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Préparation aux épreuves écrites du CAPES 2025 - 2026

SUJET BLANC N°1 - Partie Analyse

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour
une partie importante dans l’appréciation des copies. Les résultats indiqués dans [’énoncé
peuvent étre utilisés par les candidats pour la suite du probleme.

Les candidats dotwent reporter sur leur copie, devant leurs réponses, la numérotation complete
des questions de [’énonceé.

St, au cours de l’épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il le
signale dans sa copie et poursuit sa composition en indiquant les initiatives qu’il est amené
a prendre de ce fait.

1l est expressément demandé une marge décente en vue de la correction.

Les exercices 1 a 6 sont indépendants.

EXERCICE 1 : Définitions et quantificateurs.

1. Ecrire, a l'aide de quantificateurs, la proposition suivante : f ne tend pas vers +o en
+00.

AM > 0,YA > 0,3z > A, f(z) < M.

2. Soit f: R — R. On suppose que f admet une limite £ en 400, avec £ > 0. Démontrer
qu’il existe un réel A > 0 tel que, pour tout =z = A, f(x) > 0.

On applique la définition de limite avec € = €/2. 1l existe donc A > 0 tel que, pour
tout x = A, on a |f(x) — | < €/2. On en déduit que —0/2 < f(x) — € < /2 ce qui
implique f(x) = €/2 > 0.

EXERCICE 2 : Dérivation et périodicité.

Soit f : R — R une fonction dérivable. On suppose que f’ ne s’annule pas sur R. Montrer
que f n’est pas périodique.

Soit f: R — R une fonction dérivable, telle que f' ne s’annule pas sur R. Par l’absurde,
supposons que f est périodique. Il existe un réel T > 0 tel que f est T—périodique. Sur
Uintervalle [0;T], la fonction f vérifie les hypothéses du théoréeme de Rolle. Il existe donc
un réel ¢ €]0; T tel que f'(c) = 0, ce qui méne a une contradiction (puisque f' ne s’annule
pas sur R).

EXERCICE 3 : Suites réelles, résultats de convergence.
On considére (uy,,) et (v,) deux suites réelles. Déterminer si les assertions suivantes sont

vraies ou fausses. Lorsqu’elles sont vraies, les démontrer. Lorsqu’elles sont fausses, donner
un contrexemple.



1. Si (uy) et (v,) divergent, alors (u, + v,) diverge. Fauz, considérer les suites définies
par u, =n et v, = —n pour tout n € N.

2. Si (uy,) et (v,) divergent, alors (u, x v,) diverge. Faux, considérer le contrexemple
fourni par les suites définies par u, = (—1)" et v, = (—=1)" pour tout n € N.

3. Si (uy) et (v,) convergent, alors (u, + v,) converge. Vrai. Notons ( et ' les limites de
(uy) et (vy).
Soit € > 0. Par convergence de (u,) vers {, il existe ny € N tel que, pour tout n = ny,
\u, — l| < €/2. De méme, il existe ny € N tel que, pour tout n = na, |v, — 'l < /2.
Ainsi, pour tout n = max(ny,ng):

[(un +vn) = U+ )| < |up =€)+ v, =] <e/2+e/2=¢.
On en déduit que la suite (u, + v,) converge vers { + ('

4. Si (u,) converge et (v,) diverge, alors (u, + v,) diverge. Vrai. Il suffit de raisonner
par labsurde, en supposant que (u, + v,) converge. La relation v, = (u, + v,) — v,
pour tout n € N permet alors d’écrire (v,) comme somme de deux suites convergentes.
Le résultat précédent garantit que (v,) converge.

5. Si (uy,) converge et (v,) diverge, alors (u, x v,) diverge.

Fauz. Il suffit de considérer la suite définie par u, = 0 pour tout n € N.

6. Si (u,) est a valeurs positives et n’est pas majorée, alors lim u, = +00.
n—0o0

Faux. Considérer la suite (u,) définie par u, =n sin est pair, et u, = 0 sinon.
7. Si (uy,) est positive et tend vers 0, alors (u,) est décroissante & partir d’un certain rang.

