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About fully-well-balanced schemes for shallow-water equations

The shallow-water equations and their source terms
∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ

We can rewrite the equations as ∂tW + ∂xF (W ) = S(W ), with W =

(
h
q

)
.

x

h(x, t)

water surface

channel bottom

u(x, t)

Z(x)
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About fully-well-balanced schemes for shallow-water equations

Steady state solutions
Definition: Steady state solutions

W is a steady state solution iff ∂tW = 0, i.e. ∂xF (W ) = S(W ).

In the shallow-water equations
∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ

The steady state solutions are given by

Bernoulli’s equation
q = cst

u2

2
+ g(h+ Z) = cst

Lake at rest{
u = 0

h+ Z = cst

2 / 28



About fully-well-balanced schemes for shallow-water equations

Why Bernoulli instead of Lake at rest

Shallow-water with friction
∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

Steady states
∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ −

kq|q|
hη

.

Friction desapears as soon as the lake at rest is adopted
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About fully-well-balanced schemes for shallow-water equations

Contents

Design a fully-well-balanced finite volume scheme
Nonlinear scheme (robustness and entropy preserving)
Linear scheme (robustness)
High-order extensions

Non-exhaustive bibliography
Gosse (2000), Castro et al. (2007), Fjordholm et al. (2011),
Xing et al. (2011)
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About fully-well-balanced schemes for shallow-water equations

The HLL scheme

To approximate solutions of
∂tW + ∂xF (W ) = 0
the HLL scheme
Harten, Lax, van Leer (1983)

WHLL

WL WR

λL

x

t

λR

0−∆x/2 ∆x/2

Integral consistency condition (as per Harten and Lax)

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

which gives WHLL =
λRWR − λLWL

λR − λL
− F (WR)− F (WL)

λR − λL
=

(
hHLL
qHLL

)
.

We impose hL > 0 and hR > 0
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR) ) dx dt = 0
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR) ) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx =

WL +WR

2
− ∆t

∆x
(F (WR)− F (WL))
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme
Harten-Lax consistency condition to ∂tW + ∂xF (W ) = S(W )

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x;WL,WR)dx =

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x;WL,WR)dx,

first step: compute
1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x)dx (straightforward)

1

∆x

∫ ∆x/2

−∆x/2
W̃ (∆t, x)dx =

WL+WR

2
− λR

∆t

∆x
(WR−W ∗R) + λL

∆t

∆x
(WL−W ∗L)

second step: compute
1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR)− S(WR)) dx dt = 0
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
(∂tWR + ∂xF (WR)− S(WR)) dx dt = 0

0 =
1

∆t

1

∆x

(∫ ∆x/2

−∆x/2
WR(∆t, x)dx−

∫ ∆x/2

−∆x/2
WR(0, x)dx

)
+

1

∆t

1

∆x

(∫ ∆t

0
F (WR)

(
t,−∆x

2

)
dt−

∫ ∆t

0
F (WR)

(
t,

∆x

2

)
dt

)
−

1

∆t

1

∆x

∫ ∆t

0

∫ ∆x/2

−∆x/2
S(WR)(t, x) dx dt

1

∆x

∫ ∆x/2

−∆x/2
WR(∆t, x)dx ' WL +WR

2
− ∆t

∆x
(F (WR)− F (WL)) + S∆t
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme

4 unknowns to be determined: W ∗L =

(
h∗L
q∗L

)
and W ∗R =

(
h∗R
q∗R

)
Relevant definition for S to approximate the source term −gh∂xZ

Harten-Lax consistency gives us the following two relations:

λRh
∗
R − λLh∗L = (λR − λL)hHLL (relation 1)

q∗ = qHLL +
S∆x

λR − λL
(relation 2)
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme
Definition of S comes from relation 2

Steady state preserving: S is defined by enforcing
hLuL = hRuR

(uL)2

2
+ g(hL + ZL) =

(uR)2

2
+ g(hR + ZR)

then

{
h?L = hL u?L = uL

h?R = hR u?R = uR

to get

−∆xS =

(
hRu

2
R + g

h2
R

2

)
−
(
hLu

2
L + g

h2
L

2

)
By involving the steady state assumptions

∆xS = −ghLhR
h̄

(ZR−ZL)−g (hR − hL)3

4h̄
with h̄ =

hL + hR
2

↪→ It is a necessary condition to recover all steady states
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme
Steady state smoothness condition

