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Dimension reduction

by harmonic analysis (Zakharov)

» U= VXJ(D with AX7Z¢ =0in Q;
» U defined on Q; fully determine by ¢ = <D|z:( defined on RY:

{Ax,zcb =0,
o, =1, 0n®,__, ., =0.

» Problem reduced to a set of two equations on ¢ and 1) on RY.

by vertical integration

» Remove the variable z by integrating Euler’'s equations
vertically

» The equations reduce to a set of equations on ¢ and @ where

Q(t, X) = /C V(t X, 7)dz

—ho
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The water waves equations in ((, Q) variables

» Conservation of mass

{8t£—(U-N ) —0 ~ ‘&C—FV'Q:O‘

» Momentum equation
» Pressure from vertical component of the Euler equation

¢ 1
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» Plug into the integrated horizontal Euler equation

¢
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The free surface Euler equations in (¢, Q) variables

8tC+VQ:O7
¢
8tQ+ghVC—I—V~</

—ho

Ve v) + hann(C,U) = 0,

~ The equations are exact Trsivxovor
~ They are closed: one can reconstruct the full velocity field U in
Q from the knowledge of ¢ and @ v 17
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How do they work?

8tC+VQ=0,
¢
@tQ+ghVC+V-</

_hO

Ve v) + hanu(¢,U) = 0,

» Let us decompose
_ 1 r€
V(t,X,z) = V(t, X)+V*(t,X,z) with V= 7 / V(t, X, z)c
J—ho

» Therefore

¢ o ¢
/ V®V:hV®V+/ Ve @ v (1)
ho *hO

z%Q®Q+R (2)
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How do they work?

6tC+VQ:0,
atQ—thVC—I-V-(%Q@Q)+V~R+haNH(C,U):0.

» The tensor R accounts for "turbulent” effects
¢
R = / Ve V*
—hg

~» Small if V' does not vary too much along the vertical

» The term hany accounts for non-hydrostatic pressure effects

1 /¢ ¢
hanyg = — VPnu  with Pna = / (8tw+U . VX’ZW)
P J—hy z

~> Small if the vertical velocity w is small
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Goal
Show that this is approximately true for (almost) irrotational flows
in shallow water.

» We introduce three characteristic scales

1. The characteristic water depth Hy
2. The characteristic horizontal scale L
3. The order of the free surface amplitude a

» Two independent dimensionless parameters can be formed

a :
— =¢ (amplitude parameter ),
Ho

2
Hg

2= H (shallowness parameter ).



We proceed to the simple nondimensionalizations

hm’in
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Dimensionless equations

atC + V . Q == 0,
1
&Q+mu+ev(EQ®QyHV-R+mmﬂgm:m.
where, in dimensionless form,
» h=1+¢(
>
eC 1 ¢
R:/ V e V*, V*\// Vv
~1 hJ_1

e¢ ¢
haNH(C,U):/ V/ (8tw+5V'Vw+%w82W)
-1 z

and

20 1 IAD =
( v ) = Vx,® with {az G 0
w O, =0 0P, =0
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Structure of the velocity field

26 1+ 1A =
( v ) —VyL®  with {az T 0,
w ’ =0

O =1, 00

-1

> O(X, z) = ¢(X) + O()
» V=V +0(u) and w = O(p).
As a consequence

» Turbulent tensor

» Non hydrostatic term

eC eC
hannu (¢, U) 2/ V/ (8tW+EV-VW—|—%WaZW) = 0O(u)
-1 z
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Order O(u) approx. : the NL shallow water equations

Regime
e = O(1) (fully nonlinear), i < 1 (shallow water)

h(+V-Q=0,
1
2Q+ hV(+eV- (EQ@) Q) +¢&V - R+ hanu(¢,U) =0.
=0(p?) =0(p)

Neglecting the O(u) terms: Nonlinear shallow water equations

atC+VQ:0,
atQ+hV<+sv-(%Q®Q):o.
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Open problems

8tC+V'Q:0,
atQ+hvc+eV-(%Q®Q):0.

» Strong solutions. Shoreline (h = 0) related to vacuum for
£aSES [Janc-Masmounr,COUTAND-SHKOLLER] .
~~ 2D with topography (h =1+ e( — 3b)?
» Weak solutions. 1D existence of weak-entropy solutions
DIPERNA, LIONS-PERTHAME-SOUGANDIS, ..., CHEN-PEREPELITSA]
~ 2D. Peter Lax:
There is no theory for the initial value problem for
compressible flows in two space dimensions once
shocks show up, much less in three space
dimensions. This is a scientific scandal and a
challenge

Just because we cannot prove that compressible
flows with prescribed initial values exist doesnt mean
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Order O(y?) approx. : the Serre-Green-Naghdi equations

Regime
e = O(1) (fully nonlinear), u < 1 (shallow water)

(0.(+V-Q=0,
1
0Q+hVC+eV- (2Q® Q) +¢V R+ hann (¢, U) = 0.

