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INTRODUCTION

Introduction

@ Climate, oceanic and atmospheric flows support the propagation of:

» very fast acoustic waves.

» the fast inertia-gravity modes (internal, external).
> the slow mid-latitude Rossby modes.

» equatorial waves (Kelvin, Rossby index 1 and 2).

and many physical processes, equilibrium, conservation properties etc.

@ Numerical methods badly represent the propagation of such waves and their
properties at the discrete level.

@ Many attemps to understand why over the past 50 years.
@ To find out how to compute the waves accurately, error analyses are performed
here mostly by studying the kernel of the discrete operators and by using the

Fourier analysis.

@ The aim of this talk is to present such Fourier results, and to propose a class of
possible discretization schemes, that are not affected by the spurious solutions.
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EQUATIONS

The shallow-water equations (2D)

They are derived by vertical integration of the momentum and continuity equations in
the primitive system assuming:

@ Horizontal displacements (u, = v, =0) Pt TEAN

@ HkL \_/Ii\/\
@ The density p is constant

@ The hydrostatic equilibrium (p, = —pg)

L

Inviscid non linear SW system:
y Inviscid linearized SW system:

ou

M u-Viutfk vn = 0

at+(“ Jutfkxutgvn ’ g—l;+fk><u+gVn = 0,
d
LV (Henw) = 0, MyHvu = 0,

with appropriate initial and boundary conditions.
@ u=(u,v) is the velocity field
@ nis the surface elevation with respect to the reference level z=0
@ g is the gravitational acceleration and k is a unit vector in the vertical direction
@ the mean depth H is assumed constant
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FOURIER — CONTINUOUS

Inertia-gravity and Rossby waves in 2-D

We consider the system Periodic solutions
u+fkxut+gvn = 0, (1) u = delrlyrot
n+HV-w = 0, (2 n o= fellectyrwn,

After substitution in (1) and (2), the following system is obtained for the amplitudes

0 —f gk 0} 0
f0 gl 0 | =—iwkg| v .
iHk iHI 0 fi fi

The dispersion relation, i.e. w(k,/), is obtained by vanishing the 3 x 3 determinant of the matrix:

@ geostrophic and inertia-gravity modes (f = constant)
The (slow) solution w = 0 is the geostrophic mode.

The two other (fast) solutions correspond to the inertia-gravity modes
Woy == f2+gH(k2+2).
Two limits: e f =0 (gravity wave), w = ++/gH (k2 +12).

o gH(k? + ) < f? (inertial oscillations), w = = f.

By using the quasi-geostrophic approximation we can also obtain a relation for the

. —Bk .
@ Rossby mode: w = W with f = f, + By and A = /gH/f,.
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INERTIA-GRAVITY AND ROSSBY WAVE:

High frequency inertia-Gravity ~ Low frequency Rossby waves
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DISCRETE SCHEMES

Matrix kernel analysis of the stationary SW model
A solution of the continuous stationary shallow water model

Continuous Discrete
fkxu+gvVn = 0, (3) (C G) (uh) — CDG (uh> —o,
HV.u = 0, (4 D 0)\n, u

with CG:=(C G)and DO:=(D 0),
should satisfy (Rostand and Le Roux, [UNMF 2007, SIAM 2008)

Property1: (3)=(4) u= %k x Vn = %rotn = %VLn

ker(CQ) c ker(DO)
Property2: (4)=(3) 3(:u=V!i(=n= éc+c

ker(D) C {u, [ 3y, @ (up,my,) € ker(CG)}
Property 3: '¥n, Ju verifying (3) and (4).

Yy, Juy, : (ug,m,) € ker(CDG)

A necessary (but not sufficient) condition is that the ratio of momentum versus continuity
equations remains the same for the continuous and discrete cases.

Property 4: dimker(C) =0 and dim ker(G) =1

Daniel Le Roux (Université Lyon 1) NumWave, 12/12/17 5/20



DISCRETE SCHEMES

Mimetic discretization

D (Le Roux, JCP 20012) J

Spurious pressure

dimker(D)= 2, + Dy +

Geostrophic  Spurious inertial

Existence of the discrete Helmholtz decomposition requires that the following diagram commutes:

1
H'(Q) 5 Hdiv,0) -2 (2Q)
L mg lmy, Lmg (Arnold et al, 2002, 2006; Cotter, Shipton, 2012)
vi V.
S — Vv — Q

A necessary condition to avoid both spurious inertia-gravity and spurious Rossby waves, at least
in the periodic plane, is to have dim(V) =2dim(Q).

