PARTITION IDENTITIES FROM HIGHER LEVEL CRYSTALS OF Agl)
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ABSTRACT. We study perfect crystals for the standard modules of the affine Lie algebra A§1) at all
levels using the theory of multi-grounded partitions. We prove a family of partition identities which
are reminiscent of the Andrews—Gordon identities and companions to the Meurman—Primc identities,
but with simple difference conditions involving absolute values. We also give simple non-specialised
character formulas with obviously positive coefficients for the three level 2 standard modules.

1. INTRODUCTION AND STATEMENT OF RESULTS

The content of this paper lies within in intersection of combinatorics (in particular, the study of parti-
tion identities) and the representation theory of affine Kac-Moody algebras. Every since Lepowsky and
Wilson’s foundational work [LW84] [LW85] a productive relationship has been established between these
two fields. We now recall some background and provide a brief description of the principal mechanism
through which this interaction takes place.

A partition of a positive integer n is a non-increasing sequence of natural numbers whose sum is n.
For example, the partitions of 4 are (4),(3,1),(2,2),(2,1,1) and (1,1,1,1). Among the most famous
and ubiquitous partition and g-series identities are those of Rogers—Ramanujan [RRI19]. In g-series form,
they can be stated as follows:

Theorem 1.1 (The Rogers-Ramanujan identities). Leti =0 or 1. Then
qn2+(17i)n 1

= (@D (PTHP)e(@* 0%

Here and throughout the paper, we use the standard g¢-series notation: for n € NU {oo} and j € N,
n—1
(a;q)n =[] (1 - ag"),
k=0
(1,505 Q)n = (a13@)n -+ (@53 @)n-
Interpreting the product side of the Rogers—Ramanujan identities as the generating function for parti-

tion with congruence conditions and the sum side as the generating function for partition with difference
conditions yields the combinatorial identities:

Theorem 1.2 (Rogers—Ramanujan identities, combinatorial version). Let i =0 or 1. For every natural
number n, the number of partitions of n such that the difference between two consecutive parts is at least

2 and the part 1 appears at most i times is equal to the number of partitions of n into parts congruent
to £(2 —¢) mod 5.

These identities were given many proofs and generalisations, see e.g. [And74l [And89l Bre83, [Corl7,
GMRI] [Gor61l, [GOW16], including the famous Andrews—Gordon identities [And74):

Theorem 1.3 (Andrews—Gordon identities). Let r and i be integers such that r > 2 and 1 < i <r. Let
Gir(n) be the number of partitions A = A1 + Ao + - -+ + As of n such that \j — \jyr—1 > 2 for all j, and
at most i — 1 of the A; are equal to 1. We have

Z G'L,r(n)qn =

= (¢ 2o

2 1 3 2r—i+1. 2 1
(¢ T )

Note that the Rogers—Ramanujan identities correspond to the particular case r = 2 in Theorem
In [Bre79], Bressoud found an even-moduli counterpart to the Andrews—Gordon identities.
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Theorem 1.4 (Bressoud). Let r and i be integers such that r > 1 and 1 < i < r. Let B; (n) be the
number of partitions A = Ay + Ao + -+ Ag of n such that \j — A\j1r—1 > 2 for all j, if \j < Ajpr—o+1
then A\j + -+ Xjyr—2=1—1 mod 2, and at most i — 1 of the \; are equal to 1. We have

> 5 = 00

= (¢ @)oo

27‘—1'; q27')oo

We now explain how these partition identities have been related to representation theory. We assume
that the reader is familiar with the notion of a Kac—Moody algebra, the standard reference text is [Kac90].
Let g be a affine Kac—Moody algebra with positive roots AT C h*, where b is a Cartan subalgebra in g.
Let P (resp. PT) be the corresponding set of integral (resp. dominant integral) weights and let L(\) an
irreducible highest weight g-module of highest weight A € P*. The character of L()\) is defined as

chL(A) = > dim L()), - e,
neP
where e is a formal exponential and L()\),, is the weight space corresponding to . A well studied problem
within representation theory is the development of so-called character formulas i.e. explicit algebraic
expressions for ch L(A). An well-known example is provided by the Weyl-Kac character formula [Kac90l
Proposition 10.10]

> e sgn(w)e? e —p (1.1)
Mocar (- e e |

where W is the Weyl group and p is the Weyl vector. An important feature of the Weyl-Kac character
formula is that it overcounts, i.e. the sum is alternating. Finding a non-overcounting character formula is
a difficult task, partial results may be obtained using the theory of vertex operator algebras and equating
the resulting formulas with the Weyl-Kac character formula gives rise to certain partition identities. This
was the basic strategy employed by Lepowsky and Wilson [LW84, [LW85] to derive the Rogers—Ramanujan

ch L(\) =

identities from character formulas for level 3 modules over A:(Ll). Subsequently, other partition identities
were obtained (some of which were previously unknown to the combinatorics community) using different
levels and algebras, see, for example, [Cap93, MP87, MP99, MP01l, Nani4l [Pri94, PS16, [Sili7]. More
detail on the history of this interaction can be found in the introduction of [DK19a].

