Analysis of Discontinuous Galerkin type methods for oceanic and climate circulations

Daniel Le Roux

Institut Camille Jordan Université Claude Bernard Lyon 1

dleroux@math.univ-lyon1.fr

NumWave, Montpellier, December 12, 2017

Introduction

- Climate, oceanic and atmospheric flows support the propagation of:
 - very fast acoustic waves.
 - the fast inertia-gravity modes (internal, external).
 - the slow mid-latitude Rossby modes.
 - equatorial waves (Kelvin, Rossby index 1 and 2).

and many physical processes, equilibrium, conservation properties etc.

- Numerical methods badly represent the propagation of such waves and their properties at the discrete level.
- Many attemps to understand why over the past 50 years.
- To find out how to compute the waves accurately, error analyses are performed here mostly by studying the kernel of the discrete operators and by using the Fourier analysis.
- The aim of this talk is to present such Fourier results, and to propose a class of possible discretization schemes, that are not affected by the spurious solutions.

The shallow-water equations (2D)

They are derived by vertical integration of the momentum and continuity equations in the primitive system assuming:

- Horizontal displacements $(u_z = v_z = 0)$
- H ≪ L
- The density ρ is constant
- The hydrostatic equilibrium ($p_z = -\rho g$)

Inviscid non linear SW system:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} + f\mathbf{k} \times \mathbf{u} + g\nabla\eta \quad = \quad \mathbf{0},$$

$$\frac{\partial \eta}{\partial t} + \nabla \cdot ((H+\eta)\mathbf{u}) = \mathbf{0},$$

with appropriate initial and boundary conditions.

- $\mathbf{u} = (u, v)$ is the velocity field
- η is the surface elevation with respect to the reference level z = 0
- g is the gravitational acceleration and \mathbf{k} is a unit vector in the vertical direction
- the mean depth *H* is assumed constant

n

nviscid linearized SW system:

$$\frac{\partial \mathbf{u}}{\partial t} + f \mathbf{k} \times \mathbf{u} + g \nabla \eta = 0,$$

$$\frac{\partial \eta}{\partial t} + H \nabla \cdot \mathbf{u} = 0,$$

Inertia-gravity and Rossby waves in 2-D

We consider the system				Periodic solutions		
$\mathbf{u}_t + f \mathbf{k} \times \mathbf{u} + g \nabla \eta$	=	0,	(1)	$\mathbf{u} = \hat{\mathbf{u}} \boldsymbol{e}^{i(kx+ly+\omega t)},$		
$\eta_t + H \nabla \cdot \mathbf{u}$	=	0,	(2)	$\eta = \hat{\eta} e^{i(kx+ly+\omega t)}.$		

After substitution in (1) and (2), the following system is obtained for the amplitudes

$$\begin{pmatrix} 0 & -f & igk \\ f & 0 & igl \\ iHk & iHI & 0 \end{pmatrix} \begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{\eta} \end{pmatrix} = -i\omega I_{3,3} \begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{\eta} \end{pmatrix}.$$

The dispersion relation, i.e. $\omega(k, l)$, is obtained by vanishing the 3 × 3 determinant of the matrix:

geostrophic and inertia-gravity modes (f = constant)

The (slow) solution $\omega = 0$ is the geostrophic mode.

The two other (fast) solutions correspond to the inertia-gravity modes $\omega_{AN} = \pm \sqrt{f^2 + gH(k^2 + l^2)}$.

Two limits: • f = 0 (gravity wave), $\omega = \pm \sqrt{gH(k^2 + l^2)}$.

• $gH(k^2 + l^2) \ll f^2$ (inertial oscillations), $\omega = \pm f$.

By using the quasi-geostrophic approximation we can also obtain a relation for the

• Rossby mode:
$$\omega = \frac{-\beta k}{\frac{1}{\lambda^2} + k^2 + l^2}$$
, with $f = f_0 + \beta y$ and $\lambda = \sqrt{gH}/f_0$.

