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Résumé : 
La propagation des vagues dans les zones côtières implique des mécanismes complexes, 
représentant des enjeux de modélisation et numériques considérables. Si la plupart des 
processus non-linéaires sont généralement capturés par des modèles de type Boussinesq, 
ces équations conservent l’énergie et sont donc intrinsèquement inaptes à décrire les 
mécanismes dissipatifs, tels que ceux associés au déferlement des vagues. Pour gérer ce 
phénomène, nous introduisons un nouveau modèle dispersif fortement non-linéaire ca-
pable de prendre en compte les effets turbulents sous-jacents. L’approche est caractéri-
sée par la présence d’une nouvelle variable basée sur la variation verticale de la vitesse, 
appelée enstrophie, modélisant l’énergie turbulente. Le modèle proposé présente une 
structure similaire aux équations de Green-Naghdi (GN) et peut donc être intégré numé-
riquement sur la base de toute méthode existante pour ces équations. Dans le prolonge-
ment de travaux récents, nous considérons une discrétisation de type Galerkin disconti-
nu du système, basée sur un découplage entre les parties hyperboliques et non-hydrosta-
tiques. Des validations numériques 1D et 2D impliquant la propagation de vagues défer-
lantes sur des topographies non triviales sont proposées. En particulier, les comparai-
sons avec les données expérimentales confirment l’efficacité de la stratégie, mettant en 
évidence l’enstrophie comme un outil robuste et fiable pour la détection et la description 
des vagues déferlantes. 
Mots-clés : Océanographie côtière, Déferlement, Turbulence, Dispersion. 

1. Introduction 
Depuis plusieurs décennies, la modélisation mathématique et numérique en océanogra-
phie, représente un secteur d'activité intensif au sein la communauté scientifique. De-
vant les enjeux climatiques actuels (fréquence et intensité des évènements extrêmes, 
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montée des eaux, érosion, production d’énergie marine,...), la conception de modèles de 
prévision fiables et efficaces dédiés à l'océanographie côtière est devenue une nécessité 
de premier plan. En dépit de constants progrès techniques, la résolution directe des 
équations de Navier-Stokes reste toujours hors de portée d’un point de vue opérationnel. 
Dans ce contexte, l’intérêt se porte sur des modèles simplifiés, moins coûteux numéri-
quement, avec notamment les modèles d’écoulement à surface libre. Concernant le mé-
canisme de déferlement, l'un des principaux enjeux est de réussir à décrire à la fois la 
dispersion (dominante avant le déferlement) et la dissipation, dominante dans la zone de 
déferlement. Le caractère conservatif des modèles dispersifs de type Boussinesq ne 
permettant pas de décrire la dissipation, il est nécessaire d'introduire des méthodes spé-
cifiques pour gérer ce phénomène. 
A l'heure actuelle, dans le contexte de modèles moyennés sur la verticale, la plupart des 
méthodes existantes sont classifiées en deux catégories. La première stratégie consiste à 
activer un terme de viscosité artificielle dans les équations au niveau de la zone de dé-
ferlement pour modéliser la dissipation. Nous renvoyons à CHEN et al. (2000), KIRBY 
et al. (1998), ou bien à NWOGU (1996) ou ZHANG et al. (2014) où la viscosité est dé-
terminée à partir d'une énergie turbulente à travers une équation de transport. Une se-
conde approche, généralement appelée méthode hybride (ou switching en anglais) 
consiste à traiter les vagues déferlantes comme des chocs dans les équations de Saint-
Venant en supprimant les termes dispersifs à partir du point de déferlement. Depuis une 
dizaine d'années, ce type d'approche a été utilisé dans de nombreux contextes. De ma-
nière générale, chacune de ces approches requiert la calibration d'un jeu de paramètres 
empiriques, et doit être couplée à un critère de détection pour activer ou désactiver le 
mécanisme de dissipation. Ces paramètres peuvent varier en fonction du type de défer-
lement étudié, ou bien encore des choix de discrétisation, compromettant le caractère 
prédictif de la méthode. Sur ces aspects, une analyse détaillée est proposée dans l’étude 
récente KAZOLEA & RICCHIUTO (2018). 
Plus récemment, un autre type d'approche a commencé à se développer, prenant en 
compte les variations verticales du profil de vitesse à travers l'ajout une troisième va-
riable dans le modèle TESHUKOV (2007). Adjointes à un mécanisme de dissipation, 
ces méthodes permettent une excellente description des roll-waves et des ressauts hy-
drauliques (RICHARD & GAVRILYUK, 2012, 2013). La fermeture du modèle est ob-
tenue par une hypothèse d'écoulement faiblement cisaillé. La prise en compte des effets 
dispersifs a ensuite été proposée par CASTRO & LANNES (2014), RICHARD et GA-
VRILYUK (2015), travaux suivis par une première application au déferlement GAVRI-
LYUK et al. (2016) dans le cadre d'un modèle à deux couches. Une première proposi-
tion permettant d'inclure à la fois la dispersion et la dissipation dans un modèle à une 
couche a récemment été développée par KAZAKOVA & RICHARD (2019), et étendue 
par RICHARD et al. (2019) en dimension 2. La turbulence de grande échelle est expli-
citement résolue tandis que la turbulence de petite échelle est modélisée par une hypo-



thèse de viscosité turbulente. Les termes dispersifs étant traités de manière similaire aux 
équations GN, le modèle obtenu peut se traiter numériquement sur la base de techniques 
existantes pour ces équations. Il en résulte une approche permettant de décrire le défer-
lement de manière robuste et prédictive dans une grande variété de contextes. Ce papier 
fait état des principaux résultats obtenus en 1D et 2D dans le cas des ondes solitaires, et 
de la récente extension aux trains d'ondes. 