Let us state in detail a partition identity which was obtained by Meurman and Primc [MP99] through
the study of vertex operator algebras for higher level modules of Agl). An integer partition can equiva-
lently be defined in terms of frequencies, i.e. by a sequence (f1, f2, f3,...) where for every natural number
k, fr denotes the number of appearances of k in the partition. Meurman and Primc’s result reads as
follows (slightly reformulated):

Theorem 1.5 (Meurman—Primc 1999). Let n and i be non-negative integers such that 0 < i < n. Let
M, (m) denote the number of partitions of m in two colours, plain and underlined, such that their
frequencies (f1, fa, f3,...) satisfy, for all k > 1:

f%:O,

Jokt1 + fok + for—1 <,
Jok + fau—1 + for—1 < n,
Jok41 + fors1 + for <,
Jakt1 + fok + for—1 < m,

and
f1 <1, fi<n—i.
Then we have the identity
i+1 n—i+l1 ,n+2. n+2
S Mg = C T e (12
= (43 %) oo (43 @)oo

Note that up to the factor 1/(q;¢*)so, the product side of is exactly the product side of the
Andrews—Gordon and Bressoud identities. Meurman and Primc’s identity is a great example of a parti-
tion identity for which it seems highly unlikely that guessing the identity using only the combinatorics
of integer partitions would have been possible, and where representation theory plays a key role in the
shape of the difference conditions.



An alternative approach to finding a non-overcounting character formula is provided by the theory of
crystal bases, a good reference text for which is [HK02]. Said theory allows one to describe the character
ch L(\) in terms of a crystal i.e. a directed graph B together with a weight function wt: B — P satisfying
certain conditions (see, e.g. Defintion 4.5.1 in [HK02]). In particular, the crystal graph B()) of a crystal
basis of L(\) will satisfy

chL(\) = > ™.

bEB(N)

Kashiwara [Kas91] proved the existence and uniqueness of crystal bases. Therefore, understanding
the structure of the corresponding crystal graph automatically grants one a non-overcounting character
formula. Kashiwara et al. [KKM™92b| then provided a description of B(A) in terms of certain particularly
well-behaved crystals for the associated classical algebra, called perfect crystals. As before, equating the
resulting crystal character formula with the Kac—Peterson formula can lead to a partition identity. This
was first accomplished by Primc [Pri99], using level 1 modules over A(ll) and Aél). This work was later

generalised to level 1 modules over AlD by the first and third authors in [DK19al [DK19b], and generalised
to treat other modules in [DK21] (more on this in Section . In this paper, we study different perfect
Agl) crystals of arbitrarily high level and provide new partition identities and non-overcounting character
formulas.

We now describe our main results. Let n be a non-negative integer. Let C,, denote the set of (n + 1)-
coloured partitions (A1, -+, As), where each part has a colour taken from {cg,cy,..., ¢y}, such that for
all1<i<s—1,

Ai = N1 = [ui — uigal,

where for all i € {1,...,s}, \; has colour ¢,,. Similarly, let CZ denote the set of (n + 1)-coloured
partitions such that A\; — A;y1 > |Ju; — uit1].

Our main result is a new family of partition identities which are companions (i.e. same infinite product
but other difference conditions) to the Meurman—Primc identity.

Theorem 1.6. Let n and i be non-negative integers such that 0 < i < n. Let C; ,(m) be the number of
(n + 1)-coloured partitions of m in C,, such that the last part is 0., and the penultimate part has colour
different from c;. Let C’En(m) be the number of (n + 1)-coloured partitions of m in CZ such that the last
part is 0., and the penultimate part is different from O.,. Then, we have the identities

i+1  n—i+1  n+2. n+2)
) ) 0o

n%%a,n( )a (4:6%) o0 (4 @)oo ’ (1.3)

1+1 n—i+1 n+2. n+2

= (43 ¢%) (a3 9%

Just like for the Meurman—Primc identity, up to the factor 1/(q; ¢*)eo (resp. 1/((¢;4%)o0(¢;9)0)), the
product on the right-hand side of (resp. (L.4)) is exactly the product side of the famous Andrews—
Gordon and Bressoud identities. On the other hand, it is — at least to the extent of our knowledge — the
first time in the literature that difference conditions involving absolute values arise in partition identities.
It is also interesting to note that our difference conditions are very different from those of Theorem |1.5)
and arguably more simple. This highlights the fact that the approaches via vertex operator algebras and
crystal bases, though both in the realm of representation theory, are very different and give rise to very
different results.

To prove Theorem we use energy matrices for level n perfect crystals of Agl) and the theory
of grounded partitions introduced by the first and third authors [DKI9b] to express the characters of
standard modules as generating functions for coloured partitions, which gives the left-hand side of .
The right-hand side of comes from the principal specialisation of the Weyl-Kac character formula.

Building up on recent work of the first and third authors on multi-grounded partitions [DK21], we
also give simple non-specialised character formulas with manifestly positive coefficients for all level 2
standard modules of Agl).

