �), such that (πs−t, · · · , πs−1) 6= (u
(0)
cg0
, . . . , u

(t−1)
cgt−1

),

and for all k ∈ {0, . . . , t− 1},

u(k) = −1

t

t−1∑
`=0

(`+ 1)DHλ(g`+1 ⊗ g`) +

t−1∑
`=k

DHλ(g`+1 ⊗ g`).

In order to give a more general connection between multi-grounded partitions and character formulas,
we use some further sets of multi-grounded partitions. For any positive integer d, let dP�cg0 ···cgt−1

denote

the set of multi-grounded partitions π = (π0, · · · , πs−1, u
(0)
cg0
, . . . , u

(t−1)
cgt−1

) of P�cg0 ···cgt−1
such that for all

k ∈ {0, . . . , s− 1},
πk − πk+1 −DHλ(pk+1 ⊗ pk) ∈ dZ≥0,

where c(πk) = cpk and πs = u
(0)
cg0

.

Finally, let d
tP�cg0 ···cgt−1

(resp. tP�cg0 ···cgt−1
, tPm

cg0 ···cgt−1
) denote the set of multi-grounded partitions

of dP�cg0 ···cgt−1
(resp. P�cg0 ···cgt−1

, Pm
cg0 ···cgt−1

) whose number of parts is divisible by t.

Now the character formulas connecting perfect crystals to multi-grounded partitions can be stated as
follows.

Theorem 2.5 (Dousse–Konan 2021). Setting q = e−δ/(d0D) and cb = ewt b for all b ∈ B, we have
cg0 · · · cgt−1 = 1, and the character of the irreducible highest weight Uq(g)-module L(λ) is given by the
following expressions: ∑

µ∈tPm
cg0
···cgt−1

C(π)q|π| = e−λ chL(λ),

∑
π∈ dtP

�
cg0 ···cgt−1

C(π)q|π| =
e−λ chL(λ)

(qd; qd)∞
.

This theorem will be used directly to prove Theorem 1.7 in Section 4 and the proof of Theorem 1.6
in Section 3 relies on a variant of these ideas.

3. Perfect crystals for standard A
(1)
1 modules of level n

The level n perfect crystal Bn of A
(1)
1 is shown on Figure 1, and for all i, the weights and null root

are given, respectively, by

wt bi = (2i− n)Λ0 + (n− 2i)Λ1 =
(n

2
− i
)
α1,

δ = α0 + α1,
(3.1)

where α0 and α1 are the simple roots [HK02, Example 10.5.2].

There are n+ 1 standard A
(1)
1 modules of level n, namely whose highest weight is of the form

Λi,n := iΛ0 + (n− i)Λ1,

for i ∈ {0, . . . , n}. Their ground state paths are

pi := pΛi,n = · · · ⊗ bn−i ⊗ bi ⊗ bn−i ⊗ bi.
When n is even, then there is a constant ground state path for i = n/2. Otherwise, all the ground

state paths have period 2. By [KKM+92b, Lemma 4.6.2], Bn ⊗ Bn is also a level n perfect crystal, the
corresponding energy function is given by the matrix below (where Hn(bi⊗ bj) is given in column i, row
j):
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b0 b1 b2

1 1

0 0

bn−1 bn

1

0

1 1

0 0

Figure 1. The level n perfect crystal Bn of A
(1)
1

Hn =



b0 b1 b2 · · · bn−2 bn−1 bn

b0 n n n · · · n n n
b1 n− 1 n− 1 n− 1 · · · n− 1 n− 1 n
b2 n− 2 n− 2 n− 2 · · · n− 2 n− 1 n
...

...
...

... · · ·
...

...
...

bn−2 2 2 2 · · · n− 2 n− 1 n
bn−1 1 1 2 · · · n− 2 n− 1 n
bn 0 1 2 · · · n− 2 n− 1 n


.

We can rewrite this more concisely, for all i, j ∈ {0, . . . , n}, as

Hn(bi ⊗ bj) = max(i, n− j).