For example, to avoid spurious pressure () modes it is required that

mg(V-u) =V.my,(u)
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FOURIER DISCRETE

Fourier analysis (dispersion relations) at the discrete level
@ Time is assumed to be continuous (% =iw) and f is held constant.

@ The discrete problem leads to a set of discrete equations in space (at node j; =1,2,3,---,
foruand j, =1,2,3,---, forn) on a regular and uniform mesh (the meshlength parameter h
is taken as a constant). In the following biased right triangles are used.

kx, +ly: i(k / t
@ Periodic solut|on5u =t,e it X T, +ol) and j, n, =fige Xyt @ ) are sought

where @, and i, are the Fourler amplitudes, with p=1,2,3---,and ¢ =1,2,3,---

@ When linear polynomials are employed to approximate u and n, the velocity and pressure
unknowns are located at triangle vertices and we have p = g =1 (for symmetry reasons).

However, when mid-side, barycenter, internal, etc ..., nodes are used to locate velocity and
surface-elevation nodal values we have p > 1 and g > 1. For example:

P, RT,, PNC SISede
(pg=1) (p,g=3) \ AN

P1DG ? o Ne N ) PO ° LAN[) NN
(p)q:6) ° (pvq:z) i LN ¢

A nx nsystem is obtained for the amplitudes and the dispersion relation is hence a polynomial of
degree n in w, leading to the existence of eventual spurious solutions.
We have n=2p+ q or n= p+ g depending on the FE pairs.
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SPURIOUS MODES

Effects of spurious elevation modes: the P, — P, pair: dim ker(G) # 1

Daniel Le Roux (Université Lyon 1)

150
—OX, OY and OD1 Constant H

(I

Linear H, 1 mode of wavelength 3h

E 2 % < ST
= : <

Simulation

w(khyIh)/w an

0 ' zms X
The behavior of the smallest nonzero singular value o, of the discrete divergence operator
is related to the so-called discrete stability inf-sup (LBB) condition for mixed problems

b(uh’ﬁh) > o> (5)

inf sup
Op€Q p upeV, ”uhHVj ”‘ShHOj/kerBT

where 9, denotes the test function, and B is the linear continuous operator defined as
< Bu,d >oj’xoj: b(u,®) = [, V-uddx, Vue vV, € Q.

0, # 0 is needed when dim(V/-’h) and dim(ijh) increase, to avoid a zero eigenvalue of the
problem associated with a stationary spurious n mode (u =0, n € ker(Gp,), 1 # constant).

Stabilized FEM (Hughes et al., 1986): retrieving the information lost by the projection My,
i.e. gradnh—ﬂvhgradnh, for a bad choice of V; , and Q; , (when there are not enough u,

compared to n,,), as it is the case when grad is not injective, namely dim(kerB;,) > 1.
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SPURIOUS MODES

Coriolis f—modes: C-grid and RT, BDM and BDFM elements: dim ker(C) #0

Inertia part
Ot O 2
(%)AN = 1
°1° (©)2 = cos? K cos? b

+ 4 (%)2 (sm2 Ll

+[Ih1?)

2 |h
+sin 2)

@ The numerical example with the RT, — P, pair considers the geostrophic balance
> The fluid is initially at rest and a point mass source and sink are prescribed
> The Coriolis parameter is held constant
> the RTO scheme exhibits a checkerboard-like pattern of noise in the elevation field
around the mass source and sink points when A = \/gH/f is not resolved

(Le Roux et al., SIAM 2008)

A/h=1/10

@ Use a fine mesh to well resolve the Rossby radius.
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SPURIOUS MODES

Existence of spurious inertial oscillations: w = +f

For all FE pairs having two velocity components per node, with n=2p+ q and p > q, the selected
discrete equations lead to the following (2p+ q) x (2p+ q) matrix system for the amplitudes:

M. —gDj}
. 2p,2 2p, o PO ~
SX =0, with S—( HDp P ; Npq >, X:(upm,up,m»"'mq): (6)
q2p %Y Ngq
where u,--- ,ﬁp, Mgy ,ﬁq are the Fourier amplitudes, quzp and N, 4 are the divergence and
surface-elevation mass matrices, respectively, M, ,,, is the velocity mass / Coriolis matrix.

