

Linear groups definable in *p*-minimal structures

BENJAMIN DRUART Université Joseph Fourier

THEOREM

Let \mathcal{L} be a language containing the language of fields and the exponential function, such that \mathbb{Q}_p is a *p*-minimal structure in this language. Let \mathcal{Q}_p be an \mathcal{L} -elementary extension of \mathbb{Q}_p . If *G* is a commutative linear *p*-connected group \mathcal{L} -definable in \mathcal{Q}_p then *G* is \mathcal{L} -definably isomorphic to a semi-algebraic linear group.

p-minimality and dimension

The *p*-minimality was introduced in [1], by Haskell and Macpherson in 1997, on the model of *o*-minimality for *p*-adics.

Definition 1. Let \mathcal{L} be a language extending \mathcal{L}_d and let \mathcal{K} be a \mathcal{L} -structure (\mathcal{K} is a *p*-valued field whose value group is a \mathbb{Z} -group). We say that \mathcal{K} is *p*-minimal if, for every \mathcal{K}' elementarily equivalent to \mathcal{K} , every definable subset of \mathcal{K}' is quantifier-free definable in \mathcal{L}_d .

Example. Let \mathcal{L}_{an} be the language of fields extended with all analytic restricted functions, \mathbb{Q}_p in \mathcal{L}_{an} is a *p*-minimal structure.

Definition 2. Let X be a definable subset of K^n , dim X is the greatest integer r for which there is a projection $\pi : K^n \longrightarrow K^r$ such that $\pi(X)$ has non-empty interior in K^r .

Fact 3. Let X and Y be definable subsets of K^m :

Additivity If f is a definable function from X to Y, whose fibers have constant dimension $m \in \mathbb{N}$, then dim $X = \dim(Im f) + m$;

Finite sets *X* is finite iff dim X = 0;

Monotonicity $\dim(X \cup Y) = \max\{\dim X, \dim Y\}.$

p-ADIC EXPONENTIAL AND LOGARITHM

Proposition/Definition 4. Let K a finite extension of \mathbb{Q}_p , we define :

p-connexity

Definition 7. *Let G be group.*

- We say that G is p-connected if it does not contain any subgroup of *index coprime to p.*
- We say that G is p'-divisible if for every n coprime to p and for all $x \in G$ there is $y \in G$ such that $x = y^n$.

Proposition 8. *If G is a p*'*-divisible group then G is p-connected.*

Example. \mathbb{Q}_p^+ and \mathbb{Z}_p^+ are *p*-connected.

Proposition/Definition 9. *Let G be a group, and* G^{\Box} *a subgroups. TFAE:*

- 1. G^{\Box} is the biggest *p*-connected normal subgroup of G ;
- 2. G^{\Box} is the intersection of all normal subgroups of G of index coprime to p.

We call G^{\Box} the *p*-connected componant.

Example. If $G = \mathbb{Q}_p^{\times}$, then $G^{\square} = 1 + p\mathbb{Z}_p$.

JORDAN DECOMPOSITION AND TORI

Let *G* be a algebraic subgroup of $GL_n(K)$, and $g \in G$, we say that:

- the exponential by $\exp(x) = \sum_{n \ge 0} \frac{x^n}{n!}$, its convergence domain is $E_p = \{x \in K \mid v_p(x) > \frac{1}{p-1}\}$;
- the logarithm by $\log(1+x) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} x^n$, its convergence domain contains $1 + E_p$.

Fact 5. The fonction exp is an isomorphism from E_p^+ to $(1 + E_p)^{\times}$, and log *is its inverse.*

Application 6. If K is a finite extension of \mathbb{Q}_p then :

 $K^{\times} = \mathbb{Z} \times k^{\times} \times (1 + \pi \mathcal{O})^{\times}$

 $(1 + \pi \mathcal{O})^{\times}$ contains a subgroup of finite index isomorphic to \mathbb{Z}_p^{+m} .

SKETCH OF THE PROOF

Jordan decomposition for *p*-connected linear definable groups in Q_p :

Lemma 12. For $p \neq 2$, let H be an algebraic linear commutative group defined over Q_p . We denote G the p-conected component of $H(Q_p)$, then G is semi-algebraically isomorphic to :

 $T \times (1 + p\mathcal{Z}_p)^{\times m} \times \mathcal{Q}_p^{+l}$

where T is an anisotropic torus over Q_p .

Lemma 13. The \mathcal{L} -definable subgroups of \mathcal{Z}_p^{+m} are semi-algebraic and semi-algebraically isomorphic to $\mathcal{Z}_p^{m'}$.

Definable subgroups of \mathcal{Z}_p^+ and \mathcal{Q}_p^+ :

Lemma 14. The \mathcal{L} -definable subgroups of \mathcal{Q}_p^{+l} are semi-algebraic and semi-algebraically isomorphic to $\mathcal{Q}_p^{l_1} \times \mathcal{Z}_p^{l_2}$.

 $T = \widetilde{T} \times T^{\Box}$ where $\widetilde{T} = res(T)$ and T^{\Box} contains a subgroup of finite index definably isomorphic (by exponential)

What does anisotropic torus over \mathcal{Q}_p look

Lemma 15. If T is an anisotropic torus over Q_p of

where T = res(T) and T^{-} contains a subgroup of finite index definably isomorphic (by exponential) to Z_p^n .

WORK IN PROGRESS

The next step is to study nilpotent groups. We expect a similar result to be true for these groups...

What about language without exponential ? We should describe semialgebraic subgroups of anisotropic torus ...

REFERENCES

- [1] Dierdre Haskell and Dugald Macpherson. A versin of *o*-minimality for the *p*-adics. *Journal of Symbolic Logic*, 62(4):1075–1092, 1997.
- [2] Armand Borel. *Linear Algebraic Groups*. Graduate Texts in Mathematics. Springer, second enlarged edition edition, 1991.

- *g* is *semi-simple* if *g* is diagonalizable over some finite extension of *K*, we denote $G_s = \{g \in G \mid g \text{ is semi-simple }\}$;
- *g* is *unipotent*, if there exist *m* such that $(g I)^m = 0$, we denote $G_u = \{g \in G \mid g \text{ is unipotent }\}.$

Fact 10 ([2]). Let G a commutative algebraic linear group, then :

$$G = G_s \times G_u$$

Fact 11. We have $G_s = G_a \cdot G_d$ and $G_a \cap G_d$ is finite, where :

like?

• G_d is a split torus, (elements of G_d are diaonalizable over K);

dimension n, *then*:

• *G_a is an* anisotropic torus, (*elements of G_a are not digonalizable over K*).