
Notations



Basic equations

In the fluid domain Ωt

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

div U = 0,

curl U = 0

At the surface

P = Patm,

∂tζ − U · N = 0 with N =

(
−∇ζ

1

)
,

At the bottom

Ub · Nb = 0 with Nb =

(
−∇b

1

)
.
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Dimension reduction

by harmonic analysis (Zakharov)

I U = ∇X ,zΦ with ∆X ,zΦ = 0 in Ωt

I U defined on Ωt fully determine by ψ = Φ|z=ζ defined on Rd :{
∆X ,zΦ = 0,

Φ|z=ζ = ψ, ∂nΦ|z=−h0+b
= 0.

I Problem reduced to a set of two equations on ζ and ψ on Rd .

by vertical integration

I Remove the variable z by integrating Euler’s equations
vertically

I The equations reduce to a set of equations on ζ and Q where

Q(t,X ) =

∫ ζ

−h0
V (t,X , z)dz

is the horizontal discharge.
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The water waves equations in (ζ,Q) variables

I Conservation of mass{∫ ζ
−h0

(
∇ · V + ∂zw

)
= 0

∂tζ − U · N = 0
 ∂tζ +∇ · Q = 0

I Momentum equation
I Pressure from vertical component of the Euler equation∫ ζ

z

(
∂tw + U · ∇X ,zw + g +

1

ρ
∂zP

)
= 0

 P(z) = Patm + ρg(ζ − z) + PNH

I Plug into the integrated horizontal Euler equation∫ ζ

−h0

(
∂tV + U · ∇X ,zV +

1

ρ
∇P
)

= 0

 ∂tQ +∇ ·
(∫ ζ

−h0

V ⊗ V
)

+ gh∇ζ + = 0
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The free surface Euler equations in (ζ,Q) variables


∂tζ +∇ · Q = 0,

∂tQ + gh∇ζ +∇ ·
(∫ ζ

−h0
V ⊗ V

)
+ haNH(ζ,U) = 0,

 The equations are exact Teshukov07

 They are closed: one can reconstruct the full velocity field U in
Ω from the knowledge of ζ and Q L. 17
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How do they work?


∂tζ +∇ · Q = 0,

∂tQ + gh∇ζ +∇ ·
(∫ ζ

−h0
V ⊗ V

)
+ haNH(ζ,U) = 0,

I Let us decompose

V (t,X , z) = V (t,X )+V ∗(t,X , z) with V =
1

h

∫ ζ

−h0
V (t,X , z)dz

I Therefore ∫ ζ

−h0
V ⊗ V = hV ⊗ V +

∫ ζ

−h0
V ∗ ⊗ V ∗ (1)

=
1

h
Q ⊗ Q + R (2)
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I The term haNH accounts for non-hydrostatic pressure effects
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1

ρ

∫ ζ
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∇PNH with PNH =

∫ ζ

z

(
∂tw+U · ∇X ,zw

)
 Small if the vertical velocity w is small
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Goal
Show that this is approximately true for (almost) irrotational flows
in shallow water.

I We introduce three characteristic scales

1. The characteristic water depth H0

2. The characteristic horizontal scale L
3. The order of the free surface amplitude a
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Goal
Show that this is approximately true for (almost) irrotational flows
in shallow water.

I We introduce three characteristic scales

1. The characteristic water depth H0

2. The characteristic horizontal scale L
3. The order of the free surface amplitude a

I Two independent dimensionless parameters can be formed

a

H0
= ε (amplitude parameter ),

H2
0

L2
= µ (shallowness parameter ).



We proceed to the simple nondimensionalizations

X ′ =
X

L
, z ′ =

z

H0
, ζ ′ =

ζ

a
, etc.



Dimensionless equations

∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
+ ε∇ · R + haNH(ζ,U) = 0.

where, in dimensionless form,

I h = 1 + εζ
I

R =

∫ εζ

−1
V ∗ ⊗ V ∗, V ∗ = V − 1

h

∫ εζ

−1
V

I

haNH(ζ,U) =

∫ εζ

−1
∇
∫ εζ

z

(
∂tw + εV · ∇w +

ε

µ
w∂zw

)
and(

V
w

)
= ∇X ,zΦ with

{
∂2z Φ + µ∆Φ = 0,

Φ|z=εζ = ψ, ∂zΦ|z=−1
= 0
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Structure of the velocity field

(
V
w

)
= ∇X ,zΦ with

{
∂2z Φ + µ∆Φ = 0,

Φ|z=εζ = ψ, ∂zΦ|z=−1
= 0

I Φ(X , z) = ψ(X ) + O(µ)

I V = V + O(µ) and w = O(µ).

