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INTRODUCTION

Introduction

Climate, oceanic and atmospheric flows support the propagation of:
I very fast acoustic waves.
I the fast inertia-gravity modes (internal, external).
I the slow mid-latitude Rossby modes.
I equatorial waves (Kelvin, Rossby index 1 and 2).

and many physical processes, equilibrium, conservation properties etc.

Numerical methods badly represent the propagation of such waves and their
properties at the discrete level.

Many attemps to understand why over the past 50 years.

To find out how to compute the waves accurately, error analyses are performed
here mostly by studying the kernel of the discrete operators and by using the
Fourier analysis.

The aim of this talk is to present such Fourier results, and to propose a class of
possible discretization schemes, that are not affected by the spurious solutions.
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EQUATIONS

The shallow-water equations (2D)

They are derived by vertical integration of the momentum and continuity equations in
the primitive system assuming:

Horizontal displacements (uz = vz = 0)

H� L

The density ρ is constant

The hydrostatic equilibrium (pz =−ρg)
L

H

η

Inviscid non linear SW system:
∂u
∂t

+(u ·∇)u+ f k×u+g ∇η = 0 ,

∂η

∂t
+∇ ·

(
(H +η)u

)
= 0,

Inviscid linearized SW system:
∂u
∂ t

+ f k×u+g ∇η = 0 ,

∂η

∂ t
+H ∇ ·u = 0 ,

with appropriate initial and boundary conditions.
u = (u,v) is the velocity field
η is the surface elevation with respect to the reference level z = 0
g is the gravitational acceleration and k is a unit vector in the vertical direction

the mean depth H is assumed constant
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FOURIER – CONTINUOUS

Inertia-gravity and Rossby waves in 2–D
We consider the system

ut + f k×u+g ∇η = 0 , (1)

ηt +H ∇ ·u = 0 , (2)

Periodic solutions

u = ûei(kx+ly+ωt),

η = η̂ei(kx+ly+ωt).

After substitution in (1) and (2), the following system is obtained for the amplitudes 0 −f i g k
f 0 i g l

i H k i H l 0

 û
v̂
η̂

=−iω I3,3

 û
v̂
η̂

 .
The dispersion relation, i.e. ω(k , l), is obtained by vanishing the 3×3 determinant of the matrix:

geostrophic and inertia-gravity modes (f = constant)

I The (slow) solution ω= 0 is the geostrophic mode.

I The two other (fast) solutions correspond to the inertia-gravity modes
ωAN =±

√
f 2 +g H (k2 + l2 ).

Two limits: • f = 0 (gravity wave), ω =±
√

g H (k2 + l2 ).
• gH(k2 + l2)� f 2 (inertial oscillations), ω =± f .

By using the quasi-geostrophic approximation we can also obtain a relation for the

Rossby mode: ω =
−βk

1
λ2 +k2 + l2

, with f = f0 +βy and λ=
√

gH/f0.
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INERTIA-GRAVITY AND ROSSBY WAVES

High frequency inertia-Gravity Low frequency Rossby waves
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DISCRETE SCHEMES

Matrix kernel analysis of the stationary SW model
A solution of the continuous stationary shallow water model

Continuous Discrete

f k×u+g∇η = 0, (3)

H∇ ·u = 0, (4)

(
C G
D 0

)(
uh
ηh

)
:= CDG

(
uh
ηh

)
= 0,

with CG :=
(
C G

)
and DO :=

(
D 0

)
,

should satisfy (Rostand and Le Roux, IJNMF 2007, SIAM 2008)

Property 1: (3)⇒ (4) u =
g
f

k ×∇η=
g
f

rotη=
g
f

∇
⊥η

ker(CG)⊂ ker(DO)

Property 2: (4)⇒ (3) ∃ζ : u = ∇
⊥ ζ⇒ η=

f
g
ζ+c

ker(D)⊂ {uh | ∃ηh : (uh,ηh) ∈ ker(CG)}

Property 3: ∀η,∃u verifying (3) and (4).

