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Résumé :

La propagation des vagues dans les zones cotieres implique des mécanismes complexes,
représentant des enjeux de modélisation et numériques considérables. Si la plupart des
processus non-linéaires sont généralement capturés par des modeles de type Boussinesq,
ces équations conservent 1’énergie et sont donc intrinsequement inaptes a décrire les
mécanismes dissipatifs, tels que ceux associés au déferlement des vagues. Pour gérer ce
phénomene, nous introduisons un nouveau modele dispersif fortement non-linéaire ca-
pable de prendre en compte les effets turbulents sous-jacents. L’approche est caractéri-
sée par la présence d’une nouvelle variable basée sur la variation verticale de la vitesse,
appelée enstrophie, modélisant 1’énergie turbulente. Le modéle proposé présente une
structure similaire aux équations de Green-Naghdi (GN) et peut donc étre intégré numé-
riquement sur la base de toute méthode existante pour ces équations. Dans le prolonge-
ment de travaux récents, nous considérons une discrétisation de type Galerkin disconti-
nu du systéme, basée sur un découplage entre les parties hyperboliques et non-hydrosta-
tiques. Des validations numériques 1D et 2D impliquant la propagation de vagues défer-
lantes sur des topographies non triviales sont proposées. En particulier, les comparai-
sons avec les données expérimentales confirment I’efficacité de la stratégie, mettant en
¢évidence I’enstrophie comme un outil robuste et fiable pour la détection et la description
des vagues déferlantes.
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1. Introduction

Depuis plusieurs décennies, la modélisation mathématique et numérique en océanogra-
phie, représente un secteur d'activité intensif au sein la communauté scientifique. De-
vant les enjeux climatiques actuels (fréquence et intensité des événements extrémes,
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montée des eaux, érosion, production d’énergie marine,...), la conception de modeles de
prévision fiables et efficaces dédiés a 'océanographie cotiere est devenue une nécessité
de premier plan. En dépit de constants progres techniques, la résolution directe des
équations de Navier-Stokes reste toujours hors de portée d’un point de vue opérationnel.
Dans ce contexte, 1’intérét se porte sur des modeles simplifiés, moins coliteux numéri-
quement, avec notamment les modéles d’écoulement a surface libre. Concernant le mé-
canisme de déferlement, 'un des principaux enjeux est de réussir a décrire a la fois la
dispersion (dominante avant le déferlement) et la dissipation, dominante dans la zone de
déferlement. Le caractére conservatif des modeéles dispersifs de type Boussinesq ne
permettant pas de décrire la dissipation, il est nécessaire d'introduire des méthodes spé-
cifiques pour gérer ce phénomene.

A T'heure actuelle, dans le contexte de modeles moyennés sur la verticale, la plupart des
méthodes existantes sont classifiées en deux catégories. La premiére stratégie consiste a
activer un terme de viscosité artificielle dans les équations au niveau de la zone de dé-
ferlement pour modéliser la dissipation. Nous renvoyons a CHEN et al. (2000), KIRBY
et al. (1998), ou bien a NWOGU (1996) ou ZHANG ef al. (2014) ou la viscosité est dé-
terminée a partir d'une énergie turbulente a travers une équation de transport. Une se-
conde approche, généralement appelée méthode hybride (ou switching en anglais)
consiste a traiter les vagues déferlantes comme des chocs dans les équations de Saint-
Venant en supprimant les termes dispersifs a partir du point de déferlement. Depuis une
dizaine d'années, ce type d'approche a été utilisé dans de nombreux contextes. De ma-
ni¢re générale, chacune de ces approches requiert la calibration d'un jeu de parametres
empiriques, et doit étre couplée a un critere de détection pour activer ou désactiver le
mécanisme de dissipation. Ces parametres peuvent varier en fonction du type de défer-
lement étudié, ou bien encore des choix de discrétisation, compromettant le caractére
prédictif de la méthode. Sur ces aspects, une analyse détaillée est proposée dans 1’étude
récente KAZOLEA & RICCHIUTO (2018).

