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Abstract. In the following lines we introduce two frictional schemes for the
discretization of the 2D Shallow Water system, on unstructured meshes. The

starting point consists in writing both of them as convex combinations of 1D

schemes. Then, we propose to include the resistance effects proceeding to a
slight adaptation of the gathered convex components, using the frictional ap-

proach recently developed in [2]. This method turns out to provide an excellent

behavior for vanishing water heights, and does not require a modification of the
CFL. Numerical experiments will be performed in order to assess the capacity

of the two schemes in dealing with wetting and drying, complex geometry and
topography.

Introduction. In this work we consider discretizations of the 2D Non linear Shal-
low Water equations (NSW). As the name suggests, the NSW model consists in
an hyperbolic set of non linear equations, and is used to describe the motion of
shallow flows, as flood waves, flooding and drying, dam breaks, or more generally
any kind of hydrodynamic processes near coasts or in bed rivers. Denoting h the
water height, q = t(qx, qy) the discharge and z a parametrization of the bed slope,
we write the set of NSW equations under its conservative form :

wt +∇.H(w) = −B(w, z)−F(w) , (1)

with

w =

 h
qx
qy

 H(w) =

 qx qy
q2x
h + 1

2gh
2 qxqy

h
qxqy
h

q2y
h + 1

2gh
2

 , (2)

and the following expressions for bathymetry and friction :

B(w, z) =

 0
ghzx
ghzy

 F(w) =

 0

κ‖q‖hγ qx
κ‖q‖hγ qy

 . (3)
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The behavior of the resistance F is partly governed by the positive constants κ and
γ, and may be watched closely as the water elevation tends to zero. A suitable
construction of a numerical scheme for the discretization of the Shallow Water
system is generally subject to some numerical requirements, discussed in the major
part of the published studies on the theme. The first obligation is the well known
well balancing property, that is the preservation of the following motionless steady
state : η = cte and u = 0. The second unavoidable property we want to achieve
is the robustness, namely the ability to preserve the convex set of admissible states
Ω = {(h, qx, qy) , h ≥ 0}. Finally, we direct our discussion on the capacity in
handling dry cells or low values of the water height, which turns out to be a major
concern when the physical model deals with a friction term under the form (3). One
of the main objectives of this work consists in proposing numerical schemes offering
a stable and accurate treatment of such configurations.

The paper is split up in four parts : in Sections 1 and 2 we propose a detailed
presentation of the first scheme, called BF-scheme in the sequel. Then, we briefly
give some words regarding a second order extension, and discuss about a twin
numerical approach. The last part is devoted to numerical tests expected to validate
and compare the abilities of the two schemes resulting from these developments.

1. Frictionless scheme. The following approach has been developed by Berthon,
first in a 1D framework, leading to a well balanced and robust scheme, with an
excellent behavior in the neighborood of dry cells. Before caring about the inclu-
sion of friction, we propose to set up the main results and notations related to its
extension in the context of unstructured triangulations (see also [3]).

The choice of W = t(η, ηu, ηv) instead of w as conservative vector variable
during the evaluation of the numerical fluxes leads to the following alternative form
of homogeneous NSW :

wt +∇.

ξH(W )−

 0 0
ghz
2 0

0 ghz
2

 = 0 , (4)

where we introduced the new variable ξ = h/η. In this first part we seek a dis-
cretization of (4) in an unstructured context. To this purpose, let’s introduce some
notations concearning the geometry : we consider the dual mesh related to a trian-
gulation T of the computational domain. The nodes of T will be denoted (Si)i, the
elements (Ti)i, and the vertex centered cells (Ci)i. In what follows, Ki will refer
to the set of subscripts j for which Cj is adjacent to Ci, and lij the length of the
associated interface Γij ; a basic example of geometry is available on Fig. 1, where
other useful notations are given. Denoting wni = (hni , q

n
x,i, q

n
y,i) a constant interpo-

lation of the solution a the cell Ci at time tn, we chose to evolve this approximate
state gathering the components of a 3 points 1D scheme (Fig. 1 - 2) :

wn+1
i =

∑
j∈Ki

|Tij |
Ci

w̃n+1
ij , (5)

w̃n+1
ij = wni −

∆t

|Tij |
lij
(
φ(wni , w

n
j , ~nij)− φ(wni , w

n
i , ~nij)