While, to prove Theorem 1.6, we will not exactly use the theory of multi-grounded partitions explained
in Section 2, we still need to consider a (pseudo) energy function Hλ such that the sum of its values on
the ground state path of λ is 0. For this, we use (2.1).

Here, for all the ground state paths pi, we have

Hn(bn−i ⊗ bi) +Hn(bi ⊗ bn−i) = n.

Thus, for all standard modules λ of level n, we have

Hλ = Hn −
n

2
,

or in other words, for all i, j ∈ {0, . . . , n}:

Hλ(bi ⊗ bj) = max(i− n

2
,
n

2
− j).

Hλ =



b0 b1 b2 · · · bn−2 bn−1 bn

b0
n
2

n
2

n
2 · · · n

2
n
2

n
2

b1
n
2 − 1 n

2 − 1 n
2 − 1 · · · n

2 − 1 n
2 − 1 n

2
b2

n
2 − 2 n

2 − 2 n
2 − 2 · · · n

2 − 2 n
2 − 1 n

2
...

...
...

... · · ·
...

...
...

bn−2 −n2 + 2 −n2 + 2 −n2 + 2 · · · n
2 − 2 n

2 − 1 n
2

bn−1 −n2 + 1 −n2 + 1 −n2 + 2 · · · n
2 − 2 n

2 − 1 n
2

bn −n2 −n2 + 1 −n2 + 2 · · · n
2 − 2 n

2 − 1 n
2


.

When n is even, Hλ is really an energy function. Otherwise, it has all the properties of an energy
function, except that it has half-integral values.

To obtain the very simple difference conditions of Theorem 1.6, we perform yet another rewriting of
Hλ. For 0 ≤ i, j ≤ n, we have

Hλ(bi ⊗ bj) =
1

2
max(j + i− n, n− i− j) +

1

2
(i− j) ,

=
1

2
|n− i− j|+ 1

2
(i− j). (3.2)

Thus

Hλ(bn−i ⊗ bi) + 2Hλ(bi ⊗ bn−i) = Hλ(bi ⊗ bn−i) = i− n

2
. (3.3)
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Let us consider the set of colours C = {c0, . . . , cn} and define the difference condition ∆(ca, cb) = |a−b|.
Denote by Pi,n the set of grounded partitions with colours C, ground ci and relation m defined by:

kca m lcb if and only if k − l = ∆(ca, cb).

We shall now prove a key proposition which relates the partitions in Pi,n and the character of L(Λi,n).

Proposition 3.1. There exists a bijection Φ between P(Λi,n) and Pi,n such that, if Φ(p) = π =
(π0, . . . , πs, 0ci), then

exp(wt p− Λi,n) = C ′(π)q|π|, (3.4)

where x = exp(−α0+α1

2 ), ck = exp(k · α1−α0

2 ), and

C ′(π) =

s∏
a=0

(cπa)−1a+1

×

{
1 if s is odd

ci if s is even.

Hence, ∑
π∈Pi,n

C ′(π)x|π| = exp(−Λi,n) chL(Λi,n). (3.5)

Proof. In this proof, we set λ = Λi,n. Let p = (bik)k≥0, with ik ∈ {0, . . . , n} for all k, be a λ-path, and let
m be the unique non-negative integer such that (i2m−2, i2m−1) 6= (i, n− i) and (i2m′ , i2m′+1) = (i, n− i)
for all m′ ≥ m. We compute wt p, defined in (2.2), in terms of the roots α0 and α1. By (3.1), (3.2) and
(3.3), we have

wt p = λ+

2m−1∑
k=0

(n
2
− ik

)
α1 +m(α0 + α1)

(
i− n

2

)
+
α0 + α1

2

2m−1∑
k=0

(k + 1)(ik − ik+1)

− α0 + α1

2

2m−1∑
k=0

(k + 1)|n− ik+1 − ik|.

