# Cartan Subgroups and Generosity in $S L_{2}\left(\mathbb{Q}_{p}\right)$ 

Benjamin Druart* ${ }^{* \dagger}$

April 7, 2014


#### Abstract

We show that there exist a finite number of Cartan subgroups up to conjugacy in $S L_{2}\left(\mathbb{Q}_{p}\right)$ and we describe all of them. We show that the Cartan subgroup consisting of all diagonal matrices is generous and it is the only one up to conjugacy.


Keywords p-adic field ; Cartan subgroup ; generosity
MSC2010 20G25; 20E34; 11E57
A subset $X$ of a group $G$ is left-generic if $G$ can be covered by finitely many lefttranslates of $X$. We define similarly right-genericity. If $X$ is $G$-invariant, then leftgenericity is equivalent to right-genericity. This important notion in model theory was particulary developped by B. Poizat for groups in stable theories [?]. For a group of finite Morley-rank and $X$ a definable subset, genericity is the same as being of maximal dimension [?, lemme 2.5]. The term generous was introduced in [?] to show some conjuguation theorem. A definable subset $X$ of a group $G$ is generous in $G$ if the union of its $G$-conjugates, $X^{G}=\left\{x^{g} \mid(x, g) \in X \times G\right\}$, is generic in $G$.

In an arbitrary group $G$, we define a Cartan subgroup $H$ as a maximal nilpotent subgroup such that every finite index normal subgroup $X \unlhd H$ is of finite index in its normalizer $N_{G}(X)$. First we can remark that they are infinite because $N_{G}(1)=G$ and if $H$ is finite then $\{1\}$ is of finite index in $H$. In connected reductive algebraic groups over an algebraically closed fields, the maximal torus is typically an example of a Cartan subgroup. Moreover it is the only one up to conjugation and it is generous. It has been remarked in [?] that, in the group $S L_{2}(\mathbb{R})$, also the Cartan subgroup consisting of diagonal matrices is generous. But it has also been remarked that in the case of $S L_{2}(\mathbb{R})$, there exists another Cartan subgroup, namely $S O_{2}(\mathbb{R})$, which is not generous.

[^0]We will discuss here some apparently new remarks of the same kind in $S L_{2}\left(\mathbb{Q}_{p}\right)$. First we describe all Cartan subgroups of $S L_{2}\left(\mathbb{Q}_{p}\right)$. After we show that the Cartan subgroup consisting of diagonal matrices is generous and it is the only one up to conjugacy.

I would like to thank E. Jaligot, my supervisor for his help, E. Baro to explain me the case of $S L_{2}(\mathbb{R})$, and $T$. Altinel to help me to correct a mistake in a previous version of this paper.

## Description of Cartan subgroups up to conjugacy

We note $v_{p}: \mathbb{Q}_{p} \longrightarrow \mathbb{Z} \bigcup\{+\infty\}$ the p-adic-valuation, and $a c: \mathbb{Q}_{p}^{\times} \longrightarrow \mathbb{F}_{p}$ the angular component defined by $a c(x)=\operatorname{res}\left(p^{-v_{p}(x)} x\right)$ where res: $\mathbb{Q}_{p} \longrightarrow \mathbb{F}_{p}$ is the residue map.

With these notations, if $p \neq 2$, an element $x \in \mathbb{Q}_{p}^{\times}$is a square if and only if $v_{p}(x)$ is even and $a c(x)$ is a square in $\mathbb{F}_{p}$. For $p=2$, an element $x \in \mathbb{Q}_{2}$ can be written $x=2^{n} u$ with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{2}^{\times}$, then $x$ is a square if $n$ is even and $u \equiv 1(\bmod 8)$ [?].

Fact 1 ([?]). If $p \neq 2$, the group $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, it has for representatives $\{1, u, p, u p\}$, where $u \in \mathbb{Z}_{p}^{\times}$is such that ac $(u)$ is not a square in $\mathbb{F}_{p}$

The group $\mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, it has for representatives $\{ \pm 1, \pm 2, \pm 5, \pm 10\}$.

