Well-balanced second-order finite element approximation of the shallow water equations with friction

Jean-Luc Guermond

Department of Mathematics
Texas A&M University

NUMWAVE
Montpellier, France
Dec 11–13, 2017
Work done in collaboration with:

Pascal Azerad (Institut de Modélisation Mathématique de Montpellier)
Matthew Farthing (ERDC, Vicksburg, MI)
Chris Kees (ERDC, Vicksburg, MI)
Bojan Popov (Dept. Math., TAMU, TX)
Manuel Quezada (TAMU → ERDC, Vicksburg, MI)

Support:
Major goals and objectives of the project

- Develop and analyze robust numerical methods for solving nonlinear phenomena such as nonlinear conservation laws, advection-dominated multi-phase flows, and free-boundary problems.

- Construct methods that guarantee some sort of maximum principle (or invariant domain property for systems), have built-in entropy dissipation, run with optimal CFL, work on arbitrary meshes in any space dimension, and are high-order accurate for smooth solutions.

- New methods must be cost-efficient and easily parallelizable.

- The above objectives must be reached by stating precise mathematical statements supported either by proofs or very strong numerical evidences.
Outline

1. Hyperbolic systems, first-order
2. Second-order extensions, scalar
3. Shallow water
Hyperbolic systems

The PDEs

- Hyperbolic system

\[\partial_t u + \nabla \cdot f(u) = 0, \quad (x, t) \in D \times \mathbb{R}_+. \]
\[u(x, 0) = u_0(x), \quad x \in D. \]

- D open polyhedral domain in \mathbb{R}^d.
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the flux.
- u_0, admissible initial data.
- Periodic BCs or u_0 has compact support (to simplify BCs)
Hyperbolic systems

The PDEs

- Hyperbolic system

\[\partial_t u + \nabla \cdot f(u) = 0, \quad (x, t) \in D \times \mathbb{R}_+. \]
\[u(x, 0) = u_0(x), \quad x \in D. \]

- \(D \) open polyhedral domain in \(\mathbb{R}^d \).
- \(f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d}) \), the flux.
- \(u_0 \), admissible initial data.
- Periodic BCs or \(u_0 \) has compact support (to simplify BCs).
Hyperbolic systems

The PDEs

- Hyperbolic system

\[\partial_t u + \nabla \cdot f(u) = 0, \quad (x, t) \in D \times \mathbb{R}_+. \]
\[u(x, 0) = u_0(x), \quad x \in D. \]

- \(D \) open polyhedral domain in \(\mathbb{R}^d \).
- \(f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d}) \), the flux.

- \(u_0 \), admissible initial data.
- Periodic BCs or \(u_0 \) has compact support (to simplify BCs).
Hyperbolic systems

The PDEs

- **Hyperbolic system**

 \[\partial_t u + \nabla \cdot f(u) = 0, \quad (x, t) \in D \times \mathbb{R}_+. \]
 \[u(x, 0) = u_0(x), \quad x \in D. \]

- **D** open polyhedral domain in \mathbb{R}^d.
- **$f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$**, the flux.
- **u_0**, admissible initial data.
- Periodic BCs or u_0 has compact support (to simplify BCs)
Hyperbolic systems

The PDEs

- Hyperbolic system

\[
\frac{\partial}{\partial t} u + \nabla \cdot f(u) = 0, \quad (x, t) \in D \times \mathbb{R}_+.
\]
\[
u(x, 0) = u_0(x), \quad x \in D.
\]

- \(D\) open polyhedral domain in \(\mathbb{R}^d\).
- \(f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})\), the flux.
- \(u_0\), admissible initial data.
- Periodic BCs or \(u_0\) has compact support (to simplify BCs)
Formulation of the problem

Assumptions

- \(\exists \) admissible set \(A \) s.t. for all \((u_l, u_r) \in A\) the 1D Riemann problem

\[
\frac{\partial}{\partial t} v + \frac{\partial}{\partial x} (n \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} u_l & \text{if } x < 0 \\ u_r & \text{if } x > 0. \end{cases}
\]

has a unique “entropy” solution \(u(u_l, u_r)(x, t) \) for all \(n \in \mathbb{R}^d, \|n\|_{\ell^2} = 1 \).

- There exists an invariant set \(A \subset A \), i.e.,

\[
u(u_l, u_r)(x, t) \in A, \quad \forall t \geq 0, \forall x \in \mathbb{R}, \quad \forall u_l, u_r \in A.
\]

- \(A \) is convex. (Hoff (1979, 1985), Chueh, Conley, Smoller (1973))
Assumptions

- \(\exists \) admissible set \(\mathcal{A} \) s.t. for all \((u_l, u_r) \in \mathcal{A}\) the 1D Riemann problem

\[
\frac{\partial}{\partial t} v + \frac{\partial}{\partial x} (n \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} u_l & \text{if } x < 0 \\ u_r & \text{if } x > 0. \end{cases}
\]

has a unique “entropy” solution \(u(u_l, u_r)(x, t) \) for all \(n \in \mathbb{R}^d, \|n\|_2 = 1. \)

- There exists an invariant set \(A \subset \mathcal{A} \), i.e.,

\[
u(u_l, u_r)(x, t) \in A, \quad \forall t \geq 0, \forall x \in \mathbb{R}, \quad \forall u_l, u_r \in A.
\]

- \(A \) is convex. (Hoff (1979, 1985), Chueh, Conley, Smoller (1973))
Formulation of the problem

Assumptions

- **∃ admissible set** A s.t. for all $(u_l, u_r) \in A$ the 1D Riemann problem

 $$\partial_t v + \partial_x (n \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} u_l & \text{if } x < 0 \\ u_r & \text{if } x > 0 \end{cases}.$$

 has a unique “entropy” solution $u(u_l, u_r)(x, t)$ for all $n \in \mathbb{R}^d, \|n\|_2 = 1$.

- There exists an invariant set $A \subset A$, i.e.,

 $$u(u_l, u_r)(x, t) \in A, \quad \forall t \geq 0, \forall x \in \mathbb{R}, \quad \forall u_l, u_r \in A.$$

- A is convex. (**Hoff (1979, 1985), Chueh, Conley, Smoller (1973)**)
Approximation (time and space)

FE space/Shape functions

- \(\{ T_h \}_{h>0} \) shape regular conforming mesh sequence
- \(\{ \varphi_1, \ldots, \varphi_I \} \), positive + partition of unity \((\sum_{j \in \{1:1\}} \varphi_j = 1) \)
- Ex: \(P_1, Q_1 \), Bernstein polynomials (any degree)
- \(m_i := \int_D \varphi_i \, dx \), lumped mass matrix \((m_i = \sum_{j \in \mathcal{I}(s_i)} \int_D \varphi_i \varphi_j \, dx) \)
Approximation (time and space)

FE space/Shape functions

- \(\{ \mathcal{T}_h \}_{h>0} \) shape regular conforming mesh sequence
- \(\{ \varphi_1, \ldots, \varphi_I \} \), positive + partition of unity (\(\sum_{j \in \{1:I\}} \varphi_j = 1 \))
 - Ex: \(P_1, Q_1 \), Bernstein polynomials (any degree)
- \(m_i := \int_D \varphi_i \, dx \), lumped mass matrix (\(m_i = \sum_{j \in \mathcal{T}(s_i)} \int_D \varphi_i \varphi_j \, dx \))
Approximation (time and space)

FE space/Shape functions

- $\{\mathcal{T}_h\}_{h>0}$ shape regular conforming mesh sequence
- $\{\varphi_1, \ldots, \varphi_l\}$, positive + partition of unity ($\sum_{j \in \{1:l\}} \varphi_j = 1$)
- Ex: P_1, Q_1, Bernstein polynomials (any degree)
- $m_i := \int_D \varphi_i \, dx$, lumped mass matrix ($m_i = \sum_{j \in \mathcal{I}(s_i)} \int_D \varphi_i \varphi_j \, dx$)
Approximation (time and space)

FE space/Shape functions

- \(\{T_h\}_{h>0} \) shape regular conforming mesh sequence
- \(\{\varphi_1, \ldots, \varphi_I\} \), positive + partition of unity (\(\sum_{j \in \{1:I\}} \varphi_j = 1 \))
- Ex: \(P_1, Q_1 \), Bernstein polynomials (any degree)
- \(m_i := \int_D \varphi_i \, dx \), lumped mass matrix (\(m_i = \sum_{j \in \mathcal{I}(S_i)} \int_D \varphi_i \varphi_j \, dx \))
Approximation (time and space)

Algorithm: Galerkin

- Set $u_h(x, t) = \sum_{j=1}^{I} U_j(t)\varphi_j(x)$.
- Galerkin + lumped mass matrix

$$m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate $\frac{\partial U_i}{\partial t}$ by $\frac{U_i^{n+1} - U_i^n}{\Delta t}$
- Approximate $f(u_h)$ by $\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j$

$$m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^{V,n} (U_i^n - U_j^n) = 0.$$

- How should we choose artificial viscosity $d_{ij}^{V,n}$?
Approximation (time and space)

Algorithm: Galerkin

- Set $u_h(x, t) = \sum_{j=1}^{l} U_j(t) \varphi_j(x)$.
- Galerkin + lumped mass matrix

$$m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate $\frac{\partial U_i}{\partial t}$ by $\frac{U_i^{n+1} - U_i^n}{\Delta t}$
- Approximate $f(u_h)$ by $\sum_{j \in I(S_i)} (f(U_j^n)) \varphi_j$

$$m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in I(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in I(S_i)} d_{ij}^{V,n} (U_i^n - U_j^n) = 0.$$

- How should we choose artificial viscosity $d_{ij}^{V,n}$?
Approximation (time and space)

Algorithm: Galerkin

- Set \(u_h(x, t) = \sum_{j=1}^{I} U_j(t) \varphi_j(x) \).
- Galerkin + lumped mass matrix

\[
m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0
\]

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate \(\frac{\partial U_i}{\partial t} \) by \(\frac{U_i^{n+1} - U_i^n}{\Delta t} \)
- Approximate \(f(u_h) \) by \(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \)

\[
m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^{V,n} (U_i^n - U_j^n) = 0.
\]

- How should we choose artificial viscosity \(d_{ij}^{V,n} \)?
Approximation (time and space)

Algorithm: Galerkin

- Set \(u_h(x, t) = \sum_{j=1}^{I} U_j(t) \varphi_j(x) \).
- Galerkin + lumped mass matrix

 \[m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0 \]

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate \(\frac{\partial U_i}{\partial t} \) by \(\frac{U_i^{n+1} - U_i^n}{\Delta t} \)
- Approximate \(f(u_h) \) by \(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \)

\[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^{V,n}(U_i^n - U_j^n) = 0. \]

- How should we choose artificial viscosity \(d_{ij}^{V,n} \)?
Approximation (time and space)

Algorithm: Galerkin

- Set \(u_h(x, t) = \sum_{j=1}^{I} U_j(t) \varphi_j(x) \).
- Galerkin + lumped mass matrix

\[
m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0
\]

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate \(\frac{\partial U_i}{\partial t} \) by \(\frac{U_{i}^{n+1} - U_{i}^{n}}{\Delta t} \)
- Approximate \(f(u_h) \) by \(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \)

\[
m_i \frac{U_{i}^{n+1} - U_{i}^{n}}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in \mathcal{I}(S_i)} d_{ij}^{\text{V},n} (U_{i}^{n} - U_{j}^{n}) = 0.
\]

- How should we choose artificial viscosity \(d_{ij}^{\text{V},n} \)?
Approximation (time and space)

Algorithm: Galerkin

- Set $u_h(x, t) = \sum_{j=1}^{I} U_j(t) \varphi_j(x)$.
- Galerkin + lumped mass matrix

 $$m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0$$

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate $\frac{\partial U_i}{\partial t}$ by $\frac{U_i^{n+1} - U_i^n}{\Delta t}$
- Approximate $f(u_h)$ by $\sum_{j \in I(S_i)} (f(U_j^n)) \varphi_j$

 $$m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in I(S_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in I(S_i)} d_{ij}^{V,n} (U_i^n - U_j^n) = 0.$$

- How should we choose artificial viscosity $d_{ij}^{V,n}$?
Approximation (time and space)

Algorithm: Galerkin

- Set \(u_h(x, t) = \sum_{j=1}^{l} U_j(t) \varphi_j(x) \).
- Galerkin + lumped mass matrix

\[
m_i \frac{\partial U_i}{\partial t} + \int_D \nabla \cdot (f(u_h)) \varphi_i \, dx = 0
\]

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Approximate \(\frac{\partial U_i}{\partial t} \) by \(\frac{U_i^{n+1} - U_i^n}{\Delta t} \)
- Approximate \(f(u_h) \) by \(\sum_{j \in \mathcal{I}(s_i)} (f(U_j^n)) \varphi_j \)

\[
m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} + \int_D \nabla \cdot \left(\sum_{j \in \mathcal{I}(s_i)} (f(U_j^n)) \varphi_j \right) \varphi_i \, dx + \sum_{j \in \mathcal{I}(s_i)} d_{ij}^{V,n} (U_i^n - U_j^n) = 0.
\]

- How should we choose artificial viscosity \(d_{ij}^{V,n} \)?
LED is an easy (first-order) algebraic method to estimate \(\frac{V}{n} \) to achieve maximum principle; \textbf{Roe (1981) p. 361, Jameson (1995) §2.1} and others, see e.g., \textbf{Kuzmin et al. (2005), p. 163, Kuzmin, Turek (2002) Eq. (32)-(33)}.

\begin{itemize}
 \item \textbf{Theorem}
 \begin{itemize}
 \item \textit{LED is exactly equivalent to choosing Roe’s average velocity for scalar equations.}
 \item \textit{There exist \(C^\infty \) fluxes and piecewise smooth initial data such that the LED approximation does not converge to the unique entropy solution.}
 \end{itemize}
\end{itemize}
Local Extrema Diminishing (LED) method (easy to get it wrong)

LED is an easy (first-order) algebraic method to estimate $d_{ij}^{V,n}$ to achieve maximum principle; Roe (1981) p. 361, Jameson (1995) §2.1 and others, see e.g., Kuzmin et al. (2005), p. 163, Kuzmin, Turek (2002) Eq. (32)-(33).