As a consequence

I Turbulent tensor

R =

∫ εζ

−1
V ∗ ⊗ V ∗ = O(µ2)

I Non hydrostatic term

haNH(ζ,U) =

∫ εζ

−1
∇
∫ εζ

z

(
∂tw +εV ·∇w +

ε

µ
w∂zw

)
= O(µ)
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Order O(µ) approx. : the NL shallow water equations

Regime

ε = O(1) (fully nonlinear), µ� 1 (shallow water)


∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
+ ε∇ · R︸ ︷︷ ︸

=O(µ2)

+ haNH(ζ,U)︸ ︷︷ ︸
=O(µ)

= 0.

Neglecting the O(µ) terms: Nonlinear shallow water equations∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
= 0.
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Open problems∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
= 0.

I Strong solutions. Shoreline (h = 0) related to vacuum for
gases [Jang-Masmoudi,Coutand-Shkoller].
 2D with topography (h = 1 + εζ − βb)?

I Weak solutions. 1D existence of weak-entropy solutions
[DiPerna, Lions-Perthame-Sougandis,..., Chen-Perepelitsa]

 2D. Peter Lax:
There is no theory for the initial value problem for
compressible flows in two space dimensions once
shocks show up, much less in three space
dimensions. This is a scientific scandal and a
challenge

Just because we cannot prove that compressible
flows with prescribed initial values exist doesnt mean
that we cannot compute them
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compressible flows in two space dimensions once
shocks show up, much less in three space
dimensions. This is a scientific scandal and a
challenge

Just because we cannot prove that compressible
flows with prescribed initial values exist doesnt mean
that we cannot compute them



Order O(µ2) approx. : the Serre-Green-Naghdi equations

Regime

ε = O(1) (fully nonlinear), µ� 1 (shallow water)


∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
+ ε∇ · R︸ ︷︷ ︸

=O(µ2)

+ haNH(ζ,U)︸ ︷︷ ︸
=µT ∂tQ

h
+µQ(ζ,Q)+O(µ2)

= 0.

Neglect the O(µ2) terms  Serre-Green-Naghdi equations∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

 The operator T contains dispersive effects

TQ = −1

3
∇
(
h3∇ · (Q)

)
+ topography terms

 T comes from the quadratic dependance of V on z
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Open problems

∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

Remark. Full justification OK away from singularities e.g. [L2013]

I Strong solutions. Shoreline (h = 0) in 1D [L.-Métivier].
 2D ?

I Singularity formation ??? Wave breaking ???

I Weak solutions ???

I Initial boundary value problems? Transparent conditions?
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Order O(µ2) approx. : the Boussinesq equations

Regime

ε = O(µ) (weakly nonlinear), µ� 1 (shallow water)

 O(εµ) terms can be neglected keeping the same O(µ2) precision

Averaged Euler equations

⇓ Neglect O(µ2) terms∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

⇓ Neglect O(εµ) terms

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

TQ = −1
3∇
(
h3∇ · (Qh )

)
= −1

3∇∇
T + O(εµ)



Order O(µ2) approx. : the Boussinesq equations

Regime

ε = O(µ) (weakly nonlinear), µ� 1 (shallow water)

 O(εµ) terms can be neglected keeping the same O(µ2) precision

Averaged Euler equations

⇓ Neglect O(µ2) terms∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

⇓ Neglect O(εµ) terms

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

TQ = −1
3∇
(
h3∇ · (Qh )

)
= −1

3∇∇
T + O(εµ)



Order O(µ2) approx. : the Boussinesq equations

Regime

ε = O(µ) (weakly nonlinear), µ� 1 (shallow water)

 O(εµ) terms can be neglected keeping the same O(µ2) precision

Averaged Euler equations

⇓ Neglect O(µ2) terms

∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

⇓ Neglect O(εµ) terms

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

TQ = −1
3∇
(
h3∇ · (Qh )

)
= −1

3∇∇
T + O(εµ)