Using the fact that
2m−1∑
k=0

(k + 1)(ik − ik+1) =

2m−1∑
k=0

ik − 2mi2m,

and that i2m = i because p2m = bi, we simplify and obtain

wt p = λ+

2m−1∑
k=0

(n
2
− ik

)
α1 +m(α0 + α1)

(
i− n

2

)
−m(α0 + α1)i+

α0 + α1

2

2m−1∑
k=0

ik

− α0 + α1

2

2m−1∑
k=0

(k + 1)|n− ik+1 − ik|

= λ+

2m−1∑
k=0

[(n
2
− ik

)
α1 −

α0 + α1

2

(n
2
− ik

)]
− α0 + α1

2

2m−1∑
k=0

(k + 1)|n− ik+1 − ik|

= λ+
2m−1∑
k=0

(n
2
− ik

) α1 − α0

2
− α0 + α1

2

2m−1∑
k=0

(k + 1)|n− ik+1 − ik|.

By setting j2k+1 = n− i2k+1 and j2k = i2k, this reduces to

wt p− λ =

2m−1∑
k=0

(−1)k+1jk ·
α1 − α0

2
− α0 + α1

2

2m−1∑
k=0

(k + 1)|jk+1 − jk|

=

2m−1∑
k=0

(
(−1)k+1jk ·

α1 − α0

2
− α0 + α1

2

2m−1∑
l=k

|jl+1 − jl|

)
. (3.6)

Observe that when i2m−1 = n − i, we have |j2m−1 − j2m| = |i − i| = 0. Furthermore, (i2m−2, i2m−1) 6=
(i, n− i) if and only if (j2m−2, j2m−1) 6= (i, i). Thus, for k ∈ {0, . . . , 2m− 1}, we set

πk =

(
2m−1∑
l=k

|jk − jk+1|

)
cjk

,
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and

Φ(π) =

{
(π0, . . . , π2m−2, 0ci) if j2m−1 = i

(π0, . . . , π2m−1, 0ci) if j2m−1 6= i.

Hence, for all 0 ≤ k ≤ 2m− 2, we have πk − πk+1 = |jk − jk+1|, i.e. πk m πk+1. Finally, when j2m−1 = i,
we indeed have j2m−2 6= i, so π is a grounded partition with ground ci. When j2m−1 6= i, π is also
a grounded partition with ground ci, as π2m−1 = |j2m−1 − j2m| = |j2m−1 − i| and then π2m−1 m 0ci .
Therefore, π always belongs to Pi,n, and (3.6) becomes

wt p− Λi,n =
α1 − α0

2

(
2m−1∑
k=0

(−1)k+1jk

)
− α0 + α1

2
|π|,

where |π| denotes the size of π.

Let us now give the inverse bijection. Let π = (π0, . . . , πs, 0ci) ∈ Pi,n, with c(πk) = jk for all 0 ≤ k ≤ s+1.
In particular, js+1 = i. Then set m =

⌈
s+1

2

⌉
,

(i2k, i2k+1) =

{
(j2k, n− j2k+1) if k ≤ m− 1

(i, n− i) if k ≥ m,

and Φ−1(π) = p = (bik)k≥0. Since js 6= i and s ∈ {2m− 2, 2m− 1}, we then have (j2m−2, j2m−1) 6= (i, i),
so that m is the unique non-negative integer satisfying (i2m−2, i2m−1) 6= (i, n − i) and (i2m′ , i2m′+1) =
(i, n − i) for all m′ ≥ m. Hence, p ∈ P(Λi,n). Moreover, as js+1 = i and s + 1 ∈ {2m − 1, 2m}, setting
j2m = i yields

πk =

s∑
l=k

|jl − jl+1| =
2m−1∑
l=k

|jl − jl+1|,

|π| =
s∑

k=0

πk =

2m−1∑
k=0

2m−1∑
l=k

|jl − jl+1|,

and applying (3.6) to p gives

wt p− Λi,n =
α1 − α0

2

(
2m−1∑
k=0

(−1)k+1jk

)
− α0 + α1

2
|π|.