For any prime $p$, and any $\delta$ in $\mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, we put:

$$
\begin{aligned}
Q_{1} & =\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right) \right\rvert\, a \in \mathbb{Q}_{p}^{\times}\right\} \\
Q_{\delta} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right) \right\rvert\, a, b \in \mathbb{Q}_{p} \text { and } a^{2}-b^{2} \delta=1\right\}
\end{aligned}
$$

## Lemma 1.

$$
\begin{array}{ll}
\forall x \in Q_{1} \backslash\{I,-I\} & C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=Q_{1} \\
\forall x \in Q_{\delta} \backslash\{I,-I\} & C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=Q_{\delta}
\end{array}
$$

The checking of these equalities is left to the reader.
Proposition 1. The groups $Q_{1}$ and $Q_{\delta}$ are Cartan subgroups of $S L_{2}\left(\mathbb{Q}_{p}\right)$
Proof. One checks easily that $Q_{1}$ is abelian and the normalizer of $Q_{1}$ is :

$$
N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)=Q_{1} \cdot\langle\omega\rangle \quad \text { where } \quad \omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

For $X$ a subgroup of $Q_{1}$, if $g \in N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)$ and $x \in X$, then, using lemma ??

$$
Q_{1}=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(x^{g}\right)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)^{g}=Q_{1}^{g}
$$

It follows that $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)=Q_{1} \cdot\left\langle\omega>\right.$ and if $X$ of finite index $k$ in $Q_{1}$, then $X$ is of index $2 k$ in $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)$. We can see that for $t$ in $Q_{1}, t^{\omega}=\omega^{-1} t \omega=t^{-1}$ and thus $[\omega, t]=t^{2}$.

If we note $\Gamma_{i}$ the descending central series of $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)$, we have $\Gamma_{0}=N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)$, $\Gamma_{1}=\left[N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right), N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)\right]=Q_{1}^{2}$ and $\Gamma_{i}=\left[N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right), \Gamma_{i-1}\right]=Q_{1}^{2^{i}}$. Observing that $Q_{1} \cong \mathbb{Q}_{p}^{\times}$, we can conclude that the serie of $\Gamma_{i}$ is infinite because $Q_{1}$ is infinite and $Q_{1}^{2^{i}}$ is of finite index in $Q_{1}^{2^{i-1}}$. Thus $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{1}\right)$ is not nilpotent. By the normalizer condition for nilpotent groups, if $Q_{1}$ is properly contained in a nilpotent group $K$, then $Q_{1}<N_{K}\left(Q_{1}\right) \leq K$, here $N_{K}\left(Q_{1}\right)=Q_{1} \cdot\langle\omega>$ which is not nilpotent, a contradiction. It finishes the proof that $Q_{1}$ is a Cartan subgroup.

For $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, we check similarly that the group $Q_{\delta}$ is abelian. Since for all subgroups $X$ of $Q_{\delta}, C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=Q_{\delta}$, it follows that $N_{S L_{2}\left(\mathbb{Q}_{p}\right)}(X)=N_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(Q_{\delta}\right)=Q_{\delta}$, and if $X$ is of finite index in $Q_{\delta}$ then $X$ is of finite index in its normalizer. By the normalizer condition for nilpotent groups, $Q_{\delta}$ is nilpotent maximal.

Proposition 2. 1. $Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid \operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right\} \cup\{I,-I\}$
2. For any $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, there exist $\mu_{1}, \ldots \mu_{n} \in G L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
\bigcup_{i=1}^{n} Q_{\delta}^{\mu_{i} \cdot S L_{2}\left(\mathbb{Q}_{p}\right)}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid \operatorname{tr}(A)^{2}-4 \in \delta \cdot\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right\} \bigcup\{I,-I\}
$$