Order O(µ2) approx. : the Boussinesq equations

Regime

ε = O(µ) (weakly nonlinear), µ� 1 (shallow water)

 O(εµ) terms can be neglected keeping the same O(µ2) precision

Averaged Euler equations

⇓ Neglect O(µ2) terms∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

⇓ Neglect O(εµ) terms

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

TQ = −1
3∇
(
h3∇ · (Qh )

)
= −1

3∇∇
T + O(εµ)



Order O(µ2) approx. : the Boussinesq equations

Regime

ε = O(µ) (weakly nonlinear), µ� 1 (shallow water)

 O(εµ) terms can be neglected keeping the same O(µ2) precision

Averaged Euler equations

⇓ Neglect O(µ2) terms∂tζ +∇ · Q = 0,

(1 + µT
1

h
)∂tQ + h∇ζ + ε∇ ·

(1

h
Q ⊗ Q

)
+ µεQ(ζ,Q) = 0.

⇓ Neglect O(εµ) terms

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

TQ = −1
3∇
(
h3∇ · (Qh )

)
= −1

3∇∇
T + O(εµ)



Variants of the Boussinesq system

{
∂tζ +∇ · (hV ) = 0,

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0.

 BBM trick: ∂tV = −∇ζ + O(ε, µ)

 −µ
3

∆∂tV = −µ
3
α∆∂tV +

µ

3
(1− α)∆∇ζ + O(µ2)

”abcd” systems Bona-Chen-Saut, Colin-L.{
(1− µb∆)∂tζ +∇ · V ε∇ · (ζV ) + µa∆∇ · V = 0,

(1− µd∆)∂tV +∇ζ + εV · ∇V + µc∆∇ζ = 0.

Generalization to the the Fully nonlinear regime∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
+ = 0.

This is the constant diagonal SGN system used in Uhaina L.-Marche15
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Perspectives: including vorticity

 How to generalize in the presence of vorticity?∂tζ +∇ · Q = 0,

∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q

)
+ ε∇ · R + haNH(ζ,U) = 0.

with

R =

∫ εζ

−1
(V − V )⊗ (V − V )

I Irrotational: (V − V ) = O(µ)⇒ R = O(µ2) ⇒ Neglected!
I For weakly sheared flow in the sense of [Richard-Gravriliuk12]

V = V +
√
µV ∗sh + µT∗V with Vsh =

∫ εz

z
ω⊥h

R = µ

∫ εζ

−1
V ∗sh ⊗ V ∗sh︸ ︷︷ ︸

rot/rot

+µ3/2 B(Vsh,V )︸ ︷︷ ︸
rot/NH

⇒ NOT neglected
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Including vorticity

∂tζ +∇ · Q = 0,

(1 + µT)∂tQ + h∇ζ + ε∇ ·
(1

h
Q ⊗ Q + µRω

)
+ µεQ(ζ,Q) + · · · = 0.

with

Rω =

∫ εζ

−1
V ∗sh ⊗ V ∗sh and Vsh =

∫ εz

z
ω⊥h

 Problem: equation on ω is d + 1-dimensional
Idea: Seek equation on Rω as for compressible gases
[Mohammadi-Pironneau94,Pope05,Gavrilyuk-Gouin12,. . . ]

 (Finite) cascade of equations on Rω [Castro-L.]

Closure relation = Contribution smaller than precision of the model


∂tζ + ∂x(hv) = 0,

(1 + µT)∂tv + εv∂xv + ∂xζ +Q(ζ, v) + µ 1
h∂xRω = O(µ3/2)

∂t(
Rω
h3

) + v∂x(Rω
h3

) = O(
√
µ)
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Properties and numerical simulations
I Local conservation of energy

∂te +∇ · F = 0

with e = ep + ek + erot and

ep =
1

2
gζ2, ek =

1

2
h|V |2 +

1

6
h3|∇ ·V |2, erot =

1

2
TrE.

I Influence of vorticity on solitary wave
I Left and right going solitary waves of different shape
I Existence of peakons!
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I Dynamics is d dimensional and wave current interaction is
nonlinear!

(F. Marche, D. L. 2015)

To do:

I Two dimensional computations

I Exhibit the transfer mechanisms between horizontal and
vertical vorticity

I Study the vorticity generation for NSW [Gavrilyuk-Richard]
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