Theorem

- *LED is exactly equivalent to choosing Roe’s average velocity for scalar equations.*
- *There exist C^∞ fluxes and piecewise smooth initial data such that the LED approximation does not converge to the unique entropy solution.*
LED is an easy (first-order) algebraic method to estimate $d_{ij}^{V,n}$ to achieve maximum principle; Roe (1981) p. 361, Jameson (1995) §2.1 and others, see e.g., Kuzmin et al. (2005), p. 163, Kuzmin, Turek (2002) Eq. (32)-(33).

Theorem

- LED is exactly equivalent to choosing Roe's average velocity for scalar equations.
- There exist C^∞ fluxes and piecewise smooth initial data such that the LED approximation does not converge to the unique entropy solution.
Local Extrema Diminishing (LED) method (easy to get it wrong)

Burger’s equation. Left: P_1 interpolant of the exact solution at $t = 0.75$; Right: piecewise linear approximation of the solution using the first-order LED scheme with 7543 grid points.
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Introduce

\[c_{ij} = \int_{D} \varphi_i(x) \nabla \varphi_j(x) \, dx. \]

- Then

\[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_j \left(-c_{ij} \cdot f(U_j) + d_{ij}^{V,n} (U_j - U_i) \right). \]

- Observe that partition of unity implies conservation: \(\sum_j c_{ij} = 0. \)
- We define \(d_{ij}^{V,n} \) such that \(\sum_j d_{ij}^{V,n} = 0, \) (conservation).

Remark

- Rest of the talk applies to any method that can be formalized as above. (FV, DG, FD, etc.)
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Introduce
 \[c_{ij} = \int_D \varphi_i(x) \nabla \varphi_j(x) \, dx. \]

- Then
 \[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_j \left(-c_{ij} \cdot f(U_j) + d_{ij}^{\nabla,n} (U_j - U_i) \right). \]

- Observe that partition of unity implies conservation: \(\sum_j c_{ij} = 0. \)
- We define \(d_{ij}^{\nabla,n} \) such that \(\sum_j d_{ij}^{\nabla,n} = 0, \) (conservation).

Remark

- *Rest of the talk applies to any method that can be formalized as above. (FV, DG, FD, etc.)*
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Introduce
 \[c_{ij} = \int_D \varphi_i(x) \nabla \varphi_j(x) \, dx. \]

- Then
 \[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_j \left(-c_{ij} \cdot f(U_j) + d_{ij}^{V,n} (U_j - U_i) \right). \]

- Observe that partition of unity implies conservation: \(\sum_j c_{ij} = 0. \)

- We define \(d_{ij}^{V,n} \) such that \(\sum_j d_{ij}^{V,n} = 0, \) (conservation).

Remark

- Rest of the talk applies to any method that can be formalized as above. (FV, DG, FD, etc.)
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Introduce
 \[c_{ij} = \int_D \varphi_i(x) \nabla \varphi_j(x) \, dx. \]

- Then
 \[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_j \left(-c_{ij} \cdot f(U_j) + d_{ij}^{V,n}(U_j - U_i) \right). \]

- Observe that partition of unity implies conservation: \(\sum_j c_{ij} = 0. \)

- We define \(d_{ii}^{V,n} \) such that \(\sum_j d_{ij}^{V,n} = 0, \) (conservation).

Remark

- Rest of the talk applies to any method that can be formalized as above. (FV, DG, FD, etc.)
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Introduce
 \[c_{ij} = \int_D \varphi_i(x) \nabla \varphi_j(x) \, dx. \]

- Then
 \[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_j \left(-c_{ij} \cdot f(U_j) + d_{ij}^{V,n}(U_j - U_i) \right). \]

- Observe that partition of unity implies conservation: \(\sum_j c_{ij} = 0. \)
- We define \(d_{ii}^{V,n} \) such that \(\sum_j d_{ij}^{V,n} = 0, \) (conservation).

Remark

- *Rest of the talk applies to any method that can be formalized as above. (FV, DG, FD, etc.)*
Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $n_{ij} = c_{ij} / \|c_{ij}\|_{\ell^2} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then define

\[
\tilde{U}(U_i, U_j) := \frac{1}{2} (U_i + U_j) + \frac{\|c_{ij}\|_{\ell^2}}{2d_{ij}^V} (f_{ij}(U_i) - f_{ij}(U_j)).
\]

- Observe that $U_i^{n+1} \in \text{Conv}\{\tilde{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)\}$ up to CFL condition.
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $n_{ij} = c_{ij} / \|c_{ij}\|_{\ell^2} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then define
 \[
 \overline{U}(U_i, U_j) := \frac{1}{2} (U_i + U_j) + \frac{\|c_{ij}\|_{\ell^2}}{2d_{ij}^{y,n}} (f_{ij}(U_i) - f_{ij}(U_j)).
 \]
- Observe that $U_i^{n+1} \in \text{Conv}\{\overline{U}(U_i^n, U_j^n) \mid j \in I(S_i)\}$ up to CFL condition.
Approximation (time and space)

Algorithm: Galerkin + First-order viscosity + Explicit Euler

- Define $n_{ij} = \frac{c_{ij}}{\|c_{ij}\|_{\ell^2}} \in \mathbb{R}^d$, (unit vector).
- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!
- Then define

$$\bar{U}(U_i, U_j) := \frac{1}{2} (U_i + U_j) + \frac{\|c_{ij}\|_{\ell^2}}{2d_{ij}^{V,n}} (f_{ij}(U_i) - f_{ij}(U_j)).$$

- Observe that $U_i^{n+1} \in \text{Conv}\{\bar{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)\}$ up to CFL condition.
Approximation (time and space)

<table>
<thead>
<tr>
<th>Algorithm: Galerkin + First-order viscosity + Explicit Euler</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Define $n_{ij} = c_{ij}/|c_{ij}|_{\ell^2} \in \mathbb{R}^d$, (unit vector).</td>
</tr>
<tr>
<td>- $f_{ij}(U) := n_{ij} \cdot f(U)$ is an hyperbolic flux by definition of hyperbolicity!</td>
</tr>
<tr>
<td>- Then define</td>
</tr>
<tr>
<td>$\overline{U}(U_i, U_j) := \frac{1}{2} (U_i + U_j) + \frac{|c_{ij}|{\ell^2}}{2d{ij}^{v,n}} (f_{ij}(U_i) - f_{ij}(U_j))$.</td>
</tr>
<tr>
<td>- Observe that $U_i^{n+1} \in \text{Conv}{\overline{U}(U_i^n, U_j^n) \mid j \in \mathcal{I}(S_i)}$ up to CFL condition.</td>
</tr>
</tbody>
</table>
Lemma

Consider the fake 1D Riemann problem!

\[
\partial_t v + \partial_x (n_{ij} \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} U_i & \text{if } x < 0 \\ U_j & \text{if } x > 0 \end{cases}
\]

Let \(\lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \) be maximum wave speed in 1D Riemann problem

Then \(\bar{U}(U_i, U_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(x, t) \, dx \) with fake time \(t = \frac{\|c_{ij}\|_2}{2d_{ij}^{V,n}} \), provided

\[
\frac{\|c_{ij}\|_2}{2d_{ij}^{V,n}} \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) = t \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \leq \frac{1}{2}
\]

Define viscosity coefficient

\[
d_{ij}^{V,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_2, \quad j \neq i.
\]
Lemma

- Consider the fake 1D Riemann problem!

\[
\partial_t v + \partial_x (n_{ij} \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases}
 U_i & \text{if } x < 0 \\
 U_j & \text{if } x > 0.
\end{cases}
\]

- Let \(\lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \) be maximum wave speed in 1D Riemann problem

- Then \(\bar{U}(U_i, U_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(x, t) \, dx \) with fake time \(t = \frac{\|c_{ij}\|_2^2}{2d_{ij}^{N,n}} \), provided

\[
\frac{\|c_{ij}\|_2^2}{2d_{ij}^{N,n}} \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) = t \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \leq \frac{1}{2}
\]

- Define viscosity coefficient

\[
d_{ij}^{N,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_2, \quad j \neq i.
\]
Lemma

Consider the fake 1D Riemann problem!

\[\partial_t v + \partial_x (n_{ij} \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} U_i & \text{if } x < 0 \\ U_j & \text{if } x > 0 \end{cases} \]

Let \(\lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \) be maximum wave speed in 1D Riemann problem

Then \(\overline{U}(U_i, U_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(x, t) \, dx \) with fake time \(t = \frac{\|c_{ij}\|_2^2}{2d_{ij}^{-}, n} \), provided

\[\frac{\|c_{ij}\|_2^2}{2d_{ij}^{-}, n} \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) = t \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \leq \frac{1}{2} \]

Define viscosity coefficient

\[d_{ij}^{\text{V}, n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_2^2, \quad j \neq i. \]
Approximation (time and space)

Lemma

- Consider the fake 1D Riemann problem!

\[
\partial_t v + \partial_x (n_{ij} \cdot f(v)) = 0, \quad v(x, 0) = \begin{cases} U_i & \text{if } x < 0 \\ U_j & \text{if } x > 0 \end{cases}
\]

- Let \(\lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \) be maximum wave speed in 1D Riemann problem

- Then \(\bar{U}(U_i, U_j) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(x, t) \, dx \) with fake time \(t = \frac{\|c_{ij}\|_2^2}{2d_{i,j}^{Y,n}} \), provided

\[
\frac{\|c_{ij}\|_2^2}{2d_{i,j}^{Y,n}} \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) = t \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \leq \frac{1}{2}
\]

- Define viscosity coefficient

\[
d_{i,j}^{Y,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_2^2, \quad j \neq i.
\]
Approximation (time and space)

Theorem

Provided CFL condition, \((1 - 2 \frac{\Delta t}{m_i} |D_{ii}|) \geq 0.\)

- **Local invariance:** \(U_i^{n+1} \in \text{Conv}\{\bar{U}(U_i^n, U_j^n) \mid j \in I(S_i)\}.\)
- **Global invariance:** The scheme preserves all the convex invariant sets. (Let \(A\) be a convex invariant set, assume \(U_0 \in A\), then \(U_i^{n+1} \in A\) for all \(n \geq 0\).)
- **Discrete entropy inequality for all the entropy pairs \((\eta, q)\):**

\[
\frac{m_i}{\Delta t} (\eta(U_i^{n+1}) - \eta(U_i^n)) + \int_D \nabla \cdot (\Pi_h q(u_h^n)) \varphi_i \, dx + \sum_{i \neq j \in I(S_i)} d_{ij} \eta(U_j^n) \leq 0.
\]
Approximation (time and space)

Theorem

Provided CFL condition, \((1 - 2 \frac{\Delta t}{m_i} |D_{ii}|) \geq 0.\)

- **Local invariance:** \(U_i^{n+1} \in \text{Conv}\{U_i^n, U_j^n \mid j \in \mathcal{I}(S_i)\} \).
- **Global invariance:** The scheme preserves all the convex invariant sets.
 (Let \(A\) be a convex invariant set, assume \(U_0 \in A\), then \(U_i^{n+1} \in A\) for all \(n \geq 0\).)
- **Discrete entropy inequality for all the entropy pairs \((\eta, q)\):**

\[
\frac{m_i}{\Delta t} (\eta(U_i^{n+1}) - \eta(U_i^n)) + \int_D \nabla \cdot (\Pi_h q(u_h^n)) \varphi_i \, dx + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij} \eta(U_j^n) \leq 0.
\]
Theorem

Provided CFL condition, $(1 - 2 \frac{\Delta t}{m_i} |D_{ii}|) \geq 0$.