)
. (6)

Herein, referring to [3], the numerical fluxes φ are defined by :

φ(wni , w
n
j , ~nij) = XijH(Wn

i ,W
n
j , ~nij) , (7)
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Figure 1. Dual cell Ci issuing from T ; notations at the interface Γij .
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Figure 2. Left and right Riemann states for the 1D and 2D schemes.

where H = H(U, V, ~n) denotes a flux function for H.~n, and :

Xij =

{
ξni if Hh(Wn

i ,W
n
j , ~nij) ≥ 0 ,

ξnj otherwise .
(8)

Remark 1. In what follows, the function H : (U, V, ~n) 7−→ H(U, V, ~n) would be
supposed to verify these two classical properties :

consistancy : H(W,W,~n) = H(W ).~n ∀W ∈ Ω . (9)

conservativity : H(U, V, ~n) = −H(V,U,−~n) ∀U , V ∈ Ω . (10)

From a practical point of view, computations will be performed using the HLLC or
VFRoe - relaxation solver, which associated fluxes are known to fulfill the numerical
requirements mentioned above, and handling with contact discontinuities.

Hence, according to (10), the “left” fluxes in (6) just reads : φ(wni , w
n
i , ~nij) =

hni
ηni

(H(wni ).~nij), and calling Green’s formula, we obtain :

wn+1
i = wni −

∆t

|Ci|
∑
j∈Ki

lijφ(wni , w
n
j , ~nij) . (11)

We finally complete this discretization of NSW considering the treatment of the
bathymetry B(w, z). In accordance with [3], we denote :

Hij =

{
ηni if Hh(Wn

i ,W
n
j , ~nij) ≥ 0 ,

ηnj otherwise .
, (12)

and chose the following discretization for the bed slope source term :

Bij =
g

2

(
0

Hijη
n
i (Xij − ξni )~nij

)
, (13)

to write :

wn+1
i = wni −

∆t

|Ci|
∑
j∈Ki

lij
(
φ(wni , w

n
j , ~nij)−Bij

)
. (14)
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We emphasize that the resulting scheme has been shown to be well balanced and
robust under the following CFL condition :

∆t max
i∈Z , j∈Ki

lij
|Tij |
|λ±ij | <

1

2
, (15)

supplemented by the following CFL rectriction :

∆t max
i∈Z , j∈Ki

[ lij
|Tij |

(
max

(
0, Hh(Wi,Wj , ~nij)

)
−min

(
0,Hh(Wi).~nij

))]
< ηni , (16)

where the velocity waves λ±ij in (15) refers to the upper and lower extremities of the
Riemann solver’s dependancy cone. Actually, the proofs are straightforward, getting
back to the formulation (5,6) and invoking the properties of the 1D approach.

2. Friction scheme. As shown in [2], in a 1D context, we can achieve a robust
numerical treatment of the resistance terms considering a suitable adaptation of
the Riemann states involved in the fluxes. More precisely, the proposed scheme is
based on the use of the following modified HLL Riemann solver :

w̃R(
x

t
, wL, wR) =


wL if

x
t ≤ a

−

w∗ + (1− α)
(
w∗L − w∗ − hγ

κ F(wL)
)
if a− ≤ x

t ≤ 0

w∗ + (1− α)
(
w∗R − w∗ − hγ

κ F(wR)
)
if 0 ≤ x

t ≤ a
+

wR if
x
t ≥ a

+

, (17)

where w∗ stands for the HLL intermediate state :

w∗(
x

t
, wL, wR) =

a+wR − a−wL
a+ − a−

(
H(wR)−H(wL)

)
, and (18)

wL(
x

t
, wL, wR) =

(
h∗(xt , wL, wR)

(hu)L

)
, wR(

x

t
, wL, wR) =

(
h∗(xt , wL, wR)

(hu)R

)
.