The uniqueness of the relations between s and m, as well as the definition of the sequences (ik)k≥2m−1

and (jk)s+1
k=0, imply that Φ and Φ−1 are inverses of each other. The relation (3.4) comes from the fact

that, for π = Φ(p),

wt p− Λi,n =
α1 − α0

2

(
2m−1∑
k=0

(−1)k+1jk

)
− α0 + α1

2
|π|.

�

We now consider the set P≥i,n of grounded partitions with colours C, ground ci and relation � defined
by:

kca � lcb if and only if k − l ≥ ∆(ca, cb) ·
Denote by P the set of classical partitions.

Proposition 3.2. There exists a bijection Ψ between P≥i,n and Pi,n ×P such that Ψ(π) = (µ, ν) implies

|π| = |µ|+ |ν|.

Proof. Here we only describe the bijection Ψ. The proof of its well-definedness is analogous the proof of
Proposition 3.6 in [DK19b]. Let π = (π0, . . . , πs−1, 0ci) ∈ P

≥
i,n, and set

r = max{k ∈ {0, . . . , s} : c(πk−1) 6= ci}.
We set µ := (µ0, . . . , µr−1, 0ci), where the part µk is coloured c(πk) and has size

r−1∑
l=k

∆(c(πl), c(πl+1)) ·

9



We now build ν = (ν0, . . . , νt−1). If r < s, then t = s and

νk :=

{
πk − µk for k ∈ {0, . . . , r − 1},
πk for k ∈ {r, . . . , s− 1}.

Otherwise r = s, in which case we set

t = min{k ∈ {0, . . . , s} : πk = µk},
and νk := πk − µk for all k ∈ {0, . . . , t− 1}. �

We are now ready to prove our main theorem.

Proof of Theorem 1.6. First observe that the quantity Ci,n(m) counts the partitions of m in Pi,n, and
thus ∑

m≥0

Ci,n(m)qm =
∑

π∈Pi,n

q|π|.

The principal specialisation of the character, which consists in performing the transformations e−α0 , e−α1 7→
q, is denoted by 1. In Proposition 3.1, it implies the transformations x 7→ q and ck 7→ 1. Hence, we
obtain that C ′(π) = 1 for all π ∈ Pi,n, and the equality (3.5) becomes∑

m≥0

Ci,n(m)qm = 1(exp(−Λi,n) chL(Λi,n)).

Finally, we deduce the right-hand side of (1.3) from the principal specialisation of the Weyl–Kac character

formula (1.1) for the type A
(1)
1 :

1(exp(−Λi,n) chL(Λi,n)) =
∏
α∈∆∨+

(
1− q〈Λi,n+ρ,α〉

1− q〈ρ,α〉

)mult α

,

with 
ρ = Λ0 + Λ1,

∆∨+ = {kα∨0 + (k − 1)α∨1 , (k − 1)α∨0 + kα∨1 , kα
∨
0 + kα∨1 : k ∈ Z≥1},

mult α = 1 for all α ∈ ∆∨+,

〈Λu, α∨v 〉 = χ(u = v).

To prove (1.4), we similarly remark that C≥i,n(m) counts the partitions of m in P≥i,n, so that by Proposition
3.2, ∑

m≥0

C≥i,n(m)qm =
∑

π∈P≥i,n

q|π|

=
1

(q; q)∞

∑
π∈Pi,n

q|π|.

�

4. Non-specialised character formulas for level 2 standard modules

In this section, we focus in more detail on the level 2 standard module of A
(1)
1 and prove the non-

specialised character formulas of Theorem 1.7.

b0 b1 b2

1 1

0 0

Figure 2. The level 2 perfect crystal of A
(1)
1

The perfect crystal B2 of A
(1)
1 level 2 can be seen in Figure 4, and the an energy matrix is given by
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H2 =


b0 b1 b2

b0 2 2 2
b1 1 1 2
b2 0 1 2

.
Here, we have three highest weights of level 2:

• Λ0 + Λ1, with ground state path · · · ⊗ b1 ⊗ b1,
• 2Λ0, with ground state path · · · ⊗ b0 ⊗ b2 ⊗ b0 ⊗ b2,
• 2Λ1, with ground state path · · · ⊗ b2 ⊗ b0 ⊗ b2 ⊗ b0.