Plus récemment, un autre type d'approche a commencé a se développer, prenant en
compte les variations verticales du profil de vitesse a travers l'ajout une troisieme va-
riable dans le modele TESHUKOV (2007). Adjointes a un mécanisme de dissipation,
ces méthodes permettent une excellente description des roll-waves et des ressauts hy-
drauliques (RICHARD & GAVRILYUK, 2012, 2013). La fermeture du mod¢le est ob-
tenue par une hypothése d'écoulement faiblement cisaillé. La prise en compte des effets
dispersifs a ensuite été proposée par CASTRO & LANNES (2014), RICHARD et GA-
VRILYUK (2015), travaux suivis par une premiere application au déferlement GAVRI-
LYUK et al. (2016) dans le cadre d'un mod¢le a deux couches. Une premicre proposi-
tion permettant d'inclure a la fois la dispersion et la dissipation dans un mode¢le a une
couche a récemment été développée par KAZAKOVA & RICHARD (2019), et étendue
par RICHARD et al. (2019) en dimension 2. La turbulence de grande échelle est expli-
citement résolue tandis que la turbulence de petite échelle est modélisée par une hypo-



thése de viscosité turbulente. Les termes dispersifs étant traités de maniére similaire aux
équations GN, le modele obtenu peut se traiter numériquement sur la base de techniques
existantes pour ces équations. Il en résulte une approche permettant de décrire le défer-
lement de maniére robuste et prédictive dans une grande variété de contextes. Ce papier
fait état des principaux résultats obtenus en 1D et 2D dans le cas des ondes solitaires, et
de la récente extension aux trains d'ondes.

2. Equations du mode¢le
Dénotant ho* une profondeur de référence et L une longueur caractéristique des varia-
tions horizontales de 1'écoulement, le mod¢le est dérivé sous hypothése d'écoulements a
faible profondeur: 4 = h*/L < 1. Dans ce contexte, I'obtention du modele repose sur
l'intégration des équations LES (Large Eddy Simulation) selon la verticale. La vitesse
horizontale filtrée est décomposée en une vitesse moyenne sur la profondeur et un écart
a cette vitesse moyenne, représentant la turbulence de grande échelle et les effets de ci-
saillement: u(x,z,t) = U(x,t)+u'(x,z,¢). La turbulence de grande échelle, qui
contient l'essentiel de I'énergie associée au mécanisme de déferlement, est ainsi explici-
tement rés};)l}lle en introduisant la quantité suivante, appelée enstrophie:

+
¢ = %L (u)dz (1)
ou h désigne la hauteur d'eau et b une paramétrisation de la topographie (figure 1).
Comme dans TESHUKOYV (2007), 1'écoulement est supposé faiblement turbulent et fai-
blement cisaillé. La fermeture du modele est obtenue en modélisant la turbulence de
petite échelle par une hypothése de viscosité turbulente. Au final, en 1D, le mod¢le ob-
tenu est constitué des trois équations suivantes:
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Figure 1. Notations.