∆xS = −ghLhR
h̄

(ZR − ZL)− g (hR − hL)3

4h̄
To recover steady states but modifying the Rankine-Hugoniot relations

Smoothness correction

Ch such that sup
h smooth

|∂xh| ≤ Ch

δh =

{
hR − hL if |hR − hL| ≤ Ch∆x
Ch∆x otherwise

To suggest the approximation

∆xS = −ghLhR
h̄

(ZR − ZL)− g δh
3

4h̄

↪→ Only smooth steady states can be reached
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About fully-well-balanced schemes for shallow-water equations

Modification of the HLL scheme
Two relations are missing to solve the approximate Riemann Solver

∂th+ ∂xhu = 0

∂thu+ ∂x

(
h

u

2

+
1

2
gh2

)
− gh∂xZ = 0

∂tZ = 0

Stationary wave: Riemann invariants

hu and
u2

2
+ g(h+ Z)

To get the two missing relations

h?Lu
?
L = h?Ru

?
R

(u?L)2

2
+ g(h?L + ZL) =

(u?R)2

2
+ g(h?R + ZR) or a linearization
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About fully-well-balanced schemes for shallow-water equations

Nonlinear scheme
Characterization of the intermediate states

hLuL − hRuR = λL(hL − h?L) + λR(h?R − hR)(
hLu

2
L + g

h2L
2

)
−
(
hRu

2
R + g

h2R
2

)
−∆xS =

λL(hLuL − h?Lu?L) + λR(h?Ru
?
R − hRuR)

h?Lu
?
L = h?Ru

?
R

(u?L)2

2
+ g(h?L + ZL) =

(u?R)2

2
+ g(h?R + ZR)

To get
h?Lu

?
L = h?Ru

?
R = q?(wL, wR) (explicit)

and
λL(hL − h?L) + λR(h?R − hR) + qR − qL = 0

q?

2

(
1

(h?L)2
− 1

(h?R)2

)
+ g(h?L − h?R) + g(ZL − ZR) = 0

Then h?L solution of a polynomial of degree 5 denoted p5(h?L) = 0 11 / 28



About fully-well-balanced schemes for shallow-water equations

Nonlinear scheme
Theorem
Assume wL and wR in Ω
There exists λL < 0 and λR > 0 (large enough) such that p5 admits 5
roots exactly. One of these roots, denotes h?L, satisfies

0 < h?L <
λR − λL
−λL

(
λRhR − λLhL
λR − λL

− qR − qL
λR − λL

)
h?L = hL if wL and wR define a steady state

In addition h?R satisfies

0 < h?R <
λR − λL
λR

(
λRhR − λLhL
λR − λL

− qR − qL
λR − λL

)
h?R = hR if wL and wR define a steady state

Remark
The steady state property is not satisfied by the other roots
Corollary
The resulting Godunov type scheme is positive and full well-balanced
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About fully-well-balanced schemes for shallow-water equations

Nonlinear Scheme: Discrete entropy inequality
General principle (Gallice 03, Chalons et al 10)
Conservation laws with source term ∂tw + ∂xf(w) = S(w)
Entropy inequalities ∂tη(w) + ∂xG(w) ≤ σ(w)
Approximate Riemann solver (with constant intermediate states w`)
consistent with the entropy inqualities if

∑̀
k=1

λ`(η(w`+1)− η(w`)) ≥ G(wR)−G(wL)−∆xσ̃(∆x,∆t, wL, wR)

Objective: Establish

λL(η(w?
L)− η(wL))+λR(η(wR)− η(w?

R)) ≤ G(wR)−G(wL)−∆xσ̃(∆x,∆t, wL, wR)

where

η(w) = h
u2

2
+g

h2

2
G(w) =

(
h
u2

2
+ gh2

)
u lim

∆x, ∆t → 0
wL, wR → w

σ̃ = −ghu∆xZ
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About fully-well-balanced schemes for shallow-water equations

Nonlinear Scheme: Discrete entropy inequality
Behaviors of the intermediate states

h?L = hHLL − α(ZR − ZL)
(hHLL)3

q̃2/2− (hHLL)3
+ (ZR − ZL)ε(ZR − ZL)

h?R = hHLL + (1− α)(ZR − ZL)
(hHLL)3

q̃2/2− (hHLL)3
+ (ZR − ZL)ε(ZR − ZL)

q? = q̃ − g

λR − λL
hLhR
h̄

(ZR − ZL) q̃ = qHLL +
g

λR − λL
δh3

4h̄

wHLL = (hHLL, qHLL) constant intermediate state coming from HLL scheme

(λRη(wR)− λLη(wL))− (λR − λL)η(wHLL) + g
hLhR
h̄hHLL

qHLL(ZR − ZL)