Theorem (Le Roux, JCP 2012)

For all FE pairs having two velocity components per node, with n=2p+q and p > q, the general
dispersion relation obtained from (6) is such that

detS=0=w? (wszz)piq Pag(w),

where Py, (w) is a polynomial of degree 2q in w (inertia-gravity solutions).

Consequences

The FE pairs having 2 velocity components per node are subject to
@ Physical geostrophic modes w = 0 of multiplicity g—1 if g > 1.
@ Non physical solutions w = £f if p > q, namely spurious inertial modes of multiplicity p—q. |
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SPURIOUS MODES

Effects of spurious inertial oscillations: w = +f

@ 1 plays the role of a constant and u only depends on time, i.e. u = u(t).
@ u(f) is the discrete counterpart of the solution of the continuous equation u; + 7k x u = 0:
u(t)=Vsin(ft+®) and v(t)=V cos(ft+ ),

where u(t) rotates with frequency f. This is observed when f is a constant depending on

The ratio of the spurious inertial modes to the total number of discrete modes:
| PPe=Py | PP, | PIO—Py | PSP,

2(p—q) 10/13 6/9 4/7 4/16
~n 77% 67% 57% 25%
Rossby mode f = fy+  y, u (9 periods) Rossby wave of index 2, f = By, v (5 periods)

P,—P, Continuous: —1.14,1.14  PPG_p,: 250, 2.36
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SPURIOUS MODES

Finite Element Exterior Calculus: a few candidates

@ The PNC—P,  pair (2D) (Le Roux, SIAM 2001)

The P, ,element: ¢ 3 — 3 5

@ The BDFM, — PPG pair (2D) (Cotter and Shipton, JCP 2012) V ={u € H(div) : u = u, +uy,
with u, |, € (P, (K))2 and u, |, € {u € (P,(K))2:u-n=0 on aK}}

@ The P§ — PPS, pair (1D) (Eldred and Le Roux)
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DG SCHEMES

DG discretization of the 2D linear shallow-water system
Let {t;},. o denote a partition of the domain Q into a finite number of disjoint open elements Q,:
Q=UQg and Q4 NQ,_ =0 for Kt K,
where the meshlength parameter h is assumed to be constant. Further, let I" be the finite
ensemble of interelement boundaries I, = 9Q,, N3Q, with K* > K~ inside the domain, and
F=Ugle and ToNT; =0 for e#f.

Each T, € ' is associated with a unique fixed unit normal n, = (n%, n%). Finally, for any function
Le V= H? (Q) (L may represent u, v or 1), the trace of L on T, is denoted by t, with

U (x) = lim ux+eng), T(x)= lim ux+eny),
e—0— e—0+

where x € T,.

Let w = (u,v,n). The linear shallow-water equations yield
ow ) gn 0 fv
— +V.F(w)+S(w)=0, with F(w)= <0 gn) and S(w)= (7fu> , (7)
ot Hu  Hv 0

where F(w) and S are the flux and source terms, respectively.

The weak formulation is obtained by multiplying (7) by an arbitrary test function 1 (x) € V). and
integrate the flux term by parts, using Green’s theorem, over each element Q

J a—w-lbdfo- F(w)-VIJ,)dX+J F(W)-ne-ll)dSJrJ S(w)-pdx=0. (8)
o, ot oy 00, Oy
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DG SCHEMES

The discrete schemes

pDbG pNC

Let 2™(Q, ) the space of polynomials of degree < m and Vh‘K ={t: L|QK € MOy )} C V.
u,v,n are approximated in Vh,K and these are denoted by w;, = (uy, v},,n,). Equation (8) leads to

F(w}) ng-pds +JQ S(wp)-bdx=0, 9)
K

K K ao'K

where w}, = (uj, vj;,n}) denotes the numerical trace of w on the boundary element 0Q),.