∀ηh,∃uh : (uh,ηh) ∈ ker(CDG)

A necessary (but not sufficient) condition is that the ratio of momentum versus continuity
equations remains the same for the continuous and discrete cases.

Property 4: dim ker(C) = 0 and dim ker(G) = 1
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DISCRETE SCHEMES

Mimetic discretization

dim ker(D) = D1︸︷︷︸
Geostrophic

+ D2︸︷︷︸
Spurious inertial

+ D3︸︷︷︸
Spurious pressure

(Le Roux, JCP 20012)

Existence of the discrete Helmholtz decomposition requires that the following diagram commutes:

H1(Ω)
∇⊥−→ H(div ,Ω)

∇·−→ L2(Ω)↓ πS ↓ πV ↓ πQ (Arnold et al, 2002, 2006; Cotter, Shipton, 2012)

S
∇⊥−→ V ∇·−→ Q

A necessary condition to avoid both spurious inertia-gravity and spurious Rossby waves, at least
in the periodic plane, is to have dim(V ) = 2dim(Q).

For example, to avoid spurious pressure (η) modes it is required that

πQ(∇ ·u) = ∇ ·πV (u)
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FOURIER DISCRETE

Fourier analysis (dispersion relations) at the discrete level
Time is assumed to be continuous ( ∂∂t = iω) and f is held constant.

The discrete problem leads to a set of discrete equations in space (at node j1 = 1,2,3, · · · ,
for u and j2 = 1,2,3, · · · , for η) on a regular and uniform mesh (the meshlength parameter h
is taken as a constant). In the following biased right triangles are used.

Periodic solutions uj1
= ûp e

i(kxj1
+ lyj1

+ωt)
and ηj2

= η̂q e
i(kxj2

+ lyj2
+ωt)

are sought
where ûp and η̂q are the Fourier amplitudes, with p = 1,2,3 · · · , and q = 1,2,3, · · · .

When linear polynomials are employed to approximate u and η, the velocity and pressure
unknowns are located at triangle vertices and we have p = q = 1 (for symmetry reasons).
However, when mid-side, barycenter, internal, etc ..., nodes are used to locate velocity and
surface-elevation nodal values we have p > 1 and q > 1. For example:

P1
(p,q = 1)

PDG
1

(p,q = 6)

RT0,P
NC
1

(p,q = 3)

P0
(p,q = 2)

A n×n system is obtained for the amplitudes and the dispersion relation is hence a polynomial of
degree n in ω, leading to the existence of eventual spurious solutions.
We have n = 2p+q or n = p+q depending on the FE pairs.
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SPURIOUS MODES

Effects of spurious elevation modes: the P1 −P1 pair: dim ker(G) 6= 1
ω
(k

h,
lh
)/
ω

A
N

0 ππ2 /3
0

0.5

1

1.5
OX, OY and OD1
OD2

S
im

ul
at

io
n

Constant H

Linear H, η mode of wavelength 3h

The behavior of the smallest nonzero singular value σ0 of the discrete divergence operator
is related to the so-called discrete stability inf-sup (LBB) condition for mixed problems

inf
ϑh∈Qj,h

sup
uh∈Vj,h

b(uh,ϑh)

‖uh‖Vj
‖ϑh‖Qj/kerB T

≥ σ0, (5)

where ϑh denotes the test function, and B is the linear continuous operator defined as
< Bu,ϑ >Q ′j ×Qj

= b(u,ϑ) =
∫
Ω∇ ·u ϑdx, ∀u ∈ Vj ,∀ϑ ∈Qj .

σ0 6= 0 is needed when dim(Vj,h) and dim(Qj,h) increase, to avoid a zero eigenvalue of the
problem associated with a stationary spurious η mode (u = 0, η ∈ ker(Gh), η 6= constant).