2. Equations du modèle 
Dénotant  une profondeur de référence et  une longueur caractéristique des varia-
tions horizontales de l'écoulement, le modèle est dérivé sous hypothèse d'écoulements à 
faible profondeur:  Dans ce contexte, l'obtention du modèle repose sur 
l'intégration des équations LES (Large Eddy Simulation) selon la verticale. La vitesse 
horizontale filtrée est décomposée en une vitesse moyenne sur la profondeur et un écart 
à cette vitesse moyenne, représentant la turbulence de grande échelle et les effets de ci-
saillement: . La turbulence de grande échelle, qui 
contient l'essentiel de l'énergie associée au mécanisme de déferlement, est ainsi explici-
tement résolue en introduisant la quantité suivante, appelée enstrophie: 

                                                                                                (1) 

où  désigne la hauteur d'eau et  une paramétrisation de la topographie (figure 1). 
Comme dans TESHUKOV (2007), l'écoulement est supposé faiblement turbulent et fai-
blement cisaillé. La fermeture du modèle est obtenue en modélisant la turbulence de 
petite échelle par une hypothèse de viscosité turbulente. Au final, en 1D, le modèle ob-
tenu est constitué des trois équations suivantes: 
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Figure 1. Notations. 

où  désigne la dérivée matérielle seconde de , et  et  sont des termes d'ordre  
liés au fond variable: 

                                                                           

(4) 
La dérivée matérielle est . L'équation sur l'enstrophie est donnée 
par: 

, (5) 

où  désigne la viscosité turbulente, la quantité  pouvant être vue comme 
un nombre de Reynolds sans dimension. La constante  gouverne un terme de dif-
fusion sur l'enstrophie pouvant être négligé dans le cas des ondes solitaires (formelle-
ment ). Dans le cas des trains d'ondes, ce terme a un effet régularisant au ni-
veau du point de déferlement. En pratique, nous prenons  mais toute autre valeur 
de cet ordre peut être envisagée sans modifier significativement la solution. En dimen-
sion deux,  est un tenseur anisotrope et donne lieu à trois équations supplémentaires au 
lieu d'une. Notons cependant que l'équation sur l'enstrophie ne contient aucun terme 
dispersif ni aucun terme associé au fond variable, et ne représente à ce titre aucune dif-
ficulté particulière d'un point de vue numérique. Comme dans les équations GN, la dif-
ficulté réside dans l'équation de quantité de mouvement qui contient notamment des dé-
rivées croisées en temps et en espace, à travers la dérivée matérielle. Des méthodes ré-
centes dédiées aux équations GN, basées sur des modèles asymptotiquement équivalents 
(BONNETON et al. 2012 ; LANNES & MARCHE, 2015) permettent de reformuler le 
problème d'une manière plus appropriée, tout en améliorant les propriétés dispersives. 
Ces méthodes ont récemment été étendues aux modèles 1D et 2D avec enstrophie, dans 
un environnement de type Galerkin discontinu basé sur les travaux de DURAN & 
MARCHE (2017). 
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3. Validation du modèle 
Dans les travaux de KAZAKOVA & RICHARD (2019), il a été établi que pour de 
faibles non-linéarités (c'est-à-dire , où  avec  l'amplitude de la 
vague), les résultats obtenus sont en bon accord avec l'expérience et l'enstrophie est un 
indicateur fiable de début de déferlement. La valeur  semble être universelle, 
et les résultats ne se sont pas révélés sensibles au choix du second paramètre  du mo-
dèle (le choix  fournit de très bons résultats). Cependant, pour des non li-
néarités plus fortes, l'activation de l'enstrophie dès le début des calculs peut avoir un 
impact sur l'amplitude des vagues, et ce même en dehors des zones de déferlement. Une 
solution consiste à activer les termes visqueux (associés à la création d'enstrophie) uni-
quement au niveau de ces zones. Des critères classiques peuvent être utilisés, mais l'en-
strophie elle-même, associée par construction à l'énergie turbulente, peut être utilisée 
comme critère de détection. Ceci mène à l'introduction d'une nouvelle quantité, appelée 
enstrophie virtuelle, qui évalue la quantité d'enstrophie que le modèle est capable de 
produire. D'un point de vue pratique, cette quantité est calculée exactement comme l'en-
strophie dans tout le domaine de calcul, mais sans rétroaction sur les autres variables. 
Les zones de déferlement peuvent alors être identifiées par une production brutale d'en-
strophie virtuelle. Le seuil de détection numérique est donné par (nous référons aux tra-
vaux de KAZAKOVA & RICHARD (2019) pour plus de détails) : 