To complete the definition of the approximate solution w,, it only remains to choose a unique
numerical flux w* at the cell interface as to render the method consistent and stable.
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DG SCHEMES

The Polynomial viscosity matrix approach (PVM)
Equation (7) is projected in the normal direction n, = (n%, %), with ||ng|| = 1, assuming the
source term S(w) is disregarded. This yields

0 0 gn
a—W—&-Aa—w—o, where A:a(F'ne): 0 0o gnt|,
ot ong ow

Hn¥ Hng 0
is A is the Jacobian matrix. Classical computations lead to
1 AZ[WL

F(ways) meg = Alw}— % vV H IS,S[WL

where {w} and [w] denote the mean value and the jump of w between the right and left fields,
respectively. In a more general (PVM) approach the numerical flux is defined as

F(WRoe) ‘Dgg

N
F(w")-n=A{w}— % > A wl.
j=0

The coefficients &j are such that the polynomial interpolates the function “absolute value” at
some eigenvalues of the Jacobian matrix (Castro and Fernandez-Nieto, SIAM 2012).

These coefficients are determined in order to guarantee the stability of the scheme.
NumWave, 12/12/17
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DG SCHEMES

Since we have the property A2~ = (gH)/'*1 A, A% =(gHY "A2 forj=1,23,---, we obtain

F(w*)-n=Afw}— <0c0/33[w]+oc1 ]+ g A%l

numerical viscosity matrix
with oy = p+/gH, oy =0 and &, = g/+/gH, and this leads to
v (a2 (ol anty (gl + )
Fw)-n=| gn'n, | = | gntytn}— Y2 (pIv1-+ Gnl (miglul + 1))
e H(m i)+ tgfv)) — Y2 (o @)

The choice of p and g leads to a few classical schemes:

Centered Rusanov Roe PVM—-2 PVM-—4
p 0 1 0 1/2 3/8
q 0 0 1 1/2 5/8

To obtain the 2-D dispersion relations for the PP¢ — PPG and PNC — PINC pairs:

@ Write the 18 TYPICAL (resp. 9) discrete equations for the PP — PPC (resp. PNC — PNC) pair
@ Perform the 2-D Fourier analysis

@ Compute the 18 x 18 (resp. 9 x 9) determinant for the PPE — PPC (resp. PINC — PNC) pair
@ “Solve* equations of degree 18 and 9 in w(kh, Ih) and obtain the asymptotics as h — 0
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DG SCHEMES

Theorem
In the limit as mesh spacing h — 0 we obtain the asymptotic results

e The inertia-gravity modes (for the 4 schemes): No spurious pressure and f-modes

wPG = AN Lz (k1) hP £ Fp(k, ) B+ O(HP)

wNC = WAVt (k) +i%,(k, 1) h®+ O(KP)

e The geostrophic mode: No spurious geostrophic modes

Rusanov, PVM—2, PVM—4 Roe
wPl = iz kR +0)  wPE = 0 and iZ(k, 1) h+O(H)
wNC = ig(k,))R°+ O(h") wNC = g, (k,))h+O(H?)

» Existence of high frequency modes: w; = ﬂh’ﬁ +O(h), with ;> 0.
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Numerical simulations

DG simulations (I): Balanced flow, Convergence rate for ||u|| after 8 weeks.
Mesh 1 Mesh 2 Mesh 3

Roe Rus

—P1DG Mesh 1
— Mesh 2
- Mesh 3
—PINCMeshl [--
— Mesh 2
- Mesh 3
—PO0 Mesh 1 1

— Mesh 2 1
- Mesh 3
—05 . ) ) .

0 2 4 6 8 0 2 4 6 8
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Numerical simulations

DG simulations (ll): Propagating eddy: ||u||,~ after 10 weeks
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CONCLUSIONS

Conclusions

@ The discretization of the shallow-water equations usually leads to computational modes.

@ We have proposed to study these problems by using Fourier (dispersion) analyses and the
study of the kernels of the discrete operators.

@ The cause of the computational solutions is mainly due to:
> Wrong choice of discrete spaces for the variables u, v and n (spurion n modes).
> Animbalance between the d.o.f. of u,v and i nodal values (inertial modes).
> The use of normal velocities (f-modes).
@ The Fourier analyses show that stabilized DG methods are free of spurious solutions:
> The P1’\’C approximation with the Rusanov scheme is highly accurate for all modes.

> Further, the P1’\’c scheme "naturally discretizes the laplacian term without recouring
to the LDG method for viscous flows.

> Finally, we have obtained numerically a CFL limit of:
* 0.18 for the PPC scheme
* 0.30 for the PNC scheme.

@ Fourier analysis should be performed for 3D models.
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