We put:

$$
U=\left\{\left.\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \right\rvert\, u \in \mathbb{Q}_{p}\right\} \bigcup\left\{\left.\left(\begin{array}{cc}
-1 & u \\
0 & -1
\end{array}\right) \right\rvert\, u \in \mathbb{Q}_{p}\right\} \text { and } U^{+}=\left\{\left.\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \right\rvert\, u \in \mathbb{Q}_{p}\right\}
$$

If $A \in S L_{2}\left(\mathbb{Q}_{p}\right)$ satisfies $\operatorname{tr}(A)^{2}-4=0$, then either $\operatorname{tr}(A)=2$ or $\operatorname{tr}(A)=-2$, and $A$ is a conjugate of an element of $U$. In this case, $A$ is said unipotent. It follows, from Proposition ?? :

Corollary 3. We have the following partition:
$S L_{2}\left(\mathbb{Q}_{p}\right) \backslash\{I,-I\}=(U \backslash\{I,-I\})^{S L_{2}\left(\mathbb{Q}_{p}\right)} \sqcup\left(Q_{1} \backslash\{I,-I\}\right)^{S L_{2}\left(\mathbb{Q}_{p}\right)} \sqcup \bigsqcup_{\delta \in \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}} \bigcup_{i=1}^{n}\left(Q_{\delta}^{\mu_{i}} \backslash\{I,-I\}\right)^{S L_{2}\left(\mathbb{Q}_{p}\right)}$
Remark. If $\delta$ and $\delta^{\prime}$ in $\mathbb{Q}_{p}^{\times}$are in the same coset of $\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, then, by Proposition ??, if $x^{\prime} \in Q_{\delta^{\prime}}^{\mu^{\prime}}$ with $\mu^{\prime} \in G L_{2}\left(\mathbb{Q}_{p}\right)$, then there exists $x \in Q_{\delta}, \mu \in G L_{2}\left(\mathbb{Q}_{p}\right)$ and $g \in S L_{2}\left(\mathbb{Q}_{p}\right)$, such that $x^{\prime}=x^{\mu \cdot g}$, thus, by lemma ??, $Q_{\delta^{\prime}}=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}\left(x^{\prime}\right)=C_{S L_{2}\left(\mathbb{Q}_{p}\right)}(x)^{\mu \cdot g}=Q_{\delta}^{\mu \cdot g}$. Therefore the Corollary ?? makes sense.

Proof of Proposition ??. • If $A \in Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$, then there exists $P \in S L_{2}\left(\mathbb{Q}_{p}\right)$ such that

$$
A=P\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) P^{-1}
$$

with $a \in \mathbb{Q}_{p}^{\times}$. We have $\operatorname{tr}(A)=a+a^{-1}$, so $\operatorname{tr}(A)^{2}-4=\left(a+a^{-1}\right)^{2}-4=\left(a-a^{-1}\right)^{2}$ and $\operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$.

Conversely, let $A$ be in $S L_{2}\left(\mathbb{Q}_{p}\right)$ with $\operatorname{tr}(A)^{2}-4$ a square. The caracteristic polynomial is $\chi_{A}(X)=X^{2}-\operatorname{tr}(A) X+1$ and its discriminant is $\Delta=\operatorname{tr}(A)^{2}-4 \in\left(\mathbb{Q}_{p}^{\times}\right)^{2}$, so $\chi_{A}$ has two distinct roots in $\mathbb{Q}_{p}$ and $A$ is diagonalizable in $G L_{2}\left(\mathbb{Q}_{p}\right)$. There is $P \in G L_{2}\left(\mathbb{Q}_{p}\right)$, and $D \in S L_{2}\left(\mathbb{Q}_{p}\right)$ diagonal such that $A=P D P^{-1}$. If

$$
P=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

we put

$$
\tilde{P}=\left(\begin{array}{cc}
\frac{\alpha}{\operatorname{det}(P)} & \beta \\
\frac{\gamma}{\operatorname{det}(P)} & \delta
\end{array}\right)
$$

and we have $\tilde{P} \in S L_{2}\left(\mathbb{Q}_{p}\right)$ and $A=\tilde{P} D \tilde{P}^{-1} \in Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$.