- **Local invariance:** $\mathbf{U}^{n+1}_i \in \text{Conv}\{\overline{\mathbf{U}}(\mathbf{U}^n_i, \mathbf{U}^n_j) \mid j \in \mathcal{I}(S_i)\}$.

- **Global invariance:** The scheme preserves all the convex invariant sets.
 (Let A be a convex invariant set, assume $\mathbf{U}_0 \in A$, then $\mathbf{U}^{n+1}_i \in A$ for all $n \geq 0$.)

- **Discrete entropy inequality for all the entropy pairs (η, q):**

 $$\frac{m_i}{\Delta t} (\eta(\mathbf{U}^{n+1}_i) - \eta(\mathbf{U}^n_i)) + \int_D \nabla \cdot (\Pi_h q(u^n_h)) \varphi_i \, dx + \sum_{i \neq j \in \mathcal{I}(S_i)} d_{ij} \eta(U^n_j) \leq 0.$$
Theorem

Provided CFL condition, $(1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \geq 0$.

- **Local invariance:** $U^{n+1}_i \in \text{Conv}\{\overline{U}(U^n_i, U^n_j) \mid j \in I(S_i)\}$.
- **Global invariance:** The scheme preserves all the convex invariant sets.
 (Let A be a convex invariant set, assume $U_0 \in A$, then $U^{n+1}_i \in A$ for all $n \geq 0$.)
- **Discrete entropy inequality for all the entropy pairs (η, q):**

\[
\frac{m_i}{\Delta t} \left(\eta(U^{n+1}_i) - \eta(U^n_i)\right) + \int_D \nabla \cdot (\Pi h q(u^n_h)) \varphi_i \, dx + \sum_{i \neq j \in I(S_i)} d_{ij} \eta(U^n_j) \leq 0.
\]
Approximation (time and space)

Theorem

Provided CFL condition, \((1 - 2\frac{\Delta t}{m_i}|D_{ii}|) \geq 0\).

- **Local invariance**: \(U_i^{n+1} \in \text{Conv}\{\overline{U}(U_i^n, U_j^n) \mid j \in I(S_i)\}\).
- **Global invariance**: The scheme preserves all the convex invariant sets. (Let \(A\) be a convex invariant set, assume \(U_0 \in A\), then \(U_i^{n+1} \in A\) for all \(n \geq 0\).)
- **Discrete entropy inequality for all the entropy pairs \((\eta, q)\):**

\[
\frac{m_i}{\Delta t}(\eta(U_i^{n+1}) - \eta(U_i^n)) + \int_D \nabla \cdot (\Pi_h q(u^n_h)) \varphi_i \, dx + \sum_{i \neq j \in I(S_i)} d_{ij} \eta(U_j^n) \leq 0.
\]
Approximation (time and space)

Is it new?

- Loose extension of non-staggered Lax-Friedrichs (1954) to FE.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.
Approximation (time and space)

Is it new?

- Loose extension of non-staggered Lax-Friedrichs (1954) to FE.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.
Approximation (time and space)

Is it new?

- Loose extension of non-staggered Lax-Friedrichs (1954) to FE.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.
Is it new?

- Loose extension of non-staggered Lax-Friedrichs (1954) to FE.
- Not aware of similar results for arbitrary hyperbolic systems and continuous FE.
High-order extension

Higher-order in time

- Use SSP method to get higher-order in time.
High-order extension

- Use SSP method to get higher-order in time.

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-16))

Assume \(u_0 \in BV(\Omega) \). Let \(\tilde{u}_h : D \times [0, T] \longrightarrow \mathbb{R} \) be any approximate solution. Assume that there is \(\Lambda \) a bounded functional on Lipschitz functions so that \(\forall k \in [u_{\text{min}}, u_{\text{max}}], \forall \psi \in W^{1,\infty}_c(D \times [0, T]; \mathbb{R}^+) \):

\[
- \int_0^T \int_D \left(|\tilde{u}_h - k| \partial_t \psi + \text{sgn}(\tilde{u}_h - k)(f(\tilde{u}_h) - f(k)) \cdot \nabla \psi \right) \, dx \, dt \\
+ \|\pi_h((\tilde{u}_h(T) - k)\bar{\pi}_h \psi(\cdot, T_h))\|_{\ell_1^h} - \|\pi_h((\tilde{u}_h(0) - k)\bar{\pi}_h \psi(\cdot, \sigma_h))\|_{\ell_1^h} \leq \Lambda(\psi),
\]

where \(\| \cdot \|_{\ell_1^h} \) is the discrete \(L^1 \)-norm and \(|T - T_h| \leq \gamma \Delta t, |0 - \sigma_h| \leq \gamma \Delta t, \gamma > 0 \) is a uniform constant. Then the following estimate holds:

\[
\| u(\cdot, T) - \tilde{u}_h(\cdot, T) \|_{L^1(\Omega)} \leq c \left((\epsilon + h) |u_0|_{BV(\Omega)} + \Lambda^* \right)
\]

where \(\Lambda^* := \sup_{0 \leq t \leq T} \frac{\int_0^t \int_D \Lambda(\phi) \, dy \, ds}{\Gamma_\delta(t)} \), where \(\phi \) Kruskov’s kernel.

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-16))

Assume $u_0 \in BV(\Omega)$. Let $\tilde{u}_h : D \times [0, T] \rightarrow \mathbb{R}$ be any approximate solution. Assume that there is Λ a bounded functional on Lipschitz functions so that $\forall k \in [u_{\min}, u_{\max}], \forall \psi \in W^{1,\infty}_c(D \times [0, T]; \mathbb{R}^+) :$

$$- \int_0^T \int_D \left(|\tilde{u}_h - k| \partial_t \psi + \text{sgn}(\tilde{u}_h - k)(f(\tilde{u}_h) - f(k)) \cdot \nabla \psi \right) \, dx \, dt$$

$$+ \| \pi_h((\tilde{u}_h(T) - k)\pi_h(\cdot, T_h)) \|_{\ell^1_h} - \| \pi_h((\tilde{u}_h(0) - k)\pi_h(\cdot, \sigma_h)) \|_{\ell^1_h} \leq \Lambda(\psi),$$

where $\| \cdot \|_{\ell^1_h}$ is the discrete L^1-norm and $|T - T_h| \leq \gamma \Delta t$, $|0 - \sigma_h| \leq \gamma \Delta t$, $\gamma > 0$ is a uniform constant. Then the following estimate holds

$$\| u(\cdot, T) - \tilde{u}_h(\cdot, T) \|_{L^1(\Omega)} \leq c \left((\epsilon + h) |u_0|_{BV(\Omega)} + \Lambda^* \right)$$

where $\Lambda^* := \sup_{0 \leq t \leq T} \frac{\int_0^t \int_D \Lambda(\phi) \, dy \, ds}{\Gamma_\delta(t)}$, where ϕ Kruskov’s kernel.

A priori error estimate for scalar equations: A useful lemma

Lemma (Guermond, Popov (2014-16))

Assume $u_0 \in BV(\Omega)$. Let $\tilde{u}_h : D \times [0, T] \rightarrow \mathbb{R}$ be any approximate solution. Assume that there is Λ a bounded functional on Lipschitz functions so that $\forall k \in [u_{\text{min}}, u_{\text{max}}]$, $\forall \psi \in W_c^1,\infty (D \times [0, T]; \mathbb{R}^+)$:

\[
- \int_0^T \int_D \left(|\tilde{u}_h - k| \partial_t \psi + \text{sgn}(\tilde{u}_h - k)(f(\tilde{u}_h) - f(k)) \cdot \nabla \psi \right) \, dx \, dt \\
+ \| \pi_h((\tilde{u}_h(T) - k)\pi_h(\cdot, T_h)) \|_{\ell^1_h} - \| \pi_h((\tilde{u}_h(0) - k)\pi_h(\cdot, \sigma_h)) \|_{\ell^1_h} \leq \Lambda(\psi),
\]

where $\| \cdot \|_{\ell^1_h}$ is the discrete L^1-norm and $|T - T_h| \leq \gamma \Delta t$, $|0 - \sigma_h| \leq \gamma \Delta t$, $\gamma > 0$ is a uniform constant. Then the following estimate holds

\[
\| u(\cdot, T) - \tilde{u}_h(\cdot, T) \|_{L^1(\Omega)} \leq c \left((\epsilon + h) |u_0|_{BV(\Omega)} + \Lambda^* \right)
\]

where $\Lambda^* := \sup_{0 \leq t \leq T} \frac{\int_0^t \int_D \Lambda(\phi) \, dy \, ds}{\Gamma_\delta(t)}$, where ϕ Kruskov’s kernel.

A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies \(\Rightarrow\) Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume \(u_0 \in BV\) and \(f\) Lipschitz. Let \(u_h\) be the first-order viscosity solution. Then there is \(c_0\), uniform, such that the following holds if \(CFL \leq c_0\):

1. \(\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{\frac{1}{2}}\) if a priori BV estimate on \(u_h\).
2. \(\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{\frac{1}{4}}\) otherwise.

- BV estimate is trivial in 1D (Harten’s lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies ⇒ Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume $u_0 \in BV$ and f Lipschitz. Let u_h be the first-order viscosity solution. Then there is c_0, uniform, such that the following holds if $CFL \leq c_0$:

(i) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/2}$ if a priori BV estimate on u_h.

(ii) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/4}$ otherwise.

- BV estimate is trivial in 1D (Harten’s lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume $u_0 \in BV$ and f Lipschitz. Let u_h be the first-order viscosity solution. Then there is c_0, uniform, such that the following holds if $CFL \leq c_0$:

(i) $\| u(T) - u_h(T) \|_{L^\infty((0,T);L^1)} \leq ch^{1/2}$ if a priori BV estimate on u_h.

(ii) $\| u(T) - u_h(T) \|_{L^\infty((0,T);L^1)} \leq ch^{1/4}$ otherwise.

- BV estimate is trivial in 1D (Harten's lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies ⇒ Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume $u_0 \in BV$ and f Lipschitz. Let u_h be the first-order viscosity solution. Then there is c_0, uniform, such that the following holds if $CFL \leq c_0$:

(i) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/2}$ if a priori BV estimate on u_h.

(ii) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/4}$ otherwise.

- BV estimate is trivial in 1D (Harten’s lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
A priori error estimate for scalar equations

English translation

Control on all the Kruskov entropies \Rightarrow Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume $u_0 \in BV$ and f Lipschitz. Let u_h be the first-order viscosity solution. Then there is c_0, uniform, such that the following holds if $CFL \leq c_0$:

1. $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/2}$ if a priori BV estimate on u_h.
2. $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{1/4}$ otherwise.

- BV estimate is trivial in 1D (Harten’s lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
A priori error estimate for scalar equations

English translation
Control on all the Kruskov entropies ⇒ Convergence estimate.

Theorem (Guermond, Popov (2014-16))

Assume $u_0 \in BV$ and f Lipschitz. Let u_h be the first-order viscosity solution. Then there is c_0, uniform, such that the following holds if $CFL \leq c_0$:

(i) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{\frac{1}{2}}$ if a priori BV estimate on u_h.

(ii) $\|u(T) - u_h(T)\|_{L^\infty((0,T);L^1)} \leq ch^{\frac{1}{4}}$ otherwise.

- BV estimate is trivial in 1D (Harten’s lemma).
- BV estimate can be proved in nD on special meshes.
- First error estimates for explicit continuous FE method (as far as we know).
Second-order extensions, scalar equations
Scalar conservation equations (it’s easy to get it wrong)

Naive approach: FCT+Galerkin

- One could think of using Flux Corrected Transport (FCT) with
 - Galerkin (high-order)
 - above method (low-order).

- Method is high-order and satisfies the maximum principle locally.

Lemma

There exist C^∞ fluxes and piecewise smooth initial data such that under the CFL condition $1 + 2\Delta t \frac{dn}{m} \geq 0$ the approximate sequence given by Galerkin with the FCT does not converge to the unique entropy solution.
Scalar conservation equations (it’s easy to get it wrong)

Naive approach: FCT+Galerkin

- One could think of using Flux Corrected Transport (FCT) with
 - Galerkin (high-order)
 - above method (low-order).
- Method is high-order and satisfies the maximum principle locally.