+ (ZR − ZL)ε(ZR − ZL) +O(∆x3)

But we have η(wHLL) ≤ λRη(wR)− λLη(wL)

λR − λL
− 1

λR − λL
(G(wR)−G(wL))

To obtain the required entropy inequality up to
(ZR − ZL)ε(ZR − ZL) = ∆xε(∆x)
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About fully-well-balanced schemes for shallow-water equations

The nonlinear scheme turns out to be impossible to be coded !
Linearization of the Riemann Invariant preservation relations
Example

h∗Lu
∗
L = h∗Ru

∗
R

h∗L
u2
L

2hL
+ g(h∗L + zL) = h∗R

u2
R

2hR
+ g(h∗R + zR)

to get

h∗Lu
∗
L = h∗Ru

∗
R = qHLL − ∆x

λR − λL
S

h∗L =
(λR − λL)

(
g +

u2
R

2hR

)
hHLL + gλR(zR − zL)

λR

(
g +

u2
L

2hL

)
− λL

(
g +

u2
R

2hR

) > 0

h∗R =
(λR − λL)

(
g +

u2
L

2hL

)
hHLL − gλL(zL − zR)

λR

(
g +

u2
L

2hL

)
− λL

(
g +

u2
R

2hR

) > 0
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About fully-well-balanced schemes for shallow-water equations

A linearized scheme
Objective: Get another easy fully-well-balanced scheme

Assume that WL and WR define a steady state
∂xq = 0

∂x

(
q2

h
+

1

2
gh2

)
= −gh∂xZ

with [X] = XR −XL, we set

1

∆x

(
q2

0

[
1

h

]
+
g

2

[
h2
])

= S.

which rewrittes

q2
0

(
1

hR
− 1

hL

)
+
g

2

(
(hR)2 − (hL)2

)
= S∆x.
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About fully-well-balanced schemes for shallow-water equations

Determination of h∗L and h∗R
The intermediate water heights satisfy the following relation:

−(q?)2

(
h∗R − h∗L
h∗Lh

∗
R

)
+
g

2
(h∗L + h∗R)(h∗R − h∗L) = S∆x.

Instead of the above relation, we choose the following linearization:

−(q∗)2

hLhR
(h∗R − h∗L) +

g

2
(hL + hR)(h∗R − h∗L) = S∆x,

which can be rewritten as follows:(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
︸ ︷︷ ︸

α

(h∗R − h∗L) = S∆x.
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About fully-well-balanced schemes for shallow-water equations

Determination of h∗L and h∗R
With the consistency relation between h∗L and h∗R, the intermediate
water heights satisfy the following linear system:{

α(h∗R − h∗L) = S∆x,

λRh
∗
R − λLh∗L = (λR − λL)hHLL.

Using both relations linking h∗L and h∗R, we obtain
h∗L = hHLL −

λRS∆x

α(λR − λL)
,

h∗R = hHLL −
λLS∆x

α(λR − λL)
,

where α =

(−(q∗)2

hLhR
+
g

2
(hL + hR)

)
with q∗ = qHLL +

S∆x

λR − λL
.
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About fully-well-balanced schemes for shallow-water equations

Correction to ensure non-negative h∗L and h∗R
However, these expressions of h∗L and h∗R do not guarantee that the
intermediate heights are non-negative: instead, we use the following
cutoff (see Audusse, Chalons, Ung (2014)):


h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
.

Note that this cutoff does not interfere with:
the consistency condition λRh∗R − λLh∗L = (λR − λL)hHLL;

the well-balance property, since it is not activated when WL and
WR define a steady state.
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About fully-well-balanced schemes for shallow-water equations

Summary

The two-state approximate Riemann solver with intermediate states

W ∗L =

(
h∗L
q∗

)
and W ∗R =

(
h∗R
q∗

)
given by

q∗ = qHLL +
S∆x

λR − λL
,

h∗L = min

((
hHLL −

λRS∆x

α(λR − λL)

)
+

,

(
1− λR

λL

)
hHLL

)
,

h∗R = min

((
hHLL −

λLS∆x

α(λR − λL)

)
+

,

(
1− λL

λR

)
hHLL

)
,

is consistent, non-negativity-preserving and well-balanced
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About fully-well-balanced schemes for shallow-water equations