ou h désigne la dérivée matérielle seconde de A, et IT et f' sont des termes d'ordre O(u?)
liés au fond variable:
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La dérivée matérielle est D/Dt = d/dt + U d/ dx. L'équation sur 'enstrophie est donnée
par:
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ou vy = hz\/a /R désigne la viscosité turbulente, la quantité R pouvant étre vue comme
un nombre de Reynolds sans dimension. La constante ¢ > 0 gouverne un terme de dif-
fusion sur l'enstrophie pouvant étre négligé dans le cas des ondes solitaires (formelle-
ment 6 = + o0). Dans le cas des trains d'ondes, ce terme a un effet régularisant au ni-
veau du point de déferlement. En pratique, nous prenons ¢ = 1 mais toute autre valeur
de cet ordre peut étre envisagée sans modifier significativement la solution. En dimen-
sion deux, ¢ est un tenseur anisotrope et donne lieu a trois équations supplémentaires au
lieu d'une. Notons cependant que I'équation sur I'enstrophie ne contient aucun terme
dispersif ni aucun terme associé¢ au fond variable, et ne représente a ce titre aucune dif-
ficulté particuliére d'un point de vue numérique. Comme dans les équations GN, la dif-
ficulté réside dans I'équation de quantité de mouvement qui contient notamment des dé-
rivées croisées en temps et en espace, a travers la dérivée matérielle. Des méthodes ré-
centes dédiées aux équations GN, basées sur des modeles asymptotiquement équivalents
(BONNETON et al. 2012 ; LANNES & MARCHE, 2015) permettent de reformuler le
probléme d'une maniére plus appropriée, tout en améliorant les propriétés dispersives.
Ces méthodes ont récemment €té étendues aux modeles 1D et 2D avec enstrophie, dans
un environnement de type Galerkin discontinu bas¢ sur les travaux de DURAN &
MARCHE (2017).



3. Validation du modéle

Dans les travaux de KAZAKOVA & RICHARD (2019), il a été établi que pour de
faibles non-linéarités (c'est-a-dire 6 < 0,05, ou 6 = a/ho* avec a l'amplitude de la
vague), les résultats obtenus sont en bon accord avec l'expérience et l'enstrophie est un
indicateur fiable de début de déferlement. La valeur C, = 0,48 semble étre universelle,
et les résultats ne se sont pas révélés sensibles au choix du second parametre R du mo-
dele (le choix 5 < R < 10 fournit de trés bons résultats). Cependant, pour des non li-
néarités plus fortes, l'activation de l'enstrophie des le début des calculs peut avoir un
impact sur l'amplitude des vagues, et ce méme en dehors des zones de déferlement. Une
solution consiste a activer les termes visqueux (associés a la création d'enstrophie) uni-
quement au niveau de ces zones. Des criteres classiques peuvent étre utilisés, mais I'en-
strophie elle-méme, associée par construction a I'énergie turbulente, peut étre utilisée
comme critere de détection. Ceci mene a l'introduction d'une nouvelle quantité, appelée
enstrophie virtuelle, qui évalue la quantité d'enstrophie que le modele est capable de
produire. D'un point de vue pratique, cette quantité est calculée exactement comme 1'en-
strophie dans tout le domaine de calcul, mais sans rétroaction sur les autres variables.
Les zones de déferlement peuvent alors étre identifiées par une production brutale d'en-
strophie virtuelle. Le seuil de détection numérique est donné par (nous référons aux tra-
vaux de KAZAKOVA & RICHARD (2019) pour plus de détails) :

l//o=i<0-1+ 0,031>

h 0

(6)

Dans ce contexte, le nombre de Reynolds adimensionné est donné par R = 0,85 + 60s,

s étant une estimation locale de la pente, et le terme de viscosité v est nul dans I’équa-
tion (5) dans les zones ou y < yy,.

Les expériences de TING & KIRBY (1994) permettent d'étudier le comportement du
modele pour deux types de déferlement (glissant et plongeant). La simulation implique
un train de vague sinusoidal se propageant sur une pente 1/35. Le déferlement glissant
correspond a une amplitude a = 12,5¢m et une période T =2s, et a = 12,8cm,
T = 5s dans le cas plongeant. La figure 2 permet de comparer les solutions obtenues
pour ces deux configurations, a travers l'évolution temporelle de 1'énergie turbulente
h2@/2gh et de la vitesse moyenne au voisinage du point de déferlement. On peut no-
tamment observer que le déferlement glissant se caractérise par le fait que 'énergie tur-
bulente n'a pas le temps de se dissiper totalement entre deux épisodes de déferlement. I1
en résulte que le courant de retour induit un transport d'énergie turbulente vers le large.
Pour le déferlement plongeant, I'énergie turbulente a le temps de se dissiper, de sorte
que le transport d'énergie turbulente est dirigé vers la cote. Ces résultats sont tout a fait
conformes aux observations expérimentales, de méme que I'évolution temporelle de la
surface libre. A noter que, contrairement aux approches de type switching, 1'approche



s'est révélée Etre peu sensible aux parametres de discrétisation et permet la convergence
en maillage.