Let G = G(x1,...,2,) be a power series in several variables z1,...,z,. For k < n, we denote by
Ex1,...xr, (G) the sub-series of G where we only keep the terms in which the sum of the powers of 1, ...,z
is even. If G has only positive coefficients, then for all k, &, ., (G) also has positive coefficients and

3



can be obtained easily from G via the formula
1
Envvoan(G) = 3 <G(x1, e Ty Tty -5 Tn) + G(—X1, o, =Xk, Thot 1, - - - ,wn)) (1.5)

Our character formulas can be stated as follows,

Theorem 1.7. Let Ay, A1 be the fundamental weights and aq,aq be the simple roots of Agl). Let 6 =
ag + a1 be the null root. We have

e (A W L(Ag + Ar) = (e, e e e ), (1.6)
1
eI b L(2A0) = J [(—emFro —emE e hie ) (B eTE T el ]
(1.7)

1 : :
e M ch L(2A) = 2 [(_e—%ﬂn’ —eg_al, —e_g;e_é)oo + (6_%5+a1,eg_a1,e_g;e_5)oo} .
(1.8)
Note that (1.7) and (L.8) are in the form of (1.5) and therefore have manifestly positive coefficients.

The paper is organised as follows. In Section we recall the necessary background on (multi-)grounded

partitions. In Section we study the energy matrices of level n perfect crystals of Agl) and prove Theorem

Finally, in Section [d] we prove the non-specialised character formulas of Theorem [1.7] and notice an
intriguing connection with Capparelli’s identity.

2. BACKGROUND ON PERFECT CRYSTALS AND MULTI-GROUNDED PARTITIONS

We start by briefly recalling the theory of perfect crystals. Let g be an affine Kac-Moody algebra
with simple positive roots ag, - - - ,a;, and with null root § = doag + - - + dpay,. For A € Pt let B(\)
the crystal graph of a crystal basis of L(\). For an integer level £ > 1 and a weight A € 152', Kashiwara
et al. [KKM™92b, Section 1.4] define the notion of a perfect crystal B of level £, an energy function
H: B® B — Z, and a particular element

PA:(gk);?;o:"'®gk+1®gk®~'®g1®goGBOO,

called the ground state path of weight A (see Section 1.4 of their paper for precise definitions). From this
they consider all elements of the form

P=Pr)ieo="""QPkt1 QP Q- ®P1 ®po € B>,

which satisfy pr = gi for large enough k. Such elements are called A-paths; their collective set is denoted
P(A). The crystal B(A) can then be realised on the set of A\-paths, in particular the affine weight function
is given by the following theorem.

Theorem 2.1 ((KMN)? crystal base character formula [KKM¥92al). Let A € P/}, let H be an energy
function on B ® B, let P(X\) be the set of A\-paths, and let p = (pr)i>, € P(X). Then the weight of p is
given by the following expressions:

oo o o 5 0o
wtp=A+ Z (Whpx — Whgk) — % Z(k + 1)(H(Pk+1 ® pk) — H(gr+1 ®gk)>7
k=0 k=0

oo

> _ _ 1)
=+ Z (Wepe —Wtgr) — — Y (H(peg1 @ pe) — H(ger1 @ g0)) |,
k=0 do §

where wt is the weight function of B. As P(A\) & B(\), we obtain the character formula

chL(N) = > €™

pEP(N)

k

In [DK19D, the first and third authors used bijections to transform the (KMN)? crystal base character
formula into a formula expressing characters as generating functions for so-called “grounded partitions”,
in the case where the ground state path of the module considered was constant. In [DK21], they
generalised their theory to treat the cases of all ground state paths, thereby introducing multi-grounded
partitions. We directly explain this latter more general theory, which contains the former as a particular
case.

First, recall the definition of multi-grounded partitions.

4



Definition 2.2. Let C be a set of colours, and let Z¢ = {k. : k € Z,c € C} be the set of integers coloured
with the colours of C. Let > be a binary relation defined on Z¢. A generalised coloured partition with

relation > is a finite sequence (mo,...,ms) of coloured integers, such that for all ¢ € {0,...,s — 1},
TG 7= Ti41-
In the following, if 7 = (mg,...,7s) is a generalised coloured partition, then ¢(m;) € C denotes the

colour of the part m;. The quantity |w| = 79 + - - - 4+ 75 is the weight of 7, and C(7) = ¢(m) - - - ¢(75) is
its colour sequence.

Definition 2.3. Let C be a set of colors, Z¢ the set of integers coloured with colours in C, and >

a binary relation defined on Z¢. Suppose that there exist some colors cg,,...,¢q4,_, in C and unique
coloured integers uggg e ,ug;;ll) such that

u(o) 4t u(tfl) =0,

ugo()) - ugi o=l e (0

g Cgy_1 Cgo
Then a multi-grounded partition with colours C, ground ¢, ..., cg,_, and relation > is a non-empty gener-
alised coloured partition 7 = (mq, - -+ , Ts—1, u&‘jg, ... ,ug:_ll)) with relation >, such that (ws_¢, - ,75_1) #
(ugj?), e ,ug;ll)) in terms of coloured integers.

We denote by 730: o-Cor_1 the set of multi-grounded partitions with ground go, ..., g:—1 and relation .

We do not make the set of colours C explicit in the notation as it should be clear from the context.
Grounded partitions, which were introduced in [DKI19b], are a particular case of multi-grounded

partitions where the ground is reduced to one colour ¢y, (and therefore the smallest part has to be Ocy, ).