Fauz. Considérer la suite (u,) définie par u, =0 sin est pair, et u, = 1/n sinon.

EXERCICE 4 : Equation fonctionnelle.

Soit f : R — R continue telle que,

¥(z,y) e R flz +y) = f(2) + f(y).
1. Déterminer f(0).
On a f(0)= f(0+0)=2f(0) = f(0) =0.
2. Démontrer que f est impaire.
Soit x € R. On applique la propriété vérifice par f a4 x et a y = —x. Avec f(0) =0,
on trouwve 0 = f(z) + f(—z) = f(—x) = —f(x).
3. Démontrer que, pour tout n € N et tout x € R, f(nz) = nf(x).

On remarque d’abord que f(2x) = 2f(x), puis, par récurrence sur n, que f(nzr) =
nf(x). En effet, sila propriété est vraie au rang n, alors on a f((n+1)z) = f(nz+x) =
f(nz) + f(x) = (n+1)f(z).

4. Démontrer que, pour tout entier n € Z et tout x € R, f(nz) = nf(z).
Soit n un entier négatif. Alors —n est un entier positif et donc f(—nzx) = —nf(x).

Puisque [ est impaire, f(nx) = —f(—nx) = nf(x).
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5. Démontrer que pour tout nombre rationnel r = p/q et pour tout x € R, on a f <§x> =

Ef(@) (on pourra écrirep = q x %).
Soit maintenant r = p/q un rationnel. On a f(pr) = f <q X §x> = qf <2$> d’une
part et f (q X §x> = f(px) = pf(x) d’autre part. Ainsi, on a f(rx)=rf(x).

6. Conclure qu’il existe a € R tel que, pour tout z € R, f(x) = ax.

Posons a = f(1). D’aprés ce qui précede, f(x) = xf(1) pour tout x € Q. Soit
x € R et (x,) une suite de rationnels tendant vers x. Le passage a la limite dans
f(zn) = zof(1) (licite car f est continue) donne f(x) = xf(1). Comme une telle
fonction vérifie [’équation fonctionnelle, on vient de prouver que les fonctions continues
vérifiant f(z +vy) = f(x) + f(y) pour tous x,y € R sont exactement les fonctions
linéaires.

EXERCICE 5 : Formule de Taylor avec reste intégral.

1. Démontrer le théoréme suivant:
Soit f une fonction de classe C"' sur un intervalle I < R. Sia,be I, alors:

(b—a)?
2

F(a)+-- .+Mf(n)(a)+f

n! “

p FOED(t)dt .

f(b) = fla)+(b—a)f'(a)+

Indication: on pourra procéder par récurrence et intégrer par parties le reste intégral

b n
R, = J % FOO(¢)dt.

a

b
Pourn =0, la formule donne f(b) = f(a) +J f'(t)dt, égalité assurée par le fait que f

est bien une primitive de f’.
Supposons la formule vraie au rang n, et que f est de classe C"*? sur I. On effectue

b
b—1t)"
une intégration par parties du reste intégral R, = J #f("“)(t)dt, en posant:
o nl
u(t) = [0 W) = F()
b— t)n (b _ t)n+1
oy o
U= o) (n+1)!

1l vient :

iy =" o= (b—a)"
Ro= | | | S o = S ) R

2. On définit la fonction exponentielle exp comme 'unique fonction dérivable sur R, so-
lution de I’équation différentielle :

y'(x) = y(x) pour tout z € R, y(0) = 1.

(a) Démontrer que exp est de classe C* et que pour tout n € N, exp™(0) = 1.

Se démontre par récurrence sur n.
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(b) Démontrer que exp ne s’annule pas. (On pourra étudier la fonction x — exp(z) exp(—z)).