Lemma

There exist \(C^{\infty} \) fluxes and piecewise smooth initial data such that under the CFL condition \(1 + 2\Delta t \frac{d_i^n}{m_i} \geq 0 \) the approximate sequence given by Galerkin with the FCT does not converge to the unique entropy solution.
Scalar conservation equations (it’s easy to get it wrong)

Naive approach: FCT + Galerkin

- One could think of using Flux Corrected Transport (FCT) with
 - Galerkin (high-order)
 - above method (low-order).
- Method is high-order and satisfies the maximum principle locally.

Lemma

There exist \(C^\infty \) fluxes and piecewise smooth initial data such that under the CFL condition \(1 + 2\Delta t \frac{d^n}{m_i} \geq 0 \) the approximate sequence given by Galerkin with the FCT does not converge to the unique entropy solution.
Scalar conservation equations (it’s easy to get it wrong)

Burger’s equation. Left: \mathbb{P}_1 interpolant of the exact solution at $t = 0.75$; Right: piecewise linear approximation of the solution using Galerkin+FCT with 474189 grid points.
Scalar conservation equations

Smoothness indicator

- Let $\beta_{ij} > 0$ (arbitrary for the time being).
- Define $\alpha_i^\sigma \in [0, 1]$
 \[
 \alpha_i^\sigma := \frac{\left| \sum_{j \in I(S_i)} \beta_{ij}(U_j^n - U_i^n) \right|}{\sum_{j \in I(S_i)} \beta_{ij}|U_j^n - U_i^n|},
 \]
- Let $d_{ij}^{V,n} := \lambda_{\max}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_2^2, \quad j \neq i.$
- Set $d_{ij}^n = \max(\psi(\alpha_i^\sigma), \psi(\alpha_i^\sigma))d_{ij}^{V,n}, \quad \psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1.$

literature

Smoothness indicator idea can be found in Jameson et al., (1981) Eq. (12), Jameson, (2017) p. 6, Burman, (2007), Thm. 4.1
Smoothness indicator

- Let $\beta_{ij} > 0$ (arbitrary for the time being).
- Define $\alpha_i^n \in [0, 1]$
 \[
 \alpha_i^n := \frac{\left| \sum_{j \in \mathcal{I}(S_i)} \beta_{ij} (U_j^n - U_i^n) \right|}{\sum_{j \in \mathcal{I}(S_i)} \beta_{ij} |U_j^n - U_i^n|},
 \]

- Let $d_{ij}^{V,n} := \lambda_{\max}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_{\ell^2}, \quad j \neq i.$
- Set $d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_i^n))d_{ij}^{V,n}, \quad \psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1.$

literature

Smoothness indicator idea can be found in Jameson et al., (1981) Eq. (12), Jameson, (2017) p. 6, Burman, (2007), Thm. 4.1
Scalar conservation equations

Smoothness indicator

- Let $\beta_{ij} > 0$ (arbitrary for the time being).
- Define $\alpha^n_i \in [0, 1]$
 \[\alpha^n_i := \frac{\left| \sum_{j \in \mathcal{I}(S_i)} \beta_{ij} (U^n_j - U^n_i) \right|}{\sum_{j \in \mathcal{I}(S_i)} \beta_{ij} |U^n_j - U^n_i|}, \]

- Let $d_{ij}^{V,n} := \lambda_{\max}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_{\ell^2}, \quad j \neq i$.

- Set $d_{ij}^n = \max(\psi(\alpha^n_i), \psi(\alpha^n_i))d_{ij}^{V,n}, \psi \in C^{0,1}([0,1]; [0,1])$ arbitrary with $\psi(1) = 1$.

literature

Scalar conservation equations

Smoothness indicator

- Let $\beta_{ij} > 0$ (arbitrary for the time being).
- Define $\alpha^n_i \in [0, 1]$

\[\alpha^n_i := \frac{\left| \sum_{j \in I(S_i)} \beta_{ij} (U^n_j - U^n_i) \right|}{\sum_{j \in I(S_i)} \beta_{ij} |U^n_j - U^n_i|}, \]

- Let $d^{V,n}_{ij} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \| c_{ij} \|_{L^2}, \quad j \neq i.$
- Set $d^n_{ij} = \max(\psi(\alpha^n_i), \psi(\alpha^n_i)) d^{V,n}_{ij}, \psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1.$

literature

Smoothness indicator idea can be found in Jameson et al., (1981) Eq. (12), Jameson, (2017) p. 6, Burman, (2007), Thm. 4.1
Scalar conservation equations

Smoothness indicator

- Let $\beta_{ij} > 0$ (arbitrary for the time being).
- Define $\alpha^n_i \in [0, 1]$

$$\alpha^n_i := \frac{\left| \sum_{j \in \mathcal{I}(S_i)} \beta_{ij} (U^n_j - U^n_i) \right|}{\sum_{j \in \mathcal{I}(S_i)} \beta_{ij} \left| U^n_j - U^n_i \right|},$$

- Let $d_{ij}^{V,n} := \lambda_{\max}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_{\ell^2}, \quad j \neq i.$
- Set $d_{ij}^n = \max(\psi(\alpha^n_i), \psi(\alpha^n_i))d_{ij}^{V,n}, \quad \psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1.$

literature

Smoothness indicator idea can be found in Jameson et al., (1981) Eq. (12), Jameson, (2017) p. 6, Burman, (2007), Thm. 4.1
Heuristics

- α_i should be $O(h^2)$ (away from extrema).

Generalized barycentric coordinates

- In 1D, $h_i = x_i - x_{i-1}$, $h_{i+1} = x_{i+1} - x_i$ and set $\beta_{i,i-1} = \frac{h_i}{h_i + h_{i+1}}$ and $\beta_{i,i+1} = \frac{h_{i+1}}{h_i + h_{i+1}}$.

- Multi-D, $\{\beta_{ij}\}_{j \in \mathcal{I}(S_i)}$ are generalized barycentric coordinates (Floater (2015), Warren et al. (2007)).
Scalar conservation equations

Heuristics

- α_i should be $O(h^2)$ (away from extremas).

Generalized barycentric coordinates

- In 1D, $h_i = x_i - x_{i-1}$, $h_{i+1} = x_{i+1} - x_i$ and set $\beta_{i,i-1} = \frac{h_i}{h_i + h_{i+1}}$ and
 $$\beta_{i,i+1} = \frac{h_{i+1}}{h_i + h_{i+1}}.$$
- Multi-D, $\{\beta_{ij}\}_{j \in \mathcal{I}_i}$ are generalized barycentric coordinates (Floater (2015), Warren et al. (2007)).
Heuristics

- \(\alpha_i \) should be \(\mathcal{O}(h^2) \) (away from extrema).

Generalized barycentric coordinates

- In 1D, \(h_i = x_i - x_{i-1} \), \(h_{i+1} = x_{i+1} - x_i \) and set \(\beta_{i,i-1} = \frac{h_i}{h_i + h_{i+1}} \) and \(\beta_{i,i+1} = \frac{h_{i+1}}{h_i + h_{i+1}} \).
- Multi-D, \(\{\beta_{ij}\}_{j \in \mathcal{I}(S_i)} \) are generalized barycentric coordinates (\textit{Floater (2015)}, \textit{Warren et al. (2007)}).
Scalar conservation equations

Theorem

Let \(\psi \in C^{0,1}([0,1];[0,1]) \) be any positive function such that \(\psi(1) = 1 \). Then, the scheme using \(d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_j^n))d_{ij}^{V,n} \) is locally maximum principle preserving under a local CFL condition that depends on the Lipschitz constant of \(\psi \).
Extension to hyperbolic systems: positivity

- Assume hyperbolic system has an equation like $\partial_t \rho + \nabla \cdot \mathbf{q} = 0$.
- Assume that the PDE enforces $\frac{\mathbf{q}}{\rho} < \infty$.
- Set
 $$d_{ij}^{V,n} := \lambda_{\max}(f, n_{ij}, U_i, U_j)\|c_{ij}\|_{l^2}, \quad j \neq i.$$
- Then define
 $$d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_j^n))d_{ij}^{V,n}, \quad \psi \in C^{0,1}([0,1];[0,1]) \text{ arbitrary with } \psi(1) = 1.$$
Extension to hyperbolic systems: positivity

Mass, energy, water height, etc

- Assume hyperbolic system has an equation like $\partial_t \rho + \nabla \cdot q = 0$.
- Assume that the PDE enforces $q/\rho < \infty$.
- Set $d_{ij}^{V,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_{\ell^2}, \quad j \neq i$.
- Then define $d_{ij}^{n} = \max(\psi(\alpha_i^n), \psi(\alpha_i^n))d_{ij}^{V,n}$, $\psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1$.

\[d_{ij}^{V,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \|c_{ij}\|_{\ell^2}, \quad j \neq i. \]
Extension to hyperbolic systems: positivity

Mass, energy, water height, etc

- Assume hyperbolic system has an equation like $\partial_t \rho + \nabla \cdot \mathbf{q} = 0$.
- Assume that the PDE enforces $\mathbf{q}/\rho < \infty$.
- Set $d_{ij}^{V,n} := \lambda_{\max}(f, \mathbf{n}_{ij}, U_i, U_j) \| c_{ij} \|_{L^2}, \quad j \neq i$.
- Then define $d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_j^n)) d_{ij}^{V,n}, \quad \psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1$.

References
Extension to hyperbolic systems: positivity

Mass, energy, water height, etc

- Assume hyperbolic system has an equation like $\partial_t \rho + \nabla \cdot q = 0$.
- Assume that the PDE enforces $q/\rho < \infty$.
- Set $d_{ij}^{V,n} := \lambda_{\text{max}}(f, n_{ij}, U_i, U_j) \| c_{ij} \|_2$, $j \neq i$.
- Then define $d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_j^n)) d_{ij}^{V,n}$, $\psi \in C^{0,1}([0, 1]; [0, 1])$ arbitrary with $\psi(1) = 1$.
Hyperbolic systems, positivity

Theorem

Let \(\psi \in C^{0,1}([0, 1]; [0, 1]) \) be any positive function such that \(\psi(1) = 1 \). The scheme using \(d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_i^n))d_{ij}^{V,n} \) is positivity preserving under a local CFL condition.

Mass, energy, water height, etc

- Euler: density, (internal energy).
- Shallow water: water height.
Theorem

Let \(\psi \in C^{0,1}([0, 1]; [0, 1]) \) be any positive function such that \(\psi(1) = 1 \). The scheme using \(d_{ij}^n = \max(\psi(\alpha_i^n), \psi(\alpha_i^n))d_{ij}^{V,n} \) is positivity preserving under a local CFL condition.

Mass, energy, water height, etc

- Euler: density, (internal energy).
- Shallow water: water height.

Outline

1. Hyperbolic systems, first-order
2. Second-order extensions, scalar
3. Shallow water
Shallow water equations

- Conservation of mass and momentum:
 \[
 \partial_t u + \nabla \cdot f(u) + \begin{pmatrix} 0 \\ gh \nabla z \end{pmatrix} = S(u), \quad x \in D, \ t \in \mathbb{R}_+
 \]
 where \(z : D \to \mathbb{R} \) is the bathymetry, \(g \) is the gravity constant, \(h \) is the water height,

- Flux
 \[
 f(u) = \begin{pmatrix} q^T \\ \frac{1}{h} q \otimes q + \frac{1}{2} gh^2 I_d \end{pmatrix} \in \mathbb{R}^{(1+d) \times d},
 \]
 \(q \) is the discharge.

- Manning friction
 \[
 S(u) = -gn^2 h^{-\gamma} q \|v\|_{L^2}.
 \]
 We take \(\gamma = \frac{4}{3} \).
Shallow water equations

- Conservation of mass and momentum:
 \[\partial_t u + \nabla \cdot f(u) + \begin{pmatrix} 0 \\ gh \nabla z \end{pmatrix} = S(u), \quad x \in D, \ t \in \mathbb{R}_+ \]

 where \(z : D \to \mathbb{R} \) is the bathymetry, \(g \) is the gravity constant, \(h \) is the water height,

- Flux
 \[f(u) = \begin{pmatrix} \frac{1}{h} q \otimes q + \frac{1}{2} gh^2 I_d \end{pmatrix} \in \mathbb{R}^{(1+d) \times d}, \]

 \(q \) is the discharge.