- If $A$ is in $Q_{\delta}^{\mu \cdot S L_{2}\left(\mathbb{Q}_{p}\right)} \backslash\{I,-I\}$ with $\mu \in G L_{2}\left(\mathbb{Q}_{p}\right)$, then $\operatorname{tr}(A)=2 a$ and there exists $b \neq 0$ such that $a^{2}-b^{2} \delta=1$. So $\operatorname{tr}(A)^{2}-4=4 a^{2}-4=4\left(b^{2} \delta+1\right)-4=(2 b)^{2} \delta \in \delta \cdot\left(\mathbb{Q}_{p}^{\times}\right)^{2}$

Conversely we proceed as in the real case and the root $i \in \mathbb{C}$. The discriminant of $\chi_{A}, \Delta=\operatorname{tr}(A)^{2}-4$ is a square in $\mathbb{Q}_{p}(\sqrt{\delta})$, and the caracteristic polynomial $\chi_{A}$ has two roots in $\mathbb{Q}_{p}(\sqrt{\delta}): \lambda_{1}=\alpha+\beta \sqrt{\delta}$ and $\lambda_{2}=\alpha-\beta \sqrt{\delta}$ (with $\alpha, \beta \in \mathbb{Q}_{p}$ ). For the two eigen values $\lambda_{1}$ and $\lambda_{2}$, A has eigen vectors:

$$
v_{1}=\binom{x+y \sqrt{\delta}}{x^{\prime}+y^{\prime} \sqrt{\delta}} \quad \text { and } \quad v_{2}=\binom{x-y \sqrt{\delta}}{x^{\prime}-y^{\prime} \sqrt{\delta}}
$$

In the basis $\left\{\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right\}$, the matrix A can be written :

$$
\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right)
$$

with $a, b \in \mathbb{Q}_{p}$. We can conclude that there exists $P \in G L_{2}\left(\mathbb{Q}_{p}\right)$ such that:

$$
A=P\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right) P^{-1}
$$

We proved that $Q_{\delta}^{G L_{2}\left(\mathbb{Q}_{p}\right)}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid \operatorname{tr}(A)^{2}-4 \in \delta \cdot\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right\} \cup\{I,-I\}$.
Let us now study the conjugation in $G L_{2}\left(\mathbb{Q}_{p}\right)$ and in $S L_{2}\left(\mathbb{Q}_{p}\right)$. For the demonstration, we note : $S=S L_{2}\left(\mathbb{Q}_{p}\right), G=G L_{2}\left(\mathbb{Q}_{p}\right)$ and $\operatorname{Ext}(S)=\{f \in \operatorname{Aut}(S) \mid f(M)=$ $M^{P}$ for $\left.M \in S, P \in G\right\}$, $\operatorname{Int}(S)=\left\{f \in \operatorname{Aut}(S) \mid f(M)=M^{P}\right.$ for $\left.M \in S, P \in S\right\}$. Let $P, P^{\prime} \in G$ and $M \in S$ then :

$$
M^{P}=M^{P^{\prime}} \Leftrightarrow P^{-1} M P=P^{\prime-1} M P^{\prime} \Leftrightarrow P^{\prime} P^{-1} M=M P^{\prime} P^{-1} \Leftrightarrow P P^{\prime} \in C_{G}(M)
$$

So $P$ and $P^{\prime}$ define the same automorphism if and only if $P^{\prime} P^{-1} \in C_{G}(S)=Z(G)=\mathbb{Q}_{p} \cdot I_{2}$, then $\operatorname{Ext}(S) \cong G L_{2}\left(\mathbb{Q}_{p}\right) / Z(G) \cong P G L_{2}\left(\mathbb{Q}_{p}\right)$, and similarly $\operatorname{Int}(S) \cong S L_{2}\left(\mathbb{Q}_{p}\right) / Z(S) \cong$
$P S L_{2}\left(\mathbb{Q}_{p}\right)$. It is known that $P G L_{2}\left(\mathbb{Q}_{p}\right) / P S L_{2}\left(\mathbb{Q}_{p}\right) \cong \mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$. Finally $\operatorname{Int}(S)$ is a normal subgroup of finite index in $\operatorname{Ext}(S)$, and there exist $\mu_{1}, \ldots, \mu_{n} \in G L_{2}\left(\mathbb{Q}_{p}\right)$ such that:

