A COMBINATORIAL PROOF AND REFINEMENT OF A
PARTITION IDENTITY OF SILADIC

JEHANNE DOUSSE

ABSTRACT. In this paper we give a combinatorial proof and refinement of a
Rogers-Ramanujan type partition identity of Siladi¢ [14] arising from the study
of Lie algebras. Our proof uses g-difference equations.

1. INTRODUCTION

A partition of n is a non-increasing sequence of natural numbers whose sum
is n. For example, there are 5 partitions of 4: 4, 3+ 1, 2+ 2, 24+ 1+ 1 and
141+ 14 1. The Rogers-Ramanujan identities [13], first discovered by Rogers in
1894 and rediscovered by Ramanujan in 1917 are the following g-series identities:

Theorem 1.1. Leta =0 or 1. Then

n oo

qn(n+a)

1
Z QA-q(1-¢).(1—q") H (1 — goFtatl)(I — gokti—a)’

k=0 k=0

These analytic identities can be interpreted in terms of partitions in the following
way:

Theorem 1.2. Let a = 0 or 1. Then for every natural number n, the number of
partitions of n such that the difference between two consecutive parts is at least 2
and the part 1 appears at most 1 — a times is equal to the number of partitions of
n into parts congruent to £(1 + a) mod 5.

Rogers-Ramanujan type partition identities establish equalities between certain
types of partitions with difference conditions and partitions whose generating func-
tions is an infinite product.

Since the 1980’s, many connections between representations of Lie algebras, g-
difference equations and Rogers-Ramanujan type partition identities have emerged.
For g-difference equations, see [6], [8] and [9]. Regarding partitions, Lepowsky
and Wilson [10] were the first to establish this link by giving an interpretation of
Theorem 1.1 in terms of representations of the affine Lie algebra sl(C)™. Simi-
lar methods were subsequently applied to other representations of affine Lie alge-
bras, yielding new partition identities of the Rogers-Ramanujan type discovered
by Capparelli [5], Primc [12] and Meurman-Primc [11] for example. Capparelli’s
conjecture was proved combinatorially by Alladi, Andrews and Gordon in [1] and
Andrews in [3] just before Capparelli finished proving them with vertex-algebraic
techniques [4]. Simultaneously, Tamba-Xie also proved Capparelli’s conjecture us-
ing vertex operator theory [15]. However, many of the Rogers-Ramanujan type
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partition identities arising from the study of Lie algebras have yet to be understood
combinatorially.
In [14], Siladié¢ proved the following theorem by studying representations of the

twisted affine Lie algebra Aéz).
Theorem 1.3. The number of partitions A1 + ... + As of an integer n into parts

different from 2 such that difference between two consecutive parts is at least 5 (ie.
>\i — )\Z'Jrl Z 5) and

i — /\i+1 =5=\+ )\i+1 Z= +1,45,£7 mod 16,

N — )\i+1 =6= X\ + )\i+1 5_'5 +2,4+6 mod 16,

Ai—= A1 =7T= X\ + >‘i+1 §é +3 mod 16,

Ai — A1 =8= X\ + A\i11 Z 4 mod 16,
s equal to the number of partitions of n into distinct odd parts.

This paper is devoted to proving combinatorially and refining Theorem 1.3. In
Section 2 we give an equivalent formulation of Theorem 1.3 which is easier to manip-
ulate in terms of partitions. In Section 3 we establish g-difference equations satisfied
by the generating functions of partitions considered in Theorem 1.3. Finally, we

use those ¢-difference equations to prove Theorem 1.3 by induction.
Our refinement of Theorem 1.3 is the following:

Theorem 1.4. Forn € N and k € N*, let A(k,n) denote the number of partitions
A1+ ... + As of n such that k equals the number of odd part plus twice the number
of even parts, satisfying the following conditions:

(1) Vi > 1,\ #2,

(2) Vi > 1, — Aiy1 > 5,

(3) Vi > 1,
Ai—Xi+1=5= XA =1,4 mod 8§,
Ai— X1 =6=X\;=1,3,5,7 mod 8,
Ai—Xit1=7=X=0,1,3,4,6,7 mod 8,
Ai— X1 =8=X=0,1,3,4,5,7 mod 8.

Forn € N and k € N*, let B(k,n) denote the number of partitions of n into k
distinct odd parts. Then for alln € N and k € N*, A(k,n) = B(k,n).