We now recall the connection between multi-grounded partitions, ground state paths, perfect crystals
and character formulas.

For ¢ > 1, let B be a perfect crystal of level £ and let A\ € ]5; be a level ¢ dominant classical weight
with ground state path py = (gr)r>0 (which is always periodic). Let us set ¢ to be the period of the
ground state path, i.e. the smallest non-negative integer k such that gr = gg. Let H be an energy
function on B® B. Since B® B is connected, H is uniquely determined by fixing its value on a particular
bl € BoB.

We now define the function Hy, for all b,b’ € B® B, by

t—1

1
Hy(b@V):=HObob) - " > H(ges1 @ gk) - (2.1)
k=0
Thus we have
t—1
Z H (g1 @ gr) = 0.
k=0

The function H) satisfies all the properties of energy functions, except that it does not have integer
values unless ¢ divides Zz;lo H(gr+1 ® gr). With this new notation, we can rewrite the (KMN)? formula
for the weight of a A-path in the following way. Let m > 0 and p = (pr)72, € P(A) such that pryyi = g5
for m’ > m and ¢ € {0,...,t — 1}. We have

mt—1 t—1 mt—1
_ mé
tp =\ t —_ kE+1)H - — k+1)H . 2.2
wtp + kZ:O wt pr + a I;J( + 1) Hx(gr+1 @ gk) & ;;)( + 1)H(pr41 @ pr) (2.2)

Note that for any energy function H, we always have

t—1 t—1 t—1
t+1 1

D (k+1)Hx(grt1 @ g) = > (k+ DH(gk1 © gx) — 5 > H(gryi ®gx) € 5L

k=0 k=0 k=0
The quantity above is an integer as soon as ¢ is odd, and is equal to 0 when ¢t = 1. Thus we can choose
a suitable divisor D of 2t such that DH\(B ® B) C Z and %Zi;lo(k + 1)DH)(gk+1 ® gx) € Z. For the
entirety of this paper, D always denotes such an integer.

5



Let us now consider the set of colours Cg indexed by B, and let us define the relations > and > on
ZCB by

ke, >k, <=k —k' = DH\(' ®V), (2.3)
ke, > k;,, <=k —k > DH)\(V' ®D). (2.4)

We can define multi-grounded partitions associated with these relations, as can be seen in the next
proposition.

Proposition 2.4 ([DK21]). The set Pio,,,chl (resp. 'PZO,,,CQFI) of multi-grounded partitions with
ground cg, . .., cq,_, and relation > (resp. >>) is the set of non-empty generalised coloured partitions m =
(70, , Ts—1, ug?]()) . 7“223) with relation > (resp. > ), such that (s—_¢, -+ ,Ts—1) # (uﬁfg, . 7“£2:j1))7

and for all k € {0,...,t — 1},
= t—1
(k) — _ =
W= > (€ +1)DHx(ger1 @ g0) + > DHx(ge41 ® go)-
£=0 =k
In order to give a more general connection between multi-grounded partitions and character formulas,
we use some further sets of multi-grounded partitions. For any positive integer d, let d’PZO‘,.cgf_l denote

the set of multi-grounded partitions 7 = (g, - - - ,ﬂs_l,uggl ey ug;ll)) of Pf?o..‘cgt_l such that for all
ke{0,...,s—1},
T — M1 — DHX(Prt1 ® pi) € dZ>o,

0
where ¢(m;) = ¢, and 7, = uﬁgi.

Finally, let fPZO...CgFl (resp. P2

o Cay 10
dp> > > . ..
of “P2 ., , (resp. P .~ Pe .., ) whose number of parts is divisible by ¢.

Now the character formulas connecting perfect crystals to multi-grounded partitions can be stated as
follows.

Theorem 2.5 (Dousse Konan 2021). Setting ¢ = e=%/(@D) and ¢, = e“** for all b € B, we have
Cgo """ Cqo_, = 1, and the character of the irreducible highest weight Uy(g)-module L(X) is given by the
following expressions:

P2 o'“Cgtfl) denote the set of multi-grounded partitions

Yo Cmg™=eeh L(N),

>
HGtchomugt71

S clmn - A
re P2 (Qd;Qd)oo
thcgpCgr_1

This theorem will be used directly to prove Theorem [I.7] in Section [d] and the proof of Theorem [I.0]
in Section 3 relies on a variant of these ideas.

)

3. PERFECT CRYSTALS FOR STANDARD Agl MODULES OF LEVEL n

The level n perfect crystal B,, of Agl) is shown on Figure |1} and for all ¢, the weights and null root
are given, respectively, by

Wb = (2 — n)Ao + (n — 20)A; = (@ - z) a1,

2 (3.1)

0=+ ai,
where o and oy are the simple roots [HK02, Example 10.5.2].
There are n + 1 standard A(ll) modules of level n, namely whose highest weight is of the form

Ai,n = ZAO + (n — i)Al,
for i € {0,...,n}. Their ground state paths are
Pi i =Pa, = Dby @b @by @b

When n is even, then there is a constant ground state path for i = n/2. Otherwise, all the ground
state paths have period 2. By [KKMT92bl Lemma 4.6.2], B, ® B, is also a level n perfect crystal, the
corresponding energy function is given by the matrix below (where H,,(b; ® b;) is given in column 4, row
J):

6



bo by bo <o bp—1 by,

F1GURE 1. The level n perfect crystal 5,, of Agl)

bo by by -0 bp_o bp_1 by

bo n n n n n n

by n—-1 n-1 n—-1 -+ n—-1 n—-1 n

by n—-2 n—-2 n—-2 -+ n—2 n—-1 n

H, = : : : : : : :
by—o 2 2 2 s m—2 n—1 n

bn—1 1 1 2 e n—2 n—1 n

by, 0 1 2 oo n—2 n—1 n

We can rewrite this more concisely, for all 7, € {0,...,n}, as

H,(b; ®b;) = max(i,n — j).