$$
Q_{\delta}^{G L_{2}\left(\mathbb{Q}_{p}\right)}=Q_{\delta}^{\mu_{1} \cdot S L_{2}\left(\mathbb{Q}_{p}\right)} \cup \ldots \cup Q_{\delta}^{\mu_{n} \cdot S L_{2}\left(\mathbb{Q}_{p}\right)}
$$

Theorem 4. The subgroups $Q_{1}, Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$ and the externally conjugate $Q_{\delta}^{\mu_{i}}$ $\left(\right.$ for $\mu_{1}, \ldots, \mu_{n} \in G L_{2}\left(\mathbb{Q}_{p}\right)$ ) are the only Cartan subgroups up to conjugacy of $S L_{2}\left(\mathbb{Q}_{p}\right)$

Proof. It is clear that the image of a Cartan subgroup by an automorphism is also a Cartan subgroup. For the demonstration we note $S=S L_{2}\left(\mathbb{Q}_{p}\right)$ and $B$ the following subgroup of $S L_{2}\left(\mathbb{Q}_{p}\right)$ :

$$
B=\left\{\left.\left(\begin{array}{cc}
t & u \\
0 & t^{-1}
\end{array}\right) \right\rvert\, t \in \mathbb{Q}_{p}^{\times}, u \in \mathbb{Q}_{p}\right\}
$$

With these notations, we can easily check for $g \in U \backslash\{I,-I\}$ that $C_{S}(g)=U$ and $N_{S}(U)=$ $B$. Moreover it is known that every $q \in B$ can be written as $q=t u$ where $t \in Q_{1}$ and $u \in U$.

Consider $K$ a Cartan subgroup of $S L_{2}\left(\mathbb{Q}_{p}\right)$. We will show that $K$ is a conjugate of $Q_{1}$ or of one of the $Q_{\delta}^{\mu}$ (for $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ and $\mu \in G L_{2}\left(\mathbb{Q}_{p}\right)$ ). First we prove $K$ cannot contain a unipotent element other than $I$ or $-I$. Since a conjugate of a Cartan subgroup is still a Cartan subgroup, it suffices to show that $K \cap U=\{I,-I\}$.

In order to find a contradiction, let $u \in K$ be a element of $U$ different from $I$ or $-I, u$ is in $K \cap B$. If $\alpha \in N_{S}(K \cap B)$, then we have that $u^{\alpha} \in K \cap B$, and since $\operatorname{tr}\left(u^{\alpha}\right)=\operatorname{tr}(u)= \pm 2, u^{\alpha}$ is still in $U$. Therefore $U=C_{S}(u)=C_{S}\left(u^{\alpha}\right)=C_{S}(u)^{\alpha}=U^{\alpha}$ and so $\alpha$ is in $N_{S}(U)=B$. It follows $N_{S}(K \cap B) \leq B$ and finally $N_{K}(K \cap B)=K \cap B$. By the normalizer condition $K \cap B$ cannot be proper in $K$, then $K \leq B$.

It is known (see for example [?, Lemma 0.1.10]) that if $K$ is a nilpotent group and $H \unlhd K$ a non trivial normal subgroup, then $H \cap Z(K)$ is not trivial. If we assume that $K \npreceq U^{+}$, since $K \leq B=N_{S}\left(U^{+}\right), K \cap U^{+}$is normal in $K$, and so $K \cap U^{+}$contains a non trivial element $x$ of the center $Z(K)$. For $q \in K \backslash U^{+}$, there are $t \in Q_{1} \backslash\{I\}$ and $u \in U$ such that $q=t u$. We have $[x, q]=I$ so $[x, t]=I$, so $t=-I$ because $C_{S}(x)=U$. Therefore $K \leq U$. Since $K$ is maximal nilpotent and $U$ abelian, $K=U$. But $U$ is not a Cartan subgroup, because it is of infinite index in its normalizer $B$. A contradiction.