2. REFORMULATING THE PROBLEM

Our idea is to find g-difference equations and use them to prove Theorem 1.3,
but its original formulation is not very convenient to manipulate combinatorially
because it gives conditions on the sum of two consecutive parts of the partition.
Therefore we will transform those conditions into conditions that only involve one
part at a time.

Lemma 2.1. Conditions

(2.1) Ai —Aiv1 =5 =N+ Ay E 1,45, 47 mod 16,
(22) Ai—Aig1=6=> X+ A\ #% 42,46 mod 16,

(23) N — Ai—i—l =7= X+ >‘i+1 7_é +3 mod 16,
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(24) i — /\Z‘J,_l =8=\+ >‘i+1 :,z_é +4 mod 16,
are respectively equivalent to conditions

(25) i — /\i+1 =5=X=1,4 mod 8,
(2.6) Ai— A1 =6=X;=1,3,5,7 mod 8,
(27) N — )\i+1 =7T= )\ = 0,1, 3,4, 6,7 mod 8,
(2.8) Ai— A1 =8=X=0,1,3,4,5,7 mod 8.

Proof: Let us prove the first equivalence. The others are proved in exactly the
same way. We have

Ai—Xir1=5= X+ N1 Z 11,45, £7 mod 16
SN — A1 =5=> N+ Ay #1,15,5,11,7,9 mod 16
S A= A1 =0=2\ =X+ A1+ — Aip1 £6,4,10,0,12,14 mod 16
S A — A1 =5=X#3,2,5,0,6,7 mod 8
SN —At1=5=X\=1,4 mod8.
Therefore condition (2.1) is equivalent to condition (2.5). O
By Lemma 2.1, Theorem 1.3 is equivalent to the following theorem.
Theorem 2.2. The number of partitions A1 + ... + As of an integer n into parts

different from 2 such that difference between two consecutive parts is at least 5 (i.e..
)\1' - >‘i+1 Z 5) and

Ai—Aip1=5=X\=1,4 modS§,

Ai —Aip1 =6=X;=1,3,5,7 mod 8§,

Ai—Aip1=7=X=0,1,3,4,6,7 mod 8§,

Ai— A1 =8=X=0,1,3,4,5,7 mod 8,
is equal to the number of partitions of n into distinct odd parts.

Moreover for every m, the sets of partitions are exactly the same as those in
Theorem 1.3, so this is just a reformulation of the same theorem.

3. OBTAINING ¢-DIFFERENCE EQUATIONS

Now that we have stated Theorem 1.3 in a more convenient manner, we can
establish our g-difference equations and prove Theorem 1.4.

For n € N, k € N*, let an(k,n) denote the number of partitions A\; + ... + As
counted by A(k,n) such that the largest part A; is at most N. Let also ey (k,n)
denote the number of partitions A\; +...+ As counted by A(k, n) such that the largest
part A; is equal to N. We define, for |¢| < 1, |¢| < 1, N € N*,

Gy(t,q) =1+ Z Z an (k,n)tq".

k=1n=1

Thus G (t,q) = limy_00 Gn(t,q) is the generating function for the partitions
counted by A(k,n).
Our goal is to show that

VN € N*a GQN(tv Q) = (1 + tQ)G2N—3(tq2a q)
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Indeed we can then let N go to infinity and deduce
Goolt,q) = (1 +19)Goo(tg? @) = (1 +tq) (1 + t¢*)Goo(tq", @) = ..

which means that -

Guoltoq) = I] (14 1%1).
k=0
which is the generating function for partitions counted by B(k,n).
Let us now state some g-difference equations that we will use throughout our
proof in Section 4. We have the following identities:

Lemma 3.1. For all k,n, N € N*,

(3.1) agN(k:,n) :agN,l(k:,n)+agN,7(k:—2,n—8N),

(3.2) a8N+1(k3, n) = agNU{?,TL) + agN,4(k: —1,n— (8N + 1)),

(33) a8N+2(k’, n) = AgN+1 (k‘, TL) + agN_7(k‘ —2.n— (8N + 2)),

(34) agN+3(k‘, n) = a8N+2(k‘, n) + agN_g(k‘ —1,n— (8N + 3)),

(3.5)

a8N+4(k, n) = a8N+3(k, n)+a8N_3(k'72, TL*(8N+4))+0,8N_7(I€73, TL*(16N+3)),
(3.6)

agn+5(k,n) = agnta(k,n)+asy—3(k—1,n—(8N+5))+asy_7(k—2,n— (16N +4)),
(3.7)

a8N+6(k’, n) = a8N+5(k‘, 7’L)—|—(L8N,3(l€—27 n—(8N+6))+a8N77(k—3, n—(16N—|—5)),
(38) a8N+7(kJ,’I’L) = agN+6(k, ’I’L) + aSN—i—l(k' —1,n— (SN + 7))

Proof: We prove equations (3.1) and (3.5). Equations (3.2), (3.3), (3.4) and (3.8)
are proved in the same way as equation (3.1), and equations (3.6) and (3.7) in the
same way as equation (3.5).