Stabilized FEM (Hughes et al., 1986): retrieving the information lost by the projection ΠVh
,

i.e. gradηh −ΠVh
gradηh, for a bad choice of Vj,h and Qj,h (when there are not enough uh

compared to ηh), as it is the case when grad is not injective, namely dim(kerBt
h)> 1.
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SPURIOUS MODES

Coriolis f−modes: C-grid and RT , BDM and BDFM elements: dim ker(C) 6= 0
Inertia part Gravity part(

ω
f

)2
AN = 1 +

(
λ
h
)2

( [kh]2 +[lh]2)(
ω
f

)2
C = cos2 kh

2 cos2 lh
2 + 4

(
λ
h
)2 (

sin2 kh
2 +sin2 lh

2

)
The numerical example with the RT0 −P0 pair considers the geostrophic balance

I The fluid is initially at rest and a point mass source and sink are prescribed
I The Coriolis parameter is held constant
I the RT0 scheme exhibits a checkerboard-like pattern of noise in the elevation field

around the mass source and sink points when λ=
√

gH/f is not resolved
(Le Roux et al., SIAM 2008)

λ
/

h
=

1/
10

0 π0

0.5

1

1.5

O(1)

O(1/h)

OX and OY
OD1
OD2

0 0.1- 0.1

λ
/

h
=

2

0 π0

5

10

15

O(1)

O(1/h)

OX and OY
OD1
OD2 0 0.1- 0.1

Use a fine mesh to well resolve the Rossby radius.
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SPURIOUS MODES

Existence of spurious inertial oscillations: ω=±f
For all FE pairs having two velocity components per node, with n = 2p+q and p ≥ q, the selected
discrete equations lead to the following (2p+q)× (2p+q) matrix system for the amplitudes:

S X = 0, with S =

(
M2p,2p −gD∗2p,q

HDq,2p iωNq,q

)
, X =

(
û1, · · · , ûp , η̂1, · · · , η̂q

)
, (6)

where û1, · · · , ûp , η̂1, · · · , η̂q are the Fourier amplitudes, Dq,2p and Nq,q are the divergence and
surface-elevation mass matrices, respectively, M2p,2p is the velocity mass / Coriolis matrix.

Theorem (Le Roux, JCP 2012)
For all FE pairs having two velocity components per node, with n = 2p+q and p ≥ q, the general
dispersion relation obtained from (6) is such that

detS = 0 =ωq
(
ω2 − f 2

)p−q
P2q(ω),

where P2q(ω) is a polynomial of degree 2q in ω (inertia-gravity solutions).

Consequences
The FE pairs having 2 velocity components per node are subject to

Physical geostrophic modes ω= 0 of multiplicity q−1 if q > 1.

Non physical solutions ω=±f if p > q, namely spurious inertial modes of multiplicity p−q.
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SPURIOUS MODES

Effects of spurious inertial oscillations: ω=±f

η plays the role of a constant and u only depends on time, i.e. u = u(t).

u(t) is the discrete counterpart of the solution of the continuous equation ut + f k×u = 0:

u(t) = V sin(ft +Φ) and v(t) = V cos(ft +Φ),

where u(t) rotates with frequency f . This is observed when f is a constant depending on

The ratio of the spurious inertial modes to the total number of discrete modes:

PDG
1 −P1 P2 −P1 PNC

1 −P1 PDG
1 −P2

2(p−q)
n

10/13 6/9 4/7 4/16
77% 67% 57% 25%

Rossby mode f = f0 +βy , u (9 periods) Rossby wave of index 2, f = βy , v (5 periods)

PDG
1 −P1 P2 −P1 Continuous: −1.14, 1.14 PDG

1 −P2: −2.50, 2.36
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SPURIOUS MODES

Finite Element Exterior Calculus: a few candidates

The PNC
1 −P1−C pair (2D) (Le Roux, SIAM 2001)