- Manning friction
 \[S(u) = -gn^2 h^{-\gamma} q \| v \|_{L^2}. \]

We take \(\gamma = \frac{4}{3} \).
Shallow water equations

- Conservation of mass and momentum:
 \[\partial_t u + \nabla \cdot f(u) + \begin{pmatrix} 0 \\ gh \nabla z \end{pmatrix} = S(u), \quad x \in D, \ t \in \mathbb{R}_+ \]
 where \(z : D \to \mathbb{R} \) is the bathymetry, \(g \) is the gravity constant, \(h \) is the water height,

- Flux
 \[f(u) = \begin{pmatrix} \frac{1}{h} q \otimes q + \frac{1}{2} gh^2 I_d \end{pmatrix} \in \mathbb{R}^{(1+d) \times d}, \]
 \(q \) is the discharge.

- Manning friction
 \[S(u) = -gn^2 h^{-\gamma} q \| v \|_{L^2}. \]

We take \(\gamma = \frac{4}{3} \).
Definition (Well balancing at rest)

A numerical scheme is said to be well-balanced at rest if rest states are invariant by the scheme, (i.e., rest is exactly preserved).

If discharge is zero and \(h + z = \text{const} \), nothing should move.
Definition (Well balancing at rest)

A numerical scheme is said to be well-balanced at rest if rest states are invariant by the scheme, (i.e., rest is exactly preserved).

English translation

If discharge is zero and \(h + z = \text{const} \), nothing should move.
Well-balancing

Definition (Well balancing for sliding steady state)

- Assume that the bottom is a plane with two tangent orthonormal vectors \(t_1, t_2 \) with \(t_2 \) being horizontal and \(t_1 \) pointing downward, i.e., \(\nabla z = -bt_1 \) with \(b > 0 \).
- A numerical scheme is said to be well-balanced for sliding steady states if it preserves the following steady state solution:

\[
q(x, t) \cdot t_2 = 0, \quad q(x, t) \cdot t_1 = q_0, \quad h(x, t) = h_0 := \left(\frac{n^2 q_0^2}{b} \right)^{\frac{1}{2+\gamma}}.
\]

Key questions

- Preserving rest states and sliding states (well-balancing)
 - Water height h must stay positive.
 - $S(u)$ is singular $h \rightarrow 0$. How this term should be handled to make a positive explicit scheme?
 - Can significant results produced by the abundant FV and DG literature be reproduced with continuous FE without invoking ad hoc linear stabilization (à la SUPG, edge stabilization, subgrid stabilization, etc.), i.e., without ad hoc parameters.
Key questions

- Preserving rest states and sliding states (well-balancing)
- Water height h must stay positive.
- $S(u)$ is singular $h \to 0$. How this term should be handled to make a positive explicit scheme?
- Can significant results produced by the abundant FV and DG literature be reproduced with continuous FE without invoking ad hoc linear stabilization (à la SUPG, edge stabilization, subgrid stabilization, etc.), i.e., without ad hoc parameters.
Key questions

- Preserving rest states and sliding states (well-balancing)
- Water height h must stay positive.
- $S(u)$ is singular $h \to 0$. How this term should be handled to make a positive explicit scheme?
- Can significant results produced by the abundant FV and DG literature be reproduced with continuous FE without invoking ad hoc linear stabilization (à la SUPG, edge stabilization, subgrid stabilization, etc.), i.e., without ad hoc parameters.
Key questions

- Preserving rest states and sliding states (well-balancing)
- Water height h must stay positive.
- $S(u)$ is singular $h \to 0$. How this term should be handled to make a positive explicit scheme?
- Can significant results produced by the abundant FV and DG literature be reproduced with continuous FE without invoking ad hoc linear stabilization (à la SUPG, edge stabilization, subgrid stabilization, etc.), i.e., without ad hoc parameters.
Well-balancing

Well-balanced, positivity preserving, second-order FE scheme

\[
m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_{j \in \mathcal{I}(D_i)} -g(U_j^n) \cdot c_{ij} - \left(gH^n_i (H^n_j + Z_j) c_{ij} \right)^T - \left(0, \frac{2gn^2 Q^n_i \|V_i\|_{\ell^2} m_i}{(H^n_i)^\gamma + \max((H^n_i)^\gamma, 2gn^2 \Delta t \|V_i\|_{\ell^2})} \right) + \sum_{i \neq j \in \mathcal{I}(D_i)} \left((d_{ij}^n - \mu_{ij}^n) (U_{ij}^{*,i,n} - U_{ij}^{*,j,n}) + \mu_{ij}^n (U_j^n - U_i^n) \right)
\]

Hydrostatic reconstruction (Audusse et al. (2004))

\[
H_{ij}^{*,i} := \max(0, H_i + Z_i - \max(Z_i, Z_j)),
\]

\[
U_{ij}^{*,i,n} := \frac{H_{ij}^{*,i}}{H_j^n}.
\]
Well-balancing

Well-balanced, positivity preserving, second-order FE scheme

\[m_i \frac{U_i^{n+1} - U_i^n}{\Delta t} = \sum_{j \in I(D_i)} -g(U_j^n) \cdot c_{ij} - \left(g H_i^n (H_j^n + Z_j) c_{ij} \right) \]

\[- \left(0, \frac{2 g n^2 Q_i^n \|V_i\|_{\ell^2} m_i}{(H_i^n)^{\gamma} + \max((H_i^n)^{\gamma}, 2 g n^2 \Delta t \|V_i\|_{\ell^2})} \right)^T \]

\[+ \sum_{i \neq j \in I(D_i)} ((d_{ij}^n - \mu_{ij}^n)(U_j^{*,i,n} - U_i^{*,j,n}) + \mu_{ij}^n (U_j^n - U_i^n)) \]

Hydrostatic reconstruction (Audusse et al. (2004))

\[H_{i,j}^{*,i} := \max(0, H_i + Z_i - \max(Z_i, Z_j)), \]

\[U_{j,i,n}^{*,i} := U_j \frac{H_{i,j}^{*,i}}{H_j}. \]
Well-balancing

Theorem

- The scheme is well-balanced w.r.t. rest states.
- The scheme is well-balanced w.r.t. sliding states if the following alternative holds: (i) mesh is centro-symmetric and fine enough, and the artificial viscosity is defined so that d_{ij}^n and μ_{ij}^n are constant when $U_j^n = U_i^n$ for all $j \in I(D_i)$; or (ii) the mesh is non-uniform but the artificial viscosity is defined so that $d_{ij}^n = 0$ and $\mu_{ij}^n = 0$ when $U_i^n = U_j^n$ for all $j \in I(D_i)$ and all $i \in \{1:I\}$.
The scheme is well-balanced w.r.t. rest states.

The scheme is well-balanced w.r.t. sliding states if the following alternative holds:
(i) mesh is centro-symmetric and fine enough, and the artificial viscosity is defined so that \(d_{ij}^n \) and \(\mu_{ij}^n \) are constant when \(U_j^n = U_i^n \) for all \(j \in \mathcal{I}(D_i) \); or (ii) the mesh is non-uniform but the artificial viscosity is defined so that \(d_{ij}^n = 0 \) and \(\mu_{ij}^n = 0 \) when \(U_i^n = U_j^n \) for all \(j \in \mathcal{I}(D_i) \) and all \(i \in \{1:I\} \).
Smoothness-based viscosities

- Conservation of mass:
 \[\partial_t h + \nabla \cdot q = 0. \]

 and \(q/h \) is bounded.

- Use smoothness-based viscosity defined for scalar conservation equations:
 \[\mu_{ij}^n := \max(\psi_i^n, \psi_j^n) \max((V_i \cdot n_{ij})_-, (V_j \cdot n_{ij})_+) \|c_{ij}\|_{\ell^2}, \quad i \neq j. \]
 \[d_{ij}^n = \max(\psi_i^n, \psi_j^n) d_{ij}^\nu \]
Smoothness-based viscosities

- Conservation of mass:
 \[\partial_t h + \nabla \cdot q = 0. \]
 and \(q/h \) is bounded.

- Use smoothness-based viscosity defined for scalar conservation equations:

 \[
 \mu_{ij}^n := \max(\psi_i^n, \psi_j^n) \max((V_i \cdot n_{ij})_-, (V_j \cdot n_{ij})_+) \|c_{ij}\|_{\ell^2}, \quad i \neq j.
 \]

 \[
 d_{ij}^n = \max(\psi_i^n, \psi_j^n) d_{ij}^\nu
 \]
Theorem

The Scheme is positive.

The scheme is also formally second-order in space.
Theorem

The Scheme is positive.

The scheme is also formally second-order in space.
entropy-viscosity for hyperbolic systems

- Smoothness-based viscosity limited to second-order.

- Use viscosity based on entropy residual or commutator.
- Let \((\eta, F)\) be an entropy pair.
- Set \(\epsilon = 10^{-16/2}\) and define

\[
\eta_{i}^{\text{min}} := \min_{j \in I(D_i)} \eta(U^n_j), \quad \eta_{i}^{\text{max}} := \max_{j \in I(D_i)} \eta(U^n_j), \quad \epsilon_i := \epsilon \max(|\eta_{i}^{\text{max}}|, |\eta_{i}^{\text{min}}|).
\]

- Define entropy residual

\[
R^n_i = \frac{1}{\max(|\eta_{i}^{\text{max}} - \eta_{i}^{\text{min}}|, \epsilon_i)} \sum_{j \in I(D_i)} (F(U^n_j) - \eta'(U^n_j)^T f(U^n_j)) \cdot c_{ij}. \tag{1}
\]

- \(R^n_i\) is a commutator that measures smoothness of entropy.
- \((\eta, F)\) does not need to be an entropy pair for the system with source.
Entropy-viscosity for hyperbolic systems

- Smoothness-based viscosity limited to second-order.

- Use viscosity based on entropy residual or commutator.
 - Let \((\eta, F)\) be an entropy pair.
 - Set \(\epsilon = 10^{-16/2}\) and define
 \[
 \eta_{i}^{\text{min}} := \min_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \eta_{i}^{\text{max}} := \max_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \epsilon_i := \epsilon \max(|\eta_{i}^{\text{max}}|, |\eta_{i}^{\text{min}}|).
 \]

- Define entropy residual
 \[
 R^n_i = \frac{1}{\max(|\eta_{i}^{\text{max}} - \eta_{i}^{\text{min}}|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U^n_j) - \eta'(U^n_j)^T f(U^n_j)) \cdot c_{ij}. \tag{1}
 \]

- \(R^n_i\) is a commutator that measures smoothness of entropy.
- \((\eta, F)\) does not need to be an entropy pair for the system with source.
Smoothness-based viscosity limited to second-order.

Use viscosity based on entropy residual or commutator.

Let \((\eta, F)\) be an entropy pair.

Set \(\epsilon = 10^{-\frac{16}{2}}\) and define

\[
\eta_{\min}^i := \min_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \eta_{\max}^i := \max_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \epsilon_i := \epsilon \max(|\eta_{\max}^i|, |\eta_{\min}^i|).
\]

Define entropy residual

\[
R^n_i = \frac{1}{\max(|\eta_{\max}^i - \eta_{\min}^i|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U^n_j) - \eta'(U^n_i)^T f(U^n_j)) \cdot c_{ij}.
\]

\(R^n_i\) is a commutator that measures smoothness of entropy.

\((\eta, F)\) does not need to be an entropy pair for the system with source.
Entropy-viscosity for hyperbolic systems

- Smoothness-based viscosity limited to second-order.

- Use viscosity based on entropy residual or commutator.
- Let (η, F) be an entropy pair.
- Set $\epsilon = 10^{-16}$ and define

 \[
 \eta_{\text{min}}^i := \min_{j \in \mathcal{I}(D_i)} \eta(U_j^n), \quad \eta_{\text{max}}^i := \max_{j \in \mathcal{I}(D_i)} \eta(U_j^n), \quad \epsilon_i := \epsilon \max(|\eta_{\text{max}}^i|, |\eta_{\text{min}}^i|).
 \]

- Define entropy residual

 \[
 R_i^n = \frac{1}{\max(|\eta_{\text{max}}^i - \eta_{\text{min}}^i|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U_j^n) - \eta'(U_j^n)^T f(U_j^n)) \cdot c_{ij}.
 \]

 - R_i^n is a commutator that measures smoothness of entropy.
 - (η, F) does not need to be an entropy pair for the system with source.
Entropy-viscosity for hyperbolic systems

- Smoothness-based viscosity limited to second-order.