La dérivée de la fonction donnée en indication est nulle, donc cette fonction est
constante, égale a sa valeur en 0, c¢’est a dire 1. On en déduit que exp(x) exp(—x) =
1 pour tout x € R, ce qui implique que exp ne s’annule pas.

¢) Démontrer que pour tout n € N* et pour tout z € R:
que p b

n $k xn+1
exp() — (1 - Zm)‘ < (L‘Tl)!exp(lx\)-

k=1

La formule de Taylor avec reste intégral donne (avec le changement de variable

u=t/x):
exp(z) =1+ Z— + — | (z—t)"exp(t)dt

nxk 1 1
=1+ — + — | z(x —uz)" exp(uz)du
3 n!0< )" explur)

n l’k xn—&-l
:1+Z_l+ !
kzln. n.

et on conclut avec 'estimation:

L (1~ 0" expluz)du

xn-i—l 1 | |n+1 1 |x|n+1
o L (1 —u)" exp(uzx)du < o exp(|x\)f0 (1 —u)"du = m exp(|z|).

+00 k
(d) En déduire que pour tout z € R, on a exp(x (1 + Z '>
n

Pour x € R fizé, le membre de droite dans lmegalzte de la question précédente
tend vers 0 lorsque n tend vers linfini. On obtient alors le résultat en passant a
la limite sur n dans le développement limité de [’exponentielle.

EXERCICE 6 : Ftude de suites.

On définit deux suites (p,) et (g,) par les formules suivantes:

_ 3V3 Q@ =33
Pns1 = /Dnlns1 T

On admettra que les suites (p,,) et (g,) sont bien définies et vérifient, pour tout n € N, p, > 0
et g, > 0.

1. Montrer par récurrence que pour tout n € N, on a p, < ¢,. Notons, pour n € N, P(n)
la propriété “p, < q,”. On démontre par récurrence sur n que la propriété P(n) est
vérifiée.

Initialisation : On a py = qo/2 et donc pg < qo. La propriété P(0) est vérifiée.
Hérédité : Soitn € N tel que P(n) est vérifiée. Alors on a Pust _ VPulst - Pn
n+1 Gn+1 vV n+1
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\/Pn + Qn
V2¢,

fonction racine carrée est croissante, on a 0 < \/p, + ¢ < 1/2q, et donc ppi1 < Qpa1-

La propriété P(n + 1) est vrate.

Conclusion : Par le principe de récurrence, pour tout n € N, on a p, < q,.

Or, par hypothese de récurrence, on a 0 < p, + ¢, < 2q,. Puisque la

. En déduire que la suite (g,) est décroissante.
2pn
Pn + Gn

< 1 et donc

Soit n € N. Par la question précédente, on a 0 < 2p, < p, + ¢, =

Gni1 < Gn- La suite (q,) est donc décroissante.

. Montrer que, pour tout n € N, on a p,, < ¢n41.

2
Soit n e N. On a st _ I ot en utilisant Pn < @n, on démontre de la méme
Pn DPn + qn

2qn
Pn + @

facon que précédemment que > 1. Ceci prouve que Qni1 = Pn-

. En déduire que la suite (p,) est croissante.

SoitneN. On a Pty [Ant1 On conclut que p,+1 = p, en utilisant le résultat de
Pn Pn
la question précédente et la croissance de la fonction racine carrée.

22y < %(m+y).

(a) Montrer que pour tout x > 0,y > 0 on a
T +y

1
(b) En déduire que pour tout n € N, on a ¢,41 — pny1 < B (Gn — Dn)-

Ona(x—y)? =2*+y>—2xy = 0, et donc, en rajoutant 4xy de chaque coté: (x+y)* =
dxy. On divise alors par 2(x + y) > 0 pour obtenir le résultat. Par suite:
2Pndn 1

— Pn S 5 Wn Tt n_2n :
oot g P 2@ Gn — 2Dn+1)

qn+1 — Pn+1 =

La suite (p,) étant croissante: py + Gn — 2Pn+1 < Pn+ Gn — 2Pn = Gn — P, ce qui donne
le résultat.