Daniel Le Roux (Université Lyon 1)

High frequency inertia-Gravity

Low frequency Rossby waves

Matrix kernel analysis of the stationary SW model

A solution of the continuous stationary shallow water model

Continuous

$$f\mathbf{k} \times \mathbf{u} + g\nabla \eta = 0, \quad (3)$$
$$H\nabla \cdot \mathbf{u} = 0, \quad (4)$$

Discrete

$$\begin{pmatrix} C & G \\ D & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}_h \\ \eta_h \end{pmatrix} := CDG \begin{pmatrix} \mathbf{u}_h \\ \eta_h \end{pmatrix} = \mathbf{0},$$

with $CG := \begin{pmatrix} C & G \end{pmatrix}$ and $DO := \begin{pmatrix} D & 0 \end{pmatrix}$,

should satisfy (Rostand and Le Roux, IJNMF 2007, SIAM 2008)

Property 1: (3)
$$\Rightarrow$$
 (4) $\mathbf{u} = \frac{g}{f} k \times \nabla \eta = \frac{g}{f} \operatorname{rot} \eta = \frac{g}{f} \nabla^{\perp} \eta$
ker(*CG*) \subset ker(*DO*)

Property 2: (4)
$$\Rightarrow$$
 (3) $\exists \zeta : \mathbf{u} = \nabla^{\perp} \zeta \Rightarrow \eta = \frac{f}{g} \zeta + c$
ker(*D*) $\subset \{\mathbf{u}_h \mid \exists \eta_h : (\mathbf{u}_h, \eta_h) \in \text{ker}(CG)\}$

Property 3: $\forall \eta, \exists u \text{ verifying } (3) \text{ and } (4).$

 $\forall \eta_h, \exists \mathbf{u}_h : (\mathbf{u}_h, \eta_h) \in \ker(CDG)$

A necessary (but not sufficient) condition is that the ratio of momentum versus continuity equations remains the same for the continuous and discrete cases.

Property 4: $\dim \ker(C) = 0$ and $\dim \ker(G) = 1$

Daniel Le Roux (Université Lyon 1)

Mimetic discretization

Existence of the discrete Helmholtz decomposition requires that the following diagram commutes:

$$\begin{array}{cccc} H^{1}(\Omega) & \stackrel{\nabla^{\perp}}{\longrightarrow} & H(\textit{div},\Omega) & \stackrel{\nabla}{\longrightarrow} & L^{2}(\Omega) \\ \downarrow \pi_{\mathcal{S}} & & \downarrow \pi_{\mathcal{V}} & & \downarrow \pi_{\mathcal{Q}} \\ \mathcal{S} & \stackrel{\nabla^{\perp}}{\longrightarrow} & \mathcal{V} & \stackrel{\nabla}{\longrightarrow} & \mathcal{Q} \end{array} \tag{Arnold et al, 2002, 2006; Cotter, Shipton, 2012)}$$

A necessary condition to avoid both spurious inertia-gravity and spurious Rossby waves, at least in the periodic plane, is to have $\dim(V) = 2\dim(Q)$.

For example, to avoid spurious pressure (η) modes it is required that

$$\pi_Q(\nabla \cdot \mathbf{u}) = \nabla \cdot \pi_V(\mathbf{u})$$

Fourier analysis (dispersion relations) at the discrete level

- Time is assumed to be continuous $(\frac{\partial}{\partial t} = i\omega)$ and *f* is held constant.
- The discrete problem leads to a set of discrete equations in space (at node $j_1 = 1, 2, 3, \dots$, for **u** and $j_2 = 1, 2, 3, \dots$, for η) on a regular and uniform mesh (the meshlength parameter *h* is taken as a constant). In the following biased right triangles are used.
- Periodic solutions $\mathbf{u}_{j_1} = \hat{\mathbf{u}}_p e^{i(kx_{j_1} + ly_{j_1} + \omega t)}$ and $\eta_{j_2} = \hat{\eta}_q e^{i(kx_{j_2} + ly_{j_2} + \omega t)}$ are sought where $\hat{\mathbf{u}}_p$ and $\hat{\eta}_q$ are the Fourier amplitudes, with $p = 1, 2, 3 \cdots$, and $q = 1, 2, 3, \cdots$.
- When linear polynomials are employed to approximate u and η, the velocity and pressure unknowns are located at triangle vertices and we have p = q = 1 (for symmetry reasons).
 However, when mid-side, barycenter, internal, etc ..., nodes are used to locate velocity and surface-elevation nodal values we have p > 1 and q > 1. For example:

A $n \times n$ system is obtained for the amplitudes and the dispersion relation is hence a polynomial of degree n in ω , leading to the existence of eventual spurious solutions. We have n = 2p + q or n = p + q depending on the FE pairs.