The P1−C element:
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The BDFM1 −PDG
1 pair (2D) (Cotter and Shipton, JCP 2012) V = {u ∈ H(div) : u = u1 +u2,

with u1 |K∈ (P1(K ))2 and u2 |K∈ {u ∈ (P2(K ))2 : u ·n = 0 on ∂K }}

The PC
n −PDG

n−1 pair (1D) (Eldred and Le Roux)

n
=

3

0 4 2
3
4

2.0

4.0

6.0

8.0

0 4 2
3
4

0.0

0.5

1.0

1.5
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DG SCHEMES

DG discretization of the 2D linear shallow-water system

Let {τh}h>0 denote a partition of the domain Ω into a finite number of disjoint open elements ΩK :

Ω= ∪KΩK and ΩK+ ∩ΩK− = /0 for K+ 6= K−,

where the meshlength parameter h is assumed to be constant. Further, let Γ be the finite
ensemble of interelement boundaries Γe = ∂ΩK+ ∩∂ΩK− with K+ > K− inside the domain, and

Γ = ∪eΓe and Γe ∩ Γf = /0 for e 6= f .
Each Γe ∈ Γ is associated with a unique fixed unit normal ne = (nx

e ,n
y
e). Finally, for any function

ι ∈ VK = H1(ΩK ) (ι may represent u,v or η), the trace of ι on Γe is denoted by ι±, with

ι−(x) = lim
ε→0−

ι(x+εne), ι+(x) = lim
ε→0+

ι(x+εne),

where x ∈ Γe.

Let w = (u,v ,η). The linear shallow-water equations yield

∂w
∂t

+∇ ·F(w)+S(w) = 0, with F(w) =

(gη 0
0 gη

Hu Hv

)
and S(w) =

( fv
−fu

0

)
, (7)

where F(w) and S are the flux and source terms, respectively.

The weak formulation is obtained by multiplying (7) by an arbitrary test function ψ(x) ∈ VK and
integrate the flux term by parts, using Green’s theorem, over each element ΩK :∫

ΩK

∂w
∂t
·ψdx −

∫
ΩK

F(w) ·∇ψdx +

∫
∂ΩK

F(w) ·ne ·ψds +

∫
ΩK

S(w) ·ψdx = 0. (8)
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DG SCHEMES

The discrete schemes
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Let Pm(ΩK ) the space of polynomials of degree ≤m and Vh,K = {ι : ι|ΩK
∈Pm(ΩK )}⊂ VK .

u,v ,η are approximated in Vh,K and these are denoted by wh = (uh,vh,ηh). Equation (8) leads to

∫
ΩK

∂wh
∂t
·ψdx −

∫
ΩK

F(wh) ·∇ψdx +

∫
∂ΩK

F(w∗h) ·ne ·ψds +

∫
ΩK

S(wh) ·ψdx = 0, (9)

where w∗h = (u∗h,v
∗
h ,η
∗
h) denotes the numerical trace of w on the boundary element ∂ΩK .

To complete the definition of the approximate solution wh, it only remains to choose a unique

numerical flux w∗ at the cell interface as to render the method consistent and stable.
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DG SCHEMES

The Polynomial viscosity matrix approach (PVM)

Equation (7) is projected in the normal direction ne = (nx
e ,n

y
e), with ‖ne‖= 1, assuming the

source term S(w) is disregarded. This yields

∂w
∂t

+A
∂w
∂nx

e
= 0, where A =

∂(F ·ne)

∂w
=

 0 0 gnx
e

0 0 gny
e

Hnx
e Hny

e 0

 ,
is A is the Jacobian matrix. Classical computations lead to

F (w∗Roe) ·ned = A{w}− 1
2
√

gH
A2[w],

F (w∗Rus) ·ned = A{w}− 1
2

√
gH I3,3[w],

where {w} and [w] denote the mean value and the jump of w between the right and left fields,
respectively. In a more general (PVM) approach the numerical flux is defined as

F (w∗) ·n = A{w}−
1
2

N∑
j=0

α̃j A
j [w].