(19)
Herein, H denotes the monodimensional exact flux function of the NSW equations,
and a± are the maximum and minimum velocity waves involved in the Riemann
solver. Obviously, there is a close dependance between the leading friction parame-
ter α and the friction source term F(w). A discretization will be proposed later on,
covering Darcy and Manning friction laws (see Section 4). Actually, such choice is
also submitted to some specific requirements, and we refer to [2] for more details.
In a 1D context, using consistency relations and an appropriate analysis of the wave
speeds involved in the HLL solver, we obtain the following scheme :

hn+1
i = hni − ∆t

∆x (Hh
i+ 1

2

−Hh
i− 1

2

) ,

(hu)n+1
i = (hu)ni − ∆t

∆x

[
αi+ 1

2
Hhu
i+ 1

2

− αi− 1
2
Hhu
i− 1

2

−(
(1− αi− 1

2
)s+,hu

i− 1
2

+ (1− αi+ 1
2
)s−,hu
i+ 1

2

)]
,

(20)

where Hi+ 1
2

stands for an interpolation of H(w) at the node i + 1/2. The friction

terms are defined by :

• αi+1/2 =
(a+
i+1/2

−a−
i+1/2

)

(a+
i+1/2

−a−
i+1/2

)+Fi+1/2∆x
.

• Fi+1/2 =
κ qi+1/2

hi+1/2
, hi+1/2 =

(hni )γ+(hni+1)γ

2 , qi+1/2 =
‖qni ‖+‖q

n
i+1‖

2 .

• s−,hui+1/2 = min(0, a−i+1/2)(hu)ni −min(0, a+
i+1/2)(hu)ni+1 −Hhu(wni ).
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• s+,hu
i−1/2 = max(0, a−i−1/2)(hu)ni−1 −max(0, a+

i−1/2)(hu)ni +Hhu(wni ).

Remark 2. In the pioneer paper, the evaluation of the numerical fluxes Hi+1/2

is performed with the HLL relaxation solver. In practise, computations with any
other consistent and conservative flux function in the (1D) sense of (9) and (10) (as
those provided by the HLLC and VFRoe solver) remains valid.

Now, in order to perform an extension to the unstructured case, we chose to ex-
trapolate formulas (20), defining the convex components as :

h̃nij = hni − ∆t
∆ij

(
φh(wni , w

n
j , ~nij)− φh(wni , w

n
i , ~nij)

)
,

(h̃u)nij = (hu)ni − ∆t
∆ij

[
αijφ

hu(wni , w
n
j , ~nij)− αiiφhu(wni , w

n
i , ~nij)

−
(

(1− αii)s+,hu
ii + (1− αij)s−,huij

) ]
,

(h̃v)nij = (hv)ni − ∆t
∆ij

[
αijφ

hv(wni , w
n
j , ~nij)− αiiφhv(wni , wni , ~nij)

−
(

(1− αii)s+,hv
ii + (1− αij)s−,hvij

) ]
.

(21)

These 1D updates are then gathered using (5) ; indroducing the terms (13) related
to the topography, we obtain the following scheme :

hn+1
i = hni − ∆t

|Ci|
∑
j∈Ki lij∆φ

h
ij ,

(hu)n+1
i = (hu)ni − ∆t

|Ci|
∑
j∈Ki lij

(
∆φhuij −∆shuij −Bhuij

)
,

(hv)n+1
i = (hv)ni − ∆t

|Ci|
∑
j∈Ki lij

(
∆φhvij −∆shvij −Bhvij

)
,

(22)

with

∆φij =

 φh(wni , w
n
j , ~nij)− φh(wni , w

n
i , ~nij)

αijφ
hu(wni , w

n
j , ~nij)− αiiφhu(wni , w

n
i , ~nij)

αijφ
hv(wni , w

n
j , ~nij)− αiiφhv(wni , wni , ~nij)

 , (23)

and

∆sij =

(
(1− αii)s+,hu

ii + (1− αij)s−,huij

(1− αii)s+,hv
ii + (1− αij)s−,hvij

)
. (24)

Remark 3. When κ = 0, the leading friction parameter αij is obviously equal to 1,
and we recover the condensed formulation established in the frictionless case (14).

