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SUJET BLANC No1 - Partie Analyse

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour
une partie importante dans l’appréciation des copies. Les résultats indiqués dans l’énoncé
peuvent être utilisés par les candidats pour la suite du problème.
Les candidats doivent reporter sur leur copie, devant leurs réponses, la numérotation complète
des questions de l’énoncé.
Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le
signale dans sa copie et poursuit sa composition en indiquant les initiatives qu’il est amené
à prendre de ce fait.
Il est expressément demandé une marge décente en vue de la correction.
Les exercices 1 à 6 sont indépendants.

EXERCICE 1 : Définitions et quantificateurs.

1. Ecrire, à l’aide de quantificateurs, la proposition suivante : f ne tend pas vers `8 en
`8.

DM ą 0, @A ą 0, Dx ě A, fpxq ď M.

2. Soit f : R Ñ R. On suppose que f admet une limite ℓ en `8, avec ℓ ą 0. Démontrer
qu’il existe un réel A ą 0 tel que, pour tout x ě A, fpxq ą 0.

On applique la définition de limite avec ε “ ℓ{2. Il existe donc A ą 0 tel que, pour
tout x ě A, on a |fpxq ´ ℓ| ď ℓ{2. On en déduit que ´ℓ{2 ď fpxq ´ ℓ ď ℓ{2 ce qui
implique fpxq ě ℓ{2 ą 0.

EXERCICE 2 : Dérivation et périodicité.

Soit f : R Ñ R une fonction dérivable. On suppose que f 1 ne s’annule pas sur R. Montrer
que f n’est pas périodique.

Soit f : R Ñ R une fonction dérivable, telle que f 1 ne s’annule pas sur R. Par l’absurde,
supposons que f est périodique. Il existe un réel T ą 0 tel que f est T´périodique. Sur
l’intervalle r0;T s, la fonction f vérifie les hypothèses du théorème de Rolle. Il existe donc
un réel c Ps0;T r tel que f 1pcq “ 0, ce qui mène à une contradiction (puisque f 1 ne s’annule
pas sur R).

EXERCICE 3 : Suites réelles, résultats de convergence.

On considère punq et pvnq deux suites réelles. Déterminer si les assertions suivantes sont
vraies ou fausses. Lorsqu’elles sont vraies, les démontrer. Lorsqu’elles sont fausses, donner
un contrexemple.
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1. Si punq et pvnq divergent, alors pun ` vnq diverge. Faux, considérer les suites définies
par un “ n et vn “ ´n pour tout n P N.

2. Si punq et pvnq divergent, alors pun ˆ vnq diverge. Faux, considérer le contrexemple
fourni par les suites définies par un “ p´1qn et vn “ p´1qn pour tout n P N.

3. Si punq et pvnq convergent, alors pun ` vnq converge. Vrai. Notons ℓ et ℓ1 les limites de
punq et pvnq.
Soit ε ą 0. Par convergence de punq vers ℓ, il existe n1 P N tel que, pour tout n ě n1,
|un ´ ℓ| ď ε{2. De même, il existe n2 P N tel que, pour tout n ě n2, |vn ´ ℓ1| ď ε{2.
Ainsi, pour tout n ě maxpn1, n2q:

|pun ` vnq ´ pℓ ` ℓ1
q| ď |un ´ ℓ| ` |vn ´ ℓ1

| ď ε{2 ` ε{2 “ ε .

On en déduit que la suite pun ` vnq converge vers ℓ ` ℓ1.

4. Si punq converge et pvnq diverge, alors pun ` vnq diverge. Vrai. Il suffit de raisonner
par l’absurde, en supposant que pun ` vnq converge. La relation vn “ pun ` vnq ´ vn
pour tout n P N permet alors d’écrire pvnq comme somme de deux suites convergentes.
Le résultat précédent garantit que pvnq converge.

5. Si punq converge et pvnq diverge, alors pun ˆ vnq diverge.

Faux. Il suffit de considérer la suite définie par un “ 0 pour tout n P N.

6. Si punq est à valeurs positives et n’est pas majorée, alors lim
nÑ8

un “ `8.

Faux. Considérer la suite punq définie par un “ n si n est pair, et un “ 0 sinon.

7. Si punq est positive et tend vers 0, alors punq est décroissante à partir d’un certain rang.

Faux. Considérer la suite punq définie par un “ 0 si n est pair, et un “ 1{n sinon.