While, to prove Theorem [I.6] we will not exactly use the theory of multi-grounded partitions explained
in Section [2], we still need to consider a (pseudo) energy function H) such that the sum of its values on
the ground state path of A is 0. For this, we use (2.1)).

Here, for all the ground state paths p;, we have

Hy(bp—i @ b;) + Hp(b; ® bp—i) = n.

Thus, for all standard modules A of level n, we have

n
HA:ania
or in other words, for all 4,5 € {0,...,n}:
. n n .
Hy(b; ®bj) = max(i — =, = — j).
272

bo by bo o bpey bpor by
bO ng ng n% o ng n% %
Hy = : : : : :
br_o —%4—2 —%—1—2 —%—6—2 :—2 %—1 %

When n is even, H), is really an energy function. Otherwise, it has all the properties of an energy
function, except that it has half-integral values.

To obtain the very simple difference conditions of Theorem [I.6] we perform yet another rewriting of
H,. For 0 < 14,5 <n, we have

1 1
= Sn—i— il 2~ ) (3.2)
Thus
H(bp—i ®b;) +2Hx\(b; @ by—i) = Hx(b; @ bp—i) =i — g (3.3)

e



Let us consider the set of colours C = {cy, . .., ¢, } and define the difference condition A(cq, ¢p) = |a—b.
Denote by P; ,, the set of grounded partitions with colours C, ground ¢; and relation > defined by:

ke, > 1., if and only if k — I = A(cq, ).
We shall now prove a key proposition which relates the partitions in P; ,, and the character of L(A; ,,).

Proposition 3.1. There exists a bijection ® between P(A;.) and P, such that, if ®(p) = 7 =
(moy ..., 7s,0c;), then

exp(wtp — Ai ) = C'(m)g", (3.4)
where @ = exp(—29591), ¢ = exp(k - ©15°), and
s s 1 . .
C'(m) =[] (ex)™" T Z.fs v odd
a=0 c; if s is even.
Hence,
3" O'(m)al™ = exp(—Ay ) ch L(Ai ). (3.5)
7T€'Pi,n

Proof. In this proof, we set A = A; ,,. Let p = (b;, )p>0, with ix € {0,...,n} for all k, be a A-path, and let
m be the unique non-negative integer such that (iom—2,42m—1) # (i,n —%) and (igm/, iom +1) = (i,n —1)
for all m’ > m. We compute wt p, defined in (2.2)), in terms of the roots ap and 1. By (3.1)), (3.2) and
(3.3)), we have

2m—1 2m—1
n . .on op + o . .
wtph =X+ Z (5 —zk.) a1 +m(ag+ ayq) (z— 5) —&—% Z (k+1)(ix — tk+1)
k=0 k=0
2m—1
ap + o . .
— =g > (kA Dln— ik — k-
k=0
Using the fact that
2m—1 2m—1
S (k4 1)k —ikp1) = Y ik — 2miom,
k=0 k=0

and that io,, = i because pa,, = b;, we simplify and obtain

2m—1
B n . .oon ao + aq
thfA+Z (gfzk)aler(aoJral)(zfi) m(ag + aq)i Z ik
2m—1
D DICESV R
k=0
i ag+ay /n oo+ a1 x—
:)\+z_: |:(2—ik)0é1—021(2—ik):|— 0 kz_: k+1 n—zkﬂ—zk
2m—1 ar — a a0+ a 2m—1
— At Z (f—ik) Lot Z (k4 D) — iprt — il.
By setting jox+1 = n — t9x41 and jop = iok, this reduces to
2m—1 o o ao + a 2m—1
) 1— Qo 0 1 . .
wip— A=Y (=D = = = > (ke Dk — il
k=0 k=0
2m—1 a a Qo+ a 2m—1
. 1— Qo 0 1 , .
- <(—1)k+1jk R Z st — jl|>. (3.6)
k=0 I=k
Observe that when is,,—1 = n — i, we have |jom—1 — jom| = |i — 4| = 0. Furthermore, (i2—2,i2m—1) #

(i,n — 1) if and only if (jom—2, jom—1) # (4,7). Thus, for k € {0,...,2m — 1}, we set

2m—1
me= > ik —desal |
I=k e,
8



and

T0s .-y Tom—2,00) if jom_1 = i

(I)(ﬂ') _ ( 0 2m—2 ci) ' ]me 1 .