- Use viscosity based on entropy residual or commutator.
- Let \((\eta, F)\) be an entropy pair.
- Set \(\epsilon = 10^{\frac{-16}{2}}\) and define

 \[
 \eta_{i}^{\min} := \min_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \eta_{i}^{\max} := \max_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \epsilon_i := \epsilon \max(|\eta_{i}^{\max}|, |\eta_{i}^{\min}|).
 \]

- Define entropy residual

 \[
 R^n_i = \frac{1}{\max(|\eta_{i}^{\max} - \eta_{i}^{\min}|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U^n_j) - \eta'(U^n_i)^T f(U^n_j)) \cdot c_{ij}.
 \]

- \(R^n_i\) is a commutator that measures smoothness of entropy.
- \((\eta, F)\) does not need to be an entropy pair for the system with source.
Smoothness-based viscosity limited to second-order.

Use viscosity based on entropy residual or commutator.

Let \((\eta, F)\) be an entropy pair.

Set \(\epsilon = 10^{-16}\) and define

\[
\eta_i^\text{min} := \min_{j \in \mathcal{I}(D_i)} \eta(U_j^n), \quad \eta_i^\text{max} := \max_{j \in \mathcal{I}(D_i)} \eta(U_j^n), \quad \epsilon_i := \epsilon \max(|\eta_i^\text{max}|, |\eta_i^\text{min}|).
\]

Define entropy residual

\[
R_i^n = \frac{1}{\max(|\eta_i^\text{max} - \eta_i^\text{min}|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U_j^n) - \eta'(U_i^n)^T f(U_j^n)) \cdot c_{ij}.
\]

\(R_i^n\) is a commutator that measures smoothness of entropy.

\((\eta, F)\) does not need to be an entropy pair for the system with source.
Entropy-viscosity for hyperbolic systems

- Smoothness-based viscosity limited to second-order.
- Use viscosity based on entropy residual or commutator.
- Let \((\eta, F)\) be an entropy pair.
- Set \(\epsilon = 10^{-\frac{16}{2}}\) and define
 \[
 \eta_i^{\text{min}} := \min_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \eta_i^{\text{max}} := \max_{j \in \mathcal{I}(D_i)} \eta(U^n_j), \quad \epsilon_i := \epsilon \max(|\eta_i^{\text{max}}|, |\eta_i^{\text{min}}|).
 \]
- Define entropy residual
 \[
 R^n_i = \frac{1}{\max(|\eta_i^{\text{max}} - \eta_i^{\text{min}}|, \epsilon_i)} \sum_{j \in \mathcal{I}(D_i)} (F(U^n_j) - \eta'(U^n_i)^T f(U^n_j)) \cdot c_{ij}.
 \]
 \(R^n_i\) is a commutator that measures smoothness of entropy.
- \((\eta, F)\) does not need to be an entropy pair for the system with source.
Entropy-viscosity for hyperbolic systems

Example 1

\[\eta(u) = g\left(\frac{1}{2}h^2 + hz\right) + \frac{1}{2}h\|v\|_{L^2}^2, \quad F(u) = \left(\frac{1}{2}h\|v\|_{L^2}^2 + g(h^2 + hz)\right)v, \]

\[|R^n_i| := \frac{1}{\Delta \eta^n_i} \sum_{j \in \mathcal{I}(D_i)} \left(F(U^n_j) - \nabla \eta(U^n_i) \cdot f(U^n_j) \right) \cdot c_{ij} - gH^n_i z V^n_j \cdot c_{ij}. \]

Example 2, flat bottom

\[\eta^{\text{flat}}(u) = g\frac{1}{2}h^2 + \frac{1}{2}h\|v\|_{L^2}^2, \quad F^{\text{flat}}(u) = \left(\frac{1}{2}h\|v\|_{L^2}^2 + gh^2\right)v, \]

\[|R^n_i| := \frac{1}{2\Delta \eta^n_i} \sum_{j \in \mathcal{I}(D_i)} \left(F^{\text{flat}}(U^n_j) - \nabla \eta^{\text{flat}}(U^n_i) \cdot f(U^n_j) \right) \cdot c_{ij}. \]

Then the numerical (E)ntropy (V)iscosities are defined as follows:

\[\mu^{\text{EV},n}_{ij} := \min \left(\mu^{V,n}_{ij}, \max(|R^n_i|, |R^n_j|) \right), \]

\[d^{\text{EV},n}_{ij} := \min \left(d^{V,n}_{ij}, \max(|R^n_i|, |R^n_j|) \right), \]
Entropy-viscosity for hyperbolic systems

Example 1

\[\eta(u) = g\left(\frac{1}{2} h^2 + hz\right) + \frac{1}{2} h\|v\|^2_{\ell^2}, \quad F(u) = \left(\frac{1}{2} h\|v\|^2_{\ell^2} + g(h^2 + hz)\right)v, \]

\[|R^n_i| := \frac{1}{\Delta\eta^n_i} \sum_{j \in \mathcal{I}(D_i)} \left(F(U^n_j) - \nabla \eta(U^n_i) \cdot f(U^n_j) \right) \cdot c_{ij} - gH^n_i Z_j V^n_j \cdot c_{ij}. \]

Example 2, flat bottom

\[\eta^{\text{flat}}(u) = g\frac{1}{2} h^2 + \frac{1}{2} h\|v\|^2_{\ell^2}, \quad F^{\text{flat}}(u) = \left(\frac{1}{2} h\|v\|^2_{\ell^2} + gh^2\right)v, \]

\[|R^n_i| := \frac{1}{2\Delta\eta^{\text{flat},n}_i} \sum_{j \in \mathcal{I}(D_i)} \left(F^{\text{flat}}(U^n_j) - \nabla \eta^{\text{flat}}(U^n_i) \cdot f(U^n_j) \right) \cdot c_{ij}. \]

Then the numerical (E)ntropy (V)iscosities are defined as follows:

\[\mu_{ij}^{EV,n} := \min \left(\mu_{ij}^{V,n}, \max(\{|R^n_i|, |R^n_j|\}) \right), \]

\[d_{ij}^{EV,n} := \min \left(d_{ij}^{V,n}, \max(\{|R^n_i|, |R^n_j|\}) \right), \]
Entropy-viscosity for hyperbolic systems

Example 1

\[\eta(u) = g\left(\frac{1}{2}h^2 + hz\right) + \frac{1}{2}h\|v\|_2^2, \quad F(u) = \left(\frac{1}{2}h\|v\|_2^2 + g(h^2 + hz)\right)v, \]

\[|R^n_i| := \frac{1}{\Delta\eta^n_i} \sum_{j \in I(D_i)} \left(F(U^n_j) - \nabla \eta(U^n_i) \cdot f(U^n_j)\right) \cdot c_{ij} - gH^n_i Z_j V^n_j \cdot c_{ij}. \]

Example 2, flat bottom

\[\eta_{\text{flat}}(u) = g\frac{1}{2}h^2 + \frac{1}{2}h\|v\|_2^2, \quad F_{\text{flat}}(u) = \left(\frac{1}{2}h\|v\|_2^2 + gh^2\right)v, \]

\[|R^n_i| := \frac{1}{2\Delta\eta^n_{i,\text{flat}}} \sum_{j \in I(D_i)} \left(F_{\text{flat}}(U^n_j) - \nabla \eta_{\text{flat}}(U^n_i) \cdot f(U^n_j)\right) \cdot c_{ij}. \]

Then the numerical (E)ntropy (V)iscosities are defined as follows:

\[\mu_{ij}^{EV,n} := \min\left(\mu_{ij}^{V,n}, \max(|R^n_i|, |R^n_j|)\right), \]

\[d_{ij}^{EV,n} := \min\left(d_{ij}^{V,n}, \max(|R^n_i|, |R^n_j|)\right), \]
Limiting

- What should be limited?
- What should be the bounds?
- How can that be done?
Principle: high-order minus low-order solution gives

$$m_i(U_i^{H,n+1} - U_i^{L,n+1}) = \sum_{j \in \mathcal{I}(D_i)} A_{ij}.$$

Observe that $A_{ij} = -A_{ji}$. This implies mass conservation:

$$\sum_{i \in \{1:l\}} m_i U_i^{H,n+1} = \sum_{i \in \{1:l\}} m_i U_i^{L,n+1}.$$

Introduce limiter $0 \leq \ell_{ij} = \ell_{ji} \leq 1$

$$m_i(U_i^{n+1} - U_i^{L,n+1}) = \sum_{j \in \mathcal{I}(D_i)} \ell_{ij} A_{ij}.$$

Symmetry $\ell_{ij} = \ell_{ji}$ implies mass conservation:

$$\sum_{i \in \{1:l\}} m_i U_i^{n+1} = \sum_{i \in \{1:l\}} m_i U_i^{L,n+1}.$$
Limiting

- Principle: high-order minus low-order solution gives
 \[
 m_i (U_i^{H,n+1} - U_i^{L,n+1}) = \sum_{j \in \mathcal{I}(D_i)} A_{ij}.
 \]
 Observe that \(A_{ij} = -A_{ji} \). This implies mass conservation:
 \[
 \sum_{i \in \{1:I\}} m_i U_i^{H,n+1} = \sum_{i \in \{1:I\}} m_i U_i^{L,n+1}.
 \]

- Introduce limiter \(0 \leq \ell_{ij} = \ell_{ji} \leq 1 \)
 \[
 m_i (U_i^{n+1} - U_i^{L,n+1}) = \sum_{j \in \mathcal{I}(D_i)} \ell_{ij} A_{ij}.
 \]
 Symmetry \(\ell_{ij} = \ell_{ji} \) implies mass conservation:
 \[
 \sum_{i \in \{1:I\}} m_i U_i^{n+1} = \sum_{i \in \{1:I\}} m_i U_i^{L,n+1}.
 \]
Limiting with exact bounds

- Set

\[S^n_i := \left(0, \frac{-2gn^2Q^n_i \|V_i\|_{\ell^2} m_i}{(H_i^n)^\gamma + \max((H_i^n)^\gamma, 2gn^2 \Delta t \|V_i\|_{\ell^2})} \right) + \sum_{j \in \mathcal{I}(D_i)} g(-H^n_i Z_j + \frac{(H_j - H_i)^2}{2})c_{ij} \]^

- Define auxiliary states:

\[\overline{U}^n_{ij} = -\frac{c_{ij}}{2d^{V,n}_{ij}} \cdot (g(U^n_j) - g(U^n_i)) + \frac{1}{2}(U^n_j + U^n_i), \]

\[\tilde{U}^n_{ij} = \frac{d^{V,n}_{ij} - \mu^{V,n}_{ij}}{2d^{V,n}_{ij}} (U^{*,i,n}_j - U^n_j - (U^{*,j,n}_i - U^n_i)). \]

Lemma

Let \(W^{L,n+1}_i := U^{L,n+1}_i - \frac{\Delta t}{m_i} S^n_i \), then, if \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d^{V,n}_{ij} \geq 0 \), the following convex combination holds true:

\[W^{L,n+1}_i = U^n_i \left(1 - \frac{\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} 2d^{V,n}_{ij}\right) + \frac{\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} 2d^{V,n}_{ij} \left(\overline{U}^n_{ij} + \tilde{U}^n_{ij}\right). \]

Furthermore we have \(\overline{H}^n_{ij} + \tilde{H}^n_{ij} \geq 0 \) for all \(j \in \mathcal{I}(D_i) \).
Limiting with exact bounds

- Set
\[
S^n_i := \left(0, \frac{-2gn^2 Q^n_i \| V_i \|_{\ell^2} m_i}{(H^n_j)^\gamma + \max((H^n_j)^\gamma, 2gn^2 \Delta t \| V_i \|_{\ell^2})} + \sum_{j \in \mathcal{I}(D_i)} g(-H^n_j Z_j + \frac{(H_j - H_i)^2}{2})c_{ij} \right)^T,
\]

- Define auxiliary states:
\[
\overline{U}^n_{ij} = -\frac{c_{ij}}{2d^n_{ij} V^i,j} \cdot (g(U^n_j) - g(U^n_i)) + \frac{1}{2} (U^n_j + U^n_i),
\]
\[
\tilde{U}^n_{ij} = \frac{d_{ij} V^i,j - \mu^n_{ij}}{2d_{ij} V^i,j} (U^n_{* i,j} - U^n_j - (U^n_{* i,j} - U^n_i)).
\]

Lemma

Let \(W^n_{i+1} := U^n_{i+1} \), then, if \(1 - \frac{2\Delta t}{m_i} \sum_{j \notin \mathcal{I}(D_i)} d^n_{ij} V^i,j \geq 0 \), the following convex combination holds true:
\[
W^n_{i+1} = U^n_i \left(1 - \frac{\Delta t}{m_i} \sum_{i \neq j \notin \mathcal{I}(D_i)} 2d^n_{ij} V^i,j \right) + \frac{\Delta t}{m_i} \sum_{i \neq j \notin \mathcal{I}(D_i)} 2d^n_{ij} V^i,j \left(\overline{U}^n_{ij} + \tilde{U}^n_{ij}\right).
\]