EXERCICE 4 : Equation fonctionnelle.

Soit f : R Ñ R continue telle que,

@px, yq P R2, fpx ` yq “ fpxq ` fpyq.

1. Déterminer fp0q.

On a fp0q “ fp0 ` 0q “ 2fp0q ñ fp0q “ 0.

2. Démontrer que f est impaire.

Soit x P R. On applique la propriété vérifiée par f à x et à y “ ´x. Avec fp0q “ 0,
on trouve 0 “ fpxq ` fp´xq ñ fp´xq “ ´fpxq.

3. Démontrer que, pour tout n P N et tout x P R, fpnxq “ nfpxq.

On remarque d’abord que fp2xq “ 2fpxq, puis, par récurrence sur n, que fpnxq “

nfpxq. En effet, si la propriété est vraie au rang n, alors on a fppn`1qxq “ fpnx`xq “

fpnxq ` fpxq “ pn ` 1qfpxq.

4. Démontrer que, pour tout entier n P Z et tout x P R, fpnxq “ nfpxq.

Soit n un entier négatif. Alors ´n est un entier positif et donc fp´nxq “ ´nfpxq.
Puisque f est impaire, fpnxq “ ´fp´nxq “ nfpxq.
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5. Démontrer que pour tout nombre rationnel r “ p{q et pour tout x P R, on a f
´

p
q
x

¯

“

p
q
fpxq (on pourra écrire p “ q ˆ

p
q
).

Soit maintenant r “ p{q un rationnel. On a fppxq “ f
´

q ˆ
p
q
x

¯

“ qf
´

p
q
x

¯

d’une

part et f
´

q ˆ
p
q
x

¯

“ fppxq “ pfpxq d’autre part. Ainsi, on a fprxq “ rfpxq.

6. Conclure qu’il existe a P R tel que, pour tout x P R, fpxq “ ax.

Posons a “ fp1q. D’après ce qui précède, fpxq “ xfp1q pour tout x P Q. Soit
x P R et pxnq une suite de rationnels tendant vers x. Le passage à la limite dans
fpxnq “ xnfp1q (licite car f est continue) donne fpxq “ xfp1q. Comme une telle
fonction vérifie l’équation fonctionnelle, on vient de prouver que les fonctions continues
vérifiant fpx ` yq “ fpxq ` fpyq pour tous x, y P R sont exactement les fonctions
linéaires.

EXERCICE 5 : Formule de Taylor avec reste intégral.

1. Démontrer le théorème suivant:
Soit f une fonction de classe Cn`1 sur un intervalle I Ă R. Si a, b P I, alors:

fpbq “ fpaq`pb´aqf 1
paq`

pb ´ aq2

2
f2

paq`¨ ¨ ¨`
pb ´ aqn

n!
f pnq

paq`

ż b

a

pb ´ tqn

n!
f pn`1q

ptqdt .

Indication: on pourra procéder par récurrence et intégrer par parties le reste intégral

Rn “

ż b

a

pb ´ tqn

n!
f pn`1q

ptqdt.

Pour n “ 0, la formule donne fpbq “ fpaq `

ż b

a

f 1
ptqdt, égalité assurée par le fait que f

est bien une primitive de f 1.
Supposons la formule vraie au rang n, et que f est de classe Cn`2 sur I. On effectue

une intégration par parties du reste intégral Rn “

ż b

a

pb ´ tqn

n!
f pn`1q

ptqdt, en posant:

uptq “ f pn`1q
ptq , u1

ptq “ f pn`2q
ptq

v1
ptq “

pb ´ tqn

n!
, vptq “ ´

pb ´ tqn`1

pn ` 1q!
.

Il vient :

Rn “

„

´f pn`1q
ptq

pb ´ tqn`1

pn ` 1q!

ȷb

a

`

ż b

a

pb ´ tqn`1

pn ` 1q!
f pn`2q

ptqdt “
pb ´ aqn`1

pn ` 1q!
f pn`1q

paq`Rn`1 .

2. On définit la fonction exponentielle exp comme l’unique fonction dérivable sur R, so-
lution de l’équation différentielle :

y1
pxq “ ypxq pour tout x P R , yp0q “ 1.