Effects of spurious elevation modes: the $P_1 - P_1$ pair: dim ker(G) $\neq 1$

 The behavior of the smallest nonzero singular value σ₀ of the discrete divergence operator is related to the so-called discrete stability inf-sup (LBB) condition for mixed problems

$$\inf_{\vartheta_{h}\in Q_{j,h}} \sup_{\mathbf{u}_{h}\in \mathbf{V}_{j,h}} \frac{b(\mathbf{u}_{h},\vartheta_{h})}{\|\mathbf{u}_{h}\|_{\mathbf{V}_{j}}} \|\vartheta_{h}\|_{Q_{j}/\ker B^{T}} \ge \sigma_{0},$$
(5)

where ϑ_h denotes the test function, and *B* is the linear continuous operator defined as $< B\mathbf{u}, \vartheta >_{Q'_i \times Q_i} = b(\mathbf{u}, \vartheta) = \int_{\Omega} \nabla \cdot \mathbf{u} \ \vartheta \ d\mathbf{x}, \quad \forall \mathbf{u} \in \mathbf{V}_j, \forall \vartheta \in Q_j.$

- σ₀ ≠ 0 is needed when dim(V_{j,h}) and dim(Q_{j,h}) increase, to avoid a zero eigenvalue of the problem associated with a stationary spurious η mode (u = 0, η ∈ ker(G_h), η ≠ constant).
- Stabilized FEM (Hughes et al., 1986): retrieving the information lost by the projection Π_{V_h}, i.e. gradη_h Π_{V_h}gradη_h, for a bad choice of V_{j,h} and Q_{j,h} (when there are not enough u_h compared to η_h), as it is the case when grad is not injective, namely dim(ker B^t_h) > 1.

Coriolis *f*-modes: C-grid and *RT*, *BDM* and *BDFM* elements: dim ker(C) \neq 0

• The numerical example with the $RT_0 - P_0$ pair considers the geostrophic balance

- The fluid is initially at rest and a point mass source and sink are prescribed
- The Coriolis parameter is held constant
- the RT0 scheme exhibits a checkerboard-like pattern of noise in the elevation field around the mass source and sink points when $\lambda = \sqrt{gH}/f$ is not resolved

(Le Roux et al., SIAM 2008)

Use a fine mesh to well resolve the Rossby radius.

Existence of spurious inertial oscillations: $\omega = \pm f$

For all FE pairs having two velocity components per node, with n = 2p + q and $p \ge q$, the selected discrete equations lead to the following $(2p+q) \times (2p+q)$ matrix system for the amplitudes:

$$SX = 0, \quad \text{with} \quad S = \begin{pmatrix} M_{2p,2p} & -gD_{2p,q}^* \\ HD_{q,2p} & i\omega N_{q,q} \end{pmatrix}, \quad X = (\widehat{\mathbf{u}}_1, \cdots, \widehat{\mathbf{u}}_p, \widehat{\eta}_1, \cdots, \widehat{\eta}_q), \quad (6)$$

where $\hat{u}_1, \dots, \hat{u}_p, \hat{\eta}_1, \dots, \hat{\eta}_q$ are the Fourier amplitudes, $D_{q,2p}$ and $N_{q,q}$ are the divergence and surface-elevation mass matrices, respectively, $M_{2p,2p}$ is the velocity mass / Coriolis matrix.

Theorem (Le Roux, JCP 2012)

For all FE pairs having two velocity components per node, with n = 2p + q and $p \ge q$, the general dispersion relation obtained from (6) is such that

$$\det S = 0 = \omega^q \left(\omega^2 - f^2\right)^{p-q} \mathsf{P}_{2q}(\omega),$$

where $P_{2q}(\omega)$ is a polynomial of degree 2q in ω (inertia-gravity solutions).

Consequences

The FE pairs having 2 velocity components per node are subject to

- Physical geostrophic modes $\omega = 0$ of multiplicity q-1 if q > 1.
- Non physical solutions $\omega = \pm f$ if p > q, namely spurious inertial modes of multiplicity p q.