Furthermore we have \(\overline{H}^n_{ij} + \tilde{H}^n_{ij} \geq 0 \) for all \(j \in \mathcal{I}(D_i) \).
Limiting with exact bounds

- Set

 \[S^n_i := \begin{pmatrix} 0, \frac{-2gn^2Q^n_i\|V_i\|_{\ell^2}m_i}{(H^n_i)\gamma + \max((H^n_i)\gamma, 2gn^2\Delta t\|V_i\|_{\ell^2})} + \sum_{j\in I(D_i)} g(-H^n_iZ_j + \frac{(H_j - H_i)^2}{2})c_{ij} \end{pmatrix}^T, \]

- Define auxiliary states:

 \[\overline{U}_{ij}^n = -\frac{c_{ij}}{2d_{ij}^V,n} \cdot (g(U^n_j) - g(U^n_i)) + \frac{1}{2}(U^n_j + U^n_i), \]

 \[\tilde{U}_{ij}^n = \frac{d_{ij}^V,n - \mu_{ij}^V,n}{2d_{ij}^V,n} (U_{i,j}^n - \mu_{ij}^V, n - (U_{i,j}^n - U^n_i)). \]

Lemma

Let \[W_{i}^{L,n+1} := U_{i}^{L,n+1} - \frac{\Delta t}{m_i} S^n_i, \] then, if \[1 - \frac{2\Delta t}{m_i} \sum_{i\neq j\in I(D_i)} d_{ij}^V,n \geq 0, \] the following convex combination holds true:

\[W_{i}^{L,n+1} = U_i^n \left(1 - \frac{\Delta t}{m_i} \sum_{i\neq j\in I(D_i)} 2d_{ij}^V,n \right) + \frac{\Delta t}{m_i} \sum_{i\neq j\in I(D_i)} 2d_{ij}^V,n \left(\overline{U}_{ij}^n + \tilde{U}_{ij}^n \right). \]

Furthermore we have \[\overline{H}_{ij}^n + \tilde{H}_{ij}^n \geq 0 \] for all \[j \in I(D_i). \]
Limiting with exact bounds

Corollary (Water height)

The following holds true:

\[
0 \leq H_i^{\text{min}} := \min_{j \in \mathcal{I}(D_i)} \left(\frac{H^n_{ij}}{\bar{D}_{ij}} + \tilde{H}_n^{ij} \right) \leq H_i^{L,n+1} \leq \max_{j \in \mathcal{I}(D_i)} \left(\frac{H^n_{ij}}{\bar{D}_{ij}} + \tilde{H}_n^{ij} \right) =: H_i^{\text{max}},
\]

Corollary (Convex constraint)

The following holds true for any quasiconcave function \(\Psi \):

\[
\min_{j \in \mathcal{I}(D_i)} \left(\frac{U^n_{ij}}{\bar{D}_{ij}} + \tilde{U}_n^{ij} \right) \leq \Psi \left(U_i^{L,n+1} \right).
\]
Limiting with exact bounds

Corollary (Water height)

The following holds true:

\[
0 \leq H_i^{\text{min}} := \min_{j \in \mathcal{I}(D_i)} \left(H_{ij}^n + \tilde{H}_{ij}^n \right) \leq H_{i,n}^{L,n+1} \leq \max_{j \in \mathcal{I}(D_i)} \left(H_{ij}^n + \tilde{H}_{ij}^n \right) =: H_i^{\text{max}},
\]

Corollary (Convex constraint)

The following holds true for any quasiconcave function \(\Psi \):

\[
\min_{j \in \mathcal{I}(D_i)} \Psi \left(\overline{U}_{ij}^n + \tilde{U}_{ij}^n \right) \leq \Psi \left(U_{i,n}^{L,n+1} \right).
\]
Limiting with exact bounds

- Dry state indicator to detect these regions:
 \[H_i^{\text{dry}} := H_i^{L,n} - \frac{1}{2}(\max_{j \in I(D_i)} H_j^n - \min_{j \in I(D_i)} H_j^n). \]
- Limit the water height as follows:
 \[
 \begin{align*}
 Q_i^- & := m_i(H_i^{\text{min}} - H_i^{L,n+1}), \\
 P_i^- & := \sum_{i \neq j \in I(D_i)} (A_{ij})_-, \\
 R_i^- & := \begin{cases}
 0 & \text{if } H_i^{\text{dry}} \leq 0, \\
 1 & \text{if } P_i = 0, H_i^{\text{dry}} > 0, \\
 \frac{Q_i^-}{P_i^+} & \text{if } P_i \neq 0, H_i^{\text{dry}} > 0.
 \end{cases} \\
 \ell_{ij} & := \min(R_i^+, R_j^-), \text{ if } A_{ij}^h \geq 0,
 \end{align*}
 \]
 \[
 \begin{align*}
 Q_i^+ & := m_i(H_i^{\text{max}} - H_i^{L,n+1}), \\
 P_i^+ & := \sum_{i \neq j \in I(D_i)} (A_{ij}^h)_+, \\
 R_i^+ & := \begin{cases}
 0 & \text{if } H_i^{\text{dry}} \leq 0, \\
 1 & \text{if } P_i = 0, H_i^{\text{dry}} > 0, \\
 \frac{Q_i^+}{P_i^-} & \text{if } P_i \neq 0, H_i^{\text{dry}} > 0.
 \end{cases} \\
 \ell_{ij} & := \min(R_i^-, R_j^+), \text{ if } A_{ij}^h < 0.
 \end{align*}
 \]

Lemma

Under the CFL condition \[1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in I(D_i)} d_{ij}^{L,n} \geq 0, \] *the update satisfies the bounds* \[0 \leq H_i^{\text{min}} \leq H_i^{n+1} \leq H_i^{\text{max}}. \]
Limiting with exact bounds

- Dry state indicator to detect these regions:
 \[H^\text{dry}_i := H^{L,n}_i - \frac{1}{2} (\max_{j \in \mathcal{I}(D_i)} H^n_j - \min_{j \in \mathcal{I}(D_i)} H^n_j). \]
- Limit the water height as follows:
 \[
 Q^-_i := m_i (H^\text{min}_i - H^{L,n+1}_i), \\
 P^-_i := \sum_{i \neq j \in \mathcal{I}(D_i)} (A^h_{ij})_-, \quad Q^+_i := m_i (H^\text{max}_i - H^{L,n+1}_i), \\
 P^+_i := \sum_{i \neq j \in \mathcal{I}(D_i)} (A^h_{ij})_+, \\
 R^-_i := \begin{cases}
 0 & \text{if } H^\text{dry}_i \leq 0, \\
 1 & \text{if } P_i = 0, H^\text{dry}_i > 0, \\
 \frac{Q^-_i}{P^-_i} & \text{if } P_i \neq 0, H^\text{dry}_i > 0.
\end{cases}
 R^+_i := \begin{cases}
 0 & \text{if } H^\text{dry}_i \leq 0, \\
 1 & \text{if } P_i = 0, H^\text{dry}_i > 0, \\
 \frac{Q^+_i}{P^+_i} & \text{if } P_i \neq 0, H^\text{dry}_i > 0.
\end{cases}
\]
 \[\ell_{ij} := \min(R^+_i, R^-_j), \text{ if } A^h_{ij} \geq 0, \quad \ell_{ij} := \min(R^-_i, R^+_j), \text{ if } A^h_{ij} < 0. \]

Lemma

Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d^{L,n}_{ij} \geq 0 \), the update satisfies the bounds
\[0 \leq H^\text{min}_i \leq H^{n+1}_i \leq H^\text{max}_i. \]
Limiting with exact bounds

- Dry state indicator to detect these regions:
 \[
 H_i^{\text{dry}} := H_i^{L,n} - \frac{1}{2}(\max_{j \in \mathcal{I}(D_i)} H_j^n - \min_{j \in \mathcal{I}(D_i)} H_j^n).
 \]
- Limit the water height as follows:
 \[
 \begin{align*}
 Q_i^- &:= m_i(H_i^{\text{min}} - H_i^{L,n+1}), \\
 P_i^- &:= \sum_{i \neq j \in \mathcal{I}(D_i)} (A_{ij}^h)_-, \\
 R_i^- &:= \begin{cases}
 0 & \text{if } H_i^{\text{dry}} \leq 0, \\
 1 & \text{if } P_i = 0, H_i^{\text{dry}} > 0, \\
 Q_i^- / P_i^- & \text{if } P_i \neq 0, H_i^{\text{dry}} > 0.
 \end{cases}
 \end{align*}
 \]
 \[
 \begin{align*}
 Q_i^+ &:= m_i(H_i^{\text{max}} - H_i^{L,n+1}), \\
 P_i^+ &:= \sum_{i \neq j \in \mathcal{I}(D_i)} (A_{ij}^h)_+, \\
 R_i^+ &:= \begin{cases}
 0 & \text{if } H_i^{\text{dry}} \leq 0, \\
 1 & \text{if } P_i = 0, H_i^{\text{dry}} > 0, \\
 Q_i^+ / P_i^+ & \text{if } P_i \neq 0, H_i^{\text{dry}} > 0.
 \end{cases}
 \end{align*}
 \]
 \[
 \ell_{ij} := \min(R_i^+, R_j^-), \text{ if } A_{ij}^h \geq 0, \quad \ell_{ij} := \min(R_i^-, R_j^+), \text{ if } A_{ij}^h < 0.
 \]

Lemma

Under the CFL condition $1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d_{ij}^{L,n} \geq 0$, *the update satisfies the bounds*

\[
0 \leq H_i^{\text{min}} \leq H_i^{n+1} \leq H_i^{\text{max}}.
\]
Limiting with exact bounds

- One can limit kinetic energy (for instance) \(\psi(W) := \frac{1}{2} \frac{1}{H(W)} \|Q(W)\|_{\ell^2}^2. \)
- The following holds:
 \[
 \psi(W_{i,n+1}^L) \leq \max_{j \in \mathcal{I}(D_i)} \psi(U_{ij}^n + \bar{U}_{ij}^n) =: K_i^{\text{max}}.
 \]
- Let \(\lambda_j := \frac{1}{\text{card}(\mathcal{I}(D_i)) - 1}, \ j \in \mathcal{I}(D_i) \setminus \{i\}. \) Set
 \[
 H_{i,L}^{W,L} := H(W_{i,n+1}^L), \quad Q_{i,L}^{W,L} := Q(W_{i,n+1}^L), \quad (2)
 \]
 \[
 P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij}, \quad a := -\frac{1}{2} \|P_{ij}^h\|_{\ell^2}^2, \quad (3)
 \]
 \[
 b := K_i^{\text{max}} P_{ij}^h - 2Q_{i,L}^{W,L}.P_{ij}^q, \quad c := K_i^{\text{max}} H_{i,L}^{W,L} - \frac{1}{2} \|Q_{i,L}^{W,L}\|_{\ell^2}^2. \quad (4)
 \]
- Let \(r \) largest positive root of \(ax^2 + bx + c = 0 \) with \(r = 1 \) if no positive root.
- Let \(\ell_{ij}^h \) water height limiter. Then set
 \[
 \ell_{ij}^{i,K} := \min(r, \ell_{ij}^h), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{i,j}^K).
 \]

Lemma

Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d_{ij}^{L,n} \geq 0, \) the update \(U_{i,n+1} \) with the above limiting satisfies the bound \(\psi(U_{i,n+1} - \frac{\Delta t}{2} S_{i,n}) \leq K_i^{\text{max}}. \)
Limiting with exact bounds

- One can limit kinetic energy (for instance) \(\psi(W) := \frac{1}{2} \frac{1}{H(W)} \|Q(W)\|_{\ell^2}^2 \).
- The following holds:

\[
\psi(W^{L,n+1}) \leq \max_{j \in I(D_i)} \psi(U^T_n + \tilde{U}^{n}_{ij}) =: K_{i}^{\max}.
\]

- Let \(\lambda_j := \frac{1}{\text{card}(I(D_i)) - 1} \), \(j \in I(D_i) \setminus \{i\} \). Set

\[
H_{ij}^{W,L} := H(W^{L,n+1}_i), \quad Q_{ij}^{W,L} := Q(W^{L,n+1}_i),
\]

\[
P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij},
\]

\[
a := -\frac{1}{2} \|P_{ij}^h\|_{\ell^2}^2,
\]

\[
b := K_{i}^{\max} P_{ij}^h - 2Q_{ij}^{W,L} P_{ij}^q,
\]

\[
c := K_{i}^{\max} H_{ij}^{W,L} - \frac{1}{2} \|Q_{ij}^{W,L}\|_{\ell^2}^2.
\]