Since $K$ does not contain a unipotent element, $K$ intersects a conjugate of $Q_{1}$ or of one of the $Q_{\delta}^{\mu}\left(\right.$ for $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ and $\left.\mu \in G L_{2}\left(\mathbb{Q}_{p}\right)\right)$ by Corollary ??, we note $Q$ this subgroup. Let us show that $K=Q$. Let be $x$ in $K \cap Q$, and $\alpha \in N_{K}(K \cap Q)$, then $x^{\alpha} \in Q$, and, by lemma ??, $Q=C_{S}\left(x^{\alpha}\right)=C_{S}(x)^{\alpha}=Q^{\alpha}$. Thus $\alpha \in N_{S}(Q)$, and $N_{K}(K \cap Q) \leq N_{S}(Q)$.

1 rst case $Q$ is a conjugate of $Q_{1}$, then $N_{S}(Q)=Q \cdot\left\langle\omega^{\prime}\right\rangle$ where $\omega^{\prime}=\omega^{g}$ if $Q=Q_{1}^{g}$. We have also $\omega^{\prime 2} \in Q$ and $t^{\omega^{\prime}}=t^{-1}$ for $t \in Q$. One can check that $N_{S}(Q .<$ $\left.\omega^{\prime}>\right)=Q \cdot<\omega^{\prime}>$, if $\omega^{\prime} \in K$ then $N_{K}\left(Q \cdot<\omega^{\prime}>\cap K\right)=Q \cdot<\omega^{\prime}>\cap K$, by
normalizer condition $K \leq Q \cdot\left\langle\omega^{\prime}\right\rangle$. If we note $n$ the nilpotency classe of K , and $t \in K \cap Q$ then $\left[\omega^{\prime}, \omega^{\prime}, \ldots, \omega^{\prime}, t\right]=t^{2^{n}}=1$, so $t$ is an $n^{t h}$ root of unity, so $K \cap Q$ and $K=(K \cap Q) \cdot\langle\omega\rangle$ are finite. A contradiction, so $\omega^{\prime} \notin K$. Then $N_{K}(Q \cap K) \leq Q \cap K$, it follows by normalizer condition that $K \leq Q$, and by maximality of $K, K=Q$.

2nd case $Q$ is a conjuguate of $Q_{\delta}\left(\right.$ for $\left.\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}\right)$, then $N_{S}(Q)=Q$. It follows similarly that $K=Q$.

## Generosity of the Cartan subgroups

Our purpose is now to show the generosity of the Cartan subgroup $Q_{1}$. It follows from the next more general proposition :

Proposition 5. 1. The set $W=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid v_{p}(\operatorname{tr}(A))<0\right\}$ is generic in $S L_{2}\left(\mathbb{Q}_{p}\right)$.
2. The set $W^{\prime}=\left\{A \in S L_{2}\left(\mathbb{Q}_{p}\right) \mid v_{p}(\operatorname{tr}(A)) \geq 0\right\}$ is not generic in $S L_{2}\left(\mathbb{Q}_{p}\right)$.

Proof. 1. We consider the matrices :

$$
A_{1}=I, \quad A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right) \quad \text { and } \quad A_{4}=\left(\begin{array}{cc}
0 & -b^{-1} \\
b & 0
\end{array}\right)
$$

with $v_{p}(a)>0$ and $v_{p}(b)>0$.
We show that $S L_{2}\left(\mathbb{Q}_{p}\right)=\bigcup_{i=1}^{4} A_{i} W$. Suppose there exists

$$
M=\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right)
$$

such that $M \notin \bigcup_{i=1}^{4} A_{i} W$.
Since $M \notin A_{1} W \bigcup A_{2} W$, we have $x+v=\varepsilon$ and $y-u=\delta$ with $v_{p}(\varepsilon) \geq 0$ and $v_{p}(\delta) \geq 0$. Since $M \notin A_{3} W$, we have $a x+a^{-1} v=\eta$ with $v_{p}(\eta) \geq 0$. We deduce $a(\varepsilon-v)+a^{-1} v=\eta$ and $v=\frac{\eta-a \varepsilon}{a^{-1}-a}$. Similarly, it follows from $M \notin A_{4} W$ that $u=\frac{\theta-b \delta}{b^{-1}-b}$ with some $\theta$ such that $v_{p}(\theta) \geq 0$.