Effects of spurious inertial oscillations: $\omega = \pm f$

- η plays the role of a constant and **u** only depends on time, i.e. $\mathbf{u} = \mathbf{u}(t)$.
- $\mathbf{u}(t)$ is the discrete counterpart of the solution of the continuous equation $\mathbf{u}_t + f \mathbf{k} \times \mathbf{u} = 0$:

 $u(t) = V \sin(tt + \Phi)$ and $v(t) = V \cos(tt + \Phi)$,

where $\mathbf{u}(t)$ rotates with frequency f. This is observed when f is a constant depending on

The ratio of the spurious inertial modes to the total number of discrete modes:

	$P_1^{DG} - P_1$	$P_2 - P_1$	$P_1^{NC} - P_1$	$P_1^{DG} - P_2$
$\frac{2(p-q)}{n}$	10/13	6/9	4/7	4/16
	77%	67 <i>%</i>	57%	25%

Rossby mode $f = f_0 + \beta y$, *u* (9 periods)

Rossby wave of index 2, $f = \beta y$, v (5 periods)

Continuous:
$$-1.14$$
, 1.14 $P_1^{DG} - P_2$: -2.50 , 2.36

Finite Element Exterior Calculus: a few candidates

• The $P_1^{NC} - P_{1-C}$ pair (2D) (Le Roux, SIAM 2001)

• The *BDFM*₁ – P_1^{DG} pair (2D) (Cotter and Shipton, JCP 2012) $V = \{\mathbf{u} \in H(div) : \mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2, with \mathbf{u}_1 |_K \in (P_1(K))^2 \text{ and } \mathbf{u}_2 |_K \in \{\mathbf{u} \in (P_2(K))^2 : \mathbf{u} \cdot \mathbf{n} = 0 \text{ on } \partial K\}\}$

DG discretization of the 2D linear shallow-water system

Let $\{\tau_h\}_{h>0}$ denote a partition of the domain Ω into a finite number of disjoint open elements Ω_{κ} :

$$\overline{\Omega} = \cup_{{\cal K}} \overline{\Omega}_{{\cal K}} \quad \text{and} \quad \Omega_{{\cal K}^+} \cap \Omega_{{\cal K}^-} = \emptyset \ \text{for} \ {\cal K}^+ \neq {\cal K}^-,$$

where the meshlength parameter *h* is assumed to be constant. Further, let Γ be the finite ensemble of interelement boundaries $\Gamma_e = \overline{\partial \Omega_{K^+}} \cap \overline{\partial \Omega_{K^-}}$ with $K^+ > K^-$ inside the domain, and $\overline{\Gamma} = \cup_e \overline{\Gamma}_e$ and $\Gamma_e \cap \Gamma_f = \emptyset$ for $e \neq f$.

Each $\Gamma_{e} \in \Gamma$ is associated with a unique fixed unit normal $\mathbf{n}_{e} = (n_{e}^{x}, n_{e}^{y})$. Finally, for any function $\iota \in V_{K} = H^{1}(\Omega_{K})$ (ι may represent u, v or η), the trace of ι on Γ_{e} is denoted by ι^{\pm} , with

$$\iota^-(x) = \lim_{\varepsilon \to 0^-} \iota(x + \varepsilon n_{\varrho}), \quad \iota^+(x) = \lim_{\varepsilon \to 0^+} \iota(x + \varepsilon n_{\varrho}),$$

where $\mathbf{x} \in \Gamma_{e}$.

Let $\mathbf{w} = (u, v, \eta)$. The linear shallow-water equations yield

$$\frac{\partial \mathbf{w}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{w}) + \mathbf{S}(\mathbf{w}) = \mathbf{0}, \quad \text{with} \quad \mathbf{F}(\mathbf{w}) = \begin{pmatrix} g\eta & 0\\ 0 & g\eta\\ Hu & Hv \end{pmatrix} \quad \text{and} \quad \mathbf{S}(\mathbf{w}) = \begin{pmatrix} fv\\ -fu\\ 0 \end{pmatrix}, \tag{7}$$

where F(w) and S are the flux and source terms, respectively.

The weak formulation is obtained by multiplying (7) by an arbitrary test function $\psi(\mathbf{x}) \in V_K$ and integrate the flux term by parts, using Green's theorem, over each element Ω_K :

$$\int_{\Omega_{\kappa}} \frac{\partial \mathbf{w}}{\partial t} \cdot \psi \, d\mathbf{x} - \int_{\Omega_{\kappa}} \mathbf{F}(\mathbf{w}) \cdot \nabla \psi \, d\mathbf{x} + \int_{\partial \Omega_{\kappa}} \mathbf{F}(\mathbf{w}) \cdot \mathbf{n}_{e} \cdot \psi \, d\mathbf{x} + \int_{\Omega_{\kappa}} \mathbf{S}(\mathbf{w}) \cdot \psi \, d\mathbf{x} = \mathbf{0}.$$
(8)

Daniel Le Roux (Université Lyon 1)