Let us prove (3.1).We divide the set of partitions enumerated by asy(k,n) into
two sets, those with largest part less than 8 N and those with largest part equal to
8N. Thus

asn(k,n) = agny—1(k,n) + esn(k,n).

Let us now consider a partition A; + Az + ... + A; counted by egn(k,n). By Con-
ditions (2.5)-(2.8), Ay — A2 > 7, therefore Ay < 8N — 7. Let us remove the largest
part A\; = 8N. The largest part is now Ay < 8N — 7, the number partitioned is
n — 8N, and we removed an even part so k becomes k — 2. We obtain a partition
counted by agy—7(k —2,n — 8N). This process is reversible, because we can add a
part equal to 8N to any partition counted by agy_7(k — 2,n — 8N) and obtain a
partition counted by esn(k,n) so we have a bijection between partitions counted
by esn(k,n) and those counted by asny_7(k —2,n — 8N). Therefore

egN(k,n) = a8N77(k - 2,n - SN)
for all k,n, N € N* and (3.1) is proved.
Let us now prove (3.5). Again let us divide the set of partitions enumerated by

asn+4(k,n) into two sets, those with largest part less than 8 N 4+ 4 and those with
largest part equal to 8N + 4. Thus

agnta(k,n) = agni3(k,n) + esnya(k, n).
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Let us now consider a partition A\; + A2 + ... + Ay counted by egyi4(k,n). By
Conditions (2.5)-(2.8), Ay — A2 = 5 or Ay — A2 > 7, therefore Ay = 8N — 1 or
Ao < 8N — 3. Let us remove the largest part Ay = 8N +4. If Ay = 8N — 1, we
obtain a partition counted by esny—_1(k—2,n— (8N +4)). If Ay <8N — 3, we obtain
a partition counted by agny—_3(k —2,n — (8N 4 4)). This process is also reversible
and the following holds:

esn+a(k,n) =esny_1(k—2,n— (8N +4)) + agn_3(k —2,n — (8N + 4))
Moreover, again by removing the largest part, we can prove that
esn—1(k—2,n— (8N +4)) =agn—_7(k —3,n — (16N + 3)).
This concludes the proof of (3.5). O

The equations of Lemma 3.1 lead to the following g-difference equations:

Lemma 3.2. For all N € N*,

(3.9) Gsn(t.q) = Gsn—1(t,q) + °¢* Gsn_7(t, q),
(3.10) Gsn1(t,q) = Gsn(t,q) + ta®* N T Gsn_a(t, q),
(3.11) Gsn2(t,q) = Gsnii(t, q) + 2¢* N T2 Gsn_7(t, q),
(3.12) Gsn+3(t,q) = Gsnia(t.q) +t¢*N T Gsn_s(t, q),

(3.13) Gsn+a(t,q) = Gsnsa(t,q) + ¢ M Gsn_s(t,q) + ¢V 3 Gsn_7(t, q),
(3.14)  Gsnys(t,q) = Gsnyalt, @) + t¢*N T Gsn_3(t,q) + t2¢" N T Gsn_1(t,q),
(3.15)  Gsnie(t,q) = Gsnis(t,q) +2¢* N T0Gsn—_3(t, q) + 3¢ N 5 Gsn_z(t, q),

(3.16) Gsn+7(t,q) = Gsnto(t, @) + t¢* T Gania(t, q).

Some more g¢-difference equations will be stated in the proof of Section 4 as their
interest arises from the proof itself.

Even if we use the idea of counting certain parts twice as in Andrews’ proof of
Schur’s theorem [2] and the author’s proof of Schur’s theorem for overpartitions [7],
the consequent number of equations (we have 8 equations here while there were
only 3 equations in the proofs above mentioned) make it difficult to find directly a
recurrence equation satisfied by Ggn(t, ¢) and use the same method. Therefore we
proceed differently as shown in next section.