(a) Démontrer que exp est de classe C8 et que pour tout n P N, exppnqp0q “ 1.
Se démontre par récurrence sur n.
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(b) Démontrer que exp ne s’annule pas. (On pourra étudier la fonction x ÞÑ exppxq expp´xq).
La dérivée de la fonction donnée en indication est nulle, donc cette fonction est
constante, égale à sa valeur en 0, c’est à dire 1. On en déduit que exppxq expp´xq “

1 pour tout x P R, ce qui implique que exp ne s’annule pas.

(c) Démontrer que pour tout n P N˚ et pour tout x P R:
ˇ

ˇ

ˇ

ˇ

ˇ

exppxq ´

˜

1 `

n
ÿ

k“1

xk

n!

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď
|x|n`1

pn ` 1q!
expp|x|q .

La formule de Taylor avec reste intégral donne (avec le changement de variable
u “ t{x):

exppxq “ 1 `

n
ÿ

k“1

xk

n!
`

1

n!

ż x

0

px ´ tqn expptqdt

“ 1 `

n
ÿ

k“1

xk

n!
`

1

n!

ż 1

0

xpx ´ uxq
n exppuxqdu

“ 1 `

n
ÿ

k“1

xk

n!
`

xn`1

n!

ż 1

0

p1 ´ uq
n exppuxqdu

et on conclut avec l’estimation:

xn`1

n!

ż 1

0

p1 ´ uq
n exppuxqdu ď

|x|n`1

n!
expp|x|q

ż 1

0

p1 ´ uq
ndu “

|x|n`1

pn ` 1q!
expp|x|q .

(d) En déduire que pour tout x P R, on a exppxq “

˜

1 `

`8
ÿ

k“1

xk

n!

¸

.

Pour x P R fixé, le membre de droite dans l’inégalité de la question précédente
tend vers 0 lorsque n tend vers l’infini. On obtient alors le résultat en passant à
la limite sur n dans le développement limité de l’exponentielle.

EXERCICE 6 : Etude de suites.

On définit deux suites ppnq et pqnq par les formules suivantes:
$

&

%

p0 “
3
?
3

2
pn`1 “

?
pnqn`1

,

$

&

%

q0 “ 3
?
3

qn`1 “
2pnqn
pn ` qn

On admettra que les suites ppnq et pqnq sont bien définies et vérifient, pour tout n P N, pn ą 0
et qn ą 0.

1. Montrer par récurrence que pour tout n P N, on a pn ď qn. Notons, pour n P N, Ppnq

la propriété “pn ď qn”. On démontre par récurrence sur n que la propriété Ppnq est
vérifiée.
Initialisation : On a p0 “ q0{2 et donc p0 ď q0. La propriété Pp0q est vérifiée.

Hérédité : Soit n P N tel que Ppnq est vérifiée. Alors on a
pn`1

qn`1

“

?
pnqn`1

qn`1

“

?
pn

?
qn`1

“
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?
pn ` qn
?
2qn

. Or, par hypothèse de récurrence, on a 0 ď pn ` qn ď 2qn. Puisque la

fonction racine carrée est croissante, on a 0 ď
?
pn ` qn ď

?
2qn et donc pn`1 ď qn`1.

La propriété Ppn ` 1q est vraie.
Conclusion : Par le principe de récurrence, pour tout n P N, on a pn ď qn.

2. En déduire que la suite pqnq est décroissante.

Soit n P N. Par la question précédente, on a 0 ă 2pn ď pn ` qn ñ
2pn

pn ` qn
ď 1 et donc

qn`1 ď qn. La suite pqnq est donc décroissante.

3. Montrer que, pour tout n P N, on a pn ď qn`1.

Soit n P N. On a
qn`1

pn
“

2qn
pn ` qn

et en utilisant pn ď qn, on démontre de la même

façon que précédemment que
2qn

pn ` qn
ě 1. Ceci prouve que qn`1 ě pn.

4. En déduire que la suite ppnq est croissante.

Soit n P N. On a
pn`1

pn
“

c

qn`1

pn
. On conclut que pn`1 ě pn en utilisant le résultat de

la question précédente et la croissance de la fonction racine carrée.

5. (a) Montrer que pour tout x ą 0, y ą 0 on a
2xy

x ` y
ď

1

2
px ` yq.

(b) En déduire que pour tout n P N, on a qn`1 ´ pn`1 ď
1

2
pqn ´ pnq.

On a px´yq2 “ x2`y2´2xy ě 0, et donc, en rajoutant 4xy de chaque côté: px`yq2 ě

4xy. On divise alors par 2px ` yq ą 0 pour obtenir le résultat. Par suite:

qn`1 ´ pn`1 “
2pnqn
pn ` qn

´ pn`1 ď
1

2
ppn ` qn ´ 2pn`1q .