NumWave, 12/12/17 13 / 20

The discrete schemes

Let $\mathscr{P}^m(\Omega_K)$ the space of polynomials of degree $\leq m$ and $V_{h,K} = \{\iota : \iota|_{\Omega_K} \in \mathscr{P}^m(\Omega_K)\} \subset V_K$. u, v, η are approximated in $V_{h,K}$ and these are denoted by $\mathbf{w}_h = (u_h, v_h, \eta_h)$. Equation (8) leads to

$$\int_{\Omega_{\kappa}} \frac{\partial \mathbf{w}_{h}}{\partial t} \cdot \psi \, d\mathbf{x} - \int_{\Omega_{\kappa}} \mathbf{F}(\mathbf{w}_{h}) \cdot \nabla \psi \, d\mathbf{x} + \int_{\partial \Omega_{\kappa}} \mathbf{F}(\mathbf{w}_{h}^{*}) \cdot \mathbf{n}_{e} \cdot \psi \, d\mathbf{s} + \int_{\Omega_{\kappa}} \mathbf{S}(\mathbf{w}_{h}) \cdot \psi \, d\mathbf{x} = 0, \quad (9)$$

where $\mathbf{w}_h^* = (u_h^*, v_h^*, \eta_h^*)$ denotes the numerical trace of \mathbf{w} on the boundary element $\partial \Omega_K$.

To complete the definition of the approximate solution \mathbf{w}_h , it only remains to choose a unique numerical flux \mathbf{w}^* at the cell interface as to render the method consistent and stable.

Daniel Le Roux (Université Lyon 1)

The Polynomial viscosity matrix approach (PVM)

Equation (7) is projected in the normal direction $\mathbf{n}_e = (n_e^x, n_e^y)$, with $||\mathbf{n}_e|| = 1$, assuming the source term $\mathbf{S}(\mathbf{w})$ is disregarded. This yields

$$\frac{\partial \mathbf{w}}{\partial t} + A \frac{\partial \mathbf{w}}{\partial n_e^x} = 0, \quad \text{where} \quad A = \frac{\partial (\mathbf{F} \cdot \mathbf{n}_e)}{\partial \mathbf{w}} = \begin{pmatrix} 0 & 0 & gn_e^x \\ 0 & 0 & gn_e^y \\ Hn_e^x & Hn_e^y & 0 \end{pmatrix},$$

is A is the Jacobian matrix. Classical computations lead to

$$\begin{split} F(\mathbf{w}^*_{\mathsf{Roe}}) \cdot \mathbf{n}_{ed} &= A[\mathbf{w}] - \frac{1}{2\sqrt{gH}} A^2[\mathbf{w}], \\ F(\mathbf{w}^*_{\mathsf{Rus}}) \cdot \mathbf{n}_{ed} &= A[\mathbf{w}] - \frac{1}{2}\sqrt{gH} I_{3,3}[\mathbf{w}], \end{split}$$

where $\{w\}$ and [w] denote the mean value and the jump of w between the right and left fields, respectively. In a more general (PVM) approach the numerical flux is defined as

$$F(\mathbf{w}^*) \cdot \mathbf{n} = A\{\mathbf{w}\} - \frac{1}{2} \sum_{j=0}^{N} \widetilde{\alpha}_j A^j[\mathbf{w}].$$

The coefficients $\tilde{\alpha}_j$ are such that the polynomial interpolates the function "absolute value" at some eigenvalues of the Jacobian matrix (Castro and Fernandez-Nieto, SIAM 2012).

These coefficients are determined in order to guarantee the stability of the scheme.

DG SCHEMES

Since we have the property $A^{2j-1} = (gH)^{j-1}A$, $A^{2j} = (gH)^{j-1}A^2$, for $j = 1, 2, 3, \cdots$, we obtain $F(\mathbf{w}^*) \cdot \mathbf{n} = A\{\mathbf{w}\} - \frac{1}{2} \left(\alpha_0 I_{3,3}[\mathbf{w}] + \alpha_1 A[\mathbf{w}] + \alpha_2 A^2[\mathbf{w}] \right)$.

