A survey of Cartan Subgroups in Model Theory

Benjamin Druart

CNRS Université de Grenoble - Université de Lyon

Tuesday 14th january 2014

Cartan Subgroups, Albebraicaly Closed Fields and Groups of finite Morley rank

2 Cartan Subgroups and o-minimal Structures

3 Cartan Subgroups and *p*-adic Fields

If G is an arbritrary group, a subgroup Q of G is called a **Cartan** subgroup if it satisfies the two following conditions :

- **Q** is nilpotent and maximal with this property ;
- If $X \le Q$ is a subgroup which is normal in Q and of finite index in Q, then X is of finite index in its normalizer $N_G(X)$.

If G is an arbritrary group, a subgroup Q of G is called a **Cartan** subgroup if it satisfies the two following conditions :

- **Q** is nilpotent and maximal with this property ;
- If $X \le Q$ is a subgroup which is normal in Q and of finite index in Q, then X is of finite index in its normalizer $N_G(X)$.

Remark : If *G* is an infinite group then all its Cartan subgroup are infinite.

If not, X = 1 is subgroup of finite index in Q but X is not of finite index in its normalizer $N_G(X) = G$.

Le G be a group and X a subset of G.

• We say that X is **generic** in G if G can be covered by finitely many translates of X.

$$G = \bigcup_{i=1}^{n} g_i \cdot X$$
 with $g_1, ..., g_n \in G$

Le G be a group and X a subset of G.

• We say that X is generic in G if G can be covered by finitely many translates of X.

$$G = \bigcup_{i=1}^{n} g_i \cdot X$$
 with $g_1, ..., g_n \in G$

• We say that X is generous if the union of its conjugates $X^G = \bigcup_{g \in G} X^g$ is generic.

Benjamin Druart (CNRS Université de Grenc

Cartan Subgroups, Albebraicaly Closed Fields and Groups of finite Morley rank

2 Cartan Subgroups and *o*-minimal Structures

Cartan Subgroups and *p*-adic Fields

Theorem

Let G be connected affine algebraic group over an algebraically closed field, and Q a subgroup of G.

The followings are equivalent :

1 *Q* is a Cartan subgroup.

Q is the centralizer of a maximal torus.

Theorem

Let G be connected affine algebraic group over an algebraically closed field, and Q a subgroup of G.

The followings are equivalent :

Q is a Cartan subgroup.

Q is the centralizer of a maximal torus.

Corollary

Every Cartan subgroup of G is algebraic and connected.

• Any two Cartan subgroups are conjugated.

Jordan decomposition and groups of finite Morley rank

Theorem (Jordan decomposition)

Let G be commutative linear algebraic group.

- If a ∈ G, then it can be written as a = a_s · a_u, where :
 a_s is semi-simple (ie. diagonalizable in some extension);
 - a_u is unipotent (ie. $(a_u I)$ is nilpotent).

$$G = G_s \times G_u$$

- G_s is the set of semi-simple elements of G;
- G_u is the set of unipotent elements of G.

Jordan decomposition and groups of finite Morley rank

Theorem (Jordan decomposition)

Let G be commutative linear algebraic group.

If a ∈ G, then it can be written as a = a_s · a_u, where :
a_s is semi-simple (ie. diagonalizable in some extension);
a_u is unipotent (ie. (a_u - 1) is nilpotent).
G = G_s × G_u

- G_s is the set of semi-simple elements of G;
- G_u is the set of unipotent elements of G.

Question: How do we get a similar result for groups of finite Morley rank?

Theorem (Jordan decomposition)

Let G be commutative linear algebraic group.

1 If $a \in G$, then it can be written as $a = a_s \cdot a_u$, where :

- *a_s* is semi-simple (ie. diagonalizable in some extension);
- a_u is unipotent (ie. $(a_u I)$ is nilpotent).

- G_s is the set of semi-simple elements of G;
- G_u is the set of unipotent elements of G.

Question: How do we get a similar result for groups of finite Morley rank?