Note that H2 is exactly the non-dilated matrix of difference conditions for Capparelli’s identity refor-
mulated by the first author [Dou20]. Unfortunately, this doesn’t allow us to directly connect Capparelli’s
identity to perfect crystals, as the connection is actually made with energy functions whose sum is zero
on the ground state paths.

In order to compute our character formulas, we define the energy function satisfying that property:

H =


b0 b1 b2

b0 1 1 1
b1 0 0 1
b2 −1 0 1

.
We now use the theory of grounded and multi-grounded partitions to prove Theorem 1.7.

4.1. The module L(Λ0 + Λ1). The highest weight Λ0 + Λ1 has a constant ground state path. We can
thus apply the theory of grounded partitions directly to the energy matrix H to prove (1.6) of Theorem
1.7.

Proof of (1.6) of Theorem 1.7. We set q = e−δ, c0 = eα1 , c1 = 1, c2 = e−α1 , and let P�c1 denote the set
of grounded partitions with colour set {c0, c1, c2}, ground c0 and relation � given by

kci � lcj ⇐⇒ k − l ≥ H(bj ⊗ bi).

Then by Theorem 2.5, we have ∑
π∈P�c1

C(π)q|π| =
e−(Λ0+Λ1) chL(Λ0 + Λ1)

(q; q)∞
. (4.1)

Thus to compute the non-specialised character of L(Λ0+Λ1), we only need to find a nice expression for
the generating functions of grounded partitions in P�c1 . To do this, we note that the difference conditions
given by the matrix H correspond to the partial order

· · · � 0c1 �
1c0
0c2

� 1c1 �
2c0
1c2

� 2c1 �
3c0
2c2

� · · · .

By definition, the grounded partitions in P�c1 must have 0c1 as the last part, and the penultimate part
should be different from 0c1 . The parts kc1 can repeat arbitrarily many times because H(b1 ⊗ b1) = 0.
Thus, including the last part 0c1 generated by c1, the parts coloured c1 are generated by

c1
(c1q; q)∞

.

Now the parts coloured c0 and c2 can also appear several times, but always in sequences of the form

· · · � kc0 � (k − 1)c2 � kc0 � (k − 1)c2 � · · · .

The generating function of such a sequence for a fixed integer k ≥ 1 is given by

(1 + c0q
k)(1 + c2q

k−1)

(1− c0c2q2k−1)
,

where the denominator generates pairs (kc0 , (k − 1)c2) that can repeat arbitrarily many times, and the
numerator accounts for the possibility of having an isolated (k − 1)c2 on the left end of the sequence,
or an isolated kc0 on the right end of the sequence. Multiplying this over all integers k ≥ 1 gives the
generating function for the parts coloured c0 and c2:

(−c0q; q)∞(−c2; q)∞
(c0c2q; q2)∞

.
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Thus the generating function for the grounded partitions in P�c1 is∑
π∈P�c1

C(π)q|π| =
c1(−c0q; q)∞(−c2; q)∞
(c1q; q)∞(c0c2q; q2)∞

.

Substituting the correct values of q, c0, c1, c2 into (4.1), and using that 1/(q; q2)∞ = (−q; q)∞, we
obtain

e−(Λ0+Λ1) chL(Λ0 + Λ1) = (−e−α0 ; q)∞(−e−α1 ; q)∞(−e−δ; e−δ)∞,
and (1.6) of Theorem 1.7 is proved. �

It is interesting to note that in the purely combinatorial proof of Capparelli’s identity given by Lovejoy
and the first author in [DL19], itself inspired by the combinatorial proof of Alladi, Andrews and Gordon
[AAG95], they actually also compute the generating function for coloured partitions with difference
conditions �, but with other initial conditions. Indeed, while in the present paper, the last part needs
to be 0c1 , in their work, the smallest part could be any non-negative integer, which gave rise to the
generating function

(−c0; q)∞(−c2; q)∞
(c1; q)∞(c0c2q; q2)∞

.