. Démontrer que les suites (p,) et (g,) sont adjacentes. On notera ¢ leur limite commune.

1
On a qy—po = 3\/§/2, et on sait que pour tout n € N, ¢ny1 — Ppy1 < =(Gn — Pn)-

2

) 33 (1" _
Par récurrence, on montre alors que pour tout n € N, q, — p, < - \3) - Puisque
de plus g, — p, = 0, on déduit du théoréme des gendarmes que (g, — p,) tend vers 0.
Comme on savait déja que (p,) est croissante et que (q,) est décroissante, on obtient

bien que les deux suites (p,) et (¢q,) sont adjacentes.

. Dans la suite, on souhaite déterminer la valeur de ¢ (et donner une explication géométrique
a la construction de ces deux suites). On se place dans le plan muni d’un repére or-
thonormé. Soit § € [0,7] et A(f) le point d’affixe €. Démontrer que la distance
A(0)A(0) vaut 2sin(0/2).

On pourra utiliser la formule de trigonométrie 1 — cos(u) = 2sin®(u/2).



10.

A(0)A(B) = A/(1 — cos(h))? + sin(6)?
= 4/1 —2cos(0) + cos(0)? + sin(f)?
=4/2 —2cos(h)

— \/4sin?(0/2)

= 2sin(0/2)

(car en effet 0 € [0, 7] = sin(6/2) = 0).

Pour n € N, on note u,, la moitié du périmétre d’'un polygone régulier inscrit dans le

T
cercle unité a 3 x 2" cotés. Démontrer que u, = 3 x 2" x sin(a,) ol a, = X

_ 1k2m , .
Les points A | e S on ) pour k =0,...,n—1, sont les sommets d’un polygone régulier
. NP . p PP 1k2m
a 3 x 2™ cotés inscrit dans le cercle unité. Son périmétre vaut 3 x 2" A(0)A ( e s on )

La question précédente donne alors le résultat

On définit de méme la suite (v,) pour n € N par v, = 3 x 2" x tan(a,). On démontre

que, pour n € N, v, est la moitié du périmétre d'un polygone régulier a 3 x 2™ cotés

dont le cercle inscrit est le cercle unité. Vérifier que, pour tout n € N u,, 1 = \/unvni1
2U, 0y,

et Up+1 = .
Uy + Uy

On pourra utiliser la formule de trigonométrie sin(2a) = 2sin(a) cos(a).

Remarquons que a,y1 = a,/2. On en déduit que

A/sin(ay,) tan(a, 1) = A/28i0(ap11) €0S(Ang1) tan(any1) = V2sin(an) -

(car sin(a,11) = 0). On en déduit que u, 1 = \/u,Vni1. De la méme fagon, on écrit:

2sin(a,) tan(a,) 2sin(ay,) sin(a,)
sin(a,) + tan(a,)  sin(a,) cos(a,) + sin(a,)
_ 2sin(a,)
1+ cos(ay)
_ 4sin(a,/2) cos(an/2)
B 2 cos®(a,/2)
= 2tan(a,/2)
. . 2U, Uy,
Ceci donne la relation v, 1 = o

Que peut-on en déduire sur les suites (uy,), (vn), (Pn) €t (¢n) ?

On remarque que ug = py et que vy = qo. De plus, les relations de récurrence liant u, 1
et Vpy1 @ u, et v, sont les mémes que les relations de récurrence liant p,i1 €t ¢ni1 G
P €l qn. Ainsi, on déduit par récurrence que pour tout n € N, on a u,, = p, et v, = q,.



11. Quelle est la limite commune des suites (p,) et (¢,)?

Puisque sin(z) ~¢ x, on a

T
n=3x2" xsin(a,) ~1e 3 x 2" =
u X 2" x sin(ap) ~1o 3 X 2" x T ="

Ainsi, la suite (u,) converge vers w. Il en est de méme des suites (p,) et (qn)