Since $v_{p}(a)>0$, we have $v_{p}\left(a+a^{-1}\right)<0$. From $v_{p}(\eta-a \varepsilon) \geq \min \left\{v_{p}(\eta) ; v_{p}(a \varepsilon)\right\} \geq 0$, we deduce that $v_{p}(v)=v_{p}\left(\frac{\eta-a \varepsilon}{a+a^{-1}}\right)=v_{p}(\eta-a \varepsilon)-v_{p}\left(a+a^{-1}\right)>0$. Similarly $v_{p}(u)>0$. It follows that $v_{p}(x)=v_{p}(\varepsilon-v) \geq 0$ and $v_{p}(y) \geq 0$.

Therefore $v_{p}(\operatorname{det}(M))=v_{p}(x v-u y) \geq \min \left\{v_{p}(x v), v_{p}(u y)\right\}>0$ and thus $\operatorname{det}(M) \neq 1$, a contradiction .
2. We show that the family of matrices $\left(M_{x}\right)_{x \in \mathbb{Q}_{p}^{\times}}$cannot be covered by finitely many $S L_{2}\left(\mathbb{Q}_{p}\right)$-translates of $W^{\prime}$, where :

$$
M_{x}=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right)
$$

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right)$. Then $\operatorname{tr}\left(A^{-1} M_{x}\right)=d x+a x^{-1}$. If $v_{p}(x)>\max \left\{\left|v_{p}(a)\right|,\left|v_{p}(d)\right|\right\}$ then $v_{p}\left(\operatorname{tr}\left(A^{-1} M_{x}\right)\right)<0$ and $M_{x} \notin A W^{\prime}$.

Therefore for every finite family $\left\{A_{j}\right\}_{i \leq n}$, there exist $x \in \mathbb{Q}_{p}$ such that $M_{x} \notin \bigcup_{j=1}^{n} A_{j} W^{\prime}$.

Remark. We remark that the sets $W$ and $W^{\prime}$ form a partition of $S L_{2}\left(\mathbb{Q}_{p}\right)$. They are both definable in the field language because the valuation $v_{p}$ is definable in $\mathbb{Q}_{p}$.

Lemma 2. $W \subseteq Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$ and for $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ and $\mu \in G L_{2}\left(\mathbb{Q}_{p}\right)$, $Q_{\delta}^{\mu \cdot S L_{2}\left(\mathbb{Q}_{p}\right)} \subseteq W^{\prime}$
Proof. Let be $A \in S L_{2}\left(\mathbb{Q}_{p}\right)$ with $v_{p}(\operatorname{tr}(A))<0$.
For $p \neq 2$, since $v_{p}(\operatorname{tr}(A))<0, v_{p}\left(\operatorname{tr}(A)^{2}-4\right)=2 v_{p}(\operatorname{tr}(A))$ and $\operatorname{ac}\left(\operatorname{tr}(A)^{2}-4\right)=$ $\operatorname{ac}\left(\operatorname{tr}(A)^{2}\right)$, so $\operatorname{tr}(A)^{2}-4$ is a square in $\mathbb{Q}_{p}$.
For $p=2$, we can write $\operatorname{tr}(A)=2^{n} u$ with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$. Then $\operatorname{tr}(A)^{2}-4=$ $2^{2 n}\left(u^{2}-4 \cdot 2^{-2 n}\right)$. Since $n \leq-1, u^{2}-4 \cdot 2^{-2 n} \equiv u^{2} \equiv 1(\bmod 8)$, so $\operatorname{tr}(A)^{2}-A \in\left(\mathbb{Q}_{2}^{\times}\right)^{2}$.