(m0y+ v s T2m—1,0¢,) if Jom—1 # .
Hence, for all 0 < k < 2m — 2, we have 7 — Tg41 = |jk — Jkr1], 1.€. T > mprq. Finally, when jo,,—1 = i,
we indeed have ja,,_2 # i, so 7 is a grounded partition with ground ¢;. When jo,,—1 # 4,  is also
a grounded partition with ground ¢;, as mom—1 = |j2m—1 — Jom| = |jam—1 — | and then 7,1 > O, .
Therefore, m always belongs to P; ,,, and (3.6)) becomes

2m—1
) _041—050 k+1 - ag + o
th - Az,n = 2 ( Z (_1) jk) - 2 |7T|a

where || denotes the size of .

Let us now give the inverse bijection. Let m = (7o, ..., 7s,0¢;) € Pin, with ¢(my) = ji forall 0 < k < s+1.
In particular, js11 = ¢. Then set m = {5'51],

(g ) = (Jok,n — Jorg1) ifk<m—1
2T iyn ) it k> m,

and ®~1(7) = p = (bi, )k>0- Since js # i and s € {2m —2,2m — 1}, we then have (jom—2, jom—1) # (4, 1),
so that m is the unique non-negative integer satisfying (igm—2,42m—1) # (i,n — i) and (iom/, iom/+1) =
(i,n — ) for all m’ > m. Hence, p € P(A; ). Moreover, as j,11 =i and s + 1 € {2m — 1,2m}, setting
Jom =t yields

s 2m—1
Tk = Z lji — Jiyal = Z ljt = Ji41l,
=k =k
2m—12m—1

S
m = me= > Y lii—dnl
k=0 k=0 =k
and applying (3.6) to p gives

2m—1
. 0a— Qg 1 g + o
wip— Ay = 200 ( > 1) Jk> SRR )

k=0

The uniqueness of the relations between s and m, as well as the definition of the sequences (ix)r>2m—1
and (jk)ZE), imply that ® and ®~! are inverses of each other. The relation (3.4) comes from the fact

that, for 7 = ®(p),
2m—1
o] — Q . ag + «
wop— Ay = ( 3 (—1>k+1jk> - 2l

k=0
O

. >
We now consider the set P;-,
:

by:

of grounded partitions with colours C, ground ¢; and relation > defined

ke, > I, if and only if kK — 1 > A(cq, cp) -

Denote by P the set of classical partitions.

Proposition 3.2. There exists a bijection U between PEn and P; , x P such that ¥(m) = (u,v) implies
7| = |pl +[v].

Proof. Here we only describe the bijection ¥. The proof of its well-definedness is analogous the proof of
Proposition 3.6 in [DKI95]. Let 7 = (m, ..., ms—1,0.,) € P>, and set

i,n’
r=max{k € {0,...,s}: c(mp_1) # i }.
We set p:= (o, - -, ftr—1,0¢, ), where the part uy is coloured c¢(m;) and has size

r—1

S Ale(m). elmii)) -
=k



We now build v = (v, ...,14-1). If r < s, then t = s and
) me—pp for ke {0,...,r—1},
Vk'_{ﬂk for ke {r,...,s—1}.
Otherwise r = s, in which case we set
t =min{k € {0,...,s} : 7 = i},
and vy := 7 — g for all k € {0,...,t —1}. O
We are now ready to prove our main theorem.

Proof of Theorem[I. First observe that the quantity C;,(m) counts the partitions of m in P; ,, and

thus
> Cin(m)g™= > 4.

m>0 TEPin

The principal specialisation of the character, which consists in performing the transformations e=®°, e~
¢, is denoted by 1. In Proposition [3.1] it implies the transformations x — ¢ and ¢, ~— 1. Hence, we
obtain that C’(r) = 1 for all 7 € P, ,,, and the equality (3.5]) becomes

> Cim(m)g™ = 1(exp(—A; ) ch L(A; ).

m2>0
Finally, we deduce the right-hand side of ([1.3)) from the principal specialisation of the Weyl-Kac character
formula (1.1]) for the type Agl):

mult «
1 _ q<Ai,7l+p7a>
]].(eXp(—Ai,n) ChL(Al’n)) = H (:l(p,a) s
acAY q

with
p:AO+A1u
AY ={kay + (k- 1), (k — 1)ay + kay, kag + kay : k € Z>,},
mult « =1 for all @ € AY,
(Au, o)) = x(u = ).

To prove (1.4)), we similarly remark that C’lzn(m) counts the partitions of m in PEH, so that by Proposition

B2}
Y Chmgm = > ™

m20 776735"

_ ! S g,

(@0 S5

4. NON-SPECIALISED CHARACTER FORMULAS FOR LEVEL 2 STANDARD MODULES

)

In this section, we focus in more detail on the level 2 standard module of Agl and prove the non-

specialised character formulas of Theorem [I.7]

1 1

ST N

bo by bo

W

FIGURE 2. The level 2 perfect crystal of Agl)

The perfect crystal By of A%l) level 2 can be seen in Figure |4l and the an energy matrix is given by
10



bo b1 b

bo [ 2 2 2
Hy=5b66 (1 1 2
b \ O 1 2

Here, we have three highest weights of level 2:
e Ay + Ay, with ground state path --- ® by ® by,
e 2\, with ground state path - -+ ® by ® bs ® by ® bo,
e 2A;, with ground state path - -+ ® by ® by ® bs ® by.