Remark 4. One of the main features of the current frictional scheme is that we do
not have to use a more restrictive CFL to ensure the robustness property. Indeed,
we can easily verify that formulas (22-23) and (14) are equivalent for the water
height.

3. Additional investigations. We first discuss about a second order extension
of the BF-scheme (22-24). In order to improve the accuracy, we chose to adopt the
reconstruction technique introduced in [4], following closely the lines of [7]. Avoiding
redundancies, we do not give details on this method here, and just propose a brief
overview of the final results. Actually, we simply reach an analogous formulation of
(22-24), where the original values have been replaced by the second order ones. After
straightforward computations, the proof of the well balancing property appears to
be the same as in the first order case, and the preservation of the water height
positivity is ensured provided a slight adaptation of the additionnal CFL restriction
(16), involving the second order values Wij and Wji :

∆t max
i∈Z , j∈Ki

[ lij
|Tij |

(
max

(
0, Hh(Wij ,Wij , ~nij)

)
−min

(
0,Hh(Wi).~nij

))]
< ηni . (25)
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Figure 3. Triangulation issuing from a cartesian mesh.

In a second hand, we point out that the main strategy of this work consists in the
creation of a 2D discretization of NSW using a 3 point monodimentional scheme
(formulation 5 - 6). In reality, this technique is not restriced to the only use of
Berthon’s scheme, and can also be run considering another 1D approach. Indeed,
we mention that the lines of Sections 1 and 2 can be followed taking the 1D pre
balanced scheme developed by Liang et al. in [9] as starting point. Considering the
similarities with the two previous sections, we neither go further in the develop-
ments. We just note that the resulting scheme is very close than the one described
in [7] for the frictionless case, with the advantage of ensuring the preservation of
the admissible states under a less restrictive CFL. As for the BF case, the inclusion
of the resistance and the second order extension previously discussed can also be
performed, preserving the well balancing property ; however we refer to [7] for the
proof of the robustness at order 2, which requires additional work. We mention
that deeper investigations are currently in progress on the subject [8] ; the scheme
obtained in this way will be called the LF-scheme in the next section.

4. Numerical Validations.

4.1. Dam break with friction. We consider a classical one - dimensional dam
break problem with friction on a flat bottom. One can build an approximation of
the exact solution by splitting the domain in two regions behind the wave front
location ; in the first area, frictional effects can be neglected ; the exact solution
is provided considering an ideal fluid flow model for Shallow Water equations. In
the wave tip region bed, the variation of the wave speed is small, and the resistance
phenomena becomes dominant under acceleration and inerty effects. Physical and
mathematical issues of such construction are detailed in [6]. In a 2D framework, we
will consider a rectangular channel with dimensions [−10, 10] × [0, 4]. The initial
water depth is set to 1m at the left of the dam (x ≤ 0), and 0 elsewhere. For this
test, we consider a Darcy friction law : F(w) =

(
0, (f/8) ‖u‖u, (f/8) ‖u‖v

)
, and

recover the formulation (3) with γ = 2 and κ = f/8. The Darcy coefficient is set to
f = 0.05, and we use a 8241 nodes splitted cartesian grid, with ∆x = ∆y = 0.1m
(Fig. 3). Fig. 4 shows some snaphsots of the water depth along the middle section,
until t = 2.5s. We can observe a good agreement with the analytical solution ; the
wave front location seems to be accurately computed, which tends to validate the
ability of the BF and LF schemes to deal with wetting and drying. We can also
point out the good concordance with the predictions provided by the work of Céa
et al in [5].