4. PROOF OF THEOREM 1.4
In this section we prove the following theorem by induction:

Theorem 4.1. For all m € N*,
(41) G2m(ta Q) = (1 + tq)G2m73(tq27 q)
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4.1. Initialisation. First we need to check some initial cases.
With the initial conditions
Go(t,q) =1,
Gi(t,q) = 1+ 1q,
Ga(t,q) = 1+1q,
Gs(t,q) = Ga(t,q) + tg°,
Gu(t,q) = Gs(t,q) + t2¢*,
Gs(t,q) = Ga(t,q) + t°,
Go(t,q) = Gs(t,q) +*¢°,
Gr(t,q) = Ge(t, q) +tq" + t*¢%,
and equations (3.9)-(3.16), we use MAPLE to check that Theorem 4.1 is verified
form=1,...,8.
Let us now assume that Theorem 4.1 is true for all k¥ < m — 1 and show that

equation (4.1) is also satisfied for m. To do so, we will consider 4 different cases:
m=0 mod4, m=1 mod4, m=2 mod4 and m =3 mod 4.

4.2. First case: m = 0 mod 4. We start by studying the case where m = 4N
with N > 2. We want to prove that

Gsn(t,q) = (1+tq)Gsn—_3(tq®, q).
Replacing N by N — 1 in (3.16) and substituting into (3.9), we obtain
(4.2) Gsn(t,q) = Gsn—a(t,q) + (t¢*V ' +£2¢*Y) Gsn_7(t, q).
We now replace N by N —1 in (3.10) and substitute into (4.2). This gives
Gsn(t,q) = Gsn—a(t,q)+ (1 +tq)tq® " Gsn_s(t,q)+ (1+tq)t?q" N BGsn_12(t, q).
Then by the induction hypothesis,
Gsn(t,q) = (1 +1q) [G8N75(tq27 q) + (L +tq)tg® ' Gsn_11(td*, q)
+ (1 +tq)t?q" N BGsn—15(te?, q)].

We now wish to prove that the expression in the square brackets is exactly Gsn_3(tq?, q).
Replacing N by N — 1 and t by t¢? in (3.13), we obtain
(4.4)

Gsn-a(tq®,q) = Gsn—s5(tq*,q) + *¢*" Gsn—11(td*, @) + °¢"*N " Gsn_15(td>, q).

Replacing N by N — 1 and t by t¢? in (3.14) gives
(4.5)
Gsn—3(tq?,q) = Gsn_a(tq®, q) + t¢*N "'Gsn_11(ta?, q) + ¢V B Gsn_15(tq*, q).

Substituting (4.4) into (4.5), we get
Gsn-s(tq®,q) = Gsn—s(tq* q) + (1 + tq)tq®*™ ' Gsn—11(tq*. q)
+ (1 +tq)t?¢* N B Gsn_15(tq?, q).
This is the expression in brackets from (4.3), therefore we conclude
Gsn(t,q) = (1 +tq)Gsn—3(tg*, q).

It remains now to treat cases m =1,2,3 mod 4.

(4.3)
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4.3. Second case: m =1 mod 4. We now assume that m = 4N + 1 with N > 2
and want to prove that

Gsn42(t,q) = (1 +tq)Gsn—1(tq*, ).
Substituting (3.10) into (3.11), we get
(4.6) Gsn2(t,q) = Gan(t,q) + t® N T Gy _a(t, q) + t2¢*N Gy (L, q).
Now we replace N by N — 1 in (3.10) and substitute into (4.6). This gives
(47 Gsny2(t,q) = Gan(t,q) + t¢* T Gsn_a(t. q)
+ 2N PGy s(t, @) + 2" N PGy 1a(t, q).

Then by the induction hypothesis,
(4.8)
Gsn42(t,q) = (14 tq)[Gsn—3(td®, q) + t¢* ' Gsn_7(tq?, q)

+ 2PN PGy (t®, @) + 2" N TP Gan_15(td?, ¢)).

We now wish to prove that the expression in the square brackets is exactly Gsn_1(tq?, q).
Replacing N by N — 1 and ¢ by t¢? in (3.16), we obtain

(4.9) Gsn-1(tq*,q) = Gsn—2(tq?, q) + t*N ' Gsn_7(tq*, q).
Replacing N by N — 1 and t by t¢? in (3.15) and substituting in (4.9), we get
Gsn-1(tq*,q) = Gsn—s(tq® q) + t* T Gsn_7(tq*, q)
+ 2N Gen 11 (tg?, @) + 2" N TP Gsn_15(tdP, q).
This is the expression in brackets from (4.8), thus
Gsna(t,q) = (1 +tq)Gsn—1(tg?, q).