                                                                                                

(6) 
Dans ce contexte, le nombre de Reynolds adimensionné est donné par , 
 étant une estimation locale de la pente, et le terme de viscosité  est nul dans l’équa-

tion (5) dans les zones où . 
Les expériences de TING & KIRBY (1994) permettent d'étudier le comportement du 
modèle pour deux types de déferlement (glissant et plongeant). La simulation implique 
un train de vague sinusoïdal se propageant sur une pente 1/35. Le déferlement glissant 
correspond à une amplitude  et une période , et , 

 dans le cas plongeant. La figure 2 permet de comparer les solutions obtenues 
pour ces deux configurations, à travers l'évolution temporelle de l'énergie turbulente 

 et de la vitesse moyenne au voisinage du point de déferlement. On peut no-
tamment observer que le déferlement glissant se caractérise par le fait que l'énergie tur-
bulente n'a pas le temps de se dissiper totalement entre deux épisodes de déferlement. Il 
en résulte que le courant de retour induit un transport d'énergie turbulente vers le large. 
Pour le déferlement plongeant, l'énergie turbulente a le temps de se dissiper, de sorte 
que le transport d'énergie turbulente est dirigé vers la côte. Ces résultats sont tout à fait 
conformes aux observations expérimentales, de même que l'évolution temporelle de la 
surface libre. A noter que, contrairement aux approches de type switching, l'approche 
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s'est révélée être peu sensible aux paramètres de discrétisation et permet la convergence 
en maillage. 
Les études expérimentales de BEJI & BATTJES (1993) ont permis de valider le modèle 
pour différents types de trains de vagues se propageant et déferlant sur une topographie 
non triviale. Ces expériences ont d'abord été utilisées avec succès par RICHARD et al., 
2019 dans le cas de vagues régulières, mais la stratégie s'avère efficace dans le cas de 
vagues irrégulières. Nous illustrons ici les résultats obtenus avec un profil de vagues 
aléatoires de type JONSWAP correspondant à une fréquence caractéristique . 
La figure 3 montre l'évolution temporelle des profils de surface libre au niveau de diffé-
rentes sondes disposées autour du point de déferlement, pour différentes valeurs de . 
On peut observer une très bonne correspondance avec les résultats expérimentaux. 
Les expériences de SWIGLER (2009) ont été utilisées pour valider le modèle 2d. Il 
s'agit d'étudier le déferlement d'une onde solitaire sur une plage comprenant un récif 
conique. La simulation a été réalisée sur un maillage non structuré de 200 000 mailles, 
raffiné au niveau du récif. Nous proposons en figure 4 des profils de la surface libre à 
différents temps de la propagation. La trace du tenseur d'enstrophie, illustrée en rouge, 
permet de marquer clairement le début de l'épisode de déferlement à l'arrivée de la 
vague sur le récif. Les structures turbulentes se propagent ensuite latéralement pour 
former un front déferlant sur toute la largeur du bassin. L'évolution temporelle de la sur-
face libre et des composantes de la vitesses à différentes sondes sont en bon accord avec 
l’expérience. 

 

 
Figure 2. Expériences de TING & KIRBY (1994). Evolution temporelle de l'énergie tur-
bulente adimensionnée (rouge) et de la vitesse moyenne (bleu) dans le cas de déferle-

ments glissant (haut) et plongeant (bas). 
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Figure 3. Expérience de BEJI & BATTJES (1993) - Déferlement de vagues irrégulières. 

Evolution temporelle de la surface libre. 

 
Figure 4. Expériences de SWIGLER, 2009 - Profils de surface libre à différentes étapes 

du déferlement. 

4. Conclusions 
Nous proposons une nouvelle approche pour décrire le déferlement des vagues, basée 
sur un modèle turbulent moyenné sur la profondeur. Les résultats présentés étendent les 
travaux de KAZAKOVA & RICHARD (2019) au cas des trains d'ondes et en 2D. La 



turbulence de grande échelle associée au mécanisme de déferlement est explicitement 
résolue grâce à l'introduction d'une nouvelle variable, appelée enstrophie. Le modèle 
présente la même structure que les équations de GN, auxquelles doivent adjointes une 
équation de transport (trois en dimension deux). Ces équations supplémentaires ne re-
présentent pas de difficultés numériques particulières et le modèle peut être traité avec 
les mêmes techniques que celles utilisées pour le modèle GN. A ce titre, l'approche de 
type Galerkin Discontinu de DURAN & MARCHE (2017) a été utilisée, couplée aux 
méthodes de BONNETON et al. (2012) et LANNES & MARCHE (2015) pour amélio-
rer les propriétés dispersives et les performances en temps de calcul. En gardant les 
mêmes paramètres que dans le cas d'une onde solitaire, le modèle permet de décrire le 
déferlement de trains d’ondes, même dans le cas de vagues irrégulières, et s’étend à des 
configurations 2D impliquant des fronts secs et des topographies complexes. 
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