— 2 5
=00 T 294,0(¢,Q)+0(2)

\

Neglect the O(u?) terms ~ Serre-Green-Naghdi equations

0(+V-Q=0,
1 1
(L+ 4T )0 Q +hVC+eV- (1Q® Q) +1eQ((, Q) =0.

~> The operator T contains dispersive effects

TQ = —%V(h"‘v . (Q)) + topography terms

~» T comes from the quadratic dependance of V on z
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Open problems

8tC+v . Q — 07
(1+ MT%)atQ + hV( +eV - (%Q ® Q) +peQ(¢, Q) = 0.

Remark. Full justification OK away from singularities . (12013

» Strong solutions. Shoreline (h =0) in 1D i
~ 2D 7

» Singularity formation 77?7 Wave breaking 777
» Weak solutions 777

> Initial boundary value problems? Transparent conditions?
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Order O(y?) approx. : the Boussinesq equations

Regime
e = O(u) (weakly nonlinear), u < 1 (shallow water)

~~ O(ep) terms can be neglected keeping the same O(u?) precision
Averaged Euler equations

[} Neglect O(u?) terms

8t<+v Q =0,
(14 UT Q@+ HVC 42V - (;Q@ Q) +4eQ(, Q) =0
I Neglect O(epu) terms
8tC+V( V) =0,
(1—§A)8tV+VC+€V VvV =0.

TQ=-1iV(hPV-(2)) =-LvVT + O(ep)
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Variants of the Boussinesq system

at<+v (hV) =0,
(1——A)8tV+VC+sV vV =0.

~~ BBM trick: 0,V = —VC + 0(5 u)

"abcd"”

Systems BONA-CHEN-SAUT, COLIN-L

i)

{

(1= pbA)DC + V- VeV - (CV) + paAV -V =0,

(1— pdA),V + V(+eV - VV + pucAVE = 0.




Variants of the Boussinesq system

at<+v (hV) =0,
(1——A)8tV+VC+sV vV =0.

~~ BBM trick: 0,V = —VC + 0(5 u)
"abcd"” Systems BONA-CHEN-SAUT, COLIN-L

(1 — pbA)d:( +V - VeV - (CV) + paAV - V =0,
(1 — pdA)dV + V(4 eV - VV + pucAVC = 0.

Generalization to the the Fully nonlinear regime

|

atC + v : Q — 07
(1+ uT[¢, b]%)ato +hV(+eV - (%Q ® Q) +1eQ(¢,Q) =0




Variants of the Boussinesq system

at<+v (hV) =0,
(1——A)8tV+VC+sV vV =0.

~~ BBM trick: 9;V = —VC + O(E ,u)

"abcd"” Systems BONA-CHEN-SAUT, COLIN-L

(1 — pbA)dC +V - VeV - (CV) + nalAV - V =0,
(1 — pdA)d:V + V(+eV - VV + ucAVC = 0.

Generalization to the the Fully nonlinear regime

OtC—i-VQ:O,
8t0+hVC+5V-(%Q®Q)—I— =0.

This is the constant diagonal SGN system used in Uhaina 1. viweneis



Perspectives: including vorticity



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

at<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

6t<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.

with



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

6t<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.

with

» Irrotational: (V — V) = 0O(u) = R = 0(p?) = Neglected!



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

at<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.

with

» Irrotational: (V — V) = 0O(u) = R = 0(p?) = Neglected!
» For Weakly sheared flow in the sense of [Riciiarp-Gravaie K12]

EZ
V=V+/pVi+uT*V with Vsh:/ wir



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

at<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.

with

» Irrotational: (V — V) = 0O(u) = R = 0(p?) = Neglected!
» For Weakly sheared flow in the sense of [Riciiarp-Gravaie K12]

EZ
V=V+/pVi+uT*V with Vsh:/ wir

¢ o
R= /1,/ Vi Va +u2B(Vy, V) =
-1 —
— rot/NH
rot/rot



Perspectives: including vorticity
~ How to generalize in the presence of vorticity?

at<+VQ:0,
0eQ +hVC+2V - (1Q® Q) + 2V R+ hanis(¢,U) = 0.

with

» Irrotational: (V — V) = 0O(u) = R = 0(p?) = Neglected!
» For Weakly sheared flow in the sense of [Riciiarp-Gravaie K12]