In groups of finite Morley rank, we can define:

- x is semi-simple if x is contained in a Cartan subgroup.
- x is unipotent if d(x) intersects no Cartan subgroup.

Let G be a group of finite Morley rank. A subgroup of G is called a **Carter subgroup** if it is definable, definably connected, nilpotent and of finite index in its normalizer in G.

Let G be a group of finite Morley rank.

A subgroup of G is called a **Carter subgroup** if it is definable, definably connected, nilpotent and of finite index in its normalizer in G.

Theorem

Let G be a group of finite Morley rank, and C a subgroup of G. The followings are equivalent:

- *C* is a Carter subgroup;
- 2 C is a connected Cartan subgroup.

Connected solvable groups of finite Morley rank - I

Theorem (Frécon, 2006)

Let G be a connected solvabe group of finite Morlay rank and C be a subgroup of G.

C is a Carter subgroup iff C is nilpotent and selfnormalizing.

Connected solvable groups of finite Morley rank - I

Theorem (Frécon, 2006)

Let G be a connected solvabe group of finite Morlay rank and C be a subgroup of G.

C is a Carter subgroup iff C is nilpotent and selfnormalizing.

Definition

Let G be a group and H be a subgroup. H is called **anormal** if for all $g \in G$, $g \in H$, $H^g > .$

Connected solvable groups of finite Morley rank - I

Theorem (Frécon, 2006)

Let G be a connected solvabe group of finite Morlay rank and C be a subgroup of G.

C is a Carter subgroup iff C is nilpotent and selfnormalizing.

Definition

Let G be a group and H be a subgroup. H is called **anormal** if for all $g \in G$, $g \in H$, $H^g >$.

Theorem

Let G be a connected solvable group of finite Morley rank, and C a subgroup.

C is Carter subgroup iff C is a minimal anormal subgroup.

Theorem (Frécon - 2006)

In a connected solvable group of finite Morley rank, there exist Carter subgroups and any two of them are conjugated.

Theorem (Frécon - 2006)

In a definable subgroup of a connected solvable group of finite Morley rank, there exist Carter subgroups and any two of them are conjugated.

Theorem (Frécon, Jaligot - 2005)

Let G be a group of finite Morley rank, then G contains a Carter subgroup. Futhermore any abelian divisible torsion subgroup of G is contained in a Carter subgroup of G.

Theorem (Jaligot - 2006)

In any group of finite Morley rank, all generous Carter subgroups are conjugated.

Theorem (Frécon, Jaligot - 2005)

Let G be a group of finite Morley rank, then G contains a Carter subgroup. Futhermore any abelian divisible torsion subgroup of G is contained in a Carter subgroup of G.

Theorem (Jaligot - 2006)

In any group of finite Morley rank, all generous Carter subgroups are conjugated.

Conjecture

Carter subgroups of a group of finite Morley rank are conjugated.

Conjecture

In any group of finite Morley rank, Carter subgroups are generous.

Benjamin Druart (CNRS Université de Grenc

1 Cartan Subgroups, Albebraicaly Closed Fields and Groups of finite Morley rank

2 Cartan Subgroups and o-minimal Structures

Cartan Subgroups and *p*-adic Fields

Let G be a group definable in an o-minimal structure. A subgroup of G is called a **Carter subgroup** if it is definable, definably connected, nilpotent and of finite index in its normalizer in G.

Let G be a group definable in an o-minimal structure. A subgroup of G is called a **Carter subgroup** if it is definable, definably connected, nilpotent and of finite index in its normalizer in G.

Theorem (Otero, Baro, Jaligot - 2011)

In a definable group in an o-minimal structure, any Carter subgroup is the connected component of some Cartan subgroup.

Consequence: Cartan subgroups are definable.

Theorem (Otero, Baro, Jaligot - 2011)

Let G be a definable group in an o-minmal structure.

- G has Cartan subgroups;
- Q G has finitely many conjugacy classes of Cartan subgroups;
- only one of them is generous.