Les études expérimentales de BEJI & BATTIJES (1993) ont permis de valider le modele
pour différents types de trains de vagues se propageant et déferlant sur une topographie
non triviale. Ces expériences ont d'abord été utilisées avec succes par RICHARD et al.,
2019 dans le cas de vagues réguliéres, mais la stratégie s'avere efficace dans le cas de
vagues irréguliéres. Nous illustrons ici les résultats obtenus avec un profil de vagues
aléatoires de type JONSWAP correspondant a une fréquence caractéristique 4 = 0,4Hz.
La figure 3 montre 1'évolution temporelle des profils de surface libre au niveau de diffé-
rentes sondes disposées autour du point de déferlement, pour différentes valeurs de R.
On peut observer une trés bonne correspondance avec les résultats expérimentaux.

Les expériences de SWIGLER (2009) ont été utilisées pour valider le modele 2d. 11
s'agit d'étudier le déferlement d'une onde solitaire sur une plage comprenant un récif
conique. La simulation a été réalisée sur un maillage non structuré de 200 000 mailles,
raffiné au niveau du récif. Nous proposons en figure 4 des profils de la surface libre a
différents temps de la propagation. La trace du tenseur d'enstrophie, illustrée en rouge,
permet de marquer clairement le début de 1'épisode de déferlement a l'arrivée de la
vague sur le récif. Les structures turbulentes se propagent ensuite latéralement pour
former un front déferlant sur toute la largeur du bassin. L'évolution temporelle de la sur-
face libre et des composantes de la vitesses a différentes sondes sont en bon accord avec
I’expérience.
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Figure 2. Expériences de TING & KIRBY (1994). Evolution temporelle de l'énergie tur-
bulente adimensionnée (rouge) et de la vitesse moyenne (bleu) dans le cas de déferle-
ments glissant (haut) et plongeant (bas).
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Figure 3. Expérience de BEJI & BATTJES (1993) - Déferlement de vagues irrégulieres.
Evolution temporelle de la surface libre.

Gt 9y, (s)
0 1 16 2 25 3 35 4

bl —

Gt P,y (s?)
0 1 156 2 25 3 35 4
A | ] | 4

5

Ot Py, ()
0 1 15 2 25 3 35 4 5

F  e—

Figure 4. Expériences de SWIGLER, 2009 - Profils de surface libre a différentes étapes
du déferlement.
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4. Conclusions

Nous proposons une nouvelle approche pour décrire le déferlement des vagues, basée
sur un modele turbulent moyenné sur la profondeur. Les résultats présentés étendent les
travaux de KAZAKOVA & RICHARD (2019) au cas des trains d'ondes et en 2D. La



turbulence de grande échelle associée au mécanisme de déferlement est explicitement
résolue grace a l'introduction d'une nouvelle variable, appelée enstrophie. Le modele
présente la méme structure que les équations de GN, auxquelles doivent adjointes une
équation de transport (trois en dimension deux). Ces équations supplémentaires ne re-
présentent pas de difficultés numériques particulieres et le modele peut Etre traité avec
les mémes techniques que celles utilisées pour le modéle GN. A ce titre, I'approche de
type Galerkin Discontinu de DURAN & MARCHE (2017) a été utilisée, couplée aux
méthodes de BONNETON et al. (2012) et LANNES & MARCHE (2015) pour amélio-
rer les propriétés dispersives et les performances en temps de calcul. En gardant les
mémes parametres que dans le cas d'une onde solitaire, le modele permet de décrire le
déferlement de trains d’ondes, méme dans le cas de vagues irrégulieres, et s’étend a des
configurations 2D impliquant des fronts secs et des topographies complexes.
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