4.2. Moving boundary over a parabolic bottom. The following test is also
issuing from a 1D benchmark simulation for NSW models (see [9]), derived itself
from a test case proposed by Thacker in 1981 (see [10]). Initially, the domain
is assumed to be a 8640m length channel, and we set its width to 1000m for a
2D extrapolation. Computations are run on a regular triangulation (Fig. 3) with
∆x = 27m , ∆y = 25m, and the parametrization of the bathymetry is given by:
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Figure 4. Dam break with friction : water depth profiles at t=0.5,
1, 1.5, 2 and 2.5s for the BF (left) and LF (right) schemes.

z(x, y) = h0

(
(xa )2 − 1

)
.

This time, we consider a linear friction term : F(w) = t(0, κhu, κhv). As we do not
enter in the formalism (3), the simulation will be run with the following adaptation
of the friction parameter (see (20) and below) : Fi+1/2 = κ. This test involves an
oscillatory planar flow, which motion is described by the following equations :

h(t, x, y) = a2B2e−κt

8g2h0

(
− sκsin(2st) + (κ

2

4 − s
2)cos(2st)

)
−B

2e−κt

4g − e−κt/2

g

(
Bs cos(st) + κB

2 sin(st)
)
x ,

u(t, x, y) = Be−κt/2sin(st),

(26)

where s =
√

(8 g h0/a2 − κ2)/2. For the simulation, the governing parameter for
the bed friction term is fixed to κ = 0.001, and we also set h0 = 10m, a = 3000m
and B = 5m/s. The periodic motion being submitted to non negligible frictional
effects, the amplitude of the oscillations is expected to decrease with respect to time,
until the apparition of a motionless steady state in the center of the channel. Such
phenomena should be highlighted by the time history of the predicted shoreline
location, wich is compared to the exact one (see Fig. 5) until time T = 10000s :

x =
a2e−κt/2

2gh0

(
−Bs cos(st)− κB

2
sin(st)

)
± a . (27)

We now discuss about the behavior of the first and second order schemes toward
the numerical error. To do so, we chose to gradually increase the refinement of the
mesh, taking respectively ∆x = 192, 96, 48 and 24m as discretization steps. On
Fig. 6 we can see the evolution of the L1-error with respect to ∆x, in a log-log
scale. Concearning the error on the water height (left), we reach a convergence
rate of 0.95 for both first order LF and BF schemes, and 1.53 for the second order
reconstruction. Similar results are obtained for the normal discharge (right). As in
the first test, the two schemes seems to offer similar results in terms of accuracy,
although the second order reconstruction seems to be slightly more efficient for the
LF-scheme in this case.

4.3. Malpasset Dam Break. We finally validate the capacity of the two ap-
proaches in handling with complex geometry and wetting and drying in a real-world
2D case, proceeding to the Malpasset Dam Break benchmark test. This dam was
located in the Deparment of Var, in the south of France, and collapsed in December
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Figure 5. Moving boundary over a parabolic bottom : time his-
tory of the shoreline location in the right side of the channel. An-
alytical vs numerical.
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Figure 6. Moving boundary over a parabolic bottom : conver-
gence rate analysis for the LF and BF schemes (error computed at
t=370s).

1959. Thanks to the bathymetric and geometric data available, we run the compu-
tations in a vertex centered mesh issuing from a triangulation of 13541 nodes, in
which we enforce the value of z. Among the many possibilities for the definition of
the bed friction, we chose to consider the Manning-Chezy formulation :

F(w) =

 0

n2 ‖q‖
h10/3 qx

n2 ‖q‖
h10/3 qy

 , (28)

and set up the Manning coefficient to n = 0.03. We follow the time evolution of
the location of the flood wave, for which we have a reference at several gauges
along the river, provided by a physical experimentation on a reduced model. The
predicted arrival time of the water front at gauges 6 to 14 are plotted on Fig. 7, and
compared to the reference. Numercial and experimental data only differs from 20s
to the maximum : reaching such level of accuracy in this difficult context highlights
the real efficiency of the BF and LF schemes.
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Figure 7. Malpasset Dam Break : comparison of predicted wave
front propagation time with experimental data at gauges 6 to 14.
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