Theorem (Otero, Baro, Jaligot - 2011)

Let G be a definable group in an o-minmal structure.

- G has Cartan subgroups;
- Q G has finitely many conjugacy classes of Cartan subgroups;

only one of them is generous.

Example : $SL_2(\mathbb{R})$ has 2 conjugacy classes of Cartan subgroups:

•
$$Q_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mid a \in \mathbb{R}^{\times} \right\}$$
 is generous;
• $Q_{-1} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \text{ and } a^2 + b^2 = 1 \right\}$ is not generous.

1 Cartan Subgroups, Albebraicaly Closed Fields and Groups of finite Morley rank

2 Cartan Subgroups and *o*-minimal Structures

3 Cartan Subgroups and *p*-adic Fields

Cartan Subgroups in $SL_2(\mathbb{Q}_p)$

$$egin{aligned} \mathcal{Q}_1 &= \left\{ \left(egin{array}{cc} a & 0 \ 0 & a^{-1} \end{array}
ight) \in SL_2(\mathbb{Q}_p) \mid a \in \mathbb{Q}_p^{ imes}
ight\} \ \mathcal{Q}_\delta &= \left\{ \left(egin{array}{cc} a & b \ b\delta & a \end{array}
ight) \in SL_2(\mathbb{Q}_p) \mid a, b \in \mathbb{Q}_p ext{ and } a^2 - b^2\delta = 1
ight\} \end{aligned}$$

where δ is a non-square in \mathbb{Q}_p .

Remark : For $p \neq 2$ (resp. p = 2), there are 4 cosets (resp. 8 cosets) of $(\mathbb{Q}_p^{\times})^2$ in \mathbb{Q}_p^{\times} .

Cartan Subgroups in $SL_2(\mathbb{Q}_p)$

$$egin{aligned} Q_1 &= \left\{ \left(egin{array}{cc} a & 0 \ 0 & a^{-1} \end{array}
ight) \in SL_2(\mathbb{Q}_p) \mid a \in \mathbb{Q}_p^{ imes}
ight\} \ Q_\delta &= \left\{ \left(egin{array}{cc} a & b \ b\delta & a \end{array}
ight) \in SL_2(\mathbb{Q}_p) \mid a, b \in \mathbb{Q}_p ext{ and } a^2 - b^2\delta = 1
ight\} \end{aligned}$$

where δ is a non-square in \mathbb{Q}_p .

Remark : For $p \neq 2$ (resp. p = 2), there are 4 cosets (resp. 8 cosets) of $(\mathbb{Q}_p^{\times})^2$ in \mathbb{Q}_p^{\times} .

Proposition

The group Q_1 and Q_δ are Cartan subgroups of $SL_2(\mathbb{Q}_p)$.

$$Q_1^{SL_2(\mathbb{Q}_p)} = \{ A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in (\mathbb{Q}_p^{\times})^2 \} \cup \{ I, -I \}$$

a
$$Q_1^{SL_2(\mathbb{Q}_p)} = \{A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in (\mathbb{Q}_p^{\times})^2\} \cup \{I, -I\}$$
b For any $\delta \in \mathbb{Q}_p^{\times} \setminus (\mathbb{Q}_p^{\times})^2$,

$$Q_{\delta}^{SL_2(\mathbb{Q}_p)} = \left\{ A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in \delta \cdot (\mathbb{Q}_p^{\times})^2 \right\} \cup \{I, -I\}$$

1
$$Q_1^{SL_2(\mathbb{Q}_p)} = \{A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in (\mathbb{Q}_p^{\times})^2\} \cup \{I, -I\}$$

2 For any $\delta \in \mathbb{Q}_p^{\times} \setminus (\mathbb{Q}_p^{\times})^2$, there exist $\mu_1, ..., \mu_n \in GL_2(\mathbb{Q}_p)$ such that

$$\bigcup_{i=1}^{n} Q_{\delta}^{\mu_{i} \cdot SL_{2}(\mathbb{Q}_{p})} = \left\{ A \in SL_{2}(\mathbb{Q}_{p}) \mid tr(A)^{2} - 4 \in \delta \cdot (\mathbb{Q}_{p}^{\times})^{2} \right\} \cup \{I, -I\}$$