Let us now turn to the case m =2 mod 4.

4.4. Third case: m = 2 mod 4. We suppose that m = 4N + 2 with N > 2 and
prove that
Gsnpalt,q) = (1+tg)Gsny1(tg®, q).
Substituting (3.9) into (3.10), we have

(4.10)  Gsnyi(t.q) = Gsn—1(t,q) + t¢* T Gan_u(t, q) + °¢*N Gsn_7(t, q).
Replacing N by N — 1 in (3.13) and substituting in (4.10), we have

Gsny1(t,q) = Gsn_1(t, q) + tq*N T Gsn_5(t, q) + 12> Gsn—7(t,q)
(4.11) 3 16N—3 4 24N-12
+1t°q Gsn-11(t,q) +t°q Gsn-15(t, )

Then replacing ¢ by tg? in (4.11), we obtain the following equation:
(4.12)
Gsn+1(tq®,q) = Gsn—1(tq®, q) + t¢* P Gsn_s(tq®, q) + N T Gsn_7(t¢*, q)
+ ¢ NGy 11 (tg%, @) + PN T Gan 15 (1, q).
Thus we want to prove that
Gsnyalt,q) = Ganya(t, q) + t¢* N P Gsn_a(t,q) + 2¢* T Gsn_a(t, q)
+ 3¢ N3G n_s(t, q) + ' N T Gsn—12(t, q).
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We could do it by using only equations (3.9)—(3.16) as they completely charac-
terize the partitions we are studying, but this would involve a lot of substitutions.
Therefore we prove it by working directly with partitions.

By definition, for all n, k, N € N*|
(4.13) asn+4(k,n) = asnia(k,n) + esnis(k,n) + esnia(k,n).

Now we want formulas for egy43(k,n) and egni4(k,n).

Lemma 4.2. For all n,k, N € N*,

(4.14) esni3(k,n) =asy_2(k—1,n— (8N +3)) —esn—3(k —2,n — (8N + 4)),
(4.15)
esn+a(k,n) =agn_a(k —2,n — (8N +4)) + esn—3(k — 2,n — (8N +4))
+asn_s(k —3,n — (16N +3)) + agy_12(k — 4,n — (24N — 4)).

Proof:

e Proof of (4.14):

In the same way as before, by conditions (2.5)-(2.8),
ents(k,n) =asy_3(k —1,n — (8N + 3)).
Thus by definition
esnt3(k,m) =asny—o2(k —1,n— (8N 4+ 3)) — esn—2(k — 1,n — (8N + 3)).

Now let us consider a partition Aj+Ao+...+A; counted by egn_o(k—1,n—
(8N +3)). By Conditions (2.5)-(2.8), Ay — Ay = 7 or A\; — Ay > 9, therefore
Ao =8N —-9or Ay <8N —11. Let us remove the largest part Ay = 8N —2. If
A2 = 8N —9, we obtain a partition counted by egy_g(k—3,n— (16 N+1)). If
A2 < 8N —11, we obtain a partition counted by agy—11(k—3,n— (16N +1)).
Thus the following holds:

68N—2(k —1,n— (SN + 3)) = egN_g(k‘ —3.n— (16N + 1))

+asy-11(k—3,n— (16N + 1)).
In the exact same way we can show that
esn—3(k —2,n— (8N +4)) =egn_g(k —3,n— (16N + 1))
+asy-11(k—3,n— (16N +1)).
Therefore
esn—2(k—1,n— (8N +3)) = esn—_3(k —2,n — (8N + 4)),

and (4.14) is proved.
e Proof of (4.15):
Now let us consider a partition A; + Aa +... + A counted by egni4(k,n).
By conditions (2.5)-(2.8), Ay —A2 = 5 or A\ — Ay > 7. Therefore by removing
the largest part, we obtain

€8N+4(k7n) = agN,4(k —2,n— (SN + 4))
+ €8N73(k5 —2.n— (8N + 4)) + engl(k' —2,n— (8N + 4))
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By similar reasoning,
esn—1(k—2,n— (8N +4))
=agn-s(k—3,n— (16 4+ 3)) + esn—7(k —3,n — (16N + 3))
= asn—s(k —3,n— (16 +3)) + asy_12(k — 4,n — (24N — 4)).
Equation (4.15) is proved.
O
Now by Lemma 4.2 and (4.13), for all k,n, N € Nx,
agn+a(k,n) = asn(k,n) +agy—2(k—1,n — (8N +3)) + agn—a(k — 2,n — (8N + 4))
+agy—g(k—3,n— (16N +3)) + asn_12(k — 4,n — (24N — 4)).
This leads to the desired g¢-difference equation:
Gsnyalt,q) = Gsnya(t, q) + tq* N P Gsn_a(t,q) + *¢* T Gsn_a(t,q)
F B3N Gy s(t, q) + 14N 1 Gan_1a(t, q).
By the induction hypothesis and (4.12), we show
Gsnta(t,q) = (14 tq)Gsn41(t, q).