EZ
V=V+/pVi+uT*V with Vg = / wir

eC o
R= /1,/ Vi@ Ve +1u%2B(Vey, V) = NOT neglected
-1 —
—_ rot/NH
rot/rot
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0:(+V-Q=0,
(1+MT)3tQ+hV§+eV-(%Q®Q+MRUJ)+MEQ(§, Q)+ =0.

with



Including vorticity

{atcw-oo,

(14 uT)0:Q + hV( + £V - (%Q@ Q+ uRy) + peQ(¢, Q) + -+

with
eC ez
R, :/ Vi@ Ve and Vg :/ Wi
1 z
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Including vorticity

81-<+VQ:0,

(1+uT)0:Q + hV(+¢eV - (%Q@ Q + pRy) +peQ(¢, Q) + -

with

eC ez
R. :/ Vi@ Va  and Vi :/ wik
-1 z

~> Problem: equation on w is d + 1-dimensional

Idea: Seek equation on Ry, as for compressible gases

MOHAMMADI-PIRONNEAU94,POPEO5, GAVRILYUK-GOUIN12,. . .

~~ (Finite) cascade of equations on R, cisrot.

Closure relation = Contribution smaller than precision of the model

e + D (hv) = 0,
(14 uT)0ev + evdev + 0xC + Q(C, v) + xRy, = O(13/?)
O:(5) + vou() = O(vi)




9¢¢ + Ox(hv) =0,
(14 uT)Ov + evdev + 05 + Q + pt0xR, = O(u3/?)
0u(%) + vOL (%) = O( /)






(0:¢ + Ox(hv) =0,
(14 pT)Orv +evoyv + 0xC+ Q + /L%@XRM + 132C(v,vh) = O(1?)
0:(R¢) + vou(Bg) + g0 F = O(1)

)




(0:¢ + Ox(hv) =0,
(14 pT)Orv +evoyv + 0xC+ Q + /L%@XRM + 132C(v,vh) = O(1?)
0:(R¢) + vou(Bg) + g0 F = O(1)

)

with

¢ 2 % . ¢ ¢
N ﬁ / (Z + 1) Ysh and Vsh = / W — / w
-1 JZ Jz



(0:¢ + Ox(hv) =0,
(14 pT)Orv +evoyv + 0xC+ Q + ,u10 R, + p3/2C(v,vt) = O(;%)

8(F)+v8(h3)+\fh33:’-_ O(w)
0.(%) + V0. (%) = O,
with



(9:¢ + 9y (hv) =0,
(1+ puT)0:v +evogv + 0x(+ Q + /L%@XRM + ,u3/2C(v, vﬁ) = O(p?)

9e(Be) + vou(Bs) + Va&0cF = O(p)
Ou(%) + V0 (%) = O( /1),
with
: R
v i§/1(2+1)2vs*h and / /
and



(0:¢ + Ox(hv) =0,

@

9:(Re) + voe(Re) + s 0 F = O(1)

A3
0e(%) +vox(%) = O(y/in),
3f(£4) +V8X(h4) = O(/1).
with
¢ ¢ ¢
vﬁ:}]?/ (z+1)%v;, and v:h/ ;u/ w
—1 Jz Jz
and

< ¢
= [ar and E- [ Ay

~ Valid for 2D with topography

(14 pT)Osv + evoyv + 0xC + Q—l—,ulO R, + p3/2C(v, vt) =

O(p?)

~» Dynamics of the vorticity d + 1 dimensional but d-dimensional

equations



Properties and numerical simulations
» Local conservation of energy

8te+VS:0

with ¢ = ¢, + ex + ¢,0r and

1 1 —s 1 _ 1
¢p = §g<2, ) = Eh|V\2 + 6h3|v- V|2, Crot = 5TrE.
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Properties and numerical simulations
» Local conservation of energy

8te+VS:0

with ¢ = e, + ex + ¢/0r and

1 1, 1 — 1
¢p = Egc% = §h|V|2+ 6h3|v- VI, eor = 5 TE.

> Influence of vorticity on solitary wave
» Left and right going solitary waves of different shape
» Existence of peakons!

Wave profile ‘Time evolution

hm)

h(m)

hm
|




» Dynamics is d dimensional and wave current interaction is
nonlinear!




» Dynamics is d dimensional and wave current interaction is
nonlinear!

B
.
-

8 " W £

(F. Marche, D. L. 2015)

To do:

» Two dimensional computations

» Exhibit the transfer mechanisms between horizontal and
vertical vorticity

> Study the VortiCity generation FOR NSW [GAVRILYUK-RICHARD



Breaking force

APPRTTL

Adapté de Clark et al. (2012, GRL)
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Thank you for your attention!