La suite ppnq étant croissante: pn ` qn ´ 2pn`1 ď pn ` qn ´ 2pn “ qn ´ pn, ce qui donne
le résultat.

6. Démontrer que les suites ppnq et pqnq sont adjacentes. On notera ℓ leur limite commune.

On a q0 ´ p0 “ 3
?
3{2, et on sait que pour tout n P N, qn`1 ´ pn`1 ď

1

2
pqn ´ pnq.

Par récurrence, on montre alors que pour tout n P N, qn ´ pn ď
3
?
3

2

ˆ

1

2

˙n

. Puisque

de plus qn ´ pn ě 0, on déduit du théorème des gendarmes que pqn ´ pnq tend vers 0.
Comme on savait déjà que ppnq est croissante et que pqnq est décroissante, on obtient
bien que les deux suites ppnq et pqnq sont adjacentes.

7. Dans la suite, on souhaite déterminer la valeur de ℓ (et donner une explication géométrique
à la construction de ces deux suites). On se place dans le plan muni d’un repère or-
thonormé. Soit θ P r0, πs et Apθq le point d’affixe eiθ. Démontrer que la distance
Ap0qApθq vaut 2 sinpθ{2q.
On pourra utiliser la formule de trigonométrie 1 ´ cospuq “ 2 sin2pu{2q.
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Ap0qApθq “
a

p1 ´ cospθqq2 ` sinpθq2

“
a

1 ´ 2 cospθq ` cospθq2 ` sinpθq2

“
a

2 ´ 2 cospθq

“

b

4 sin2pθ{2q

“ 2 sinpθ{2q

(car en effet θ P r0, πs ñ sinpθ{2q ě 0).

8. Pour n P N, on note un la moitié du périmètre d’un polygone régulier inscrit dans le
cercle unité à 3 ˆ 2n côtés. Démontrer que un “ 3 ˆ 2n ˆ sinpanq où an “

π

3 ˆ 2n
.

Les points A

ˆ

e
ik2π

3.2n

˙

, pour k “ 0, . . . , n ´ 1, sont les sommets d’un polygone régulier

à 3 ˆ 2n côtés inscrit dans le cercle unité. Son périmètre vaut 3 ˆ 2nAp0qA

ˆ

e
ik2π

3.2n

˙

.

La question précédente donne alors le résultat

9. On définit de même la suite pvnq pour n P N par vn “ 3 ˆ 2n ˆ tanpanq. On démontre
que, pour n P N, vn est la moitié du périmètre d’un polygone régulier à 3 ˆ 2n côtés
dont le cercle inscrit est le cercle unité. Vérifier que, pour tout n P N un`1 “

?
unvn`1

et vn`1 “
2unvn
un ` vn

.

On pourra utiliser la formule de trigonométrie sinp2aq “ 2 sinpaq cospaq.

Remarquons que an`1 “ an{2. On en déduit que
a

sinpanq tanpan`1q “
a

2 sinpan`1q cospan`1q tanpan`1q “
?
2 sinpan`1q .

(car sinpan`1q ě 0q. On en déduit que un`1 “
?
unvn`1. De la même façon, on écrit:

2 sinpanq tanpanq

sinpanq ` tanpanq
“

2 sinpanq sinpanq

sinpanq cospanq ` sinpanq

“
2 sinpanq

1 ` cospanq

“
4 sinpan{2q cospan{2q

2 cos2pan{2q

“ 2 tanpan{2q

Ceci donne la relation vn`1 “
2unvn
unvn

.

10. Que peut-on en déduire sur les suites punq, pvnq, ppnq et pqnq ?

On remarque que u0 “ p0 et que v0 “ q0. De plus, les relations de récurrence liant un`1

et vn`1 à un et vn sont les mêmes que les relations de récurrence liant pn`1 et qn`1 à
pn et qn. Ainsi, on déduit par récurrence que pour tout n P N, on a un “ pn et vn “ qn.
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11. Quelle est la limite commune des suites ppnq et pqnq?

Puisque sinpxq „0 x, on a

un “ 3 ˆ 2n ˆ sinpanq „`8 3 ˆ 2n ˆ
π

3 ˆ 2n
“ π.

Ainsi, la suite punq converge vers π. Il en est de même des suites ppnq et pqnq
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