We can now treat the last case.

4.5. Fourth case: m = 3 mod 4. Finally, we suppose that m = 4N + 3 with
N > 2 and prove that

Gsn+o(t,q) = (1 +tq) Gsn+s(ta®, ).
Replacing ¢ by t¢? in (3.11) and (3.12) leads to

(4.16) Gsni2(ta?,q) = Gsn+1(ta®, q) + ¢ T0Gsn_7(ta?, q),
(4.17) Gsn+3(tq®, q) = Gsnga(ta?, q) + t¢* T Gsn_s(tq®, q).
Substituting (4.16) into (4.17) we obtain:

(4.18)

Gsn+s(tq®,q) = Gsni1(tq®, q) + ta* N T Gsn_s(tq®, q) + *¢*N T°Gsn_7(td?, q).
We now want to show that
Gsnyo(t,q) = Ganyalt,q) + t¢* N T Gsn (t, q) + 126> T°Gsn_alt, ).
By definition we have
(4.19) asn+6(k,n) = agyya(k,n) + esyis(k,n) + esn+6(k, n).

In a similar manner as in the third case, by conditions (2.5)-(2.8) and removing the
largest part, we show that

€8N+5(k‘,n) = agN(k‘ —1,n— (8N + 5))

(4.20) —esn(k—1,n— (8N +5)) —esy_2(k —1,n — (8N +5)),
and
(4 21) €8N+6(1€,n) = GSN_4(I€ —2.n— (SN + 6))

+esn—1(k—2,n— (8N +6)) + esn—3(k —2,n — (8N +6)).
Yet again by the same method we show that
esv—1(k—2,n— (8N +6)) = agsn_7(k —3,n — (16N +5)),
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and

esy(k—1,n— (8N +5)) = agny—7(k —3,n — (16N +5)).
Therefore

esnv(k—1,n— (8N +5)) =esnv-_1(k—2,n— (8N +6)).

And in the same way
esn—3(k—2,n—(8N+6)) = egn_g(k—3,n— (16 N+3))+agn_11(k—3,n— (16N +3)),
and
esn—2(k—1,n—(8N+5)) = egn_9(k—3,n—(16N+3))+agn_11(k—3,n—(16N+3)).
Therefore

esn—2(k—1,n— (8N +5)) = esn_3(k —2,n— (8N +6)).
So by summing (4.20) and (4.21) and replacing in (4.19), we get
asn+6(k,n) = agn+a(k,n)+asy(k—1,n— (8N +5))+asy—a(k—2,n— (8N +6)),
which gives in terms of generating functions

Gsnt6(t,q) = Gsnya(t, @) + ta*N P Gan(t, q) + 12¢* N T0Gsn_u(t, q).
By (4.18), the results from the last two subsections and the induction hypothesis,
Gsne(t,q) = (1+tq) Genya(ta®, q).

This concludes the proof of Theorem 4.1.

4.6. Final argument. By Theorem 4.1, we have for all N € N*|
Gon(t,q) = (1 +tq)Gan—3(tg®, q).

So, if we let N — oo, we obtain:

(4.22) Goo(t,q) = (1+tg) Guo(ta?,q).
Iteration of (4.22) shows that:
Gooltig) = [ (1 + ta®+1).
k=0

This completes the proof of Theorem 1.4.

5. CONCLUSION

We have proved combinatorially and refined Theorem 1.3. It would be interesting
to see if other partition identities arising from the theory of vertex operators or Lie
algebras can be proved using similar methods. Papers by Siladié [14], Primc [12]
and Meurman-Primc [11] contain examples of such identities.

Furthermore in [1], Alladi, Andrews and Gordon give a bijective proof and a
refinement of Capparelli’s conjecture, which also comes from the study of Lie alge-
bras. One might investigate if a bijective proof would be possible for Theorem 1.3
too.
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