Second-order MUSCL schemes derivation

Piecewise constant approximations

xixi−1/2 xi+1/2

wn
i−1

wn
i

wn
i+1

w
n,+
i

w
n,−
i

w
n,+
i−1

w
n,−
i+1

MUSCL : van Leer(79)

wn+1
i = wni −

∆t

∆x
(F±i+1/2 − F

±
i−1/2) F±i+1/2 = F (wn,−i+1 , w

n,+
i )

Inner approximations wn,±i = wh(xi±1/2, t
n) = wni + ∆wn,±i

∆wn,±i given by a limitation procedure
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About fully-well-balanced schemes for shallow-water equations

Well-balance high-order fully well-balanced scheme: MUSCL
Avoid to solve Bernoulli’s equation within the reconstruction step
reconstruction procedure  scheme no longer well-balanced

Well-balance recovery

We suggest a convex combination between the high-order scheme
WHO and the well-balanced scheme WWB :

Wn+1
i = θni (WHO)n+1

i + (1− θni )(WWB)n+1
i ,

with θni the parameter of the convex combination, such that:

if θni = 0, then the (infinity-order) well-balanced scheme is used;

if θni = 1, then the second-order scheme is used.

next step: derive a suitable expression for θni
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About fully-well-balanced schemes for shallow-water equations

Choice of θni
Introduce the steady states error evaluations

êni = max
(
|qni − qni−1|, |qni+1 − qni |

)
ěni = max

(
|Φn

i − Φn
i−1|, |Φn

i+1 − Φn
i |
)

with Φ =
q2

2h2
+ g(h+ Z)

Fix εm = 10−12 a measure of the machine precision

Theorem
Introduce the following two conditions:

(C1) êni < εm and ěni < εm

(C2) |hn+1,MUSCL
i − hni | ≤ (eh)ni and |qn+1,MUSCL

i − qni | ≤ (eq)ni

Define θni =

{
0 if (C1) or (C2) holds,
1 otherwise.

Then the scheme Wn+1
i = θni (WMUSCL)n+1

i + (1− θni )(WWB)n+1
i is

fully well-balanced and second-order accurate. 23 / 28



About fully-well-balanced schemes for shallow-water equations

Choice of θni

We have fixed

(eh)ni = êni ∆t∆x
∆t

∆x

qni
(hni )3

+ ěni ∆t∆x
∆t2

∆x2

qni
(hni )2

+
∆x3

(hni )2

(eq)
n
i = êni ∆t∆x

qni
(hni )3

+ ěni ∆t∆x
∆t

∆x

qni
(hni )2

+ ∆x3 qni
(hni )3
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About fully-well-balanced schemes for shallow-water equations

Verification of the well-balance: topography
subcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary
right panel: free surface for the steady state solution, after a transient state

E =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 6.65e-14 6.99e-14 8.26e-14
errors on E 1.18e-13 1.25e-13 1.53e-13
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About fully-well-balanced schemes for shallow-water equations

Verification of the well-balance: topography
transcritical flow test case (see Goutal, Maurel (1997))

left panel: initial free surface at rest; water is injected from the left boundary
right panel: free surface for the steady state solution, after a transient state

E =
u2

2
+ g(h+ Z)

L1 L2 L∞

errors on q 1.47e-14 1.58e-14 2.04e-14
errors on E 1.67e-14 2.13e-14 4.26e-14
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About fully-well-balanced schemes for shallow-water equations

Order of accuracy verification

N WB MUSCL θ-WB

25 5.46e-01 — 2.89e-01 — 2.94e-01 —
50 2.84e-01 0.94 2.84e-02 3.34 2.41e-02 3.61
100 1.55e-01 0.87 7.36e-03 1.95 5.99e-03 2.01
200 8.11e-02 0.94 1.90e-03 1.95 1.51e-03 1.99
400 4.10e-02 0.98 5.15e-04 1.88 4.41e-04 1.78

Table : L2-error on Φ for the approximation of a smooth solution.
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About fully-well-balanced schemes for shallow-water equations

Dry dam-break: Hunt’s asymptotic solution

L
H

water surface

x
↑

initial condition for the dry dam-

break on a sloping channel

→
water height with respect to the

time at a fixed position

See Hunt (1984) for the experimental points and the solution, valid far enough

away from the initial dam.
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About fully-well-balanced schemes for shallow-water equations

Simulation of the 2011 Tōhoku tsunami
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Simulation of the 2011 Tōhoku tsunami
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Simulation of the 2011 Tōhoku tsunami
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Thank you for your attention!