 $\mathbf{n} = A\{\mathbf{w}\} - \frac{1}{2} \underbrace{\left(\alpha_0 I_{3,3}[\mathbf{w}] + \alpha_1 A[\mathbf{w}] + \alpha_2 A^{\mathbf{w}}[\mathbf{w}]\right)}_{\text{numerical viscosity matrix}}.$

with $\alpha_0 = p \sqrt{gH}$, $\alpha_1 = 0$ and $\alpha_2 = q / \sqrt{gH}$, and this leads to

$$F(\mathbf{w}^{*}) \cdot \mathbf{n} = \begin{pmatrix} g\eta^{*}n_{x} \\ g\eta^{*}n_{y} \\ H\mathbf{u}^{*} \cdot \mathbf{n} \end{pmatrix} = \begin{pmatrix} gn_{ed}^{x}\{\eta\} - \frac{\sqrt{gH}}{2} \left(p[u] + qn_{ed}^{x} \left(n_{ed}^{x}[u] + n_{ed}^{y}[v] \right) \right) \\ gn_{ed}^{y}\{\eta\} - \frac{\sqrt{gH}}{2} \left(p[v] + qn_{ed}^{y} \left(n_{ed}^{x}[u] + n_{ed}^{y}[v] \right) \right) \\ H \left(n_{ed}^{x}\{u\} + n_{ed}^{y}\{v\} \right) - \frac{\sqrt{gH}}{2} \left(p(+q) \left[\eta \right] \end{pmatrix} \end{pmatrix}$$

The choice of *p* and *q* leads to a few classical schemes:

	Centered	Rusanov	Roe	PVM-2	PVM-4
р	0	1	0	1/2	3/8
q	0	0	1	1/2	5/8

To obtain the 2-D dispersion relations for the $P_1^{DG} - P_1^{DG}$ and $P_1^{NC} - P_1^{NC}$ pairs:

- Write the 18 TYPICAL (resp. 9) discrete equations for the $P_1^{DG} P_1^{DG}$ (resp. $P_1^{NC} P_1^{NC}$) pair
- Perform the 2-D Fourier analysis
- Compute the 18 × 18 (resp. 9×9) determinant for the $P_1^{DG} P_1^{DG}$ (resp. $P_1^{NC} P_1^{NC}$) pair
- "Solve" equations of degree 18 and 9 in $\omega(kh, lh)$ and obtain the asymptotics as $h \rightarrow 0$

Theorem

In the limit as mesh spacing $h \rightarrow 0$ we obtain the asymptotic results

• The inertia-gravity modes (for the 4 schemes): No spurious pressure and f-modes

$$\omega^{DG} = \omega^{AN} + i \mathscr{F}_1(k,l) h^3 \pm \mathscr{F}_2(k,l) h^4 + O(h^5)$$
$$\omega^{NC} = \omega^{AN} \pm \mathscr{G}_1(k,l) h^4 + i \mathscr{G}_2(k,l) h^5 + O(h^6)$$

• The geostrophic mode: No spurious geostrophic modes

$$\frac{Rusanov, PVM-2, PVM-4}{\omega^{DG}} = \frac{Roe}{i\mathscr{F}_{3}(k,l)h^{3}+O(h^{5})} \qquad \omega^{DG} = 0 \quad and \quad i\mathscr{F}_{3}(k,l)h+O(h^{2})$$
$$\omega^{NC} = i\mathscr{G}_{3}(k,l)h^{5}+O(h^{7}) \qquad \omega^{NC} = i\mathscr{G}_{3}(k,l)h+O(h^{2})$$

• Existence of high frequency modes: $\omega_j = \frac{\alpha_j + i\beta_j}{h} + O(h)$, with $\beta_j > 0$.

DG simulations (I): Balanced flow, Convergence rate for $||\mathbf{u}||$ after 8 weeks.

Mesh 1

Mesh 2

Rus

DG simulations (II): Propagating eddy: $\|\mathbf{u}\|_{L^{\infty}}$ after 10 weeks

Conclusions

- The discretization of the shallow-water equations usually leads to computational modes.
- We have proposed to study these problems by using Fourier (dispersion) analyses and the study of the kernels of the discrete operators.
- The cause of the computational solutions is mainly due to:
 - Wrong choice of discrete spaces for the variables u, v and η (spurion η modes).
 - An imbalance between the d.o.f. of u, v and η nodal values (inertial modes).
 - The use of normal velocities (f-modes).
- The Fourier analyses show that stabilized DG methods are free of spurious solutions:
 - The P_1^{NC} approximation with the Rusanov scheme is highly accurate for all modes.
 - Further, the P^{NC}₁ scheme "naturally" discretizes the laplacian term without recouring to the LDG method for viscous flows.
 - Finally, we have obtained numerically a CFL limit of:
 - ***** 0.18 for the P_1^{DG} scheme
 - ***** 0.30 for the P_1^{NC} scheme.
- Fourier analysis should be performed for 3D models.