Then, adding a staircase (i.e. a partition 1 + 2 + 3 + · · · ) to such a partition – which adds 1 to all
the differences between consecutive parts and therefore transforms H into H0 – transforms it into a
partition satisfying the difference conditions of Capparelli’s identity. The proof concludes with some q-
series computations to show the generating function that one obtains is an infinite product, and therefore
the generating function for partitions with congruence conditions.

Again, our hope of finding a direct proof of Capparelli’s identity via the theory of perfect crystals is
not really fulfilled, because on the one hand the proof of Capparelli’s identity uses the “correct” energy
function but with the “wrong” initial conditions, and on the other hand, if we start from the “correct”
energy function and initial conditions, then adding a staircase gives a generating function which is not
an infinite product. However, it is still interesting and intriguing that a purely combinatorial proof, with
no connection or background in crystal base theory, naturally leads to the study of the exact energy
matrix that is meaningful in the theory of perfect crystals and grounded partitions. This hints yet
again at a deeper connection between the approaches in combinatorics and number theory, and between
Capparelli’s identity (which originally comes from vertex operator algebras) and crystal base theory.

4.2. The module L(2Λ0). We now turn to the module L(2Λ0), whose ground state path · · ·⊗ b0⊗ b2⊗
b0 ⊗ b2 is of period 2. Thus, we need the theory of multi-grounded partitions to prove (1.7) of Theorem
1.7.

Proof of (1.7) of Theorem 1.7. As explained in Section 2, we need to choose a suitable divisor D of 4 such
that DH(B2⊗B2) ⊂ Z and 1

2 (DH(b0⊗b2)+2DH(b2⊗b0)) ∈ Z. We have H(b2⊗b0) = −H(b0⊗b2) = 1,
so we can choose D = 2, and define the relation � as

kci � lcj ⇐⇒ k − l ≥ DH(bj ⊗ bi).
We want to study the multi-grounded partitions in P�c2c0 . Using Definition 2.3 or Proposition 2.4, we
obtain that the two fixed last parts of such partitions are (−1c2 , 1c0).

Applying Theorem 2.5 with d = 2 and D = 2 gives∑
π∈ 2

2P
�
c2c0

C(π)q|π| =
e−2Λ0 chL(2Λ0)

(q2; q2)∞
, (4.2)

where q = e−δ/2, c0 = eα1 , c1 = 1, c2 = e−α1 .
Recall that 2

2P�c2c0 is the set of multi-grounded partitions π = (π0, . . . , π2s−1,−1c2 , 1c0) with relation
� and ground c2, c0, having an even number of parts, such that for all k ∈ {0, . . . , 2s− 1},

πk − πk+1 − 2H(bik+1
⊗ bik) ∈ 2Z≥0, (4.3)

where c(πk) = cik and π2s = −1c2 .
Note that by (4.3) and the fact that u(0) = −1, the multi-grounded partitions of 2

2P�c2c0 only have
parts with odd sizes, as the differences between consecutive parts are even. Thus we can compute the
generating function for partitions in 2

2P�c2c0 similarly to the last section, by noticing that, combined with
(4.3), � is the following partial order on the set of coloured odd integers:
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· · · � 1c0
−1c2

� 1c1 �
3c0
1c2

� 3c1 �
5c0
3c2

� · · · .

At first, let us temporarily forget the condition that the number of parts must be odd, and let us
compute the generating function.

The parts (2k + 1)c1 can repeat arbitrarily many times because 2H(b1 ⊗ b1) = 0. Thus the parts
coloured c1 are generated by

1

(c1q; q2)∞
.

Now, as in the previous section, the parts coloured c0 and c2 can also appear several times, but always
in sequences of the form

· · · � (2k + 1)c0 � (2k − 1)c2 � (2k + 1)c0 � (2k − 1)c2 � · · · .