3

9
$$Q_1^{SL_2(\mathbb{Q}_p)} = \{A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in (\mathbb{Q}_p^{\times})^2\} \cup \{I, -I\}$$

2 For any $\delta \in \mathbb{Q}_p^{\times} \setminus (\mathbb{Q}_p^{\times})^2$, there exist $\mu_1, ..., \mu_n \in GL_2(\mathbb{Q}_p)$ such that

$$\bigcup_{i=1}^n Q_{\delta}^{\mu_i \cdot SL_2(\mathbb{Q}_p)} = \left\{ A \in SL_2(\mathbb{Q}_p) \mid tr(A)^2 - 4 \in \delta \cdot (\mathbb{Q}_p^{\times})^2 \right\} \cup \{I, -I\}$$

Consequence : If $\delta \equiv \delta' \mod (\mathbb{Q}_p^{\times})^2$ then Q_{δ} and $Q_{\delta'}$ are conjugated in $GL_2(\mathbb{Q}_p)$. In particular they are isomorphic.

Complete description of $SL_2(\mathbb{Q}_p)$

$$U = \left\{ \left(\begin{array}{cc} 1 & u \\ 0 & 1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\} \cup \left\{ \left(\begin{array}{cc} -1 & u \\ 0 & -1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\}$$

æ

<u>Complete</u> description of $\overline{SL_2(\mathbb{Q}_p)}$

$$U = \left\{ \left(\begin{array}{cc} 1 & u \\ 0 & 1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\} \cup \left\{ \left(\begin{array}{cc} -1 & u \\ 0 & -1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\}$$

Corollary

$$SL_2(\mathbb{Q}_p) = U^{SL_2(\mathbb{Q}_p)} \cup Q_1^{SL_2(\mathbb{Q}_p)} \cup \bigcup_{\delta \in \mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2} \bigcup_{i=1}^n Q_{\delta}^{\mu_i \cdot SL_2(\mathbb{Q}_p)}$$

Remark : This is a disjoint union if we exclude $\{I, -I\}$.

3

<u>Complete</u> description of $SL_2(\mathbb{Q}_p)$

$$U = \left\{ \left(\begin{array}{cc} 1 & u \\ 0 & 1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\} \cup \left\{ \left(\begin{array}{cc} -1 & u \\ 0 & -1 \end{array} \right) \mid u \in \mathbb{Q}_p \right\}$$

Corollary

$$SL_2(\mathbb{Q}_p) = U^{SL_2(\mathbb{Q}_p)} \cup Q_1^{SL_2(\mathbb{Q}_p)} \cup \bigcup_{\delta \in \mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2} \bigcup_{i=1}^n Q_{\delta}^{\mu_i \cdot SL_2(\mathbb{Q}_p)}$$

This is a disjoint union if we exclude $\{I, -I\}$. Remark :

Theorem

The subgroups Q_1 , Q_δ (for $\delta \in \mathbb{Q}_p^{\times} \setminus (\mathbb{Q}_p^{\times})^2$) and the externally conjugates $Q_{\delta}^{\mu_i}$ (for $\mu_1, ..., \mu_n \in GL_2(\mathbb{Q}_p)$) are the only Cartan subgroups up to conjugacy of $SL_2(\mathbb{Q}_p)$.

< 口 > < 同 >

- 34

- The set $W = \{A \in SL_2(\mathbb{Q}_p) \mid v_p(tr(A)) < 0\}$ is generic in $SL_2(\mathbb{Q}_p)$.
- The set $W' = \{A \in SL_2(\mathbb{Q}_p) \mid v_p(tr(A)) \ge 0\}$ is not generic in $SL_2(\mathbb{Q}_p)$.