Note that Hs is exactly the non-dilated matrix of difference conditions for Capparelli’s identity refor-
mulated by the first author [Dou20]. Unfortunately, this doesn’t allow us to directly connect Capparelli’s
identity to perfect crystals, as the connection is actually made with energy functions whose sum is zero
on the ground state paths.

In order to compute our character formulas, we define the energy function satisfying that property:

bp b1 b

b /1 1 1
H=b5( 0 0 1
by \—1 0 1

We now use the theory of grounded and multi-grounded partitions to prove Theorem

4.1. The module L(Ay+ A;). The highest weight Ag + A; has a constant ground state path. We can
thus apply the theory of grounded partitions directly to the energy matrix H to prove (1.6)) of Theorem

Proof of (L.6) of Theorem . We set g =e % cop =e*,c; = 1,¢9 = e, and let 730>1> denote the set
of grounded partitions with colour set {co, ¢1, ca}, ground ¢y and relation > given by

ke, > L, <= k— 1> H(b; @ by).
Then by Theorem we have

e~ MotA) ch L(Ag + Ay)
E g™ = . .
Clma (4 9)oo 1)

7\'€’PC>T

Thus to compute the non-specialised character of L(Ag+ A1), we only need to find a nice expression for

the generating functions of grounded partitions in PZ”. To do this, we note that the difference conditions
given by the matrix H correspond to the partial order

1 2 3
ek 0y K OCO <1, < 100 <L 2, K 2°° L e
co c2 Cc2

By definition, the grounded partitions in PC>1> must have 0., as the last part, and the penultimate part
should be different from 0.,. The parts k., can repeat arbitrarily many times because H(b; ® b;) = 0.
Thus, including the last part 0., generated by c1, the parts coloured c; are generated by

¢
(C18:q)oc”
Now the parts coloured ¢y and c¢o can also appear several times, but always in sequences of the form
e Ly K (k= 1)y Kkeyg K (k—1)ey < -+ .
The generating function of such a sequence for a fixed integer k > 1 is given by
(14 cog") (1 + c2g* ")
(1 — coeaq?k—1) 7
where the denominator generates pairs (k.,, (k — 1).,) that can repeat arbitrarily many times, and the
numerator accounts for the possibility of having an isolated (k — 1)., on the left end of the sequence,
or an isolated k., on the right end of the sequence. Multiplying this over all integers k > 1 gives the
generating function for the parts coloured ¢y and cs:
(—coq; @)oo (—C2; @)oo

(coc24; 4%) o
11




Thus the generating function for the grounded partitions in P2 is

S O™ = 61(—Coq;q)oo(—62;2q)oo.
rers (165 @)oo (Coc24; 4% o
Substituting the correct values of ¢, co,ci,co into (4.1), and using that 1/(¢;¢%)ec = (—¢;q)oo, We
obtain
e” R0t eh L(Ag + A1) = (=71 Q) (—€ ™5 Qoo (—€ % €70,

and (1.6 of Theorem is proved. O

It is interesting to note that in the purely combinatorial proof of Capparelli’s identity given by Lovejoy
and the first author in [DL19)], itself inspired by the combinatorial proof of Alladi, Andrews and Gordon
[AAGY5], they actually also compute the generating function for coloured partitions with difference
conditions >, but with other initial conditions. Indeed, while in the present paper, the last part needs
to be O,, in their work, the smallest part could be any non-negative integer, which gave rise to the
generating function

(=03 @)oo (—C2; o

(c13 @)oo (c0205 4*) oo
Then, adding a staircase (i.e. a partition 1 + 2 + 3 + ---) to such a partition — which adds 1 to all
the differences between consecutive parts and therefore transforms H into Hy — transforms it into a
partition satisfying the difference conditions of Capparelli’s identity. The proof concludes with some g¢-
series computations to show the generating function that one obtains is an infinite product, and therefore
the generating function for partitions with congruence conditions.

Again, our hope of finding a direct proof of Capparelli’s identity via the theory of perfect crystals is
not really fulfilled, because on the one hand the proof of Capparelli’s identity uses the “correct” energy
function but with the “wrong” initial conditions, and on the other hand, if we start from the “correct”
energy function and initial conditions, then adding a staircase gives a generating function which is not
an infinite product. However, it is still interesting and intriguing that a purely combinatorial proof, with
no connection or background in crystal base theory, naturally leads to the study of the exact energy
matrix that is meaningful in the theory of perfect crystals and grounded partitions. This hints yet
again at a deeper connection between the approaches in combinatorics and number theory, and between
Capparelli’s identity (which originally comes from vertex operator algebras) and crystal base theory.

4.2. The module L(2A). We now turn to the module L(2A), whose ground state path - - - ® by ® ba ®
by ® by is of period 2. Thus, we need the theory of multi-grounded partitions to prove (|1.7]) of Theorem
L7

Proof of (L.7) of Theorem , As explained in Section we need to choose a suitable divisor D of 4 such
that DH (Ba ® By) C Z and E(DH(b() ®by)+2DH(ba®bp)) € Z. We have H(ba®bg) = —H(bo ®by) =1,
so we can choose D = 2, and define the relation > as

ke; > 1, <=k —1> DH(b; ®b;).