The generating function for such sequences for k ≥ 1 is given by

(−c0q3; q2)∞(−c2q; q2)∞
(c0c2q4; q4)∞

.

Moreover, the fixed tail of the multi-grounded partitions under consideration is (−1c2 , 1c0), so that
for k = 0, only an isolated 1c0 can appear, but not −1c2 , otherwise our partition would end with
(−1c2 , 1c0 ,−1c2 , 1c0), which is forbidden. Thus we should still multiply our generating function by
c0c2(1 + c0q).

Combining all this, we obtain the generating function

c0c2(−c0q; q2)∞(−c2q; q2)∞
(c1q; q2)∞(c0c2q4; q4)∞

.

Now, to take back into account the fact that there must be an even number of parts, we use (1.5).
Thus the multi-grounded partitions in 2

2P�c2c0 are generated by:∑
π∈ 2

2P
�
c2c0

C(π)q|π| = Ec0,c1,c2
(
c0c2(−c0q; q2)∞(−c2q; q2)∞

(c1q; q2)∞(c0c2q4; q4)∞

)

=
c0c2

(c0c2q4; q4)∞

(
(−c0q; q2)∞(−c2q; q2)∞

(c1q; q2)∞
+

(c0q; q
2)∞(c2q; q

2)∞
(−c1q; q2)∞

)
.

Substituting the correct values of q, c0, c1, c2 in (4.2) and simplifying completes the proof. �

4.3. The module L(2Λ1). Finally, we conclude with the character formula for the module L(2Λ1),
whose ground state path · · · ⊗ b2 ⊗ b0 ⊗ b2 ⊗ b0 is of period 2. Apart from the fixed last parts of the
multi-grounded partitions, everything works in the same way as in the previous section, so we provide
less detail this time.

Proof of (1.8) of Theorem 1.7. The relation � and the values of q, c0, c1, c2 and D are defined exactly
as in the last section, but now we want to study the multi-grounded partitions in P�c0c2 . Thus, using
Definition 2.3 or Proposition 2.4, the two fixed last parts of our partitions must be (1c0 ,−1c2).

Applying Theorem 2.5 with d = 2 and D = 2 gives∑
π∈ 2

2P
�
c0c2

C(π)q|π| =
e−2Λ1 chL(2Λ1)

(q2; q2)∞
, (4.4)

where q = e−δ/2, c0 = eα1 , c1 = 1, c2 = e−α1 .
The generating function for 2

2P�c0c2 can be computed almost exactly as the one for 2
2P�c2c0 , except that

now there can be an isolated −1c2 before the fixed tail (1c0 ,−1c2), but no 1c0 , otherwise our partition
would end with (1c0 ,−1c2 , 1c0 ,−1c2), which is forbidden. Thus instead of multiplying our generating
function by c0c2(1 + c0q) like in the previous section, we now multiply it by c0c2(1 + c2q

−1). Thus,
omitting the condition on the parity of the number of parts, we obtain the generating function

c0c2(−c0q3; q2)∞(−c2q−1; q2)∞
(c1q; q2)∞(c0c2q4; q4)∞

.
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Now, to take back into account the fact that there must be an even number of parts, we use (1.5).
Thus the multi-grounded partitions in 2

2P�c2c0 are generated by:∑
π∈ 2

2P
�
c2c0

C(π)q|π| = Ec0,c1,c2
(
c0c2(−c0q3; q2)∞(−c2q−1; q2)∞

(c1q; q2)∞(c0c2q4; q4)∞

)

=
c0c2

(c0c2q4; q4)∞

(
(−c0q3; q2)∞(−c2q−1; q2)∞

(c1q; q2)∞
+

(c0q
3; q2)∞(c2q

−1; q2)∞
(−c1q; q2)∞

)
.

Substituting the correct values of q, c0, c1, c2 in (4.4) and simplifying completes the proof. �
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