The coefficients α̃j are such that the polynomial interpolates the function “absolute value” at
some eigenvalues of the Jacobian matrix (Castro and Fernandez-Nieto, SIAM 2012).

These coefficients are determined in order to guarantee the stability of the scheme.
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DG SCHEMES

Since we have the property A2j−1 = (gH)j−1 A, A2j = (gH)j−1 A2, for j = 1,2,3, · · · , we obtain

F (w∗) ·n = A{w}−
1
2

(
α0I3,3[w]+α1A[w]+α2A2[w]

)
︸ ︷︷ ︸

numerical viscosity matrix

.

with α0 = p
√

gH, α1 = 0 and α2 = q/
√

gH, and this leads to

F (w∗) ·n =


gη∗nx

gη∗ny

Hu∗ ·n

=


gnx

ed {η}−

√
gH
2
(
p[u]+qnx

ed
(
nx

ed [u]+ny
ed [v ]

))
gny

ed {η}−

√
gH
2
(
p[v ]+qny

ed

(
nx

ed [u]+ny
ed [v ]

))
H
(

nx
ed {u}+ny

ed {v }
)
−

√
gH
2 (p+q) [η]

 .

The choice of p and q leads to a few classical schemes:

Centered Rusanov Roe PVM−2 PVM−4
p 0 1 0 1/2 3/8
q 0 0 1 1/2 5/8

To obtain the 2-D dispersion relations for the PDG
1 −PDG

1 and PNC
1 −PNC

1 pairs:
Write the 18 TYPICAL (resp. 9) discrete equations for the PDG

1 −PDG
1 (resp. PNC

1 −PNC
1 ) pair

Perform the 2-D Fourier analysis
Compute the 18×18 (resp. 9×9) determinant for the PDG

1 −PDG
1 (resp. PNC

1 −PNC
1 ) pair

“Solve“ equations of degree 18 and 9 in ω(kh, lh) and obtain the asymptotics as h → 0
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DG SCHEMES

Theorem
In the limit as mesh spacing h → 0 we obtain the asymptotic results

• The inertia-gravity modes (for the 4 schemes): No spurious pressure and f -modes

ωDG = ωAN + i F1(k , l)h3±F2(k , l)h4 +O(h5)

ωNC = ωAN ±G1(k , l)h4 + i G2(k , l)h5 +O(h6)

• The geostrophic mode: No spurious geostrophic modes

Rusanov, PVM−2, PVM−4 Roe

ωDG = i F3(k , l)h3 +O(h5)

ωNC = i G3(k , l)h5 +O(h7)

ωDG = 0 and i F3(k , l)h +O(h2)

ωNC = i G3(k , l)h +O(h2)

• Existence of high frequency modes: ωj =
αj+iβj

h +O(h), with βj > 0.
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Numerical simulations

DG simulations (I): Balanced flow, Convergence rate for ‖u‖ after 8 weeks.
Mesh 1 Mesh 2 Mesh 3

Roe Rus
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Numerical simulations

DG simulations (II): Propagating eddy: ‖u‖L∞ after 10 weeks
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CONCLUSIONS

Conclusions

The discretization of the shallow-water equations usually leads to computational modes.

We have proposed to study these problems by using Fourier (dispersion) analyses and the
study of the kernels of the discrete operators.

The cause of the computational solutions is mainly due to:

I Wrong choice of discrete spaces for the variables u,v and η (spurion η modes).

I An imbalance between the d.o.f. of u,v and η nodal values (inertial modes).

I The use of normal velocities (f–modes).

The Fourier analyses show that stabilized DG methods are free of spurious solutions:

I The PNC
1 approximation with the Rusanov scheme is highly accurate for all modes.

I Further, the PNC
1 scheme ”naturally“ discretizes the laplacian term without recouring

to the LDG method for viscous flows.

I Finally, we have obtained numerically a CFL limit of:
F 0.18 for the PDG

1 scheme
F 0.30 for the PNC

1 scheme.

Fourier analysis should be performed for 3D models.
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