We want to study the multi-grounded partitions in PC>2>CO. Using Definition or Proposition we
obtain that the two fixed last parts of such partitions are (—1,, 1¢,).
Applying Theorem with d = 2 and D = 2 gives

~2Moch L(2A
Y O = Y ( ~ 2>( ), (4.2)
-~ 7% 4%) o
where g = e7%/2,¢og = €™ ,c1 = 1,¢0 = €1,
Recall that %”Pf;o is the set of multi-grounded partitions © = (7, ..., T2s—1, —le,, l¢,) With relation
> and ground cg, ¢g, having an even number of parts, such that for all k € {0,...,2s — 1},
T — Tk4+1 — 2H(bik+1 (39 blk) € 2220, (43)
where ¢(my) = ¢;, and mas = —1g,.
Note that by (#.3) and the fact that u(®) = —1, the multi-grounded partitions of 3P, only have

parts with odd sizes, as the differences between consecutive parts are even. Thus we can compute the
generating function for partitions in %73200 similarly to the last section, by noticing that, combined with

(#.3), > is the following partial order on the set of coloured odd integers:
12



1 3 5
R R R I LR T
7162 162 362

At first, let us temporarily forget the condition that the number of parts must be odd, and let us
compute the generating function.

The parts (2k + 1), can repeat arbitrarily many times because 2H (b; ® b;) = 0. Thus the parts
coloured c; are generated by

K

1
(Cl q; q2)oo '
Now, as in the previous section, the parts coloured ¢y and ¢ can also appear several times, but always
in sequences of the form

L2k ) € (2= 1) € 2k + 1)y < (2k — 1), < -+ .

The generating function for such sequences for £ > 1 is given by

(—c0d’s ¢*) oo (=245 ¢*)
(coc2q*; q*) oo -
Moreover, the fixed tail of the multi-grounded partitions under consideration is (—1,, 1), so that
for k = 0, only an isolated 1., can appear, but not —1.,, otherwise our partition would end with
(=1cy, 1oy —legs 1eg), which is forbidden. Thus we should still multiply our generating function by
coc2(1 + coq).
Combining all this, we obtain the generating function

coc2(—cod; 4%) oo (=245 4°)
(13 6%) oo (coc2q*; ¢*) oo
Now, to take back into account the fact that there must be an even number of parts, we use (1.5]).

Thus the multi-grounded partitions in %’PC%CO are generated by:

<0002(—60q; 0%) oo (—C24; q2)oo)

(€145 ¢?) oo (Ccoc2q*; %) o

Z C(W)qlﬂ-l = 560,61702

e %PL?;CO
e (—c0q; ¢%)oo (=205 %) oo | (045 4%) oo (25 4%) oo
- 4. 44 .2 + .2 :
(cocaq®; 4*) oo (c1454%) o (—€14;6%) o
Substituting the correct values of ¢, cg, c1,co in (4.2) and simplifying completes the proof. O

4.3. The module L(2A;). Finally, we conclude with the character formula for the module L(2A;),
whose ground state path -+ ® ba ® by ® ba ® by is of period 2. Apart from the fixed last parts of the
multi-grounded partitions, everything works in the same way as in the previous section, so we provide
less detail this time.

Proof of (1.8) of Theorem . The relation > and the values of ¢, cg, c1,co and D are defined exactly
as in the last section, but now we want to study the multi-grounded partitions in ’PC>O>C2. Thus, using

Definition or Proposition the two fixed last parts of our partitions must be (145, —1¢,)-
Applying Theorem with d = 2 and D = 2 gives

e~ ch L(2A)
gt = ¢t LEh) .
> Clma (D (44)

25
TE 5P co

5/2

where ¢ = e7%/%,cg = e, c1 = 1,c0 = e~ 1.

The generating function for %’P6>0>62 can be computed almost exactly as the one for %Pc>2>c07 except that
now there can be an isolated —1., before the fixed tail (145, —1¢,), but no 1.,, otherwise our partition
would end with (1., —1¢,, 1co, —1ley), which is forbidden. Thus instead of multiplying our generating
function by coea(1 + coq) like in the previous section, we now multiply it by coea(1 + c2¢™1). Thus,

omitting the condition on the parity of the number of parts, we obtain the generating function
coc2(—¢09”; 4*) oo (=207 "5 4%) oo

(€145 ¢?) oo (coc2q*; ¢*) o
13




Now, to take back into account the fact that there must be an even number of parts, we use (1.5).

Thus the multi-grounded partitions in 3P

25>
TE 5Péseq

>

e, are generated by:

_ 3. .2 _ 1. .2
Z C(w)q\ﬂl = Eep 1,00 (Cocz( €0q°; 4% )oo(—C2q™ "5 q )oo)

(€14; ¢®) oo (c0c20%; ¢*) o

- CoC2 ((_00q3§q2)oo(_02q_1;q2)oo

N (c0q®; %) oo (24715 ¢%) o
 (coc2qt;qY) oo '

(€145 ¢%) (=145 4%) oo

Substituting the correct values of ¢, cg, ¢1, ¢o in (4.4) and simplifying completes the proof. O
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