In all cases, by the proposition ??, $W \subseteq Q_{1}^{S L_{2}\left(\mathbb{Q}_{p}\right)}$ and , by complementarity, $Q_{\delta}^{\mu \cdot S L_{2}\left(\mathbb{Q}_{p}\right)} \subseteq$ $W^{\prime}$.

We can now conclude with the following corollary, similar to [?, Remark 9.8] :
Corollary 6. 1. The Cartan subgroup $Q_{1}$ is generous in $S L_{2}\left(\mathbb{Q}_{p}\right)$.
2. The Cartan subgroups $Q_{\delta}^{\mu}\left(\right.$ for $\delta \in \mathbb{Q}_{p}^{\times} \backslash\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ and $\left.\mu \in G L_{2}\left(\mathbb{Q}_{p}\right)\right)$ are not generous in $S L_{2}\left(\mathbb{Q}_{p}\right)$.

## Structure of groups $Q_{\delta}$

In this section, we will take some specific value for $\delta . \delta$ will be one of the representative elements $\{\alpha, p, \alpha p\}$ for the non suare in $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$. Everything we can do here stay true up to conjugacy for every $\delta$.

With these notations, we can remark that $Q_{\delta} \subseteq S L_{2}\left(\mathbb{Z}_{p}\right)$. We put:

$$
Z_{n, \delta}:=\left\{\left.\left(\begin{array}{cc}
a & b \\
b \delta & a
\end{array}\right) \in S L_{2}\left(\mathbb{Q}_{p}\right) \right\rvert\, b \in p^{n} \mathbb{Z}_{p}, a \in 1+p^{2 n} \delta \mathbb{Z}_{p} \text { and } a^{2}-b^{2} \delta=1\right\}
$$

Remark. For $\left(\begin{array}{cc}a & b \\ b \delta & a\end{array}\right) \in Z_{0, \delta}$, then : $b \in p^{n} \mathbb{Z}_{p}^{\times}$iff $a \in 1+p^{2 n} \delta \mathbb{Z}_{p}^{\times}$.
The groups $Z_{n, \delta}$ form an infinite descending chain of definable subgroups. Before to show the man theorem of this section, let us etablish some technical lemmas.

Lemma 3. For $\delta \in\{p, \alpha p\}$ and $n \geq 0$ (or for $\delta=\alpha$ and $n \geq 1$ ).

1. $Z_{n, \delta} / Z_{n+1, \delta} \cong \mathbb{Z} / p \mathbb{Z}$
2. If $x \in Z_{n, \delta} \backslash Z_{n+1, \delta}$ then $x^{p^{k}} \in Z_{n+k} \backslash Z_{n+k+1}$

## References

[1] Elias Baro, Eric Jaligot, and Margarita Otero. Cartan subgroups of groups definable in o-minimal structures. arXiv:1109.4349v2 [math.GR], 2011.
[2] Eric Jaligot. Generix never gives up. J. Symbolic Logic, 71(2):599-610, 2006.
[3] Bruno Poizat. Groupes stables. Nur al-Mantiq wal-Ma'rifah [Light of Logic and Knowledge], 2. Bruno Poizat, Lyon, 1987. Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic].
[4] Jean-Pierre Serre. Cours d'arithmétique. puf, 1970.
[5] Frank Wagner. Stable groups, volume 240. London Mathematical Society Lecure Note Series, 1997.


[^0]:    *Université de Grenoble I, Département de Mathématiques, Institut Fourier, UMR 5582 du CNRS, 38402 Saint-Martin d'Hères Cedex, France. email : Benjamin.Druart@ujf-grenoble.fr
    ${ }^{\dagger}$ The research leading to these results has recieved funding from the European Research Council under the European Community's Seventh Framework Programme FP7/2007-2013 Grant Agreement no. 278722.