- The set $W = \{A \in SL_2(\mathbb{Q}_p) \mid v_p(tr(A)) < 0\}$ is generic in $SL_2(\mathbb{Q}_p)$.
- **2** The set $W' = \{A \in SL_2(\mathbb{Q}_p) \mid v_p(tr(A)) \ge 0\}$ is not generic in $SL_2(\mathbb{Q}_p)$.

Corollary

- The Cartan subgroup Q_1 is generous in $SL_2(\mathbb{Q}_p)$.
- 2 The Cartan subgroup Q_δ (for δ ∈ Q[×]_p\(Q[×]_p)² and μ ∈ GL₂(Q_p)) are not generous in SL₂(Q_p).

Every infinite commutative definable subgroup of $SL_2(\mathbb{Q}_p)$ has dimension 1.

Every infinite commutative definable subgroup of $SL_2(\mathbb{Q}_p)$ has dimension 1.

$$Z^n_\delta = \left\{ \left(\begin{array}{cc} a & b \\ b\delta & a \end{array} \right) \mid b \in p^n \delta \mathbb{Z}_p, \ a \in 1 + p^{2n} \delta \mathbb{Z}_p \text{ and } a^2 - b^2 \delta = 1 \right\} \subseteq Q_\delta$$

Every infinite commutative definable subgroup of $SL_2(\mathbb{Q}_p)$ has dimension 1.

$$Z_{\delta}^{n} = \left\{ \left(\begin{array}{cc} a & b \\ b\delta & a \end{array} \right) \mid b \in p^{n} \delta \mathbb{Z}_{p}, \ a \in 1 + p^{2n} \delta \mathbb{Z}_{p} \text{ and } a^{2} - b^{2} \delta = 1 \right\} \subseteq Q_{\delta}$$
$$U^{n} = \left\{ \left(\begin{array}{cc} 1 & u \\ 0 & 1 \end{array} \right) \mid u \in p^{n} \mathbb{Z}_{p} \right\} \subseteq U$$

Every infinite commutative definable subgroup of $SL_2(\mathbb{Q}_p)$ has dimension 1.

$$Z_{\delta}^{n} = \left\{ \left(egin{array}{cc} a & b \\ b\delta & a \end{array}
ight) \mid b \in p^{n} \delta \mathbb{Z}_{p}, \; a \in 1 + p^{2n} \delta \mathbb{Z}_{p} \; ext{and} \; a^{2} - b^{2} \delta = 1
ight\} \subseteq Q_{\delta}$$
 $U^{n} = \left\{ \left(egin{array}{cc} 1 & u \\ 0 & 1 \end{array}
ight) \mid u \in p^{n} \mathbb{Z}_{p}
ight\} \subseteq U$

Corollary

If G is an infinite commutative definable subgroup of $SL_2(\mathbb{Q}_p)$ then it is one of the following subgroups: Q_1 , Q_{δ} , U, Z_{δ}^n , U^n , a definable subgroup of Q_1 or one of their conjugates.

Every infinite nilpotent definable subgroup of $SL_2(\mathbb{Q}_p)$ has dimension 1.

$$Z_{\delta}^{n} = \left\{ \left(egin{array}{cc} a & b \\ b\delta & a \end{array}
ight) \mid b \in p^{n} \delta \mathbb{Z}_{p}, \; a \in 1 + p^{2n} \delta \mathbb{Z}_{p} \; ext{and} \; a^{2} - b^{2} \delta = 1
ight\} \subseteq Q_{\delta}$$
 $U^{n} = \left\{ \left(egin{array}{cc} 1 & u \\ 0 & 1 \end{array}
ight) \mid u \in p^{n} \mathbb{Z}_{p}
ight\} \subseteq U$

Corollary

If G is an infinite nilpotent definable subgroup of $SL_2(\mathbb{Q}_p)$ then it is one of the following subgroups: Q_1 , Q_{δ} , U, Z_{δ}^n , Uⁿ, a definable subgroup of Q_1 or one of their conjugates.

Benjamin Druart (CNRS Université de Grenc