- Let \(r \) largest positive root of \(ax^2 + bx + c = 0 \) with \(r = 1 \) if no positive root.
- Let \(\ell_{ij}^{h} \) water height limiter. Then set

\[
\ell_{ij}^{i,K} := \min(r, \ell_{ij}^{h}), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{ij}^{j,K}).
\]

Lemma

Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in I(D_i)} d_{ij}^{L,n} \geq 0 \), the update \(U^{n+1}_i \) with the above limiting satisfies the bound \(\psi(U^{n+1}_i - \frac{\Delta t}{m_i} S^n_i) \leq K_{i}^{\max} \).
Limiting with exact bounds

- One can limit kinetic energy (for instance) \(\psi(W) := \frac{1}{2} \frac{1}{H(W)} \|Q(W)\|_{\ell^2}^2. \)
- The following holds:
 \[
 \psi(W_i^{L,n+1}) \leq \max_{j \in \mathcal{I}(D_i)} \psi(U_{ij}^n + \tilde{U}_{ij}^n) =: K_i^{\max}.
 \]
- Let \(\lambda_j := \frac{1}{\text{card}(\mathcal{I}(D_i)) - 1} \), \(j \in \mathcal{I}(D_i) \setminus \{i\} \). Set
 \[
 H_i^{W,L} := H(W_i^{L,n+1}), \quad Q_i^{W,L} := Q(W_i^{L,n+1}),
 \]
 \[
 P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij}, \quad a := -\frac{1}{2} \|P_{ij}^h\|_{\ell^2}^2,
 \]
 \[
 b := K_i^{\max} P_{ij}^h - 2Q_i^{W,L} \cdot P_{ij}^q, \quad c := K_i^{\max} H_i^{W,L} - \frac{1}{2} \|Q_i^{W,L}\|_{\ell^2}^2.
 \]
- Let \(r \) largest positive root of \(ax^2 + bx + c = 0 \) with \(r = 1 \) if no positive root.
- Let \(\ell_{ij}^h \) water height limiter. Then set
 \[
 \ell_{ij}^{i,K} := \min(r, \ell_{ij}^h), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{ij}^{j,K}).
 \]

Lemma

Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d_{ij}^{L,n} \geq 0 \), the update \(U_i^{n+1} \) with the above limiting satisfies the bound \(\psi(U_i^{n+1} - \frac{\Delta t}{m_i} S_i^n) \leq K_i^{\max} \).
Limiting with exact bounds

- One can limit kinetic energy (for instance) \(\psi(W) := \frac{1}{2} \frac{1}{H(W)} \|Q(W)\|_\ell^2 \).
- The following holds:
 \[\psi(W_i^{L,n+1}) \leq \max_{j \in I(D_i)} \psi(U_{ij}^n + \tilde{U}_{ij}^n) =: K_i^{\text{max}}. \]
- Let \(\lambda_j := \frac{1}{\text{card}(I(D_i))-1}, j \in I(D_i) \setminus \{i\} \). Set
 \[
 H_i^{W,L} := H(W_i^{L,n+1}), \quad Q_i^{W,L} := Q(W_i^{L,n+1}), \quad \text{(2)}
 \]
 \[
 P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij}, \quad a := -\frac{1}{2} \|P_{ij}^h\|_\ell^2, \quad \text{(3)}
 \]
 \[
 b := K_i^{\text{max}} P_{ij}^h - 2Q_i^{W,L} \cdot P_{ij}^q, \quad c := K_i^{\text{max}} H_i^{W,L} - \frac{1}{2} \|Q_i^{W,L}\|_\ell^2. \quad \text{(4)}
 \]
- Let \(r \) largest positive root of \(ax^2 + bx + c = 0 \) with \(r = 1 \) if no positive root.
- Let \(\ell_{ij}^h \) water height limiter. Then set
 \[
 \ell_{ij}^{i,K} := \min(r, \ell_{ij}^h), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{ij}^{j,K}).
 \]

Lemma

*Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in I(D_i)} d_{ij}^{L,n} \geq 0 \), the update \(U_{i}^{n+1} \) with the above limiting satisfies the bound \(\psi(U_{i}^{n+1} - \frac{\Delta t}{m_i} S_{i}^n) \leq K_i^{\text{max}}. \)
One can limit kinetic energy (for instance) $\psi(W) := \frac{1}{2} \cdot \frac{1}{H(W)} \|Q(W)\|_2^2$.

The following holds:

$$\psi(W_{i,n+1}^L) \leq \max_{j \in I(D_i)} \psi(U_{ij}^n + \tilde{U}_{ij}^n) =: K_{i}^{\text{max}}.$$

Let $\lambda_j := \frac{1}{\text{card}(I(D_i)) - 1}, j \in I(D_i) \setminus \{i\}$. Set

$$H_{i,n}^{W,L} := H(W_{i,n+1}^L), \quad Q_{i,n}^{W,L} := Q(W_{i,n+1}^L),$$

$$P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij}, \quad a := -\frac{1}{2} \|P_{ij}^h\|_2^2,$$

$$b := K_{i,n}^{\text{max}} P_{ij}^h - 2Q_{i,n}^{W,L} \cdot P_{ij}^q, \quad c := K_{i,n}^{\text{max}} H_{i,n}^{W,L} - \frac{1}{2} \|Q_{i,n}^{W,L}\|_2^2.$$

Let r largest positive root of $ax^2 + bx + c = 0$ with $r = 1$ if no positive root.

Let ℓ_{ij}^h water height limiter. Then set

$$\ell_{ij}^{i,K} := \min(r, \ell_{ij}^h), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{ij}^{j,K}).$$

Lemma

*Under the CFL condition $1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in I(D_i)} d_{ij}^{L,n} \geq 0$, the update $U_{i,n+1}$ with the above limiting satisfies the bound $\psi(U_{i,n+1} - \frac{\Delta t}{m_i} S_{i,n}^n) \leq K_{i}^{\text{max}}$.***
Limiting with exact bounds

- One can limit kinetic energy (for instance) \(\psi(W) := \frac{1}{2} \frac{1}{H(W)} \|Q(W)\|_{\ell^2}^2 \).

- The following holds:

\[
\psi(W_i^{L,n+1}) \leq \max_{j \in \mathcal{I}(D_i)} \psi(U_{ij}^n + \tilde{U}_{ij}^n) =: K_i^{\text{max}}.
\]

- Let \(\lambda_j := \frac{1}{\text{card}({\mathcal{I}(D_i)})} - 1 \), \(j \in \mathcal{I}(D_i) \) \(\backslash \{i\} \). Set

\[
H_i^{W,L} := H(W_i^{L,n+1}), \quad Q_i^{W,L} := Q(W_i^{L,n+1}), \quad P_{ij} := (P_{ij}^h, P_{ij}^q)^T := \frac{1}{m_i \lambda_j} A_{ij}, \quad a := -\frac{1}{2} \|P_{ij}^h\|_{\ell^2}^2,
\]

\[
b := K_i^{\text{max}} P_{ij}^h - 2 Q_i^{W,L} P_{ij}^q, \quad c := K_i^{\text{max}} H_i^{W,L} - \frac{1}{2} \|Q_i^{W,L}\|_{\ell^2}^2.
\]

- Let \(r \) largest positive root of \(ax^2 + bx + c = 0 \) with \(r = 1 \) if no positive root.

- Let \(\ell_{ij}^h \) water height limiter. Then set

\[
\ell_{ij}^{i,K} := \min(r, \ell_{ij}^h), \quad \ell_{ij} = \min(\ell_{ij}^{i,K}, \ell_{ij}^{j,K}).
\]

Lemma

Under the CFL condition \(1 - \frac{2\Delta t}{m_i} \sum_{i \neq j \in \mathcal{I}(D_i)} d_{ij}^{L,n} \geq 0 \), the update \(U_i^{n+1} \) with the above limiting satisfies the bound \(\psi(U_i^{n+1} - \frac{\Delta t}{m_i} S_i^n) \leq K_i^{\text{max}}. \)
Well-balancing, sliding state

<table>
<thead>
<tr>
<th>h_0 (m)</th>
<th>q_0 (m2s$^{-1}$)</th>
<th>n (m$^{-1/3}$s)</th>
<th>b</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7708E-01</td>
<td>2.0E-00</td>
<td>2.0E-02</td>
<td>-1.E-02</td>
<td>4.26E-14</td>
</tr>
<tr>
<td>9.5635E-02</td>
<td>1.0E-01</td>
<td>2.0E-02</td>
<td>-1.E-02</td>
<td>1.82E-15</td>
</tr>
<tr>
<td>2.5119E-01</td>
<td>1.0E-01</td>
<td>1.0E-01</td>
<td>-1.E-02</td>
<td>9.04E-15</td>
</tr>
<tr>
<td>2.4022E-02</td>
<td>2.0E-03</td>
<td>1.0E-01</td>
<td>-1.E-02</td>
<td>1.49E-14</td>
</tr>
<tr>
<td>4.4894E-01</td>
<td>2.0E-00</td>
<td>1.0E-01</td>
<td>$-1/\sqrt{3}$</td>
<td>1.86E-14</td>
</tr>
</tbody>
</table>

Table: Well-balancing tests, TAMU code (EV-α^2, consistent), $\gamma = \frac{4}{3}$.
Hydraulic jump.

Figure: Galerkin + full limiting; EV + full limiting; EV without any limiting.
2D paraboloid with friction

<table>
<thead>
<tr>
<th>Proteus</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>L^1-error</td>
<td>Rate</td>
<td>L^∞-error</td>
<td>Rate</td>
</tr>
<tr>
<td>441</td>
<td>4.58E-02</td>
<td></td>
<td>8.41E-02</td>
<td></td>
</tr>
<tr>
<td>1681</td>
<td>1.45E-02</td>
<td>1.72</td>
<td>4.07E-02</td>
<td>1.08</td>
</tr>
<tr>
<td>6561</td>
<td>6.30E-03</td>
<td>1.22</td>
<td>2.64E-02</td>
<td>0.63</td>
</tr>
<tr>
<td>25921</td>
<td>2.24E-03</td>
<td>1.50</td>
<td>1.34E-02</td>
<td>0.99</td>
</tr>
<tr>
<td>103041</td>
<td>7.52E-04</td>
<td>1.58</td>
<td>6.46E-03</td>
<td>1.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAMU</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>L^1-error</td>
<td>Rate</td>
<td>L^∞-error</td>
<td>Rate</td>
</tr>
<tr>
<td>508</td>
<td>4.70E-02</td>
<td></td>
<td>8.12E-02</td>
<td></td>
</tr>
<tr>
<td>1926</td>
<td>1.95E-02</td>
<td>1.32</td>
<td>4.55E-02</td>
<td>0.87</td>
</tr>
<tr>
<td>7553</td>
<td>7.67E-03</td>
<td>1.37</td>
<td>1.98E-02</td>
<td>1.22</td>
</tr>
<tr>
<td>29870</td>
<td>2.91E-03</td>
<td>1.41</td>
<td>1.11E-02</td>
<td>0.84</td>
</tr>
<tr>
<td>118851</td>
<td>1.09E-03</td>
<td>1.43</td>
<td>6.21E-03</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Table: L^1 convergence; 2D paraboloid with friction.
Figure: Surface plot of the water elevation $h(x, t) + z(x)$ at different times.
Flat free surface rotating in a paraboloid, no friction (wine/water in a glass).
Overtopping of island

(87767 P_1 nodes)
The Malpasset Dam was an arch dam on the Reyran River, located approximately 7 km north of Fréjus on Côte d’Azur (French Riviera), southern France. The dam collapsed on December 2, 1959, killing 423 people in the resulting flood.
Figure: Maximum water elevation (left). Arrival time (right).

Conclusions

Continuous finite elements
- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work
- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements
- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work
- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
 - Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
 - Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
Conclusions

Continuous finite elements

- Continuous FE are viable tools to solve hyperbolic systems.
- Continuous FE are viable alternatives to DG and FV.
- Continuous FE are easy to implement and parallelize.
- Exa-scale computing will need simple, robust, methods.

Current and future work

- Convergence analysis, error estimates beyond first-order.
- Extension to higher-order polynomials for scalar equations (order 3 and higher).
- Beyond positivity: Second-order invariant domain preserving techniques to systems (Shallow water, Euler).
- Extension to equations with source terms (Radiative transport, Radiative hydrodynamics).
References I

